Low temperature thermal expansion of pure and inert gas-doped Fullerite C60
低线性膨胀聚丙烯材料研究
低线性膨胀聚丙烯材料研究摘要:研究了滑石粉、高密度聚乙烯(HDPE)、乙烯辛烯共聚物(POE)、成核剂、马来酸酐接枝聚丙烯(PP-g-MAH)等对聚丙烯复合材料线性膨胀系数的影响,结果表明提高滑石粉目数、增加POE添加量、添加成核剂和PP-g-MAH均有助于线性膨胀系数的降低。
关键字:线性膨胀系数; 聚丙烯; 滑石粉; 成核剂聚丙烯(PP)具有密度低、综合性能优良及成型性好等优点[1-2],广泛的应用于汽车领域,保险杠、仪表板、门板、立柱等零件都会使用聚丙烯材料[4],不同的零件对材料的力学性能要求不同[5],汽车可能会在不同的环境、温度条件下使用[6],而聚丙烯材料随温度变化尺寸变化比较明显,使其制品在装配使用过程中出现尺寸问题,进而可能会导致其他变形,断裂等问题[7-8],因此例如立柱、侧围等零件对材料的刚韧平衡与抗冷热交变性能都有较高的要求[9-10],提高材料的韧性与刚性以及尺寸稳定性[11],降低线性膨胀系数是聚丙烯材料在汽车饰件中的迫切问题[12-13]。
本文研究聚丙烯复合材料线性膨胀系数(CLTE)的影响因素。
1 实验部分1.1 主要原材料PP 树脂:熔融指数(MI)为60g/10min(230℃/2.16kg),爱思开化学(中国)有限公司;高密度聚乙烯(HDPE):MI为8 g/10min(190℃/2.16kg),沙特阿美石油公司;乙烯/辛烯共聚物(POE1):MI为0.5 g/10min(190℃/2.16kg),DOW(中国)投资有限公司;乙烯/辛烯共聚物(POE2):MI为5 g/10min(190℃/2.16kg),DOW(中国)投资有限公司;乙烯/辛烯共聚物(POE3):MI为13 g/10min(190℃/2.16kg),DOW(中国)投资有限公司;滑石粉A:3000目,佳泉新材料有限公司;滑石粉B:5000目,佳泉新材料有限公司;滑石粉C:10000目,依米法比集团;成核剂:NA-11,艾迪科(中国)投资有限公司。
考试复习笔记-材料概论(上)
加入铬添加剂可以生产耐腐蚀的不锈钢。
Additions such as tungsten lead to high-hardness alloy used as tool steels .
加入钨之类的添加剂可以生产用做工具刚的高硬度合金。
superalloys include many stainless steels that combine corrosion resistance with high strength at elevated temperatures .
超合金包括多种不锈钢,这些不锈钢在高温下即耐腐蚀同时又具有高强度。
超过90%重量的工程材料是铁基合金,包括刚(含0.05~2.0 wt% C)和铸铁(含2.0~4.5 wt% C)。
Most steels involve a minimum of alloy additions to maintain moderate costs .
大多数的刚只含有少量的合金添加剂使材料的成本适中。
要理解这各种材料的性能需要从微观或亚微观尺度上研究材料的结构。
2、
The relative ductility of certain metal alloys is related to atomic-scale "architecture".
某些金属合金的延展性的相对大小与其原子尺度上的“构造有关。
当我们了解了材料的性能,材料的实际选择就可以在两个层次上进行。
First ,there is competition among the various categories of materials .
低温材料物性表
低温材料物性表Presented at the 11th International Cryocooler ConferenceJune 20-22, 2000Keystone, Co Cryogenic Material Properties Database Cryogenic Material Properties DatabaseE.D. Marquardt, J.P. Le, and Ray RadebaughNational Institute of Standards and TechnologyBoulder, CO 80303ABSTRACTNIST has published at least two references compiling cryogenic material properties. These include the Handbook on Materials for Superconducting Machinery and the LNG Materials & Fluids. Neither has been updated since 1977 and are currently out of print. While there is a great deal of published data on cryogenic material properties, it is often difficult to find and not in a form that is convenient to use. We have begun a new program to collect, compile, and correlate property information for materials used in cryogenics. The initial phase of this program has focused on picking simple models to use for thermal conductivity, thermal expansion, and specific heat. We have broken down the temperature scale into four ranges: a) less than 4 K, b) 4 K to77 K, c) 77 K to 300 K, and d) 300 K to the melting point. Initial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10 fiberglass epoxy, 718 Inconel, Kevlar, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. Correlations are given for each material and property over some of the temperature range. We will continue to add new materials and increase the temperature range. We hope to offer these material properties as subroutines that can be called from your own code or from within commercial software packages. We will also identify where new measurements need to be made to give complete property prediction from 50 mK to the melting point.INTRODUCTIONThe explosive growth of cryogenics in the early 50’s led to much interest in material properties at low temperatures. Important fundamental theory and measurements of low temperature material properties were performed in the 50’s, 60’s, and 70’s. The results of this large amount of work has become fragmented and dispersed in many different publications, most of which are out of print and difficult to find. Old time engineers often have a file filled with old graphs; young engineers often don’t know how to find this information. Since most of the work was performed before the desktop computer became available, when data can be found, it is published in simple tables or graphically, making the information difficult to accurately determine and use.NIST has begun a program to gather cryogenic material property data and make it available in a form that is useful to engineers. Initially we tried to use models based upon fundamental physics but it soon became apparent that the models could not accurately predict properties overTable 1A . Coefficients for thermal conductivity for metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V a0.07918 -1.4087 -8.28921 -0.50015 -5107.8774 b1.09570 1.3982 39.4470 1.93190 19240.422 c-0.07277 0.2543 -83.4353 -1.69540 -30789.064 d0.08084 -0.6260 98.1690 0.71218 27134.756 e0.02803 0.2334 -67.2088 1.27880 -14226.379 f-0.09464 0.4256 26.7082 -1.61450 4438.2154 g0.04179 -0.4658 -5.72050 0.68722 -763.07767 h-0.00571 0.1650 0.51115 -0.10501 55.796592 I0 -0.0199 0 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 K 20-300 Ka large temperature range and over different materials. Our current approach is to choose a few simple types of equations such as polynomial or logarithmic polynomials and determine the coefficients of different materials and properties. This will allow engineers to use the equations to predict material properties in a variety of ways including commercial software packages or their own code. Integrated and average values can easily be determined from the equations. These equations are not meant to provide any physical insight into the property or to provide ‘standard’ values but are for working engineers that require accurate values.MATERIALSInitial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10CR fiberglass epoxy, 718 Inconel, Kevlar 49, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. These were chosen as some of the most common materials used in cryogenic systems in a variety of fields.MATERIAL PROPERTIESThermal ConductivityWidely divergent values of thermal conductivity for the same material are often reported in the literature. For comparatively pure materials (like copper), the differences are due mainly to slight material differences that have large effects on transport properties, such as thermal conductivity, at cryogenic temperatures. At 10 K, the thermal conductivity of commercial oxygen free copper for two samples can be different by more then a factor of 20 while the same samples at room temperature would be within 4%. It is also not uncommon for some experimental results to have uncertainties as high as 50%. Part of our program is to critically evaluate the literature to determine the best property values. Data references used to generate predictive equations will be reported.The general form of the equation for thermal conductivity, k , islog()log (log )(log )(log )(log )(log )(log )(log ),k a b T c T d T e T f T g T h T i T =++++++++2345678 (1)where a , b , c , d, e , f , g , h , and i are the fitted coefficients, and T is the temperature. These are common logarithms. While this may seem like an excessive number of terms to use, it was determined that in order to fit the data over the large temperature range, we required a large number of terms. It should also be noted that all the digits provided for the coefficients should be used, any truncation can lead to significant errors. Tables 1A and 1B show the coefficients for a variety of metals and non-metals. Equation 2 is the thermal conductivity for an average sample of oxygen free copper. It should be noted that thermal conductivity for oxygen free copper canTable 1B . Coefficients for thermal conductivity for non-metals.Coeff. Teflon Polyamide (nylon) Polyimide (Kapton) G10 CR (norm) G10 CR(warp)a2.7380 -2.6135 5.73101 -4.1236 -2.64827 b-30.677 2.3239 -39.5199 13.788 8.80228 c89.430 -4.7586 79.9313 -26.068 -24.8998 d-136.99 7.1602 -83.8572 26.272 41.1625 e124.69 -4.9155 50.9157 -14.663 -39.8754 f-69.556 1.6324 -17.9835 4.4954 23.1778 g23.320 -0.2507 3.42413 -0.6905 -7.95635 h-4.3135 0.0131 -0.27133 0.0397 1.48806 I0.33829 0 0 0 -0.11701 data range 4-300 K4-300 K 4-300 K 10-300 K 12-300 K Figure 1. Thermal conductivity of various materials.vary widely depending upon the residual resistivity ratio, RRR, and this equation should be used with caution. The thermal conductivities are displayed graphically in Figure 1.log .............k T T T T T T T T =?+?+?+?+22154088068029505004831000032071047461013871002043000012810515205152(2) Specific HeatThe specific heat is the amount of heat energy per unit mass required to cause a unit increase in the temperature of a material, the ratio of the change in energy to the change in temperature. Specific heats are strong functions of temperature, especially below 200 K. Models for specific heat began in the 1871 with Boltzmann and were further refined by Einstein and Debye in the early part of the 20th century. While there are many variations of these first models, they generally only provide accurate results for materials with perfect crystal lattice structures. TheTable 2. Coefficients for specific heat. Coeff. OFCHcopper 6061 -T6 Aluminum 304 SS G-10 Teflon a-1.91844 46.6467 22.0061 -2.4083 31.8825 b-0.15973 -314.292 -127.5528 7.6006 -166.519 c8.61013 866.662 303.6470 -8.2982 352.019 d-18.99640 -1298.30 -381.0098 7.3301 259.981 e21.96610 1162.27 274.0328 -4.2386 -104.614 f-12.73280 -637.795 -112.9212 1.4294 24.9927 g3.54322 210.351 24.7593 -0.24396 -3.20792 h-0.37970 -38.3094 -2.239153 0.015236 0.165032 I0 2.96344 0 0 0 data range 3-300 K 3-300 K 3-300 K 3-300 K 3-300 KFigure 2. Specific heat of various materials.specific heat of many of the engineering materials of interest here is not described well by these simple models. The general form of the equation is the same as Equation 1. Table 2 shows the coefficients for the specific heat. Figure 2 graphically shows the specific heats.Thermal ExpansionFrom an atomic perspective, thermal expansion is caused by an increase in the average distance between the atoms. This results from the asymmetric curvature of the potential energy versus interatomic distance. The anisotropy results from the differences in the coulomb attraction and the interatomic repulsive forces.Different metals and alloys with different heat treatments, grain sizes, or rolling directions introduce only small differences in thermal expansion. Thus, a generalization can be made that literature values for thermal expansion are probably good for a like material to within 5%. This is because the thermal expansion depends explicitly on the nature of the atomic bond, and only those changes that alter a large number of the bonds can affect its value. In general, largeTable 3A . Integrated Linear Thermal Expansion Coefficients for Metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V NbTi a-4.1272E+02 -2.9546E+02-2.366E+02-3.132E+02-1.711E+02 -1.862E+02b-3.0640E-01 -4.0518E-01-2.218E-01-4.647E-01-2.171E-01 -2.568E-01 c8.7960E-03 9.4014E-03 5.601E-03 1.083E-02 4.841E-03 8.334E-03 d-1.0055E-05 -2.1098E-05-7.164E-06-2.893E-05-7.202E-06 -2.951E-05 e0 1.8780E-080 3.351E-080 3.908E-08 data range 4-300 K 4-300 K 4-300 K 4-300 K 4-300 K 4-300 KTable 3B. Integrated Linear Thermal Expansion Coefficients for Non-metals.Coeff. Teflon Polyamide G10 CR (norm) G10 CR(warp)a-2.165E+03 -1.389E+03-7.180E+02-2.469E+02 b3.278E+00 -1.561E-01 3.741E-01 2.064E-01 c-8.218E-03 2.988E-02 8.183E-03 3.072E-03 d7.244E-05 -7.948E-05-3.948E-06-3.226E-06 e0 1.181E-07 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 Kchanges in composition (10 to 20%) are necessary to produce significant changes in the thermal expansion (~5%), and different heat treatments or conditions do not produce significant changes unless phase changes are involved.8Most of the literature reports the integrated linear thermal expansion as a percent change in length from some original length generally measured at 293 K,()/.L L L T ?293293 (3) Where L T is the length at some temperature T and L 293 is the length at 293 K. While this is a practical way of measuring thermal expansion, the more fundamental property is the coefficient of linear thermal expansion,α,α()().T L dL T dT=1 (4) The coefficient of linear thermal expansion is much less reported in the literature. In principal, we can simply take the derivative of the integrated linear thermal expansion that results in the coefficient of linear thermal expansion. While we have had success with this method over limited temperature ranges, we have not yet determined an equation form for the integrated expansion value that results in a good approximation of coefficient of linear thermal expansion. For the time being, we will report the integrated linear thermal expansion as a change in length and provide the coefficient of linear thermal expansion when it is directly reported in the literature. The general form of the equation for integrated linear thermal expansion is L L L a bT cT dT eT T ?=++++??293293234510(). (5) Tables 3A and 3B provide the coefficients for the various materials while Figure 3 plots the integrated linear thermal expansions.FUTURE PLANSWe plan to continually add new materials, properties, and to expand the useful temperature range of the predictive equations for engineering use. We will report results in the literature but will also update our website on a continual basis. The initial phase of the program was a learningFigure 3. Integrated linear thermal expansion of various materials.experience on how to handle the information in the literature as well as for the development of a standard set of basic equation types used to fit experimental data. By using just a few types of equations, we hope to make the information easier to use. We shall now focus on developing large numbers of equations for a variety of materials and properties. Please check our web site at /doc/e6c9c70608a1284ac85043da.html /div838/cryogenics.html for updated information.REFERENCES1. Berman, R., Foster, E.L., and Rosenberg, H.M., "The Thermal Conductivity of SomeTechnical Materials at Low Temperature." Britain Journal of Applied Physics, 1955. 