压缩感知课程课件

合集下载

压缩感知介绍

压缩感知介绍
f1():K f2():err
f 2 ( x)
Minmum
Minmum
f1 (x)
压缩感知稀疏优化原理示意图
Two-Objective Minimum Problem:
Minmum
f (x) ( f1 (x), f 2 (x))
Pareto前沿
f 2 ( x)
Minmum
f1():k f2():err
University of illinois
压缩感知应用实例十—动态CT图像 重建
压缩感知介绍
压缩感知介绍
1.压缩感知简介。
2.压缩感知的优势。
3.压缩感知稀疏优化原理示意图。
4.压缩感知应用条件。
5. 压缩感知应用。
背景
信息技术飞速发展:信息需求量剧增。
带宽增加:采样速率和处理速率增加。
压缩感知的发现者
伊曼纽尔· 坎迪斯: “这就好像,你给 了我十位银行账号 的前三位,然后我 能够猜出接下来的 七位数字。” 华裔数学家陶哲 轩
压缩感知介绍
1.压缩感知简介。 2.压缩感知的优势。
3.压缩感知稀疏优化原理示意图。
4.压缩感知应用条件。
5. 压缩感知应用。 6.工作中可能结合之处。
压缩感知稀疏优化原理示意图
Two-Objective Minimum Problem:
Minmum
f (x) ( f1 (x), f 2 (x))
压缩感知介绍
1.压缩感知简介。
2.压缩感知的优势。
3.压缩感知稀疏优化原理示意图。
4.压缩感知应用条件。
5. 压缩感知应用。
传统的数据压缩与压缩感知
采集
压缩
解压
直接采集压缩后的数据

压缩感知

压缩感知

7
2.2 观测和重建的简单数学推导②
1. 回顾
但如果信号在变换域中稀疏,即只有K(K<M)个系数不为零,则如 果我们知道是哪K个不为零,就可以从M个方程中解出K个不为零的 系数。 最直观的想法,可以将所有K个不为零的组合都求解一次,最后比 较哪一个是最优的,但是这样的方法太耗时。
Donoho提供了两个较为可行的最优化求解的方案: • 匹配追踪:找到一个其标记看上去与收集到的数据相关的小波; 在数据中去除这个标记的所有印迹;不断重复直到我们能用小波标 记“解释”收集到的所有数据。 • 基追踪(又名L1模最小化):在所有与录得数据匹配的小波组合 中,找到一个“最稀疏的”,也就是其中所有系数的绝对值总和越小 越好。(这种最小化的结果趋向于迫使绝大多数系数都消 失了。)这种最小化算法可以利用单纯形法之类的凸规划 算法,在合理的时间内计算出来。
10
3.2 成像过程的数学模型
2. 单像素相机原理
·图像经透镜1恰好照满DMD,DMD为p×q尺寸,设N=p×q,则此时DMD上的像为原始信号 · DMD上所有反射镜处于伪随机状态1,他们的状态构成了观测矩阵Φ的第一行(不是φ 1) h1(尺寸是N),则此时将要被反射回去的信号是X在h1反射下的值。 ·反射后信号在单点传感器上重合,即产生相加的效应,即本次观察得到的是y1=h1 ·X ·重复上面的步骤M次,则M次DMD状态构成了观测矩阵Φ ,M次结果构成观测值矩阵 Y= Φ X。实际上整个观测过程可以看成是只有一个像素的视频流。
1.压缩感知的概念
1.1 信号获取及压缩
1. 压缩感知概念
被拍摄物体
JPEG编码图像
被感知对象
未压缩信号
压缩信号
重建信号
RAW图像