6: p.181-182.2. Child, G., Ericks, L.J., and Powell, R.L., Thermal Conductivity of Solids at RoomTemperatures and Below. 1973, National Bureau of Standards: Boulder, CO.3. Corruccini, R.J. and Gniewek, J.J., Thermal Expansion of Technical Solids at LowTemperatures. 1961, National Bureau of Standards: Boulder, CO.4. Cryogenic Division, Handbook on Materials for Superconducting Machinery. Mechanical,thermal, electrical and magnetic properties of structure materials. 1974, National Bureau of Standards: Boulder, CO.5. Cryogenic Division, LNG Materials and Fluids. 1977, National Bureau of Standards:Boulder, CO.6. Johnson, V.J., WADD Technical Report. Part II: Properties of Solids. A Compendium ofThe Properties of Materials at Low Temperature (phase I). 1960, National Bureau of Standard: Boulder, CO.7. Powells, R.W., Schawartz, D., and Johnston, H.L., The Thermal Conductivity of Metals andAlloys at Low Temperature. 1951, Ohio State University.8. Reed, R.P. and Clark, A.F., Materials at Low Temperature. 1983, Boulder, CO: AmericanSociety for Metals.9. Rule, D.L., Smith, D.R., and Sparks, L.L., Thermal Conductivity of a Polyimide FilmBetween 4.2 and 300K, With and Without Alumina Particles as Filler. 1990, National Institute of Standards and Technology: Boulder, CO.10. Simon, N.J., Drexter, E.S., and Reed, R.P., Properties of Copper Alloys at CryogenicTemperature. 1992, National Institute of Standards and Technology: Boulder, CO.11. Touloukian, Y.S., Recommended Values of The Thermophysical Properties of Eight Alloys,Major Constituents and Their Oxides. 1965, Purdue University.12. Veres, H.M., Thermal Properties Database for Materials at Cryogenic Temperatures. Vol. 1.13. Ziegler, W.T., Mullins, J.C., and Hwa, S.C.O., "Specific Heat and Thermal Conductivity ofFour Commercial Titanium Alloys from 20-300K," Advances in Cryogenic Engineering Vol. 8, pp. 268-277.。
机械密封各个类型的英文表达方式
机械密封各个类型的英文表达方式我这里列出了34个机械密封分类术语...1.机械端面密封-mechanical face seal2.流体动压式机械密封-hydrodynamic mechanical seal3.切向作用流体动压式机械密封-tangential acting hydrodyna mic mechanical seal4.径向作用流体动压式机械密封-radial acting hydrodynamic mechanical seal5.流体静压式机械密封-hydrostatic mechanical seal6.外加压流体静压式机械密封-outside pressurized hydrostat ic mechanical seal7.自加压流体静压式机械密封-self pressurized hydrostatic m echanical seal8.非接触式密封-non contacting (free contacting) mechani cal seal9.内装式机械密封-internally mounted mechanical seal10.外装式机械密封-externally mounted mechanical seal11.弹簧内置式机械密封-mechanical seal with inside mount ed spring12.弹簧外置式机械密封-mechanical seal with outside mou nted spring13.背面高压式机械密封-mecanical seal with high back pres sure14.背面低压式机械密封-mechanical seal with low back pre ssure15.内流式机械密封-mechanical seal with inward leakage16.外流式机械密封-mechanical seal with outward leakage17.弹簧旋转式机械密封-spring rotating mechanical seal18.弹簧静止式机械密封-spring standing mechanical seal19.单弹簧式机械密封-single-spring mechanical seal20.多弹簧式机械密封-multiple-spring mechanical seal21.非平衡式机械密封-unbalanced mechanical seal22.平衡式机械密封-balanced mechanical seal23.单端面机械密封-single mechanical seal24.双端面机械密封-double mechanical seal25.轴向双端机械密封-axial double mechanical seal26.径向双端面机械密封-radial double mechanical seal27.串联机械密封-tandem mechanical seal28.橡胶波纹管机械密封-rubber-bellows mechanical seal29.聚四氟乙烯波纹管机械密封-PTFE-bellows mechanical se al30.金属波纹管机械密封-l bellows mechanical seal31.焊接金属波纹管机械密封-welded l bellows mechanical s eal32.压力成型金属波纹管机械密封-formed l bellows mechanical seal33.带浮动间隔环的机械密封-mechanical seal with floating i ntermediate ring34.磁力机械密封-magnetic mechanical seal机械密封零件术语的常用词汇....1.sealing ring --密封环2.seal face--密封端面3.seal interface--密封界面4.rotating ring--动环/旋转环5.stationary ring--静环/静止环pensated ring--补偿环7. un-compensated ring--非补偿环8. seal head--补偿环组件9.primary seal--主密封10.secondary seal--副密封11.auxiliary seal--辅助密封12.auxiliary seal ring--辅助密封圈13.bellows--波纹管14.pushing out ring--撑环15.back-up ring--挡圈pensated ring adaptor--补偿环座17.un-compensated ring adaptor--非补偿环座18.spring adaptor--弹簧座19.seal adaptor--波纹管座20.retainer--传动座21.driving screw--传动螺钉22.set screw--紧定螺钉23.snap ring--卡环24.clamp ring--夹紧环25.anti-rotating pin--防转销26.annular seal space--密封腔27.seal chamber--密封腔体28.end cover--密封端盖29.elastic component--弹性元件30.a pair of friction components--摩擦副个人常用机械密封专有词汇inner circulation--内循环outer circulation--外循环self circulation--自循环flush--冲洗flush fluid--冲洗流体quench--阻封quench fluid--阻封流体buffer fluid--隔离流体temperature adjustable fluid--调温流体coolant--冷却流体heating fluid--加热流体sealed medium--被密封介质sealant--密封流体pv --pv值(密封流体压力P与密封端面平均滑动速度V的乘积) limiting pv --密封达到失效时的PV值.它表示密封的水平working pv --极限PV值除以安全系数PcV--端面比压Pc与密封端面平均滑动速度V的乘积limiting PcV --密封达到失效时的PcV值.它表示密封材料的工作能力working PcV --许用PcV值.极限PcV值除以安全系数leakage rate-- 泄漏量run out--跳动wear rate--磨损率operating life--工作寿命operating period--使用期abortive failure--早期失效Operating limits:工作参数Speed/velocity:转速Combination of material:材料组合Halted ring:弹簧挡圈Bellows:波纹管Retainer:传动套,传动座Drive ring:压圈Cup gasket:静环套Spring retainer:弹簧座O-ring: O形圈Tension spring:拉簧Stationary seat:静环形式/静环基座Rotary seat:动环座Drive screw:传动螺钉Wave spring/Bellow spring:波形弹簧Rotary o-ring:动环O形圈Stationary o-ring:静环O形圈Collar:定位套Snap ring/clamp ring:卡环Disc/thrust ring:止推环Wedge ring:楔形环Mating ring:静止环/静环Primary ring:动止环/动环Inventory:存货Agitator:搅拌器Cryogenics:低温学Mixer:搅拌机Refinery:炼油Petrochemical:石化Paramecia:配药Desalination:脱盐Wastewater:污水Impeller:叶轮Fit:安装Lead:石墨,铅Edge:边缘Grade:等级Secondary sealing element:辅助密封材质Hydrostatic:流体静力学的Cross-section:横截面Material code:材料代码Seal size:密封轴径尺寸Assembly number:装配代码Sulphuric:硫酸Nitric acid:销酸Phosphoric acid:磷酸Hydrochloric:盐酸PV—pressure/velocity:压力与转速RS—rotating seat:动环座Multiplier:增效器TC—tungsten carbide:硬质合金Pin:销Engage:接合,啮合Pro剖面/侧面Adapter:适配器Titled:倾斜的Weld/welt:焊接Nested:嵌套的,镶装的Configuration:配置,构造Axial:轴向的,轴的Working height/length:工作高度Tolerance:公差,容差Operating pressure:工作压力FIM—full indicator movement: Lubricity:光滑Gravity:重力Face material:密封面材料Insert/shrink-fitted:镶装的Primary ring adapter:动环座Mating ring adapter:静环座Delivery period:交货期Set screw:固定螺钉Cap screw:帽螺钉Gland:填料函盖Drive retainer:传动套Gland plate:密封座Mean time:平均时Durability:耐用性Thrust ring:推环Clamp ring:卡环Eccentricity:偏心率/度,偏心距Deflection:偏斜,偏差Runout:偏转,溢流Pilot pins: 定位销Bolt:螺栓Screw:螺钉Nut:螺母Washer:垫圈Pin:销Rivet:铆钉Anchor:壁虎Machine screw:机械螺钉Wooden screw:木螺钉Threaded rod螺杆Wire rope clamps:玛卡Hex head pipe plugs:六角形螺塞Phillip:十字槽Spring-loaded pluger: 弹簧销Hex head:六角形头Flange:法兰Seal component materials:密封材料成分Secondary sealing element:辅助密封材料Primary ring:动环Mating ring:静环Hardware:结构件Mechanical loading device (spring):弹簧材料Ovality:椭圆Letter of intent:意向书Rotary ring is whole part or shrink-fitted:动环是整体还是镶装的Leaf:金属薄片End play:轴向间隙Pad:衬垫Asymmetric:不对称的Seal adapter:密封座Tandem:前后的,串联的Inlet:进口Outlet:出口Inboard:内侧/介质端Outboard:外侧/大气端Convection:传送,对流Port:端口,Slot:狭槽Reducing agent:还原剂Notch:槽口,凹口Band:镶边Clogging:堵塞Tune:(弹簧)圈数Foul:淤塞Flatness:平面度Downtime:检修时间Alternative methods:替代方法Wear ring:磨损环Torsion:扭距Cast:铸件Confining:狭窄的Spring seat:弹簧座Plug-proof:防转销Drive ring:推环Push ring: 推环Halted ring: 挡圈Cup gasket: 静环套Rotary ring holder/adapter/carrier: 动环座Axial pipe:轴套Drive ring/plunger collar:压圈Spring retainer/seat: 弹簧座Impeller:叶轮Outside cup gasket: 静环外套Inside cup gasket: 动环内套Spring holder:弹簧垫Seal ring:密封环work:骨架Square ring:方型圈Wave spring:波形弹簧Cylinder spring:圆柱弹簧Coil spring:锥形弹簧Integral seal case:整体密封盒Purity:纯度Density:密度HS—hardness:硬度Tensile strength:抗拉强度Bending strength:抗弯强度Compression strength:抗压强度Thermal conductivity:传热导系数Coefficient of thermal expansion:热膨胀系数Heat resistance:耐热Thermal impact coefficient:热冲击系数Acid resistance:耐酸Medium:介质Porosity:显气孔率Rockwell hardness:洛式硬度Breaking strength:抗析强度Stability of thermal vibration: 抗震稳定性Optical flatness:工作面平整度Roughness:粗糙度Lightbrand:光带Classification:分类Model:型号Thore hardness: 肖氏硬度Feature:特性Stamping:冲压Lobe pump:凸轮泵Step:台阶Crevice:裂缝Crack:裂纹Anticlockwise:逆时针Clockwise: 顺时针Labyrinth seals:迷宫式密封Torque:扭矩Throttle:节流圈/节流阀Bushing:轴衬Bearing:轴承Sealant:密封剂Pitch:螺距,节距Depth:深度Stuffing:填塞料BDC-bolt circle pitch diameter 中心距EMS:express mail service 邮政快递Thrust plate:止推板Surface finish:表面抛光End-fittings:端面安装Spare pats:配件Split seals:剖分式密封Running account:往来帐户NPT:normal pressure and temperature 常温常压Thread:螺纹Cushion:衬垫Pneumatics:气体力学GmbH—Gesellschaftmit beschrankter Hafltung 股份有限公司(德国)Electropolish 电解法抛光CAM—computer aided manufacturing 计算机辅助设计c/w: complete with 包括;caution/warning 小心与警告ASTM:American society of testing material 美国试验材料协会Squareness: 垂直度Concentric circle :同心圆Credit note/debit note/payment slip:银行水单EDGE: electronic data gathering equipment 电子数据采集设备Cavity:凹口/槽Proprietary design:专有设计TIR—total indicator reading 指针读数TIR—temperature indicator recorder 温度指示记录器Abutment:邻接,接合齿Melting point:熔点Boiling point:沸点Automatic lathes:车床Groove: 凹槽,开槽于Chamfer:倒角Bottom chamfer背倒角:CC: center line 中心线Thru: 穿过Wire DIA: 丝径Free length:自由高度Type of ends—close ground: 拼圈Conversion sheet:换算表General speaking: stationary seat should be harder tha n the rotary facePolypropylene:聚丙烯Polyethylene:聚乙烯PTFE—polytetrafluoroethylene聚四氟乙稀PVC:聚氯乙稀PVDF-polyvinylidene fluoride 聚偏氟乙稀CTFE-chlorotrifluor ethylene 三氟氯乙稀Consolidated shipment:合并装运Polishing:抛光Smoothness:光滑Flatness:平面度Roughness:粗糙度Impurity:杂质Bubble:气泡Defect/flaw:缺陷Surface:表面Air hole/pore气孔:Burr:毛刺Nick:划痕Thick:厚Thin:薄Spot welding:点焊Fastness:牢固Distortion/transfiguration:变形Brightness/lucency polishing:光亮抛光Matted polishing:暗淡抛光Rockwell hardness:洛氏硬度Shaw hardness:肖氏硬度Luster:光泽WRT:with regard toLatex paint 乳胶涂料:England-U.Krussian-Rugerman-DEFrench-FRSpanish-ESGreek-GRItalian-ITUnited states-U.S.AWelt/brazed:焊接的Tandem arrangement:串联式Back-to-back arrangement:背对背式Fitting length:安装长度Tolerance:容差Axial movement:轴向窜动量Torque transmission:扭矩传递Operating limits运行范围:Seal face:动环Stationary seat:静止环Drive key:键驱动Nut:螺母/螺帽Screw:螺钉Pin:销Bolt:螺栓Operating temperature:运行温度Right-handed (RH) screw:右旋螺钉Left-handed (LH) screw:左旋螺钉Screw thread:螺纹Screw thread groove:螺纹槽Screw type:螺纹型Spiral/helix: 螺旋Cash remittance:汇款单Cutaway:剖视图GB-Guobiao:我国国家标准Abmessung: dimensionSiliziumkarbid: silicon carbideFeder: springKeramic: ceramicTack weld:间断焊Carrier:支座,托架Keyway:键槽Undercut:底切Washer:垫圈Tooling charge / modeling charge:开模费RH—rockwell hardness / right hand 洛氏硬度 / 右旋Pitch of screw:螺距GP-general purpose:普通箱CBM-cubic meter:立方米MT-metric ton公吨HC-high cubic高箱Freight prepaid:运费预付Freight collect:运费到付House B/L:分提单(由货代开出)Ocean B/L:总提单(般公司开出)SWBL-sea waybill:海运单AWBL-air waybill:空运单B/N:货物单S/O:装运单D/R:场站收据CLP:装箱单D/O:提货单(dispatch/order)Surcharge:附加费Bunker surcharge::燃油附加费B.A.F—bunker adjustment factor: 燃油附加费CY-container yard:集装箱堆场CFS-container freight station::集装箱货运站(处理拼箱货的场所)TEU-twenty-feet equivalent unit:集装箱计算单位FCL-full container load 整箱货LCL-less than container 拼箱货Slot number: 箱位号集装箱0402D1 含义如下:04-bay number 排号(横号)02:row number 行号D1:river numberD—在甲板上; H—在舱内C.C—collect 到付P.P—prepaid 预付INCOTERMS 2000-International Rules for the Interpretat ion of trade terms 2000年国际贸易术语解释通则Carbon steel:碳钢Rpm: round per minute / revolutions per minute 每分钟转数Sliding surface:滑动面积RA-remedial action 矫正措施.restricted areas 受限区域性; remittance advice 汇款通知Ra-Rate of appearance 外观等级Perpendicularity:垂直度Clearance:间隙Counterface:对立面Retain:护圈,挡板Nanometer(nmgates橡胶英语翻译[color=blue][size=4]纺丝spinning干纺dry spinning湿纺wet spinning干湿法纺丝dry wet spinning干喷法纺丝dry jet wet spinning溶液纺丝solution spinning乳液纺丝emulsion spinning乳液闪蒸纺丝法emulsion spinning喷射纺丝jet spinning喷纺成形spay spinning液晶纺丝liquid crystal spinning熔纺melt spinning共混纺丝blended spinning凝胶纺丝gel spinning反应纺丝reaction spinning静电纺丝electrostatic spinning高压纺丝high-pressure spinning复合纺丝conjugate spinning无纺布monofilament/ monofil单丝multifilament全取向丝fully oriented yarn中空纤维hollow fiber皮芯纤维sheath core fiber共纺cospinning冷拉伸cold drawing/ cold stretching单轴拉伸uniaxial drwaing/ uniaxial elangation 双轴拉伸biaxial drawing皮心效应skin and core effect皮层效应skin effect防缩non-shrink熟成ripening垂挂sag定型sizing起球现象pilling effect捻度twist旦denier特tex纱yarn股strand粘合adhesion反应粘合reaction bonding压敏粘合pressure sensitive adhesion底漆primer浸渍impregnation浸渍树脂sovent impregnated resin基体matrix聚合物表面活性剂polymetic surfactant高分子絮凝剂polymeric surfactant预发颗粒pre-expanded bead高分子膜polymeric membraneH-膜H-filmLB膜langmuir blodgett film (LB film)半透膜semipermeable membrane反渗透膜reverse osmosis membrance多孔膜anisotropic membrane各向异性膜anisotropic membrance正离子交换膜cation exchange membrane 负离子交换膜anionic exchange membrane 吸附树脂polymeric adsorbent添加剂additive固化剂curing agent潜固化剂latent curing agent硫化剂vulcanizing agent给硫剂sulfur donor agent/ sulfur donor硫化促进剂vulcanization accelerator硫化活化剂vulcanization activatior活化促进剂activating accelerator活化剂activator防焦剂scroch retarder抗硫化返原剂anti-reversion agent塑解剂peptizer偶联剂coupling agent硅烷偶联剂silane coupling agent酞酸酯偶联剂titanate coupling agent铝酸酯偶联剂aluminate coupling agent增强剂reinforcing agent增硬剂hardening agent惰性填料inert filler增塑剂plasticizer辅增塑剂coplasticizer增粘剂tackifier增容剂compatibilizer增塑增容剂plasticizer extender分散剂dispersant agent结构控制剂constitution controller色料colorant荧光增白剂optical bleaching agent抗降解剂antidegradant防老剂anti-aging agent防臭氧剂antiozonant抗龟裂剂anticracking agent抗疲劳剂anti-fatigue agent抗微生物剂biocide防蚀剂anti-corrosion agent光致抗蚀剂photoresist防霉剂antiseptic防腐剂rot resistor防潮剂moisture proof agent除臭剂re-odorant抗氧剂antioxidant热稳定剂heat stabilizer抗静电添加剂antistatic additive抗静电剂antistatic agent紫外线稳定剂antistatic agent紫外光吸收剂ultraviolet stabilizer光稳定剂light stalibizer/ photostabilizer光屏蔽剂light screener发泡剂foaming agent物理发泡剂physical foaming agent化学发泡剂chemical foaming agent脱模剂releasing agent内脱模剂internal releasing agent外脱模剂external releasing agent阻燃剂flame retardant防火剂fire retardant烧蚀剂ablator润滑剂lubricant润湿剂wetting agent隔离剂separant增韧剂toughening agent抗冲改良性剂impact modifier消泡剂antifoaming agent减阻剂drag reducer破乳剂demulsifier粘度改进剂viscosity modifier增稠剂thickening agent/ thickener阻黏剂abhesive洗脱剂eluant附聚剂agglomerating agent后处理剂after-treating agent催干剂driver防结皮剂anti-skinning agent纺织品整理剂textile finishing agent[/size][/color]。
结构材料
结构材料:(structural material)是以力学性能为基础,以制造受力构件所用材料。
载流子:(charge carrier )半导体中载运电流的带电粒子,电子和空穴,又称自由载流子。
共晶:(eutectic)指在相对较低的温度下共晶焊料发生共晶物熔合的现象。
共晶合金直接从固态变到液态,而不经过塑性阶段,是一个液态同时生成两个固态的平衡反应。
其熔化温度称共晶温度。
热电效应:(Thermoelectric Effect )是当受热物体中的电子,因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。
纳米材料:(nano material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。
碳纳米管:CNT,具有独特结构和奇异电化学催化特性;为发展新型直接电化学酶传感器提供了可能性。
表面效应:(Surface Effect)球形颗粒的比表面积与直径成反比,随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性。
复合材料:(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。
复合材料的基体材料分为金属和非金属两大类。
智能材料:(intelligent material)是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。
功能材料:(functional material )是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。
材料优值:某种半导体对某种应用的适合程度。
制冷专业英语
溶液换热器 solution heat exchanger
吸收式制冷系统 absorption refrigerating system
间歇式吸收系统 intermittent absoprtion system
连续循环吸收式系统 continuous cycle absorption system
固体吸收式制冷 solid absorption refrigeration
制冷工程师 refrigeration engineer
制冷技术员 refrigeration technician
制冷技师 refrigeration technician
制冷技工 refrigeration mechanic
冷藏工人 icer
制冷安装技工 refrigeration installation mechanic
分解 decomposition
水解 hydrolysis
扩散 diffusion
能量增强剂 energy booster
缓蚀剂 anticorrsive
发生不足 incomplete boiling
吸收不足 incomplete absorption
喷淋密度 sprinkle density
叶片通过频率 blade passing frequency
喘振 surging
脱流 stall
叶轮反应度(反作用度) impeller reaction
叶轮 impeller
半开式叶轮 unshrouded impeller
闭式叶轮 shrouded impeller
压力表(中英)
压力表Introduction to Pressure Gauges压力表和压力开关压力表和压力开关是工厂中最常用的仪器。
然而,由于为数众多,维护和可靠性经常会被忽视。
从而,在老旧厂区见到大量无法使用的压力表和压力开关就不足为奇。
这种情况非常危险,因为如果压力开关失灵,工厂的安全就得不到保障。
反之,如果压力表损坏时工厂依然能安全运转,则说明该仪表毫无使用的必要。
因此,良好的过程仪表设计的首要目标便是,以较少的压力表和压力开关获得较好的作用和可靠性。
减少工厂中仪表数量的一种有效方法是,不再按照原有的陋习进行安装(例如在每个泵的出口都安装一块压力表)。
而是逐个核对每个设备的需要。
在核对过程中,我们应该思考以下问题:“这个压力表的读数对我有什么用处?”,只有在得到合理的答案时,才需要安装压力表。
如果压力表只是用来指示泵是否正在运转,就没必要安装,因为无需仪器即可做出判断。
如果压力表指示的是过程控制中的压力(或压降),则只有当我们能对结果采取相应措施(例如清洁滤清器)时这些信息才有意义,否则就毫无用处。
如果以上述原则来使用压力表,所用的压力表数量就会大幅减少。
如果工厂使用的压力表少而精,可靠性也会随之升高。
Pressure Gauges and switchesPressure gauges and switches are among the most often used instruments in a plant. But because of their great numbers, attention to maintenance--and reliability--can be compromised. As a consequence, it is not uncommon in older plants to see many gauges and switches out of service. This is unfortunate because, if a plant is operated with a failed pressure switch, the safety of the plant may be compromised. Conversely, if a plant can operate safely while a gauge is defective, it shows that the gauge was not needed in the first place. Therefore, one goal of good process instrumentation design is to install fewer but more useful and more reliable pressure gauges and switches.One way to reduce the number of gauges in a plant is to stop installing them on the basis of habit (such as placing a pressure gauge on the discharge of every pump). Instead, review the need for each device individually. During the review one should ask: "What will I do with the reading of this gauge?" and install one only if there is a logical answer to the question. If a gauge only indicates that a pump is running, it is not needed, since one can hear and see that. If the gauge indicates the pressure (or pressure drop) in the process, that information is valuable only if one can do something about it (like cleaning a filter); otherwise it is useless. If one approaches the specification of pressure gauges with this mentality, the number of gauges used will be reduced. If a plant uses fewer, better gauges, reliability will increase.压力表设计压力表(和开关)损坏的两个常见原因是管道振动和水气凝结,在寒冷天气下会冻结和损坏仪表外壳。
SMT行业常用名词缩写中英文对照
SMT行业常用名词缩写中英文对照AI :Auto—Insertion 自動插件AQL :acceptable quality level 允收水準ATE :automatic test equipment 自動測試ATM :atmosphere 氣壓BGA :ball grid array 球形矩陣CCD :charge coupled device 監視連接元件(攝影機)CLCC :Ceramic leadless chip carrier 陶瓷引腳載具COB :chip-on—board 晶片直接貼附在電路板上cps :centipoises(黏度單位) 百分之一CSB :chip scale ball grid array 晶片尺寸BGACSP :chip scale package 晶片尺寸構裝CTE :coefficient of thermal expansion 熱膨脹系數DIP :dual in-line package 雙內線包裝(泛指手插元件)FPT :fine pitch technology 微間距技術FR-4 :flame—retardant substrate 玻璃纖維膠片(用來製作PCB材質) IC :integrate circuit 積體電路IR :infra—red 紅外線Kpa :kilopascals(壓力單位)LCC :leadless chip carrier 引腳式晶片承載器MCM :multi—chip module 多層晶片模組MELF :metal electrode face 二極體MQFP :metalized QFP 金屬四方扁平封裝NEPCON :National Electronic Package andProduction Conference 國際電子包裝及生產會議PBGA:plastic ball grid array 塑膠球形矩陣PCB:printed circuit board 印刷電路板PFC :polymer flip chipPLCC:plastic leadless chip carrier 塑膠式有引腳晶片承載器Polyurethane 聚亞胺酯(刮刀材質)ppm:parts per million 指每百萬PAD(點)有多少個不良PAD(點)psi :pounds/inch2 磅/英吋2PWB :printed wiring board 電路板QFP :quad flat package 四邊平坦封裝SIP :single in—line packageSIR :surface insulation resistance 絕緣阻抗SMC :Surface Mount Component 表面黏著元件SMD :Surface Mount Device 表面黏著元件SMEMA :Surface Mount EquipmentManufacturers Association 表面黏著設備製造協會SMT :surface mount technology 表面黏著技術SOIC :small outline integrated circuitSOJ :small out—line j—leaded packageSOP :small out—line package 小外型封裝SOT :small outline transistor 電晶體SPC :statistical process control 統計過程控制SSOP :shrink small outline package 收縮型小外形封裝TAB :tape automaticed bonding 帶狀自動結合TCE :thermal coefficient of expansion 膨脹(因熱)係數Tg :glass transition temperature 玻璃轉換溫度THD :Through hole device 須穿過洞之元件(貫穿孔)TQFP :tape quad flat package 帶狀四方平坦封裝UV :ultraviolet 紫外線uBGA :micro BGA 微小球型矩陣cBGA :ceramic BGA 陶瓷球型矩陣PTH :Plated Thru Hole 導通孔IA Information Appliance 資訊家電產品MESH 網目OXIDE 氧化物FLUX 助焊劑LGA (Land Grid Arry)封裝技術LGA封裝不需植球,適合輕薄短小產品應用.TCP (Tape Carrier Package)ACF Anisotropic Conductive Film 異方性導電膠膜製程Solder mask 防焊漆Soldering Iron 烙鐵Solder balls 錫球Solder Splash 錫渣Solder Skips 漏焊Through hole 貫穿孔Touch up 補焊Briding 穚接(短路)Solder Wires 焊錫線Solder Bars 錫棒Green Strength 未固化強度(紅膠)Transter Pressure 轉印壓力(印刷)Screen Printing 刮刀式印刷Solder Powder 錫顆粒Wetteng ability 潤濕能力Viscosity 黏度Solderability 焊錫性Applicability 使用性Flip chip 覆晶Depaneling Machine 組裝電路板切割機Solder Recovery System 錫料回收再使用系統Wire Welder 主機板補線機X-Ray Multi-layer Inspection System X—Ray孔偏檢查機BGA Open/Short X—Ray Inspection Machine BGA X—Ray檢測機Prepreg Copper Foil Sheeter P.P。
SMT术语英语
精心整理Smt属于转换英语THT(Through??Hole??Technology):通孔安装技术SMT(Surface??Mounted??Technology):表面安装技术PTH(Pin??Through??the??Hole):通孔安装THT??(Through??Hole??Component):通孔插装元件SMB??(Surface??Mount??Printed??Circuit??Board):表面安装PCB板SMC??(Surface??Mount??Component):表面安装元件SMD??(Surface??Mount??Device):表面安装器件Soldermask:阻焊?Yield:产出率?Packagingdensity:装配密度?Chip:片状元件melf:圆柱形元件PCB(Printedcircuitboard):印刷电路板DIP:双列直插?SIP:单列直插SOT(Small??Outline??Transistor):小外形晶体管SOIC(Small??outline??IC):小外形集成电路,?SOP(Small??outline??Package):小外型封装?PLCC(Plastic??Leaded??Chip??Carrier):塑型有引脚芯片载体? LCCC(Leadless??Ceramic??Chip??Carrier):无引脚陶瓷芯片载体QFP(Quad??Flat??Package):多引脚方形扁平封装?Componentdensity:元件密度Copperfoil:铜箔Coppermirrortest:铜镜测试Cure:烘焙固化Cyclerate:循环速率Defect:缺陷Desoldering:卸焊Downtime:停机时间FPT(Fine-pitchtechnology):密脚距技术? Flipchip:倒装芯片FCT(Functionaltest):功能测试Goldenboy:金样Soldermask:阻焊Tape-and-reel:带和盘Tombstoning:元件立起Ultra-fine-pitch:超密脚距Yield:产出率soldermask:阻焊漆silkscreen:丝印面via:导孔CopperCladLaminates:覆铜箔层压板pastmask:焊膏膜(漏板)??? soldermask:焊接掩摸(阻焊膜)?? Solding??Pasts:焊锡膏ComponentCheck:元件检查ComponentTransport:元件传送PlacementProcedure:元件放置? ChamberSystem:炉膛系统Blowholes:吹孔?????????????Voids:空洞?????????????????????????Movement:移位??Misalignment:偏斜Dewetting:缩锡????????????????? DullJoint:焊点灰暗??????????Non-Dewetting:不沾锡???Delamination:分层Desoldering:卸焊?Dewetting:去湿?DFM:为制造着想的设计? Dispersant:分散剂?Documentation:文件编制? Downtime:停机时间?Durometer:硬度计? Environmentaltest:环境测试Eutecticsolders:共晶焊锡Fiducial:基准点?Fillet:焊角?Fine-pitchtechnology:FPT密脚距技术? Fixture:夹具pasteshelflife:焊膏贮存寿命slump:塌落no-cleansolderpaste:免清洗焊膏lowtemperaturepaste:低温焊膏screenprinting:丝网印刷screenprintingplate:网版shiftingdeviation:平移偏差rotatingdeviation:旋转偏差resolution:分辨率repeatability:重复性placementspeed:贴装速度lowspeedplacementequipment:低速贴装机generalplacementequipment:中速贴装机highspeedplacementequipment:高速贴装机preciseplacementequipment:精密贴装机opticcorrectionsystem:光学校准系统sequentialplacement:顺序贴装placementpressure:贴装压力locatedsoldering:局部软钎焊cleaningaftersoldering:焊后清洗AI:Auto-Insertion自动插件??????????????????????????????????????? AQL:acceptablequalitylevel允收水准ATE:automatictestequipment自动测试ATM:atmosphere气压BGA:ballgridarray球形矩阵CCD:chargecoupleddevice监视连接元件(摄影机)CLCC:Ceramicleadlesschipcarrier陶瓷引脚载具COB:chip-on-board晶片直接贴附在电路板上。
Dowtherm Q导热油参数
DOWTHERM Q fluid provides several long-term economic advantages — and some potential immediate cost savings — over hot oils. These include: reduced pump and exchanger size requirements, possible elimination of costly steam tracing, lower fluid makeup requirements, reduced system fouling and related maintenance expenses, expanded changeout intervals, and a fluid credit program. In addition to DOWTHERM Q fluid’s performance and economic advantages, Dow’s supporting services are unequaled. They include technical backup in the design phase, during operation and after shutdown, as needed. Moreover, free analytical testing is provided to monitor fluid condition. When it is time to change out your DOWTHERM Q heat transfer fluid, Dow’s fluid credit program allows you to return the old fluid for credit toward the purchase of your nn About Our Full Line of Fluids...
各种材料热膨胀系数
玻璃陶瓷(Zerodur)
< 0.1
金
14.2
花岗岩
3.0
石墨
2.0
灰铸铁
9.0
木头, Eiche
8.0
不变钢
1.7-2.0
铱
6.5
食盐
40.0
碳纤维(HM 35 in L?ngsrichtung)
-0.5
康铜
15.2
Kovar
~ 5
铜
16.5
镁
26.0
锰
23.0
砖
5.0
黄铜
18.4
钼
5.2
新银
18.0
镍
13.0
铂
9.0
尼龙
120.0
聚甲基丙烯酸甲酯(PMMA)
85.0
聚氯乙烯(PVC)
80.0
瓷器
3.0
银
19.5
锡
2.0
钢
13.0
不锈钢
14.4-16.0钛10ຫໍສະໝຸດ 8铋14.0钨
4.5
锌
36.0
锡
26.7
一些液体的体积热膨胀系数 γ
物质
γ in 10-3/K 20 °C
酒精(乙醇)
1.10
丙酮
1.43
汽油
1.06
苯
1.23
氯仿(三氯甲烷)
1.28
果酸
1.07
乙醚
1.62
乙酸乙酯
1.38
甘油(Propantriol)
0.49
甲醇
1.10
Mineral?l(Hydraulik?l)
0.70
石蜡
0.76
煤油
PEC材料工程英语证书考试-材料试验词汇
PEC材料工程英语证书考试-材料试验词汇AAdherence—The extent to which a coating bonds to a substrate.Adherence Index--Measure of the Adherence of porcelain enamel and ceramic coatings tosheet metal.Alpha Rockwell Hardness—Index of the resistance of a plastic to surface penetration by aspecified indenter under specified load applied with a Rockwell Hardness tester. Higher valuesindicate higher indentation Hardness.Axial Strain—The Strain in the direction that the load is applied, or on the same axis as theapplied load.Analogue board—A machine circuit board, which converts analogue signals into digital signal.Anchor Pin—A steel pin that connects a grip or jig to an eye endAuto Return—Auto Return, when set to on, causes the crosshead to return automatically to itsZero point at the end of the test.BBend Test—Method for measuring Ductility of certain materials. There are no standardizedterms for reporting bend test results for broad classes of materials; rather, terms associated withbend tests apply to specific forms or types of materials. For example, materials specificationssometimes require that a specimen be bent to a specified inside diameter (ASTM A-360, steelproducts). A bend test for Ductility of welds is given in ASTM E-190. Results of tests offiberboard are reported by a description of the failure or photographs.Bending Strength—Alternate term for Flexural Strength. It is most commonly used to describeflexure properties of cast iron and wood products.Bond Strength—Stress (tensile load divided by area of bond) required to rupture a bond formedby an adhesive between two metal blocks.Break Elongation—The Elongation of the specimen to the break point.Breaking Load—Load which causes fracture in a tensile, compression, flexure or Torsion Test.In tensile tests of textiles and yarns, breaking load also is called breaking strength. In tensiletests of thin sheet materials or materials in form of small diameter wire it is difficult todistinguish between breaking load and the maximum load developed, so the latter is consideredthe breaking load.Breaking Strength—Stress required rupturing the specimen.GLOSSARY OF MATERIALS TESTINGBulk Modulus of Elasticity—Ratio of Stress to change in volume of a material subjected toaxial loading. Related to Modulus of Elasticity (E) and Poisson's Ratio (r) by the followingequation: Bulk Modulus K=E/3(1-2r).Cleavage Strength—Tensile load required to cause separation of a 1-in. long metal-to-metaladhesive bond under the conditions set in ASTM D-1062.Climbing Drum Peel Test—Method for determining Peel Resistance of adhesive bond betweena relatively flexible and a rigid material. (ASTM D-1781).Coefficient of Elasticity—An alternate term for Modulus of Elasticity.Cohesive Strength—Theoretical Stress that causes fracture in tensile test if material exhibits noplastic deformation.Complex Modulus—Measure of dynamic mechanical properties of a material, taking into account energy dissipated as heat during deformation and Recovery. It is equal to the sum ofstatic modulus of a material and its loss modulus. In the case of shear loading, it is calleddynamic modulus.Compressibility—Extent to which a material is compressed in test for compressibility andRecovery of gasket materials. It is usually reported with Recovery.Compressibility and Recovery Test—Method for measuring behavior of gasket materials undershort time compressive loading at room temperature. ASTM F-36 outlines a standard procedure.This test is not designed to indicate long term (creep) behavior and should not be confusedwith the plastometer test.Compression—Typically a direction of force applied to a sample to decrease its heightCompression Fatigue—Ability of rubber to sustain repeated fluctuating compressive loads.