压缩感知CS-PPT课件

压缩感知CS-PPT课件
(1) 这些少量的采集到的数据包含了原信号的全局信息;(观测矩阵的设计) (2) 存在一种算法能够从这些少量的数据中还原出原先的信息来。(信号恢复算 法)
这个模型意味着:我们可以在采集数据的时候只简单采集一部分数据(「压缩感 知」),然后把复杂的部分交给数据还原的这一端来做,正好匹配了我们期望的格 局。
被丢弃的信息?
引例—核磁共振(MRI)
1 year old female with liver lesion (8X) 6 year old male with abdomen (8X)
6 year old male with abdomen (8X)
斯坦福大学Emmanuel Candes 患肝病2岁儿童
CS的研究内容—稀疏表示
一般自然信号x本身并不是稀疏的,需要在某种稀疏基上进行稀疏表示x = Ys,
Y为稀疏基矩阵, s为稀疏系数 压缩感知方程为:y = Fx = FYs。
CS的研究内容—稀疏表示
信号的稀疏表示就是将信号投影到正交变换基时, 绝大部分变换系数的绝对值很 小, 所得到的变换向量是稀疏或者近似稀疏的, 可以将其看作原始信号的一种简洁表 达, 这是压缩感知的先验条件。变换基可以根据信号的本身特点灵活选取,常用的有 离散余弦变换(DCT)、傅里叶变换(FFT)、离散小波变换(DWT),Gabor变换等。
数据采集及压缩设备
数据解压缩设备
廉价、
省电、 计算能 力较低 的便携 设备
计算 任务 复杂
矛盾
大型 高效 的计 算机
计算 任务 简单
CS的研究背景—问题提出
传统模型
采集
压缩
传输/存储
解压缩
压缩感知模型
采集压缩后的数据

压缩感知介绍PPT-

压缩感知介绍PPT-
基本都是非零值,
❖ 但将其变换到 域
时,非零值就只有3 个了,数目远小于 原来的非零数目,实 现了信号的稀疏表 示。
1 压缩感知理论分析
如何找到信号的最佳稀疏域呢?
❖ 这是压缩感知理论的基础和前提,也是信号精确重构的保证。 对稀疏表示研究的热点主要有两个方面:
❖ 1、基函数字典下的稀疏表示: ❖ 寻找一个正交基使得信号表示的稀疏系数尽可能的少。比较
2 压缩感知应用
2.4 CS雷达
❖ 在雷达目标探测中,目标相对于背景高度稀疏, 与复杂的雷达系统、海量数据呈现极度的不平 衡,这就为CS技术在雷达目标探测与识别的应 用提供了必要的条件。
❖ 3.4.1 CS与传统的高分辨雷达 ❖ 3.4.2 CS与MIMO雷达 ❖ 3.4.3 CS与雷达成像
2 压缩感知应用
2 压缩感知应用
分布式压缩感知(DCS)与MIMO雷达
(3) DCS-MIMO联合重构算法 求 解 欠 定 方 程 的 处 理 过 程 , 实 现 DCSMIMO雷达信号重构。 常采用的方法有贪婪算法、粒子群算法、 模拟退火算法等优化算法。
3 压缩感知应用
3.4.3 CS与雷达成像
基于CS的SAR成像需要解决的主要问题有:
系数越多。
1 压缩感知理论分析
第三步:信号重构
❖ 首先介绍下范数的概念。向量的p-范数为:
s p
1
s N
i 1
p i
p
当p=0时得到0-范数,它表示上式中非零项的个 数。
❖ 由于观测数量M N,不能直接求解,在信号 x
可压缩的前提下,求解病态方程组的问题转化 为最小0-范数问题:
min T x
稀疏信号的字典集 ,并且 与 是不相关的。利用这个

压缩感知图像重建ppt课件

压缩感知图像重建ppt课件

15/15
想法: 1、建立基于冗余字典的CS通用框架把压缩感知理论与超 分辨率图像重建很好结合起来。 2、更好更快地实现单幅图像的超分辨率重建。 3、用更少的观测数据,更大概率的精确恢复、重构原信号。 扩展应用到图像修复上。?
计划: 阅读大量国内外文献进一步学习压缩感知理论及其在超分辨中的应 用 对图像实现各种重建方法并对其进行效果比对
2018/10/29
5/15
2、压缩感知理论概述
2.1 压缩感知理论流程
1)稀疏表示是应用压缩感知的先验条件
找到某个正交基Ψ , 信号在该基上稀疏
找到一个与Ψ不相关, 且满足一定条件的观测基 Φ 以Φ观测真实信号, 得到观测值Y 对Y采用最优化重建, Ψ Φ均是其约束。
2)随机测量是压缩感知的关键过程
采样率为45%
2018/10/29
Pepper 图像经过多尺度小波变换后只要保留 5%的系数,即可较好地重 建图像,证明了压缩感知算法的有效性。
基于小波基的CS图像重建示例图
2018/10/29
13/15
基于冗余字典的CS图像重建方法效果图
2018/10/29
14/15
两类重建算法总结:
2018/10/29
2018/10/29
10/15
如下图:利用小波多尺度变换对 Pepper 图像进行处理,利用标准高斯 随机矩阵作为测量矩阵 Φ,对稀疏化后的数据进行随机测量,使用改 进的 OMP 算法对测量后的数据进行图像重建。
2018/10/29
采样率为1%
采样率为5%
采样率为10%
采样率为15%
11/15 25% 采样率为
稀疏表示的意义: 只有信号是K稀疏的(且K<M<<N),才有可能在观测M个观测值时,可 以从K个较大的系数重建原始长度为N的信号。 研究现状: 1、多种变换域分析方法为稀疏表示提供了可能。 经典的稀疏化的方法有 1)离散余弦变换(DCT) 2)傅里叶变换(FFT) 3)离散小波变换(DWT)等 2、许多信号,诸如自然图像,本身就存在着变换域稀疏性。 3、信号在冗余字典下的稀疏表示:对稀疏表示研究的另一个热点是信 号在冗余字典下的稀疏分解。 这是一种全新的信号表示理论:用超 完备的冗余函数库取代基函数,称之为冗余字典,字典中的元素被称 为原子。