(ASTM D-623)Compression set—The extent to which rubber is permanently deformed by a prolonged compressive load (ASTM D-395). Should not be confused with low temperature compressionset.Compression test—Method for determining behavior of materials under crushingloads.Specimen is compressed, and deformation at various loads is recorded. Compressive stress andstrain are calculated and plotted as a stress-strain diagram which is used to determine elasticlimit, proportional limit, yield point, Yield Strength and (for some materials) compressivestrength. Standard compression tests are given in ASTM C-773 (high strength ceramics),ASTM E-9 (metals), ASTM E-209 (metals at elevated temperatures) and ASTM D-695 (plastics).Compression-Deflection Test—Nondestructive method for determining relationship betweencompressive load and deflection under load for specimenCompressive Deformation—Extent to which a material deforms under a Crushing Load.Compressive Strength—Maximum stress a material can sustain under crush loading. Compressive strength is calculated by dividing the maximum load by the original cross-sectional area of a specimen in a compression test.Compressive Yield Strength—Stress which causes a material to exhibit a specified deformation.Usually it is determined from the stress-strain diagram obtained in a compression test.Creep—Deformation that occurs over a period of time when a material is subjected to constantstress at constant temperature. In metals, creep usually occurs only at elevated temperatures.Creep at room temperature is more common in plastic materials and is called cold flow ordeformation under load. Data obtained in a creep test usually is presented as a plot of creep vs.time with stress and temperature constant. Slope of the curve is creep rate and end point of thecurve is Time for Rupture. As indicated in the accompanying diagram, the creep of a materialcan be divided into three stages. First stage, or primary creep, starts at a rapid rate and slowswith time. Second stage (secondary) creep has a relatively uniform rate. Third stage(tertiary)creep has an accelerating creep rate and terminates by failure of material at Time for Rupture.Creep Limit—Alternate term for Creep Strength.Creep Rate—Time rate of deformation of a material subject to Stress at a constant temperature.It is the slope of the creep vs. time diagram obtained in a creep test. Units usually are in/in/hror % of elongation/hr. Minimum creep rate is the slope of the portion of the creep vs. timediagram corresponding to secondary creep.Creep Recovery—Rate of decrease in deformation that occurs when load is removed afterprolonged application in a Creep Test. Constant temperature is maintained to eliminate effectsof thermal expansion, and measurements are taken from time load is zero to eliminate elasticeffects.Creep Rupture Strength—Stress required to cause fracture in a creep test within a specifiedtime. Alternate term is Stress Rupture Strength.Creep Strength—Maximum Stress required to cause a specified amount of creep in a specifiedtime. Also used to describe maximum Stress that can be generated in a material at constanttemperature under which creep rate decreases with time. An alternate term is creep limit.Creep Test—Method for determining creep or stress relaxation behavior. To determine creepproperties, material is subjected to prolonged constant tension or compression loading atconstant temperature. Deformation is recorded at specified time intervals and a creep vs. timediagram is plotted. Slope of curve at any point is creep rate. If failure occurs,it terminates testand Time for Rupture is recorded. If specimen does not fracture within test period, creeprecovery may be measured. To determine stress relaxation of material, specimen is deformed agiven amount and decrease in stress over prolonged period of exposure at constant temperatureis recorded. Standard creep testing procedures are detailed in ASTM E-139, ASTM D-2990 andD-2991 (plastics) and ASTM D-2294 (adhesives).Crush Resistance—Load required to produce fracture in a glass sphere subjected to crushloading. (ASTM D-1213).Crushing Load—Maximum compressive force applied during a compression or crushing test.For materials that do not shatter, crushing load is defined as the force required to produce aspecified type of failure.Crushing Strength—Compressive load required to cause a crack to form in a sintered metalpowder bearing (ASTM B-438 and B-439). Cold crushing strength of refractory bricks andshapes is the gross compressive Stress required to cause fracture. (ASTM C-133).Compounding—The combination of polymers with other materials either by means of mechanical (dry) blending or melt state blendingCrosshead—This is the main beam on the testing machine. It is this beam that moves either upor down producing a compressive or tensile force. A grip is attached to the crosshead and thetest piece is attached to the grip. The distance that the crosshead moves through is measuredfrom a rotating optical sensor.Crosshead Loom—A ribbon cable that connects the moving crosshead to the machine electronics, to supply the load cell with a voltage and supply the machine with a load signal.DDeformation Energy—Energy required to deform a material a specified amount. It is the areaunder the Stress-Strain Diagram up to a specified strain.Deformation Under Load—Measure of the ability of rigid plastics to withstand permanentdeformation and the ability of nonrigid plastics to return to original shape after deformation.Standard test methods for determining both types of deformation under load are given inASTM D-621. For rigid plastics, deformation is re-ported as % change in height of specimenafter 24 hours under a specified load. For nonrigid plastics, results are reported as % change inheight after 3 hours under load and Recovery in the 1-1/2 hour period following removal of theload. Recovery is % increase in height calculated on basis of original height.Delamination Strength—Measure of the node-to-node Bond Strength of honeycomb core materials. It is equal to the tensile load applied to a honeycomb panel at fracture divided by itswidth times its thickness. (ASTM C-363)Denier—The unit of linear density equal to the mass in grams per 9000 m of fiber, yarn, orother textile strand.Dry Strength—Strength of an adhesive joint determined immediately after drying or after aperiod of conditioning in a specified atmosphere. (ASTM D-2475)Ductility—Extent to which a material can sustain plastic deformation without rupture.Elongation and Reduction of Area are common indices of ductility.Dynamic Creep—Creep that occurs under fluctuating load or temperature.Die swell—Whenever a polymer melt emerges from a die the diameter or thickness is alwayslarger than the diameter (or gap) of the die.At usual production throughputs,diameter orthickness ratios range from 1.20-1.40 for PVC to 1.50-2.00 for commercial grade Polyethyene’s and much more for some polymers containing a high molecular weighttail.It isan indication of the elasticity of the polymer.The more elastic polymers give larger swell.Ofcourse,by pulling the extrudates the swell is reduced and of course extrudates can be drawndown to diameters(or thickness) much smaller than the die diameter or gap. Diameter—Used where the cross section shape of the test piece is round.EEASL(Elongation at a specified load)Eccentricity of Loading—Distance between the actual line of action of compressive or tensileloads and the line of action that would produce a uniform Stress over the cross section of thespecimen.Edge Tearing Strength—Measure of the resistance of paper to tearing when folded over aV-notch beam and loaded in a tensile testing machine. Results are re-ported in lb or kg. (SeeTear Resistance)Elastic Hysteresis—Difference between strain energy required to generate a given Stress in amaterial and elastic energy at that Stress. It is the energy dissipated as heat in a material in onecycle of dynamic testing. Elastic hysteresis divided by elastic deformation energy is equal todamping capacity.Elastic Limit—Greatest Stress that can be applied to a material without causing permanentdeformation. For metals and other materials that have a significant straight line portion in theirStress/strain diagram, elastic limit is approximately equal to proportional limit. For materialsthat do not exhibit a significant proportional limit, elastic limit is an arbitrary approximation(the apparent elastic limit).Elastic Limit, Apparent—Arbitrary approximation of the elastic limit of materials that do nothave a significant straight line portion on a Stress/strain diagram. It is equal to the Stress atwhich the rate of strain is 50% greater than at zero Stress. It is the Stress at the point oftangency between the Stress-Elastic Hysteresis strain curve and the line having a slope, withrespect to the Stress axis, 50% greater than the slope of the curve at the origin.Elasticity—Ability of a material to return to its original shape when load causing deformationis removed.Elongation—Measure of the ductility of a material determined in a Tensile Test. It is theincrease in gage length (measured after rupture) divided by original gage length. Higherelongation indicates higher ductility. Elongation cannot be used to predict behavior of materialssubjected to sudden or repeated loading.Embrittlement—Reduction in ductility due to physical or chemical changes. Endurance—Alternate term for Fatigue Limit.Engineering Stress—Load applied to a specimen in a tension or compression test divided bythe cross-sectional area of the specimen. The change in cross-sectional area that occurs withincreases and decreases in applied load, is disregarded in computing engineering Stress. It isalso called conventional Stress.Extensometer—Instrument for measuring changes in linear dimensions. Also called a Straingauge. Frequently based on Strain gauge technology.Eye End—An adapter that fits to a load cell or machine, that enables grip or jigs to be attachedFFatigue—Permanent structural change that occurs in a material subjected to fluctuating Stressand strain. However, in the case of glass, fatigue is determined by long-term static testing andis analogous to Stress rupture in other materials. In general, fatigue failure can occur withStress levels below the elastic limit.Fatigue Life—Number of cycles of fluctuating Stress and strain of a specified nature that amaterial will sustain before failure occurs. Fatigue life is a function of the magnitude of thefluctuating Stress, geometry of the specimen and test conditions. An S-N diagram is a plot ofthe fatigue life at various levels of fluctuating Stress.Fatigue Limit—Maximum fluctuating Stress a material can endure for an infinite number ofcycles. It is usually determined from an S-N diagram and is equal to the Stress correspondingto the asymptote of the locus of points corresponding to the fatigue life of a number of fatiguetest specimens. An alternate term is endurance limit.Fatigue Notch Factor—Ratio of fatigue strength of a specimen with no stress concentration tofatigue strength of a specimen with a notch or other stress raisers. Fatigue notch factor isusually lower than the theoretical Stress Concentration Factor because of stress relief due toplastic deformation. An alternate term is strength reduction ratio.Fatigue Ratio—Ratio of fatigue strength or fatigue limit to tensile strength. For many materials,fatigue ratio may be used to estimate fatigue properties from data obtained in tension tests.Fatigue Strength—Magnitude of fluctuating Stress required to cause failure in a fatigue testspecimen after a specified number of cycles of loading. Usually determined directly from theS-N diagram.Fatigue Strength Reduction Factor—An alternate term for fatigue notch factor.Fatigue Test—A method for determining the behavior of materials under fluctuating loads. Aspecified mean load (which may be zero) and an alternating load are applied to a specimen andthe number of cycles required to produce failure (fatigue life) is recorded. Fiber Stress—Stress through a point in a part in which Stress distribution is not uniform.Flex Resistance—Ability of material to sustain repeated compressive loads without damage.Flexural Modulus of Elasticity—Alternate term for Modulus in Bending.Flexural Strength—Maximum fiber stress developed in a specimen just before it cracks orbreaks in a flexure test. Flexural Yield Strength is reported instead of flexural strength formaterials that do not crack in the flexure test. An alternate term is modulus of rupture.Flexure Test—Method for measuring behavior of materials subjected to simple beam loading.Specimen is supported on two knife edges as a simple beam and load is applied at its midpoint.Maximum fiber stress and maximum strain are calculated for increments of load. Results areplotted in a stress-strain diagram, and maximum fiber stress at failure is flexural strength.Flexural Yield Strength is reported for materials that do not crack.Flow Stress—Stress required to cause Plastic Deformation.Fracture Stress—True Stress generated in a material at fracture.Fracture Test—Visual test where a specimen is fractured and examined for grain size, casedepth, etc.Fracture Toughness—Ability of a material to resist crack propagation when subjectedto shockload as in an Impact Test.Fractional melt index—A melt flow index of less than 1.0Flexural—Typically a compressive or tensile force designed to bend a sample that is supportedat either end。
材料导论
1. What is the maximum number of electrons that an M shell may contain?A.18B.32C.82. The nucleus of an atom containsProtonsElectronsNeutronsAll of the aboveBoth A and CHow many atoms or molecules are there in a mole of a substance?6.023E234. What type(s) of electron subshell(s) does an L shell contain?a p f ss and fs and pMatch the electron structure below with the element type it represents.1s22s22p63s23p63d104s1Inert gasHalogenAlkali metalAlkaline earth metalTransition metal6.What is the predominant type of bonding for titanium (Ti)?IonicHydrogenCovalentvan der WaalsMetalli7.Of those elements in the list situated below the periodic table, select the one that is one electron short of having its outer shell of electrons completely filled.INSSrAr c8.Which of the following materials may form crystalline solids?PolymersMetalsCeramicsAll of the above9.Which of the following are the most common coordination numbers for ceramic materials?23 and 64 and 124,6 and 810.Which crystal system(s) listed below has (have) the following relationship for the unit cell edge lengths? a = b ≠ cCubicHexagonalTriclinicMonoclinicRhombohedraOrthorhombicTetragonalBoth C and E11.Which crystal system(s) listed below has (have) the following interaxial angle relationship? α = β = γ = 90°CubicHexagonalTriclinicMonoclinicRhombohedralOrthorhombicBoth A and D12.把a、b、c、d四块金属片浸入稀硫酸中,用导线两两相连组成原电池。
材料科学与工程专业英语1-18单元课后翻译答案
Unit 1 Translation.1.“材料科学”涉及到研究材料的结构与性能的关系。
相反,材料工程是根据材料的结构与性质的关系来涉及或操控材料的结构以求制造出一系列可预定的性质。
2.实际上,所有固体材料的重要性质可以分为六类:机械、电学、热学、磁学、光学、腐蚀性。
3.除了结构与性质,材料科学与工程还有其他两个重要的组成部分,即加工与性能。
4.工程师或科学家越熟悉材料的各种性质、结构、性能之间的关系以及材料的加工技术,根据以上的原则,他或她就会越自信与熟练地对材料进行更明智的选择。
5.只有在少数情况下,材料才具有最优或最理想的综合性质。
因此,有时候有必要为某一性质而牺牲另一性能。
6.Interdisciplinary dielectric constantSolid material(s) heat capacityMechanical property electromagnetic radiationMaterial processing elastic modulus7.It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties.8. Materials engineering is to solve the problem during the manufacturing and application of materials.9.10.Mechanical properties relate deformation to an applied load or force.Unit 21.金属是电和热很好的导体,在可见光下不透明;擦亮的金属表面有金属光泽。
低温材料物性表
Presented at the 11th International Cryocooler ConferenceJune 20-22, 2000Keystone, Co Cryogenic Material Properties Database Cryogenic Material Properties DatabaseE.D. Marquardt, J.P. Le, and Ray RadebaughNational Institute of Standards and TechnologyBoulder, CO 80303ABSTRACTNIST has published at least two references compiling cryogenic material properties. These include the Handbook on Materials for Superconducting Machinery and the LNG Materials & Fluids. Neither has been updated since 1977 and are currently out of print. While there is a great deal of published data on cryogenic material properties, it is often difficult to find and not in a form that is convenient to use. We have begun a new program to collect, compile, and correlate property information for materials used in cryogenics. The initial phase of this program has focused on picking simple models to use for thermal conductivity, thermal expansion, and specific heat. We have broken down the temperature scale into four ranges: a) less than 4 K, b) 4 K to77 K, c) 77 K to 300 K, and d) 300 K to the melting point. Initial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10 fiberglass epoxy, 718 Inconel, Kevlar, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. Correlations are given for each material and property over some of the temperature range. We will continue to add new materials and increase the temperature range. We hope to offer these material properties as subroutines that can be called from your own code or from within commercial software packages. We will also identify where new measurements need to be made to give complete property prediction from 50 mK to the melting point.INTRODUCTIONThe explosive growth of cryogenics in the early 50’s led to much interest in material properties at low temperatures. Important fundamental theory and measurements of low temperature material properties were performed in the 50’s, 60’s, and 70’s. The results of this large amount of work has become fragmented and dispersed in many different publications, most of which are out of print and difficult to find. Old time engineers often have a file filled with old graphs; young engineers often don’t know how to find this information. Since most of the work was performed before the desktop computer became available, when data can be found, it is published in simple tables or graphically, making the information difficult to accurately determine and use.NIST has begun a program to gather cryogenic material property data and make it available in a form that is useful to engineers. Initially we tried to use models based upon fundamental physics but it soon became apparent that the models could not accurately predict properties overTable 1A . Coefficients for thermal conductivity for metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V a0.07918 -1.4087 -8.28921 -0.50015 -5107.8774 b1.09570 1.3982 39.4470 1.93190 19240.422 c-0.07277 0.2543 -83.4353 -1.69540 -30789.064 d0.08084 -0.6260 98.1690 0.71218 27134.756 e0.02803 0.2334 -67.2088 1.27880 -14226.379 f-0.09464 0.4256 26.7082 -1.61450 4438.2154 g0.04179 -0.4658 -5.72050 0.68722 -763.07767 h-0.00571 0.1650 0.51115 -0.10501 55.796592 I0 -0.0199 0 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 K 20-300 Ka large temperature range and over different materials. Our current approach is to choose a few simple types of equations such as polynomial or logarithmic polynomials and determine the coefficients of different materials and properties. This will allow engineers to use the equations to predict material properties in a variety of ways including commercial software packages or their own code. Integrated and average values can easily be determined from the equations. These equations are not meant to provide any physical insight into the property or to provide ‘standard’ values but are for working engineers that require accurate values.MATERIALSInitial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10CR fiberglass epoxy, 718 Inconel, Kevlar 49, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. These were chosen as some of the most common materials used in cryogenic systems in a variety of fields.MATERIAL PROPERTIESThermal ConductivityWidely divergent values of thermal conductivity for the same material are often reported in the literature. For comparatively pure materials (like copper), the differences are due mainly to slight material differences that have large effects on transport properties, such as thermal conductivity, at cryogenic temperatures. At 10 K, the thermal conductivity of commercial oxygen free copper for two samples can be different by more then a factor of 20 while the same samples at room temperature would be within 4%. It is also not uncommon for some experimental results to have uncertainties as high as 50%. Part of our program is to critically evaluate the literature to determine the best property values. Data references used to generate predictive equations will be reported.The general form of the equation for thermal conductivity, k , islog()log (log )(log )(log )(log )(log )(log )(log ),k a b T c T d T e T f T g T h T i T =++++++++2345678 (1)where a , b , c , d, e , f , g , h , and i are the fitted coefficients, and T is the temperature. These are common logarithms. While this may seem like an excessive number of terms to use, it was determined that in order to fit the data over the large temperature range, we required a large number of terms. It should also be noted that all the digits provided for the coefficients should be used, any truncation can lead to significant errors. Tables 1A and 1B show the coefficients for a variety of metals and non-metals. Equation 2 is the thermal conductivity for an average sample of oxygen free copper. It should be noted that thermal conductivity for oxygen free copper canTable 1B . Coefficients for thermal conductivity for non-metals.Coeff. Teflon Polyamide (nylon) Polyimide (Kapton) G10 CR (norm) G10 CR(warp)a2.7380 -2.6135 5.73101 -4.1236 -2.64827 b-30.677 2.3239 -39.5199 13.788 8.80228 c89.430 -4.7586 79.9313 -26.068 -24.8998 d-136.99 7.1602 -83.8572 26.272 41.1625 e124.69 -4.9155 50.9157 -14.663 -39.8754 f-69.556 1.6324 -17.9835 4.4954 23.1778 g23.320 -0.2507 3.42413 -0.6905 -7.95635 h-4.3135 0.0131 -0.27133 0.0397 1.48806 I0.33829 0 0 0 -0.11701 data range 4-300 K4-300 K 4-300 K 10-300 K 12-300 K Figure 1. Thermal conductivity of various materials.vary widely depending upon the residual resistivity ratio, RRR, and this equation should be used with caution. The thermal conductivities are displayed graphically in Figure 1.log .............k T T T T T T T T =−+−+−+−+22154088068029505004831000032071047461013871002043000012810515205152(2) Specific HeatThe specific heat is the amount of heat energy per unit mass required to cause a unit increase in the temperature of a material, the ratio of the change in energy to the change in temperature. Specific heats are strong functions of temperature, especially below 200 K. Models for specific heat began in the 1871 with Boltzmann and were further refined by Einstein and Debye in the early part of the 20th century. While there are many variations of these first models, they generally only provide accurate results for materials with perfect crystal lattice structures. TheTable 2. Coefficients for specific heat. Coeff. OFCHcopper 6061 -T6 Aluminum 304 SS G-10 Teflon a-1.91844 46.6467 22.0061 -2.4083 31.8825 b-0.15973 -314.292 -127.5528 7.6006 -166.519 c8.61013 866.662 303.6470 -8.2982 352.019 d-18.99640 -1298.30 -381.0098 7.3301 259.981 e21.96610 1162.27 274.0328 -4.2386 -104.614 f-12.73280 -637.795 -112.9212 1.4294 24.9927 g3.54322 210.351 24.7593 -0.24396 -3.20792 h-0.37970 -38.3094 -2.239153 0.015236 0.165032 I0 2.96344 0 0 0 data range 3-300 K 3-300 K 3-300 K 3-300 K 3-300 KFigure 2. Specific heat of various materials.specific heat of many of the engineering materials of interest here is not described well by these simple models. The general form of the equation is the same as Equation 1. Table 2 shows the coefficients for the specific heat. Figure 2 graphically shows the specific heats.Thermal ExpansionFrom an atomic perspective, thermal expansion is caused by an increase in the average distance between the atoms. This results from the asymmetric curvature of the potential energy versus interatomic distance. The anisotropy results from the differences in the coulomb attraction and the interatomic repulsive forces.Different metals and alloys with different heat treatments, grain sizes, or rolling directions introduce only small differences in thermal expansion. Thus, a generalization can be made that literature values for thermal expansion are probably good for a like material to within 5%. This is because the thermal expansion depends explicitly on the nature of the atomic bond, and only those changes that alter a large number of the bonds can affect its value. In general, largeTable 3A . Integrated Linear Thermal Expansion Coefficients for Metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V NbTi a-4.1272E+02 -2.9546E+02-2.366E+02-3.132E+02-1.711E+02 -1.862E+02b-3.0640E-01 -4.0518E-01-2.218E-01-4.647E-01-2.171E-01 -2.568E-01 c8.7960E-03 9.4014E-03 5.601E-03 1.083E-02 4.841E-03 8.334E-03 d-1.0055E-05 -2.1098E-05-7.164E-06-2.893E-05-7.202E-06 -2.951E-05 e0 1.8780E-080 3.351E-080 3.908E-08 data range 4-300 K 4-300 K 4-300 K 4-300 K 4-300 K 4-300 KTable 3B. Integrated Linear Thermal Expansion Coefficients for Non-metals.Coeff. Teflon Polyamide G10 CR (norm) G10 CR(warp)a-2.165E+03 -1.389E+03-7.180E+02-2.469E+02 b3.278E+00 -1.561E-01 3.741E-01 2.064E-01 c-8.218E-03 2.988E-02 8.183E-03 3.072E-03 d7.244E-05 -7.948E-05-3.948E-06-3.226E-06 e0 1.181E-07 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 Kchanges in composition (10 to 20%) are necessary to produce significant changes in the thermal expansion (~5%), and different heat treatments or conditions do not produce significant changes unless phase changes are involved.8Most of the literature reports the integrated linear thermal expansion as a percent change in length from some original length generally measured at 293 K,()/.L L L T −293293 (3) Where L T is the length at some temperature T and L 293 is the length at 293 K. While this is a practical way of measuring thermal expansion, the more fundamental property is the coefficient of linear thermal expansion, α,α()().T L dL T dT=1 (4) The coefficient of linear thermal expansion is much less reported in the literature. In principal, we can simply take the derivative of the integrated linear thermal expansion that results in the coefficient of linear thermal expansion. While we have had success with this method over limited temperature ranges, we have not yet determined an equation form for the integrated expansion value that results in a good approximation of coefficient of linear thermal expansion. For the time being, we will report the integrated linear thermal expansion as a change in length and provide the coefficient of linear thermal expansion when it is directly reported in the literature. The general form of the equation for integrated linear thermal expansion is L L L a bT cT dT eT T −=++++⋅−293293234510(). (5) Tables 3A and 3B provide the coefficients for the various materials while Figure 3 plots the integrated linear thermal expansions.FUTURE PLANSWe plan to continually add new materials, properties, and to expand the useful temperature range of the predictive equations for engineering use. We will report results in the literature but will also update our website on a continual basis. The initial phase of the program was a learningFigure 3. Integrated linear thermal expansion of various materials.experience on how to handle the information in the literature as well as for the development of a standard set of basic equation types used to fit experimental data. By using just a few types of equations, we hope to make the information easier to use. We shall now focus on developing large numbers of equations for a variety of materials and properties. Please check our web site at /div838/cryogenics.html for updated information.REFERENCES1. Berman, R., Foster, E.L., and Rosenberg, H.M., "The Thermal Conductivity of SomeTechnical Materials at Low Temperature." Britain Journal of Applied Physics, 1955. 6: p.181-182.2. Child, G., Ericks, L.J., and Powell, R.L., Thermal Conductivity of Solids at RoomTemperatures and Below. 1973, National Bureau of Standards: Boulder, CO.3. Corruccini, R.J. and Gniewek, J.J., Thermal Expansion of Technical Solids at LowTemperatures. 1961, National Bureau of Standards: Boulder, CO.4. Cryogenic Division, Handbook on Materials for Superconducting Machinery. Mechanical,thermal, electrical and magnetic properties of structure materials. 1974, National Bureau of Standards: Boulder, CO.5. Cryogenic Division, LNG Materials and Fluids. 1977, National Bureau of Standards:Boulder, CO.6. Johnson, V.J., WADD Technical Report. Part II: Properties of Solids. A Compendium ofThe Properties of Materials at Low Temperature (phase I). 1960, National Bureau of Standard: Boulder, CO.7. Powells, R.W., Schawartz, D., and Johnston, H.L., The Thermal Conductivity of Metals andAlloys at Low Temperature. 1951, Ohio State University.8. Reed, R.P. and Clark, A.F., Materials at Low Temperature. 1983, Boulder, CO: AmericanSociety for Metals.9. Rule, D.L., Smith, D.R., and Sparks, L.L., Thermal Conductivity of a Polyimide FilmBetween 4.2 and 300K, With and Without Alumina Particles as Filler. 1990, National Institute of Standards and Technology: Boulder, CO.10. Simon, N.J., Drexter, E.S., and Reed, R.P., Properties of Copper Alloys at CryogenicTemperature. 1992, National Institute of Standards and Technology: Boulder, CO.11. Touloukian, Y.S., Recommended Values of The Thermophysical Properties of Eight Alloys,Major Constituents and Their Oxides. 1965, Purdue University.12. Veres, H.M., Thermal Properties Database for Materials at Cryogenic Temperatures. Vol. 1.13. Ziegler, W.T., Mullins, J.C., and Hwa, S.C.O., "Specific Heat and Thermal Conductivity ofFour Commercial Titanium Alloys from 20-300K," Advances in Cryogenic Engineering Vol. 8, pp. 268-277.。
液压涨型英语
液压涨型英语一、单词1. hydraulic- 释义:液压的;水力的;水力学的。
- 用法:通常作形容词,用于修饰名词,如“hydraulic system”(液压系统)。
- 例句:The hydraulic press is very powerful.(这台液压机非常强大。
)2. expansion- 释义:膨胀;扩展;扩张;扩大。
- 用法:可作名词,在短语或句子中作主语、宾语等。
例如“thermal expansion”(热膨胀)。
- 例句:The expansion of the metal under heat is amon physical phenomenon.(金属在受热下的膨胀是一种常见的物理现象。
)3. swelling- 释义:肿胀;膨胀;增大。
- 用法:可作名词或动词(现在分词形式也可作形容词表示“肿胀的”)。
作名词时,如“prevent swelling”(防止肿胀);作动词时,例如“The material is swelling. ”(这种材料正在膨胀。
)- 例句:He noticed a swelling on his ankle.(他注意到他的脚踝有一处肿胀。
)4. inflation- 释义:膨胀;通货膨胀;充气。
- 用法:作名词,如“control inflation”(控制通货膨胀),在“hydraulic inflation”(液压膨胀)这种短语中表示液压引起的膨胀情况。
- 例句:The inflation of the rubber tube is achieved by hydraulic pressure.(橡胶管的膨胀是通过液压实现的。
)二、短语1. hydraulic expansion device- 释义:液压涨型装置。
- 用法:可作主语、宾语等。
例如:The hydraulic expansion device is widely used in manufacturing.(液压涨型装置在制造业中被广泛使用。
低温压力容器钢回火过程组织转变规律
收稿日期:2009-05-16基金项目:“十一五”国家科技支撑计划项目(2006BAE03A08)·作者简介:陈炳张(1980-),男,福建漳平人,东北大学博士研究生;朱伏先(1946-),男,福建寿宁人,东北大学教授,博士生导师·第31卷第3期2010年3月东北大学学报(自然科学版)JournalofNortheasternUniversity(NaturalScience)Vol畅31,No.3Mar.2010低温压力容器钢回火过程组织转变规律陈炳张1,陈永利1,2,朱伏先1,巩文旭2(1.东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳 110004;2.天津钢铁有限公司,天津 300301)摘 要:以07MnNiMoVDR钢为研究对象,通过热膨胀试验、TEM检测相结合的方法,研究其回火过程中各回火温度区间中组织转变和碳化物析出的变化规律·结果表明:300℃回火时,残余奥氏体分解,片状θ-碳化物位于仍具有较高位错密度的α相板条之间;650℃回火时,α相除回复外,部分α相还发生了再结晶,析出物分布于已回复的板条之间以及再结晶晶界上·关 键 词:07MnNiMoVDR;低温压力容器钢;回火转变;碳化物析出;马氏体中图分类号:TG156;TG162.83 文献标志码:A 文章编号:1005-3026(2010)03-0374-04MicrostructureTransformationinTemperingProcessofLow-TemperaturePressureVesselSteelCHENBing-zhang1,CHENYong-li1,2,ZHUFu-xian1,GONGWen-xu2(1.TheStateKeyLaboratoryofRollingandAutomation,NortheasternUniversity,Shenyang110004,China;2.TianjinIron&SteelCo.,Ltd.,Tianjin300301,China.Correspondent:CHENBing-zhang,E-mail:cbzml@163.com)Abstract:The07MnNiMoVDRsteelforlow-temperaturepressurevesselwasinvestigatedviathermalexpansiontestingincombinationwithTEMdetectionforthetransformationofmicrostructurebetweendifferenttemperatureintervalsandchangeofcarbideprecipitationinthetemperingprocess.Theresultsshowedthatwhenthespecimensaretemperedat300℃theresidualausteniteisdecomposedandthelamellarθ-carbidesarefoundbetweenα-phaselathswhicharestillofrelativelyhighdislocationdensity.Whentemperedat650℃,theα-phaselathsarerecoveredwithpartofthemrecrystallized.Moreover,theprecipitatesaredistributedbetweentherecoveredα-phaselathsandontherecrystallizedgrainboundaries.Keywords:07MnNiMoVDR;low-temperaturepressurevesselsteel;temperingtransformation;carbideprecipitation;martensite随着工业技术的发展,各种液化石油气、液氨、液氧、液氢、液氮等的生产、储存、输送以及海洋工程、寒冷地区的开发,对低温用钢的需求增大,同时对其机械性能指标的要求越来越苛刻[1]·相关资料表明:2007年压力容器板实际消费量200万吨,而实际生产量为180万吨,特别是适于-40℃以下温度的低温压力容器用钢更是供不应求·随着西气东输、液化石油气的普遍应用、化工低温反应釜大型化,对具有良好低温性能的该钢种的需求量将会与日俱增,在中国普钢粗钢产能过剩的情况下,开发该钢种具有良好的市场前景和可观的经济效益·本文主要研究07MnNiMoVDR淬火后回火过程中各种不同初始组织的转变及其碳化物的析出规律,通过热膨胀试验、TEM检测相结合的方法,研究得出回火过程转变规律,为该钢种回火工艺参数的制定提供指导·1 试验材料及方案试验材料由实验室真空感应炉冶炼,化学成分(质量分数/%)为:C0畅06,Si0畅22,Mn1畅50,Ni0畅21,Mo0畅41,P0畅004,S0畅002,Al0畅027,Nb,V,Ti微量,Fe余量·锻造开坯后的钢坯经奥氏体再结晶区轧制(终轧温度>980℃)后空冷·试验方案和目的如下:1)将热轧态钢板取样加工成矱8mm×15mm圆棒试样,在管式加热炉中以1000℃固溶保温30min后迅速投入水中,随后分别在300,650℃进行回火,保温时间均为30min·将试样制备成薄片经电解双喷离子减薄后,在透射电镜上观察其微观组织形貌和析出物分布状态·2)从淬火态的矱8mm×15mm圆柱样切取矱8mm×7mm,在热分析仪上按10℃/min从室温升温至700℃后,保温3min后以10℃/min冷却,通过材料的膨胀量研究回火过程中组织转变规律及碳化物析出规律·2 试验结果及分析2.1 淬火态组织图1为1000℃淬火组织的TEM照片·图1a清晰显示板条的精细结构,内有高密度位错,无碳化物粒子,且相邻板条相互平行排列,属板条马氏体组织·大量高密度位错的存在是由于面心立方奥氏体转变成体心立方马氏体,发生体积膨胀,在晶格不畸变的区域通过滑移或孪生等塑性变形方式产生的[2]·图1b板条内的位错密度较之图1a大为减少,相邻板条主轴呈一定角度,属贝氏体组织·图1c中可观察到贝氏体和马氏体板条之间或内部出现黑色块状组织,属残余奥氏体[3]·图1 1000℃淬火组织的TEM照片Fig.1 TheTEMimagesofthemicrostructurequenchedat1000℃(a)—板条马氏体;(b)—贝氏体;(c)—残余奥氏体·2.2 回火转变及其组织马氏体回火时要发生如下几种转变:马氏体中碳的偏聚、马氏体的分解、残余奥氏体的转变、碳化物的转变以及碳化物的聚集长大和α相回复、再结晶[4-5]·采用材料的热膨胀试验研究马氏体回火过程中组织转变及碳化物转变规律·图2为材料的膨胀量随温度变化的曲线,升温初期体积膨胀变动较明显,升温时线性增加的部分主要是由热膨胀造成,波动部分表明在这个温度除了热膨胀外还发生了组织或碳化物的转变,各部分转变相互重叠;降温过程中体积呈线性收缩,因为冷却前试样已获得稳定的回火组织,热收缩时随温度呈线性变化,因此在回火过程中回火转变主要发生在缓慢的升温阶段·材料由于各种转变造成的膨胀量较热膨胀在数值上小得多,难以从图2中观察升温时各温度区间组织转变规律,同时由于回火时各种转变相互叠加,仅从膨胀量无法准确分析是何种转变造成的,因此需要实时测量值相对准确地、明显地反映出组织的实时转变·通过对膨胀量求导,过滤掉由于加热造成体积膨胀的线性部分·图3为材料升温阶段体积膨胀速率,从体积膨胀速率上可以较直观地推测出各温度区间的组织变化规律·图2 膨胀量随温度变化的曲线Fig.2 Expansionvs.temperature室温~256℃主要是马氏体内的碳原子向位错线附近的间隙位置偏聚;A~B(256~311℃)出现速率峰值,这主要是由于面心立方残余奥氏体转变成体心立方α相,晶格致密度下降,体积膨胀;B~C(311~415℃)速率出现下降,体积缩小,573第3期 陈炳张等:低温压力容器钢回火过程组织转变规律这主要是由于θ-碳化物的缓慢长大,与母相的共格关系陆续被破坏脱离α相而析出;C~D(415~625℃)出现速率变动,这主要是因为固溶于α相的多种合金元素将以碳化物的形式析出,需要渗碳体发生溶解[6-8],碳元素固溶与析出速率的差异造成膨胀速率的变动;625℃以上,回火组织已较为稳定,碳化物粗化过程及α相回复再结晶对体积膨胀影响较小,此时膨胀主要是温升造成,速率基本为定值·图3 温度-膨胀速率曲线Fig.3 Temperaturevs.expansionrate图4为300℃回火的TEM照片·在图4a中由板条界一端可勾勒出原奥氏体晶界,此时α相的形态仍然具有板条状特征·从形貌上看板条内部部分位错发生回复,出现黑白交错形貌,板条间形成一定数量的小片状碳化物,与基体α相通常满足Bagaryatski位向关系,诸如[100]Fe3C‖[010]α,[010]Fe3C‖[111]α及[001]Fe3C‖[211]α[9]·上述马氏体中碳化物析出形态可能与淬火后马氏体中过饱和碳原子的早期行为有关·板条内的位错网络为碳原子朝着板条界偏聚提供有利的扩散管道·板条间的富碳区达到一定程度可作为碳化物的形核地点,碳化物形核后沿板条长轴方向的长大速率较快,因此形成了小片状碳化物·试验钢中碳化物很少在板条内部析出,而主要位于板条之间析出,其原因可能是碳含量较低,没有多余的碳原子可在位错处形成偏聚区,这与文献[9]描述的现象一致·粒状贝氏体主要由M/A岛组成,由于残余奥氏体组织的存在,回火过程主要是残余奥氏体转变和贝氏体中α相内碳化物偏聚·对比图1b和图4b可知:贝氏体回火过程中由于贝氏体α相本身碳含量不高,在回火过程中碳化物主要表现为碳化物斑点,且斑点之间间距较大·图4 300℃回火组织的TEM照片Fig.4 TEMimagesofthemicrostructuretemperedat300℃(a)—回火板条马氏体组织;(b)—回火贝氏体组织·图5为650℃回火的TEM照片·对比图4不难得知,随着回火温度的升高,由于碳元素的远程扩散能力增强,在中温阶段形成的小片状θ-碳化物转变为细粒状碳化物,细粒状碳化物发生聚集球化后最终形成球状的碳化物·当温度超过500℃,细粒状θ-碳化物迅速聚集并粗化,马氏体发生回复,位错密度减少,位错线变得平直,α相发生多边形化,形成亚晶粒,但α相依然保持板条形貌,随回火温度继续升高,亚晶粒继续长大,形成大角度晶界·当回火温度超过600℃左右时,α相部分发生再结晶,由板条晶变为位错密度很低的等轴晶·图5 650℃回火组织的TEM照片Fig.5 TheTEMimagesofthemicrostructuretemperedat650℃(a)—回火索氏体中碳化物形态(明场);(b)—立方形析出物;(c)—球形析出物·图5a为650℃回火的透射照片,图中显示碳化物多数成球状弥散分布,可见碳化物在等轴晶晶界处分布较多,主要是碳化物经长程扩散形成,基体中也有细小弥散碳化物,α相已发生再结晶,673东北大学学报(自然科学版) 第31卷这种α相+弥散碳化物的复合组织称为回火索氏体·球状碳化物也分布在已发生较大程度回复的α相板条之间·650℃回火后的析出物形貌如图5b,图5c所示·图5b中立方形形貌的析出物尺寸约为80nm,与基体完全非共格,能谱检测结果显示为(Fe,Mn)3C,内部固溶少量的Si,Ni等合金元素·此类析出物尺寸较大,在淬火前高温固溶条件下就已经存在·近似呈球形的析出物如图5c所示,尺寸约为40nm,从能谱半定量统计结果可以推测析出物为(Ti,Nb)(N,C)·3 结 论1)缓慢升温的回火过程中回火转变主要发生在升温阶段,回火温度对回火质量影响较时间强烈,工业生产中可以在一定范围内通过升高回火温度来缩短回火时间·2)试验钢在300℃回火时,板条马氏体中过饱和α相的碳原子扩散后形成板条间的片状θ-碳化物;残余奥氏体转变为回火马氏体或下贝氏体·3)马氏体回火过程中,中温阶段通过长程扩散形成板条之间的小片状θ-碳化物;高温阶段碳原子进一步偏聚,θ-碳化物变成粒状渗碳体,当温度升高到650℃,部分板条α相发生再结晶形成多边形铁素体和球状碳化物·4)高温回火组织中,析出物形貌主要有立方形和球形两种·尺寸约为80nm的立方形析出物为含Mn的合金渗碳体,内部固溶有少量的Si,Ni等合金元素;尺寸为40nm左右的球形析出物为(Ti,Nb)(N,C)·参考文献:[1]陈晓·低焊接裂纹敏感性WDL系列钢的力学性能及组织结构[J]·钢铁,1996,31(12):40-44·(ChenXiao.ResearchonnewHSLAsteel-WDLwithlowsusceptibilitytoweldcrack[J].Iron&Steel,1996,31(12):40-44.)[2]GeorgeK.Deformationandfractureinmartensiticcarbonsteelstemperedatlowtemperatures[J].MetallurgicalandMaterialsTransactionsB,2001,32:205-221.[3]TimokhinaIB,HodgsonPD,PerelomaEV.Transmissionelectronmicroscopycharacterizationofthebake-hardeningbehavioroftransformation-inducedplasticityanddual-phasesteels[J].MetallurgicalandMaterialsTransactionsA,2007,38:2442-2454.[4]崔忠圻·金属与热处理原理[M]·北京:机械工业出版社,2000:280-285·(CuiZhong-qi.Principleofmetalsandheattreatment[M].Beijing:ChinaMachinePress,2000:280-285.)[5]YasuyaO,TamuraI.Epsiloncarbideprecipitationduringtemperingofplaincarbonmartensite[J].MetallurgicalandMaterialsTransactionsA,1992,23:2737-2751.[6]LeeKB,YangHR,KwonH.EffectsofalloyingadditionsandaustenitizingtreatmentsonsecondaryhardeningandfracturebehaviorformartensitesteelscontainingbothMoandW[J].MetallurgicalandMaterialsTransactionsA,2001,32:1659-1670.[7]KwonH,KimCM,LeeKB,etal.EffectofCoandNionsecondaryhardeningandfracturebehaviorofmartensiticsteelsbearingWandCr[J].MetallurgicalandMaterialsTransactionsA,1998,29:397-401.[8]YangHR,LeeKB,KwonH.EffectofNiadditionsandaustenitizingtemperatureonsecondaryhardeningbehaviorinhighCo-Nisteels[J].MetallurgicalandMaterialsTransactionsA,2001,32:2393-2396.[9]ThomsonRC,MillerMK.CarbideprecipitationinmartensiteduringtheearlystagesoftemperingCr-andMo-containinglowalloysteels[J].ActaMater,1998,46(6):2203-2213.773第3期 陈炳张等:低温压力容器钢回火过程组织转变规律。
热应力英语
热应力英语一、单词1. thermal- 英语释义:of, relating to, or caused by heat.- 用法:可作形容词,修饰名词。
例如:thermal energy(热能)。
- 双语例句:Thermal expansion is amon phenomenon in materials.(热膨胀是材料中的一种常见现象。
)2. stress- 英语释义:force or pressure exerted on a material object.- 用法:可作名词,也可作动词(表示强调,给……加压力等)。
作名词时,例如:The bridge can't bear the stress.(这座桥无法承受压力。
)作动词时,如:Don't stress yourself too much.(不要给自己太大压力。
)- 双语例句:High - stress situations can affect people's mental health.(高压力的情况会影响人们的心理健康。
)3. strain- 英语释义:the deformation of a material body under the action of applied forces.- 用法:可作名词或动词。
作名词时,例如:The strain on the rope was too much.(绳子上的拉力太大了。
)作动词时,如:The material will strain under heavy load.(这种材料在重负荷下会变形。
) - 双语例句:Excessive strain can cause the structure to fail.(过度的变形会导致结构失效。
)二、短语1. thermal stress analysis- 释义:对热应力进行分析。
- 用法:在工程、材料科学等领域使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/2: 7(03(5$785( 7+(50$/ (;3$16,21 2) 385( $1',1(57 *$6 '23(' )8//(5,7( &$ 1 $OHNVDQGURYVNLL $ 6 %DNDL $ 9 'ROELQ 9 % (VHO VRQ* ( *DGG 9 * *DYULONR 9 * 0DQ]KHOLL 6 0RULFFD % 6XQGTYLVW% * 8GRYLGFKHQNR,QVWLWXWH IRU /RZ 7HPSHUDWXUH 3K\VLFV (QJLQHHULQJ 1$68 .KDUNRY 8NUDLQH1DWLRQDO 6FLHQFH &HQWHU ³.KDUNLY ,QVWLWXWH RI 3K\VLFV 7HFKQRORJ\´ .KDUNRY 8NUDLQH$XVWUDOLDQ 1XFOHDU 6FLHQFH 7HFKQRORJ\ 2UJDQLVDWLRQ 16: $XVWUDOLD 'HSDUWPHQW RI ([SHULPHQWDO 3K\VLFV 8PHD 8QLYHUVLW\ 6( 8PHD 6ZHGHQ(OHFWURQLF DGGUHVV DOHNVDQGURYVNLL#LOW NKDUNRY XD$EVWUDFW7KH ORZ WHPSHUDWXUH . WKHUPDO H[SDQVLRQ RI SXUH VLQJOH FU\VWDO DQG SRO\FU\VWDOOLQH & DQG SRO\FU\VWDOOLQH & LQWHUFDODWHG ZLWK +H 1H $U DQG .U KDV EHHQ LQYHVWLJDWHG XVLQJ KLJK UHVROXWLRQ FDSDFLWDQFH GLODWRPHWHU 7KH LQYHVWLJDWLRQ RI WKH WLPH GHSHQGHQFH RI WKH VDPSOH OHQJWK YDULDWLRQV û/ W RQ KHDWLQJ E\ û7 VKRZV WKDW WKH WKHUPDO H[SDQVLRQ LV GHWHUPLQHG E\ WKH VXP RI SRVLWLYH DQG QHJDWLYH FRQWULEXWLRQV ZKLFK KDYH GLIIHUHQW UHOD[DWLRQ WLPHV7KH QHJDWLYH WKHUPDO H[SDQVLRQ XVXDOO\ SUHYDLOV DW KHOLXP WHPSHUDWXUHV 7KH SRVLWLYH H[SDQVLRQ LV FRQQHFWHG ZLWK WKH SKRQRQ WKHUPDOL]DWLRQ RI WKH V\VWHP 7KH QHJDWLYH H[SDQVLRQ LV FDXVHG E\ UHRULHQWDWLRQ RI WKH & PROHFXOHV ,W LV DVVXPHG WKDW WKH UHRULHQWDWLRQ LV RI TXDQWXP FKDUDFWHU 7KH LQHUW JDV LPSXULWLHV DIIHFW YHU\ VWURQJO\ WKH UHRULHQWDWLRQ RI WKH & PROHFXOHV HVSHFLDOO\ DW OLTXLG KHOLXP WHPSHUDWXUHV $ WHPSHUDWXUH K\VWHUHVLV RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW RI .U±DQG +H & VROXWLRQV KDV EHHQ UHYHDOHG 7KH K\VWHUHVLV LV DWWULEXWHG WR RULHQWDWLRQDO SRO\DPRUSKRXV WUDQVIRUPDWLRQ LQ WKHVH V\VWHPV,QWURGXFWLRQ+HUH ZH UHSRUW WKH UHVXOWV REWDLQHG LQ D VHULHV RI LQYHVWLJDWLRQV RI WKH ORZ WHPSHUDWXUH D WKHUPDO H[SDQVLRQ RI SXUH K DQG K GRSHG ZLWK LQHUW JDVHV ,Q WKH ILUVW VWXGLHV RI WKH VHULHV > @ ZH GHWHFWHG D QHJDWLYH DQG YHU\ KLJK LQ PDJQLWXGH FRHIILFLHQW RI WKH OLQHDU WKHUPDO H[SDQVLRQ RI SRO\FU\VWDOOLQH DQG VLQJOH FU\VWDO K LQ WKH UHJLRQ RI OLTXLG KHOLXP WHPSHUDWXUHV 7KLV XQXVXDO HIIHFW KDV VWLPXODWHG RXU IXUWKHU UHVHDUFK2QH RI WKH FKDUDFWHULVWLF IHDWXUHV RI IXOOHULWH & LV WKH HVVHQWLDO LQIOXHQFH RI WKH RULHQWDWLRQDO VWDWHV RI LWV PROHFXOHV RQ WKH SK\VLFDO SURSHUWLHV RI WKH FU\VWDO $ PROHFXOH RI IXOOHUHQH & LV VKDSHG DV D WUXQFDWHG LFRVDKHGURQ ZKRVH VXUIDFH IRUPV KH[DJRQV DQG SHQWDJRQV 7KH QRQFHQWUDO LQWHUDFWLRQ EHWZHHQ WKH JOREXODU PROHFXOHV RI & LV PXFK ZHDNHU WKDQ WKH FHQWUDO RQH DQG IXOOHUHQH PROHFXOHV VKRZ UHRULHQWDWLRQDO PRWLRQ RYHU D ZLGH WHPSHUDWXUH UDQJH $W FRQGHQVDWLRQ IXOOHULWH & IRUPV D IDFH FHQWHUHG FXELF IFF ODWWLFH $V VKRZQ E\ H[SHULPHQWDO VWXGLHV VHH IRU H[DPSOH 5HI WKH URWDWLRQ RI PROHFXOHV LQ WKLV SKDVH LV ZHDNO\ KLQGHUHG 2QGHFUHDVLQJ WKH WHPSHUDWXUH WR DERXW . D VWUXFWXUH RULHQWDWLRQDO SKDVH WUDQVLWLRQ RFFXUV LQWR D ORZ WHPSHUDWXUH SKDVH RI 3D V\PPHWU\ 7KLV WUDQVLWLRQ LV DFFRPSDQLHG E\ SDUWLDO RULHQWDWLRQDO RUGHULQJ RI WKH URWDWLRQ D[HV RI WKH & PROHFXOHV 7KH DOPRVW IUHH URWDWLRQ RI PROHFXOHV FKDQJHV LQWR URWDWLRQ DURXQG WKH VSDFH GLDJRQDO ! 2Q D IXUWKHU GHFUHDVH LQ WKH WHPSHUDWXUH LQ WKH 3D SKDVH WKH URWDWLRQDO PRWLRQ RI WKH PROHFXOHV DURXQG WKH ! D[HV VORZV GRZQ 1HDU 7| . WKH URWDWLRQ RI PROHFXOHV DURXQG WKH ! D[HV LV KLQGHUHG DOPRVW HQWLUHO\ DQG DQ RULHQWDWLRQDO JODVV LV IRUPHG,QLWLDOO\ RXU JRDO ZDV WR FOHDU XS WKH QDWXUH RI WKH QHJDWLYH WKHUPDO H[SDQVLRQ RI & ,Q WKLV FRQWH[W LW ZDV LQWHUHVWLQJ DQG LPSRUWDQW WR ILQG RXW KRZ LPSXULWLHV FRXOG LQIOXHQFH WKLV HIIHFW ,W VHHPHG QDWXUDO WR VWDUW ZLWK LQHUW JDVHV DV LPSXULWLHV ZKLFK EHLQJ FRPSDUDWLYHO\ VLPSOH DWRPV ZRXOG KRSHIXOO\ IDFLOLWDWH WKH LQWHUSUHWDWLRQ RI WKH UHVXOWV %\ LQWURGXFLQJ GLIIHUHQW LQHUW JDVHV +H 1H $U .U LQWR WKH IXOOHULWH ODWWLFH ZH LQWHQGHG WR ILQG KRZ WKH VL]HV RI WKH LPSXULW\ DWRPV PD\ LQIOXHQFH WKH QHJDWLYH WKHUPDO H[SDQVLRQ,Q WKH FRXUVH RI WKHVH LQYHVWLJDWLRQV RI & GRSHG ZLWK LQHUW JDVHV QHZ HIIHFWV KDYH EHHQ UHYHDOHG ZKLFK DSSHDU ZRUWK\ RI VSHFLDO DQG LQGHSHQGHQW FRQVLGHUDWLRQ([SHULPHQWDO DVSHFWV7KH OLQHDU WKHUPDO H[SDQVLRQ FRHIILFLHQW ZDV PHDVXUHG XVLQJ D FDSDFLWLYH GLODWRPHWHU > @ ZLWK D UHVROXWLRQ u FP VSHFLDOO\ PRGLILHG IRU PHDVXULQJ IXOOHULWH VDPSOHV 7KH GLODWRPHWHU ZDV FRQVWUXFWHG VR WKDW DOO HOHPHQWV FDSDEOH RI DIIHFWLQJ WKH PHDVXUHG UHVXOWV RQ DFFRXQW RI WKHLU RZQ WKHUPDO H[SDQVLRQ ZHUH LQ D EDWK RI OLTXLG KHOLXP DW FRQVWDQW WHPSHUDWXUH 7KH VFKHPH RI WKH PHDVXULQJ FHOO RI WKH GLODWRPHWHU WKH SURFHGXUH IRU PRXQWLQJ WKH VDPSOH LQ WKH GLODWRPHWHU DQG WKH PHDVXUHPHQW SURFHGXUH KDYH EHHQ GHVFULEHG HOVHZKHUH > @ 7KH WKHUPDO H[SDQVLRQ RI IXOOHULWH & ZDV PHDVXUHG E\ D VWHS FKDQJH WHFKQLTXH GHVFULEHG DV IROORZV :LWK WKH VDPSOH DW D FRQVWDQW WHPSHUDWXUH 7 WKH WHPSHUDWXUH RI WKH REMHFWLYH WDEOH FRQWDLQLQJ WKH VDPSOH ZDV WKHQ FKDQJHG WR D WHPSHUDWXUH 7 ZKLFK IURP WKLV PRPHQW ZDV NHSW FRQVWDQW &KDQJHV LQ WHPSHUDWXUH DQG VDPSOH OHQJWK ZHUH UHJLVWHUHG RQFH D PLQXWH DQG SURFHVVHG E\ D FRPSXWHU LQ UHDO WLPH :KHQ WKH WHPSHUDWXUH GULIW RI WKH VDPSOH GLG QRW H[FHHG . LQ PLQXWHV ZH GHWHUPLQHG WKH FKDQJH RI LWV OHQJWK GXH WR WKH FKDQJH LQ WHPSHUDWXUH IURP 7 WR 7 'XULQJ WKH PHDVXUHPHQWV WKH VWHSV IURP 7 WR 7 ZHUH ± . GHSHQGLQJ RQ WKH WHPSHUDWXUH UDQJH7KH FKDQJH LQ WKH VDPSOH OHQJWK ZDV GHWHUPLQHG GXULQJ ERWK D WHPSHUDWXUH LQFUHDVH DQG D GHFUHDVH 7KH OLQHDU WKHUPDO H[SDQVLRQ FRHIILFLHQW D ZDV REWDLQHG E\ GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR 7 RI WKH WHPSHUDWXUH GHSHQGHQFH RI WKH UHODWLYH HORQJDWLRQ '/ / RI WKH VDPSOHV7KH ORZ WHPSHUDWXUH WKHUPDO H[SDQVLRQ RI & IXOOHULWH VKRXOG EH LVRWURSLF EHFDXVH LW KDV D FXELF ODWWLFH 7KXV LQ SULQFLSOH ERWK VLQJOH FU\VWDO DQG SRO\FU\VWDOOLQH & FDQ EH XVHG LQ VWXGLHV RI WKH WKHUPDO H[SDQVLRQ2XU SRO\FU\VWDOOLQH VDPSOHV ZHUH SURGXFHG E\ FRPSDFWLQJ & SRZGHU XQGHU D SUHVVXUH *3D 7KH VWUHVVHV WKXV LQGXFHG FRXOG DIIHFW WKH UHVXOWV RI WKH VXEVHTXHQW GLODWRPHWULF PHDVXUHPHQW 7KH JDV PROHFXOHV DGVRUEHG DW JUDLQ ERXQGDULHV FDQ DOVR LQIOXHQFH WKH UHVXOWV ,Q RUGHU WR DVFHUWDLQ WKH SUHVHQFH RI VXFK HIIHFWV ZH DOVRLQYHVWLJDWHG & LQ WKH IRUP RI D VLQJOH FU\VWDO 7R SUHSDUH WKH LQHUW JDV & VDPSOH WKH VLQJOH FU\VWDO LV QRW VXEMHFWHG WR WKH FRPSUHVVLRQ DQG PHFKDQLFDO WUHDWPHQW DV LQ WKH SRO\FU\VWDO VDPSOHV )RXU VDPSOHV RI SXUH & ZHUH XVHG ±WKUHH SRO\FU\VWDOV K , K ,,, K ,9 DQG RQH VLQJOH FU\VWDO K ,, ,Q WKH VXEVHTXHQW H[SHULPHQWV WKH VDPSOHV K ,,, DQG K ,9 ZHUH VDWXUDWHG ZLWK LQHUW JDVVHV ,QIRUPDWLRQ SHUWDLQLQJ WR WKH SXUH & VDPSOHV LV JLYHQ EHORZ K , 7KH VXEOLPDWHG & SRZGHU IRU VDPSOH SUHSDUDWLRQ ZDV VXSSOLHG E\ 7HUP 86$ %HUNHOH\ &$ DQG KDG D QRPLQDO SXULW\ RI EHWWHU WKDQ 1R WUDFHV RI VROYHQWV ZHUH IRXQG E\ 5DPDQ DQDO\VLV ZLWKLQ LWV DFFXUDF\ E\ PDVV 5RRP WHPSHUDWXUH SRZGHU ; UD\ GLIIUDFWLRQ SDWWHUQ RI WKH PDWHULDO GLVSOD\HG VKDUS SHDNV IURP IFF VWUXFWXUH D $ ,Q DQ DWPRVSKHUH RI GU\ DUJRQ WKH & SRZGHU ZDV ORDGHG LQ D VPDOO SLVWRQ F\OLQGHU GHYLFH XVHG IRU WKH VDPSOH SUHSDUDWLRQ $IWHU VXEVHTXHQW FRPSDFWLQJ RI WKH SRZGHU DW DERXW *3D WKH VDPSOH SHOOHW RI PP LQ GLDPHWHU DQG DERXW PP LQ KHLJKW WKH JUDLQ VL]HV RI PP ZDV LPPHGLDWHO\ WUDQVIHUUHG LQWR D JODVV WXEH DQG GULHG XQGHU G\QDPLF YDFXXP 7RUU IRU DERXW KRXUV 7KH FRPSDFWLQJ SURFHGXUH ZDV GRQH LQ DLU DQG GLG QRW H[FHHG PLQXWHV )LQDOO\ WKH VDPSOH ZDV VHDOHG LQ YDFXXP VKLHOGHG IURP OLJKW DQG NHSW LQ WKDW VWDWH IRU PRQWKV XQWLO WKH EHJLQQLQJ RI GLODWRPHWULF PHDVXUHPHQWV K ,, $ YHU\ ODUJH & VLQJOH FU\VWDO | u u PP ZDV REWDLQHG IURP 'U 0 +DOXVND 9LHQQD 7KLV FU\VWDO ZDV JURZQ E\ WKH VXEOLPDWLRQ PHWKRG LQ DQ DPSRXOH XQGHU YDFXXP IURP +RHFKVW 6XSHU *ROG *UDGH & 7KH FU\VWDO ZDV QHYHU VXEMHFWHG WR DLU RU R[\JHQ DIWHU JURZLQJ ZDV FRPSOHWHG DQG ZDV WUDQVIHUUHG IURP LWV JURZWK WXEH ZKLOVW XQGHU $U LQWR D JODVV DPSRXOH ZKLFK ZDV WKHQ HYDFXDWHG EHIRUH VHDOLQJ K ,,, 7KH VDPSOH ZDV D F\OLQGHU PP KLJK DQG PP LQ GLDPHWHU 7KH VDPSOH FKDUDFWHULVWLFV DQG WKH SUHSDUDWLRQ FRQGLWLRQ DUH VLPLODU WR WKRVH IRU WKH VDPSOH K , K ,9 7KH K SRZGHU ZDV VXSSOLHG E\ ³6(6 UHVHDUFK´ FRPSDQ\ DQG KDG D QRPLQDO SXULW\ 7KH FRQGLWLRQ RI FRPSDFWLQJ WKH VDPSOH K ,9 ZDV VLPLODU WR WKDW IRU WKH VDPSOH K , 7KH VDPSOH ZDV PP LQ KHLJKW DQG PP LQ GLDPHWHU 7KH DYHUDJH JUDLQ VL]H ZDV PP 7KH SRZGHU DQG WKH VDPSOH SUHSDUHG ZHUH NHSW LQ WKH DLU ,PPHGLDWHO\ SULRU WR PHDVXUHPHQW RI WKH WKHUPDO H[SDQVLRQ WKH VDPSOH ZDV HYDFXDWHG G\QDPLFDOO\ IRU VL[ GD\V ,W LV LPSRUWDQW WR QRWH WKDW DOO RI RXU IXOOHULWH VDPSOHV KDG D SXULW\ EHWWHU WKDQ 7KH SURFHGXUH IRU PRXQWLQJ WKH VDPSOHV LQ WKH GLODWRPHWHU ZHUH DV IROORZV 3ULRU WR VDPSOH PRXQWLQJ WKH JODVV DPSRXOH FRQWDLQLQJ WKH VDPSOH ZDV RSHQHG LQ DQ DUJRQ DWPRVSKHUH DW ZLWK DQ H[FHVV SUHVVXUH DURXQG 7RUU 'XULQJ WKH SURFHVV RI VDPSOH PRXQWLQJ LQWR WKH PHDVXULQJ FHOO RI WKH GLODWRPHWHU WKH VDPSOH ZDV H[SRVHG WR WKH DLU IRU QR PRUH WKDQ PLQXWHV DQG WKHQ ZDV HYDFXDWHG 'XULQJ WKH PHDVXUHPHQWV WKH YDFXXP LQ WKH GLODWRPHWHU FHOO ZDV PDLQWDLQHG DW WKH OHYHO RI 7RUU 7KH PHDVXUHPHQW SURFHGXUH ZDV WKH VDPH IRU DOO VDPSOHV5HVXOWV DQG GLVFXVVLRQ3XUH K7KH W\SLFDO WLPH GHSHQGHQFH RI WKH FKDQJH LQ WKH & VDPSOH OHQJWK û/ DIWHU D IDVW LQFUHDVH LQ WKH WHPSHUDWXUH RI WKH REMHFWLYH WDEOH ZLWK WKH VDPSOH E\ ûL LV VKRZQ LQ )LJ $W HDFK WHPSHUDWXUH WKH VLJQ RI WKH WRWDO WKHUPDO H[SDQVLRQ LV GHWHUPLQHG E\ WZR FRPSHWLQJ PHFKDQLVPV UHVSRQVLEOH IRU H[SDQVLRQ DQG FRQWUDFWLRQ RI WKH VDPSOH)LJ 7KH FKDUDFWHULVWLF WLPH GHSHQGHQFH RI WKH VDPSOH OHQJWK YDULDWLRQV û/ WRQ KHDWLQJ E\ û77KH WHPSHUDWXUH GHSHQGHQFH RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW IRU WKH IRXU SXUH & VDPSOHV LV VKRZQ LQ )LJ ,Q WKH VDPH ILJXUH WKH RSHQ FLUFOHV VKRZ WKH OLQHDU)LJ 7HPSHUDWXUH GHSHQGHQFH RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW RI SXUHIXOOHULWH &H[SDQVLRQ FRHIILFLHQWV PHDVXUHG GLODWRPHWULFDOO\ E\ *XJHQEHUJHU HW DO > @ RQ VLQJOH FU\VWDO & 1RWH WKDW XQWLO WKH VWXGLHV UHSRUWHG KHUH WKH WKHUPDO H[SDQVLRQ RI & KDV QRW EHHQ LQYHVWLJDWHG EHORZ .$ERYH . WKH UHVXOWV REWDLQHG DUH DOO LQ JRRG DJUHHPHQW &RQVLGHUDEOH GLVFRUGDQFH LV KRZHYHU REVHUYHG IRU WKH GLIIHUHQW VDPSOHV LQ WKH UHJLRQ RI OLTXLG KHOLXP WHPSHUDWXUHV ,Q WKLV UHJLRQ WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW IRU VDPSOHV , ,, DQG ,,, KDYH XQXVXDOO\ KLJK QHJDWLYH YDOXHV IRU VXFK ORZ WHPSHUDWXUHV ZKLOVW WKDW RI VDPSOH ,9 KDV LQ FRQWUDVW DOZD\V KDV D SRVLWLYH YDOXH 7KH GLVFUHSDQF\ LQ WKH . YDOXHV IRU GLIIHUHQW VDPSOHV ZLOO EH GLVFXVVHG LQ WKH VXEVHTXHQW VHFWLRQ +HUH ZH VKDOO DWWHPSW WR H[SODLQ WKH QRQWULYLDO HIIHFW RI QHJDWLYH WKHUPDO H[SDQVLRQ RI & $ SRVVLEOH PHFKDQLVP UHVSRQVLEOH IRU WKH QHJDWLYH WKHUPDO H[SDQVLRQ RI IXOOHULWH & PLJKW EH URWDWLRQDO WXQQHOOLQJ RI PROHFXOHV 6KHDUG > @ ZDV WKH ILUVW ZKR SDLG DWWHQWLRQ WR WKH IDFW WKDW URWDWLRQDO WXQQHOOLQJ RI PROHFXOHV FDQ OHDG WR D QHJDWLYH WKHUPDO H[SDQVLRQ 7KLV SUREOHP ZDV FRQVLGHUHG LQ GHWDLO E\ )UHLPDQ > @ DV DSSOLHG WR WKH WKHUPDO H[SDQVLRQ RI VROLG PHWKDQH7KH ODUJH PRPHQW RI LQHUWLD RI WKH & PROHFXOH LV D VWURQJ REMHFWLRQ WR WKH DVVXPSWLRQ RI D URWDWLRQDO WXQQHOLQJ PHFKDQLVP DV SURGXFLQJ RU WKH QHJDWLYH WKHUPDO H[SDQVLRQ FRHIILFLHQW IRU & IXOOHULWH EHORZ OLTXLG KHOLXP WHPSHUDWXUHV ,Q WKH RULHQWDWLRQDO JODVV ZKLFK HYROYHV LQ WKH IXOOHULWH EHORZ . WKH SRWHQWLDO EDUULHUV 8I LPSHGLQJ URWDWLRQ RI WKH PROHFXOHV FDQ YDU\ ZLWKLQ ZLGH OLPLWV 7KH WXQQHO URWDWLRQ FDQ EH SHUIRUPHG RQO\ E\ WKRVH PROHFXOHV IRU ZKLFK WKH 8I EDUULHUV DUH TXLWH ORZ & PROHFXOHV WKDW H[SHULHQFH VXFK EDUULHUV DUH UHIHUUHG WR DV GHIHFWV ,I WKH 8I EDUULHUV JURZ ZLWK D GHFUHDVH LQ WKH FU\VWDO YROXPH WKH WXQQHO URWDWLRQ OHDGV WR D QHJDWLYH WKHUPDO H[SDQVLRQ RI WKH FU\VWDO > @,Q WKH FDVH RI WXQQHO URWDWLRQ WKH DEVROXWH YDOXHV RI WKH *UXQHLVHQ FRHIILFLHQW FDQ EH YHU\ KLJK > @ ,Q )LJ > @ WKH WHPSHUDWXUH GHSHQGHQFH RI WKH *UXQHLVHQ FRHIILFLHQW LV VKRZQ IRU WKH VDPSOHV & , DQG & ,,)LJ *UXQHLVHQ SDUDPHWHU RI IXOOHULWH &,W VKRXOG EH QRWHG KHUH WKDW WKH *UXQHLVHQ FRHIILFLHQWV IRU WKH SKRQRQ DQG OLEURQ VSHFWUD RI PROHFXODU FU\VWDOV DUH XVXDOO\ RI WKH RUGHU RI RQH > @ 7KH XQXVXDOO\ ODUJH QHJDWLYH YDOXHV RI J WHVWLI\ LQ IDYRXU RI WKH DVVXPSWLRQ RI WKH WXQQHOOLQJ QDWXUH RI WKH QHJDWLYH WKHUPDO H[SDQVLRQ RI IXOOHULWH K7KH IDFWRUV WKDW PLJKW FDXVH WKH QHJDWLYH WKHUPDO H[SDQVLRQ RI IXOOHULWH & ZHUH DQDO\]HG LQ > @ 6LQFH WKH & PROHFXOHV KDYH ILYH IROG V\PPHWU\ D[HV WKH\ FDQQRW HQWLUHO\ EH RULHQWDWLRQDOO\ RUGHUHG KHQFH FHUWDLQ GHIHFWV DUH LQHYLWDEOH DW ORZ WHPSHUDWXUHV 7KH QHJDWLYH WKHUPDO H[SDQVLRQ ZDV H[SODLQHG TXDOLWDWLYHO\ > @ DVVXPLQJ FR H[LVWHQFH RI GLIIHUHQW RULHQWDWLRQDO GRPDLQV LQ WKH VLPSOH FXELF ODWWLFH RI & 7KH SRWHQWLDO UHOLHI LV PXFK VPRRWKHU LQ WKH LQWHU GRPDLQ VSDFH GRPDLQ ZDOOV WKDQ LQVLGH WKH GRPDLQV DQG WKH 8I EDUULHUV LPSHGLQJ URWDWLRQ RI WKH PROHFXOHV DUH PXFK ORZHU LQ WKH GRPDLQ ZDOOV $V D UHVXOW WKH PROHFXOHV LQ WKH GRPDLQ ZDOOV XQOLNH WKRVH LQVLGH WKH GRPDLQV FDQ UHPDLQ QHDUO\ IUHH URWRUV GRZQ WR PXFK ORZHU WHPSHUDWXUHV& GRSHG ZLWK $U DQG 1H:H LQYHVWLJDWHG WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW D RI WKH K ,,, VDPSOH GRSHG ZLWK $U DQG 1H > @ 7KH SHQHWUDWLRQ RI JDV DWRPV LQWR WKH IXOOHULWH ODWWLFH ZDV H[SHFWHG WR FKDQJH WKH 8I EDUULHUV DQG KHQFH HIIHFW URWDWLRQ RI WKH QHLJKERULQJ & PROHFXOHV 7KH LPSXULW\ DWRPV FRXOG WKXV LQIOXHQFH WKH SUREDELOLW\ RI URWDWLRQDO WXQQHOLQJ RI WKHVH PROHFXOHV DQG WKH WXQQHOLQJ LQGXFHG FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ ,I WKH 8I EDUULHU KHLJKW DQG RU ZLGWK LQFUHDVH WKH WRWDO QHJDWLYH WKHUPDO H[SDQVLRQ /%³,VKRXOG GHFUHDVH DQG VKLIW WRZDUGV ORZHU WHPSHUDWXUHV 5HFDOO WKDW LQ WKH ORZ WHPSHUDWXUH SKDVH HDFK & PROHFXOH LV DVVRFLDWHG ZLWK WZR WHWUDKHGUDO DQG RQH RFWDKHGUDO LQWHUVWLWLDO FDYLWLHV ZKRVH DYHUDJH OLQHDU GLPHQVLRQV DUH DERXW c DQG c UHVSHFWLYHO\ > @ $FFRUGLQJ WR ; UD\ DQG QHXWURQ GLIIUDFWLRQ GDWD > @ WKH 1H DQG $U DWRPV ZLWK WKH JDV NLQHWLF GLDPHWHUV c DQG c > @ UHVSHFWLYHO\ RFFXS\ RQO\ WKH RFWDKHGUDO FDYLWLHV7KH K ,,, VDPSOH ZDV GRSHG ZLWK QHRQ DQG DUJRQ DW URRP WHPSHUDWXUH XQGHU DWPRVSKHULF SUHVVXUH 7KH GRSLQJ ODVWHG IRU KRXUV IRU QHRQ DQG KRXUV IRU DUJRQ ,Q WKHVH H[SHULPHQWV ZH GLG QRW PHDVXUH WKH 1H DQG $U FRQFHQWUDWLRQV LQ IXOOHULWH $FFRUGLQJ WR > @ RQ & VDWXUDWLRQ ZLWK 1H DW URRP WHPSHUDWXUH XQGHU DWPRVSKHULF SUHVVXUH WKH 1H FRQFHQWUDWLRQ LQ & UHDFKHV PRO)LJXUH VKRZV WKH PHDVXUHG WKHUPDO H[SDQVLRQ FRHIILFLHQWV RI IXOOHULWH EHIRUH GRSLQJ FXUYH DQG DIWHU GRSLQJ ZLWK QHRQ FXUYH DQG DUJRQ FXUYH ,W LV VHHQ WKDW WKH GRSLQJ KDV VWURQJO\ DIIHFWHG WKH WKHUPDO H[SDQVLRQ RI & WKH LQWURGXFWLRQ RI WKH GRSLQJ JDV UHGXFHG FRQVLGHUDEO\ WKH SRVLWLYH FRHIILFLHQWV VXSSUHVVHG VWURQJO\ WKH HIIHFW RI QHJDWLYH WKHUPDO H[SDQVLRQ DQG VKLIWHG LW WRZDUGV ORZHU WHPSHUDWXUHV 7R H[SODLQ WKH HIIHFWV REVHUYHG LW VHHPV QDWXUDO WR DVVXPH WKDW WKH DWRPV RI LPSXULWLHV LPSHGH URWDWLRQ RI WKH & PROHFXOHV DQG WKXV HQKDQFH WKH QRQFHQWUDO IRUFHV DFWLQJ XSRQ WKH & PROHFXOHV :LWK WKH QRQFHQWUDO IRUFHV HQKDQFHG WKH OLEUDWLRQ IUHTXHQFLHV Z L RI WKH & PROHFXOHV VKRXOG LQFUHDVH DQG DW 7 K Z L N WKH FRQWULEXWLRQ RI OLEUDWLRQV H[FLWDWLRQV WR WKH KHDW FDSDFLW\ DQG WKHUPDO H[SDQVLRQ RI WKH FU\VWDO VKRXOG GHFUHDVH $W 7! . WKH WXQQHOLQJ HIIHFWV DUH QR ORQJHU LPSRUWDQW ,Q WKLVWHPSHUDWXUH UDQJH WKH WUDQVODWLRQDO ODWWLFH YLEUDWLRQV DQG WKH PROHFXOH OLEUDWLRQV DUH UHVSRQVLEOH IRU WKH WKHUPDO H[SDQVLRQ ,Q > @ WKH OLEUDWLRQ H[FLWDWLRQ FRQWULEXWLRQ WR WKH KHDW FDSDFLW\ RI & ZDV GHVFULEHG XVLQJ WZR OLEUDWLRQV IUHTXHQFLHV ZLWK HQHUJLHV HTXLYDOHQW WR . DQG . 7KXV WKH LQHTXDOLW\ 7 K &L N KROGV IRU WKH WHPSHUDWXUH LQWHUYDO . DQG WKH DVVXPSWLRQ RI D GHFUHDVH LQ WKH OLEUDWLRQ H[FLWDWLRQ FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ DW WKHVH WHPSHUDWXUHV VHHPV WR EH UHDVRQDEOH $V WKH QRQFHQWUDO IRUFHV LQFUHDVH WKH 8I EDUULHUV LPSHGLQJ URWDWLRQ RI WKH PROHFXOHV EHFRPH KLJKHU 7KLV GLPLQLVKHV WKH SUREDELOLW\ RI URWDWLRQDO & WXQQHOLQJ DQG WKH WXQQHOLQJ VSOLWWLQJ RI WKH HQHUJ\ OHYHOV $V D UHVXOW WKH QHJDWLYH WKHUPDO H[SDQVLRQ GHFUHDVHV DQG WKH UHJLRQ RI WXQQHO HIIHFWV VKLIWV WRZDUGV ORZHU WHPSHUDWXUHV)LJ /LQHDU WKHUPDO H[SDQVLRQ FRHIILFLHQWV SXUH IXOOHULWH IXOOHULWH GRSHG ZLWK QHRQ IXOOHULWH GRSHG ZLWK DUJRQ:H VKRXOG UHPHPEHU WKDW WKH OLEUDWLRQ H[FLWDWLRQ FRQWULEXWLRQ LV PDGH E\ DOO & PROHFXOHV ZKLOH WKH QHJDWLYH FRQWULEXWLRQ LV PDGH RQO\ E\ WKH PROHFXOHV ZKLFK ZH FDOO GHIHFWV $Q LQWHUHVWLQJ IHDWXUH ZDV H[KLELWHG E\ WKH OLQHDU WKHUPDO H[SDQVLRQ FRHIILFLHQW RI 1H DQG $U GRSHG & VHH ILJ $W . WKH D 7 YDOXHV SUDFWLFDOO\ FRLQFLGH IRU $U DQG 1H VDWXUDWHG VDPSOHV /HW XV DVVXPH WKDW GRSLQJ ZLWK $U DQG 1H LQFUHDVHV WKH OLEUDWLRQ IUHTXHQFLHV RI WKH & PROHFXOHV WR VXFK H[WHQW WKDW WKH FRQWULEXWLRQ RI OLEUDWLRQV H[FLWDWLRQV WR WKH WKHUPDO H[SDQVLRQ LV QHJOLJLEOH XS WR . %HVLGHV LW LV QDWXUDO WR H[SHFW WKDW WKH $U DQG 1H LPSXULWLHV KDYH QHJOLJLEOH HIIHFW RQ WKH WUDQVODWLRQDO YLEUDWLRQ RI WKH ODWWLFH DQG WKHLU FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ ,I WKLV LV FRUUHFW WKH WKHUPDO H[SDQVLRQV RI WKH 1H & DQG $U & VROXWLRQV DQG WKH FRQWULEXWLRQ RI WKH WUDQVODWLRQDO YLEUDWLRQV WR WKH WKHUPDO H[SDQVLRQ RI SXUH & VKRXOG FRLQFLGH LQ WKH . UHJLRQ ZKHUH WKH FRQWULEXWLRQV RI OLEUDWLRQV H[FLWDWLRQV DQG WXQQHOLQJ WR D 7 DUH QRW REVHUYDEOH :H WULHG WR GHVFULEH WKH FRQWULEXWLRQ RI WUDQVODWLRQDO YLEUDWLRQV DV 'D WUDQV J & 7 4' %9 ZKHUH J LV WKH *UXQHLVHQ FRHIILFLHQW 9 LV WKH PRODU YROXPH RI & % LV WKH EXON PRGXOXV RI & & 7 4' LV WKH 'HE\H KHDW FDSDFLW\ 4'LV WKH 'HE\H WHPSHUDWXUH RI & 7KH FDOFXODWLRQ ZDV PDGH XVLQJ 9 FP PRO > @ DQG % *3D > @J DQG 4'ZHUH ILWWLQJ SDUDPHWHUV 'D WUDQV FDQ EH GHVFULEHG ZHOO E\ WKH DERYH H[SUHVVLRQ WDNLQJ J DQG 4' . J LV FORVH WR WKH FRUUHVSRQGLQJ YDOXHV IRU UDUH JDV VROLGV > @ /LWHUDWXUH GDWD IRU 4'RI & DUH PXFK VFDWWHUHG 7KH DQDO\VLV RI WKH WHPSHUDWXUH KHDW FDSDFLW\ GHSHQGHQFHV \LHOGV 4' . > @ . > @ . > @ . > @ DQG . > @ 4' . ZDV REWDLQHG LQ VWXGLHV RI HODVWLF SURSHUWLHV RQ VLQJOH FU\VWDO & > @ (YHQ LI ZH GLVUHJDUG WRR KLJK 4 . > @ DQG 4' . ZKHUH WKH HUURU LV TXLWH DSSUHFLDEOH > @ WKH VFDWWHU RI 4'YDOXHV LV VWLOO ZLGH 7KH 'HE\H WHPSHUDWXUHV REWDLQHG E\ WKH FDORULPHWULF PHWKRG DUH KLJKO\ VHQVLWLYH WR WKH LPSXULWLHV SUHVHQW LQ IXOOHULWH DQG WKH WHFKQLTXH HPSOR\HG WR VHSDUDWH WKH FRQWULEXWLRQV WR KHDW FDSDFLW\ 7KH 4'UHVXOWV FDOFXODWHG IURP XOWUDVRXQG YHORFLWLHV DUH PRUH UHOLDEOH VLQFH WKH\ DUH PDLQO\ GHWHUPLQHG E\ WKH WUDQVODWLRQDO YLEUDWLRQV RI WKH ODWWLFH DQG DUH ORZ VHQVLWLYH WR LPSXULWLHV 7KH XOWUDVRXQG GDWD IRU VLQJOH FU\VWDO & DW 7 . SURYLGH 4' . > @ ,Q > @ OLWHUDWXUH GDWD RQ XOWUDVRXQG YHORFLWLHV RI SRO\FU\VWDOOLQH & ZHUH DQDO\]HG DQG H[WUDSRODWHG WR ORZ WHPSHUDWXUHV 7KH 'HE\H WHPSHUDWXUH WKXV FDOFXODWHG DW 7 LV . ZKLFK LV YHU\ FORVH WR RXU UHVXOW7KH DERYH FRQVLGHUDWLRQ VXJJHVWV WKDW RXU J DQG 4'DUH TXLWH UHDOLVWLF DQG WKXV VWUHQJWKHQV WKH DVVXPSWLRQ WKDW FXUYHV DQG LQ )LJ GHVFULEH WKH FRQWULEXWLRQ RI WUDQVODWLRQDO YLEUDWLRQV WR WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW RI SXUH & 3URFHHGLQJ IURP WKLV DVVXPSWLRQ ZH FDQ WDNH WKH GLIIHUHQFH EHWZHHQ FXUYH DQG FXUYHV )LJ DW . DV WKH FRQWULEXWLRQ RI OLEUDWLRQV H[FLWDWLRQV'D OLE WR WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW RI SXUH & 'D OLE LV ZHOO GHVFULEHG E\ WKH (LQVWHLQ WHUP ZLWK WKH FKDUDFWHULVWLF (LQVWHLQ WHPSHUDWXUH 4( . 7KLV YDOXH GRHV QRW FRPH LQWR FRQIOLFW ZLWK WKH DERYH UHVXOWV > @ 1RWH WKDW WKH LGHD RI WKH LPSHGLQJ HIIHFW RI WKH LPSXULW\ JDV PROHFXOHV XSRQ WKH URWDWLRQDO PRWLRQ RI WKH & PROHFXOHV ZDV SXW IRUZDUG HDUOLHU LQ > @ 7KH LGHD LV VXSSRUWHG E\ WKH IDFW WKDW DW ORZ WHPSHUDWXUHV 7 . WKH ODWWLFH SDUDPHWHU RI D VDWXUDWHG $U[& VROXWLRQ LV c VPDOOHU WKDQ WKDW RI SXUH IXOOHULWH > @)LJ 7HPSHUDWXUH GHSHQGHQFH RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQWVSXUH IXOOHULWH $U GRSHG IXOOHULWH IXOOHULWHDIWHU HYDFXDWLRQ RI $U IRU GD\V DQG IRU GD\V7R REWDLQ PRUH LQIRUPDWLRQ ZH VWXGLHG KRZ WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW FKDQJHG ZKHQ WKH GRSLQJ DWRPV ZHUH UHPRYHG IURP WKH VDPSOH )RU WKLV SXUSRVH WKH PHDVXULQJ FHOO ZLWK WKH VDPSOH ZDV ZDUPHG WR URRP WHPSHUDWXUH DQG HYDFXDWHG WR 7RUU 7KH JDV HYDFXDWLRQ DW URRP WHPSHUDWXUH ODVWHG IRU GD\V 7KH WKHUPDO H[SDQVLRQ ZDV WKHQ PHDVXUHG DW ORZ WHPSHUDWXUHV 7KH UHVXOWV DUH VKRZQ LQ )LJ FXUYH ,W LV VHHQ WKDW WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW FKDQJHV RQO\ VOLJKWO\ DERYH . EXW EHORZ . WKH QHJDWLYH WKHUPDO H[SDQVLRQ QRZ DJDLQ KDV WKH PLQLPXP W\SLFDO IRU XQGRSHG & 7KH PHDVXULQJ FHOO ZLWK WKH VDPSOH ZDV ZDUPHG DJDLQ WR URRP WHPSHUDWXUH DQG JDV HYDFXDWLRQ ZDV FRQWLQXHG IRU GD\V 7KH WKHUPDO H[SDQVLRQ FRHIILFLHQWV PHDVXUHG WKHUH DIWHU DUH VKRZQ LQ )LJ FXUYH 1RWH WKDW DIWHU D WRWDO RI GD\V HYDFXDWLRQ RI DUJRQ WKH ³KLJK WHPSHUDWXUH´ SDUW RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW ZDV UHVWRUHG FRPSOHWHO\ 7KH QHJDWLYH WKHUPDO H[SDQVLRQ LQ WKH UDQJH . ZDV KRZHYHU VWLOO GLIIHUHQW IURP WKH YDOXH IRU WKH LQLWLDO SXUH VDPSOH 6LPLODU H[SHULPHQWV ZHUH PDGH RQ D VDPSOH VDWXUDWHG ZLWK QHRQ $IWHU D GD\V¶ H[SRVXUH RI WKH VDPSOH WR URRP WHPSHUDWXUH DQG YDFXXP WKH UHVXOWV REWDLQHG EHIRUH DQG DIWHU GRSLQJ FRLQFLGHG LQ WKH ZKROH WHPSHUDWXUH LQWHUYDO :H FDQ WKXV FRQFOXGH WKDW WKH & VDPSOH ZDV FRPSOHWHO\ IUHH RI QHRQ 7KH GHVDWXUDWLRQ RI WKLV GXUDWLRQ ZDV QRW VXIILFLHQW WR UHPRYH DOO DUJRQ IURP WKH VDPSOH7KH FKDQJHV LQ D 7 DIWHU UHPRYDO RI DUJRQ IURP WKH VDPSOH PD\ EH H[SODLQHG DV IROORZV 7KH PROHFXOHV ZH FDOOHG GHIHFWV LQ 6HFW EHFRPH SHUPDQHQWO\ GLVSODFHG ZLWK UHVSHFW WR WKH ODWWLFH VLWHV $V D UHVXOW WKH RFWDKHGUDO YRLGV VXUURXQGLQJ VXFK PROHFXOHV DUH QRW LGHQWLFDO DQG WKH SRWHQWLDO ZHOOV WKDW WKH\ IRUP IRU WKH LPSXULW\ DUH GLIIHUHQW WRR ±GHHSHU RU VKDOORZHU WKDQ WKH RFWDKHGUDO SRWHQWLDO ZHOOV DGMDFHQW WR PRVW RI WKH & PROHFXOHV $W WKH LQLWLDO VWDJH RI HYDFXDWLRQ WKH $U DWRPV ILUVW OHDYH WKH VKDOORZ SRWHQWLDO ZHOOV QHDU WKH GHIHFWV DQG WKLV FDXVHV IDVWHU FKDQJHV LQ WKH QHJDWLYH SDUW RI D 7 7KH UHPRYDO RI WKH $U DWRPV IURP WKH GHHSHU ZHOOV SURFHHGV VORZHU WKDQ LQ PRVW RI WKH FU\VWDO YROXPH 7KDW LV ZK\ DW WKH FRPSOHWLQJ VWDJH WKH SRVLWLYH SDUW RI D 7 LV UHVWRUHG IDVWHU DW 7 ! .7KLV FRQVLGHUDWLRQ OHDGV XV WR DVVXPH WKDW WKH GLVWLQFWLRQV LQ WKH EHKDYLRU RI D 7 IRU GLIIHUHQW SXUH & VDPSOHV VHH )LJ FDQ EH DWWULEXWHG WR GLIIHUHQW DPRXQWV RI WKH UHVLGXDO LPSXULW\ ZKRVH SDUWLFOHV DUH VWLOO SUHVHQW LQ WKH GHHS SRWHQWLDO ZHOOV QHDU WKH GHIHFWV 7KH QHJDWLYH WKHUPDO H[SDQVLRQ VKRXOG WKHUHIRUH EH SDUWLFXODUO\ VHQVLWLYH WR WKH SUH KLVWRU\ RI WKH VDPSOH:H EHOLHYH WKDW WKH DEVHQFH RI WKH QHJDWLYH FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ RI SXUH & VDPSOH ,9 GRZQ WR . LV FRQQHFWHG ZLWK VDWXUDWLRQ RI WKH VDPSOH ZLWK DLU JDVHV 7KH UHVXOWV RI WKH 7*$ DQDO\VLV DOVR HYLGHQFH WKDW DSSUHFLDEOH DPRXQWV RI JDV DUH SUHVHQW LQ VDPSOH& GRSHG ZLWK .U DQG +H,W ZDV QRWHG DERYH WKDW RQ GRSLQJ ZLWK $U WKH PRODU YROXPH RI & GHFUHDVHG DW 7 . > @ /LNH $U DWRPV WKH LQWURGXFHG 1H DWRPV RFFXS\ RQO\ RFWDKHGUDO LQWHUVWLWLDOV EXW WKHLU JDV NLQHWLF GLDPHWHU LV VPDOOHU ,W LV QDWXUDO WR DVVXPH WKDW DW ORZ WHPSHUDWXUHV WKH GRSLQJ ZLWK 1H DOVR OHDGV WR D GHFUHDVH LQ WKH DYHUDJH GLVWDQFHEHWZHHQ WKH & PROHFXOHV LQ WKH ODWWLFH 7KH DERYH GLVFXVVLRQ DJUHHV ZLWK WKH FRQFOXVLRQ WKDW $U DQG 1H LPSXULWLHV LPSHGH WKH URWDWLRQDO PRWLRQ RI & PROHFXOHV 2XU QH[W JRDO ZDV WR LQYHVWLJDWH KRZ WKH LPSXULWLHV LQFUHDVLQJ WKH YROXPH RI IXOOHULWH DIIHFW LWV WKHUPDO H[SDQVLRQ 7KH LPSXULWLHV FKRVHQ ZHUH .U DQG +H :KHQ DGPL[HG WKH .U DWRPV RFFXS\ WKH RFWDKHGUDO LQWHUVWLWLDO FDYLWLHV DQG EHFDXVH RI UDWKHU ODUJH JDV NLQHWLF GLDPHWHU RI .U DWRPV WKH YROXPH RI WKH VROLG & LQFUHDVHV > @ :KHQ +H LPSXULW\ LV DGGHG > @ WKH YROXPH RI & LQFUHDVHV SUHVXPDEO\ EHFDXVH WKH +H DWRPV RFFXS\ QRW RQO\ WKH RFWDKHGUDO LQWHUVWLWLDO FDYLWLHV EXW WKH PXFK VPDOOHU WHWUDKHGUDO RQHV DV ZHOO > @& .U 7KH & ,9 SRZGHU ZDV VDWXUDWHG ZLWK .U DW 7 & DQG D .U SUHVVXUH RI 03D IRU KRXUV 7KH .U FRQFHQWUDWLRQ ZDV IRXQG IURP WKH WKHUPDO JUDYLPHWULF DQDO\VLV > @ WR EH PROH 7KH SRZGHU FRPSDFWLQJ WKH SURFHGXUH RI PRXQWLQJ WKH VDPSOH LQ WKH GLODWRPHWHU DQG WKH PHDVXUHPHQW SURFHGXUH ZHUH VLPLODU WR WKRVH DSSOLHG WR & ,7KH WKHUPDO H[SDQVLRQ RI & GRSHG ZLWK .U ZDV PHDVXUHG LQ VL[ H[SHULPHQWDO UXQV 7KH WHPSHUDWXUH GHSHQGHQFH RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW . 7 LV LOOXVWUDWHG LQ )LJ 7KH PHDVXUHPHQW ZDV PDGH RQ KHDWLQJ VROLG FLUFOHV DQG WULDQJOHV DQG FRROLQJ RSHQ VTXDUHV DQG WKH VPRRWKHG VROLG FXUYH WKH VDPSOH 1RWH WZR LPSRUWDQW IHDWXUHV LQ WKH EHKDYLRXU RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW)LJ 7HPSHUDWXUH GHSHQGHQFH RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQWV RI.U GRSHG IXOOHULWH)LUVW WKHUH LV D K\VWHUHVLV RI WKH WHPSHUDWXUH GHSHQGHQFH . 7 /HW XV UHFDOO WKDW . 7 K\VWHUHVLV ZDV QRW REVHUYHG IRU SXUH & DQG & GRSHG ZLWK VPDOO DPRXQWV RI 1H DQG $U 7KH UHVXOWV REWDLQHG LQ GLIIHUHQW PHDVXUHPHQW UXQV RQ WKH VDPSOH EHLQJ FRROHG GRZQ IURP WKH KLJKHVW PHDVXUHPHQW WHPSHUDWXUH . H[KLELW JRRG DJUHHPHQW 7KH GHYLDWLRQ IURP WKH VPRRWKHG FXUYH LV QRW ODUJH 7KH DJUHHPHQW LV KRZHYHU PXFK ZRUVH IRU WKH VDPSOH EHLQJ KHDWHG IURP WKH OLTXLG KHOLXP WHPSHUDWXUHV 7KH VFDWWHU LQ WKH GDWD LV TXLWH DSSUHFLDEOH HYHQ ZLWKLQ RQHPHDVXUHPHQW UXQ 7R DYRLG H[WUD FRPSOH[LW\ RI )LJ WKH UHVXOWV RI RQO\ WZR PHDVXUHPHQWV PDGH RQ KHDWLQJ WKH VDPSOH DUH VKRZQ LQ WKH ILJXUH :H KRZHYHU HPSKDVL]H WKDW LQ DOO WKH FDVHV WKH . YDOXHV PHDVXUHG RQ FRROLQJ DUH KLJKHU WKDQ . REWDLQHG RQ KHDWLQJ DQG H[FHHG WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW RI WKH LQLWLDO & ,9 VDPSOH DW 7! . 7KH H[FHVV LQFUHDVHV ZLWK WHPSHUDWXUH DQG UHDFKHV DW 7 . $QRWKHU LPSRUWDQW SRLQW VKRXOG EH QRWHG 7R FKDQJH IURP .PHDVXUHG RQ FRROLQJ WR .PHDVXUHG RQ KHDWLQJ DW WKH ORZHVW H[SHULPHQWDO WHPSHUDWXUH . ZH KDG WR NHHS WKH VDPSOH DW 7| . QR OHVV WKDQ IRU WKUHH KRXUV $V DQ H[DPSOH ZH GHWDLO WKH SURFHGXUH 2Q FRROLQJ WKH VDPSOH GRZQ IURP . ZH UHDFK 7 . DQG VWDUW PHDVXULQJ WKH WKHUPDO H[SDQVLRQ RQ KHDWLQJ 7KH YDOXHV RI WKH ILUVW WZR PHDVXUHPHQWV DUH FORVH WR WKH UHVXOWV RI H[WUDSRODWLRQ IURP WKH . 7 GHSHQGHQFH IRU WKH FRROLQJ FDVH IROORZLQJ . 7 a 7 2Q WKH VXEVHTXHQW PHDVXUHPHQW WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW FKDQJHG DEUXSWO\ WR WKH YDOXH LQGLFDWHG E\ WKH YHUWLFDO DUURZ LQ )LJ 1RZ ZH GLVFXVV WKH RWKHU IHDWXUH LQ WKH WHPSHUDWXUH GHSHQGHQFH RI WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW IRU WKH .U & ,9 VROXWLRQ 7KH .±YDOXHV REWDLQHG RQ KHDWLQJ WKH VDPSOH LQ WKH UHJLRQ RI OLTXLG KHOLXP WHPSHUDWXUHV EHFRPH QHJDWLYH 7KHLU DEVROXWH YDOXHV DUH VHYHUDO WLPHV KLJKHU WKDQ WKRVH IRU WKH SXUH & , & ,, & ,,, VDPSOHV DQG IRU & ,,, GRSHG ZLWK 1H DQG $U ,W LV LQWHUHVWLQJ WKDW WKH & ,9 VDPSOH LWVHOI ZH XVHG LW IRU GRSLQJ ZLWK .U KDV QR QHJDWLYH WKHUPDO H[SDQVLRQ LQ WKH ZKROH WHPSHUDWXUH LQWHUYDO .)LJ 7KH UHODWLRQ EHWZHHQ QHJDWLYH DQG SRVLWLYH FRQWULEXWLRQVWR WKH WKHUPDO H[SDQVLRQ RI .U GRSHG &1R QHJDWLYH FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ ZDV GHWHFWHG RQ FRROLQJ WKH & ,9 .U VDPSOH IURP WKH KLJKHVW WHPSHUDWXUH . WR . +RZHYHU LI WKHVDPSOH ZDV SUHYLRXVO\ NHSW DW 7 . RYHU WKUHH KRXUV DQG WKHQ F\FOHG LQ WKH LQWHUYDO . QR . 7 K\VWHUHVLV LV REVHUYHG 7KH QHJDWLYH FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ H[LVWV ERWK RQ FRROLQJ DQG RQ KHDWLQJ /HW XV DQDO\]H WKH EHKDYLRU RI WKH QHJDWLYH FRQWULEXWLRQ WR WKH WKHUPDO H[SDQVLRQ RI WKH VDPSOH 7KH FKDUDFWHULVWLF WLPH GHSHQGHQFH RI WKH VDPSOH OHQJWK YDULDWLRQV '/ W RQ KHDWLQJ E\ '7 LV VKRZQ LQ )LJ :H GHVFULEH WKLV GHSHQGHQFH DVû/ W $ H[S W 2 % H[S W 2ZKHUH WKH ILUVW WHUP GHVFULEHV WKH SRVLWLYH FRQWULEXWLRQ DQG WKH VHFRQG WHUP VWDQGV IRU WKH QHJDWLYH RQH $ DQG % DUH WKH DEVROXWH YDOXHV RI WKH FRUUHVSRQGLQJ FRQWULEXWLRQV DW W o W DQG W DUH WKH FKDUDFWHULVWLF UHOD[DWLRQ WLPHV IRU WKHVH FRQWULEXWLRQV 7KH % $ YDOXH LV WKH UDWLR EHWZHHQ WKH QHJDWLYH DQG SRVLWLYH FRQWULEXWLRQV WR WKHUPDO H[SDQVLRQ 7KH DYHUDJHG WHPSHUDWXUH GHSHQGHQFH RI WKH % $ UDWLR FDOFXODWHG IURP WKH GDWD REWDLQHG RQ KHDWLQJ WKH VDPSOH LV VKRZQ LQ )LJ 7KH QHJDWLYH FRQWULEXWLRQ SUHYDLOV DW OLTXLG KHOLXP WHPSHUDWXUHV DQG UHPDLQV VLJQLILFDQW XS WR .)LJ &KDUDFWHULVWLF UHOD[DWLRQ WLPHV RI SRVLWLYH W ' u DQG QHJDWLYHW x FRQWULEXWLRQV WR WKH WKHUPDO H[SDQVLRQ RI .U GRSHG &7KH WHPSHUDWXUH GHSHQGHQFHV RI WKH UHOD[DWLRQ WLPHV W DQG W DUH LOOXVWUDWHG LQ )LJ 7KH W YDOXHV ZHUH FDOFXODWHG RQ ERWK KHDWLQJ ' DQG FRROLQJ u WKH VDPSOH :H SURSRVH WKH IROORZLQJ H[SODQDWLRQ RI WKH IHDWXUHV REVHUYHG LQ WKH WKHUPDO H[SDQVLRQ RI WKH .U & VROXWLRQ 7KH K\VWHUHVLV DQG WKH MXPS OLNH FKDQJH LQ WKH WKHUPDO H[SDQVLRQ FRHIILFLHQW RI & GRSHG ZLWK .U VKRZ HYLGHQFH WKDW WKLV RULHQWDWLRQDO JODVV XQGHUJRHV SRO\PRUSKRXV WUDQVIRUPDWLRQ DQG WZR RULHQWDWLRQDOO\ GLVRUGHUHG SKDVHV FRH[LVW LQ WKH LQWHUYDO . 7KH SKHQRPHQRQ RI SRO\PRUSKLVP KDV EHHQ NQRZQ IRU WKH FDVH RI VWUXFWXUDO JODVVHV WKRXJK LW LV QRW FOHDU FRPSOHWHO\ \HW $V IRU RULHQWDWLRQDO JODVVHV LW VHHPV WR EH IRXQG KHUH IRU WKH ILUVW WLPH %HORZ ZH XVH WKH WHUP ³SRO\DPRUSKLVP´ ZKLFK ZDV LQWURGXFHG LQ DQDORJ\ ZLWK ³SRO\PRUSKLVP´ LQ > @ DQG WKHQ ZDV UHLQWURGXFHG E\ RWKHUV > @ 1RWH WKDW ZKHQ WKH VDPSOH LV KHDWHG。