压缩感知介绍

压缩感知介绍

提出的背景

ቤተ መጻሕፍቲ ባይዱ

传统的信息获取和处理,为达到Nyquist采样率需 要大量的数据。 先采集再压缩然后传输,造成资源浪费。
概念


压缩感知,又称压缩采样,压缩传感。 它作为一个新的采样理论,通过开发信号的稀疏特性,在 远小于 Nyquist 采样率的条件下,用随机采样获取信号的 离散样本,然后通过非线性重建算法,完美的重建信号。
y x s s
(2)
问题阐述

信号稀疏化,也就是稀疏域Ф的选取; 如何建立一个稳定的测量矩阵ψ; 如何设计一个信号重建算法。
问题解决1


信号在某种表示方式下的稀疏性,是压缩感知 应用的理论基础; 经典的稀疏化的方法

离散余弦变换(DCT) 傅里叶变换(FFT) 离散小波变换(DWT)
问题解决3

最小二乘法 最小 范数的求解(几何解释) 欠定方程的求解 最小 范数的求解(最稀疏)
arg min s, such that s, =y s 0
范数的求解 最小

最小
范数的求解(RIP)
arg min s, such that s, =y s 1
扩展与应用
压缩感知
Compressive Sensing Richard Baraniuk Rice University [Lecture Notes in IEEE Signal Processing Magazine] Volume 24, July 2007
提纲



提出的背景 概念 问题阐述 问题解决 扩展与应用
问题阐述

设原始信号x长度为N , 在某个变换域 ψ上具有稀疏性, 即x = ψs, s 中非零元素为K( K<<N ) 个, 是x在变换域 ψ上的稀疏投影。

压缩感知理论(Compressive)

压缩感知理论(Compressive)

• 设 Φ = ΦΨ ,为了保证少量非相干的投 影包含精确重构信号的足够信息,矩阵 必 Φ ' 须满足受限等距特性(RIP)准则: Φ' • “对于任意具有严格T稀疏的矢量v,矩阵 都能保证如下不等式成立: ' 2 Φv • 2
'
1− ε ≤
v
2 2
≤ 1+ ε
• 式中 ε > 0 ,为限制等容常量”。 • RIP准则的等价情况是CS观测矩阵 Φ和稀 疏基矩阵 Ψ 满足非相干性的要求。相干系 数的定义为:



通过最小化l1范数将信号稀疏表示问题定义成一 类有约束的极值问题,进一步转化为线性规划 问题进行求解 。 (2)贪婪匹配追踪(MP)算法 :从字典中一 个一个挑选向量,每一步都使得信号的逼近更 为优化。 (3)正交匹配追踪(OMP)算法:此算法选取 最佳原子所用的方法和MP算法一样,都是从冗 余字典找出与待分解信号和信号残余最为匹配 的原子。
X = ∑θψ i = ΨΘ i
i =1 N
• {ψ 1 ,ψ 2,...,ψ N } 是变换系数。 Θ 向量中只有k个 非零值,我们就称信号X在稀疏基 Ψ 下是 k-稀疏的。那么,怎样找到或构造适合一类 信号的正交基,以求得信号的最稀疏表示, 这是一个有待进一步研究的问题。 • 常用的稀疏基有:正(余)弦基、小波基、 chirplct基以及curvelet基等。 •
CS理论框图
可压缩信号
稀疏变换
观测得到M维Βιβλιοθήκη 向量重构信号第一:信号的稀疏表示
• 首先,信号X∈RN具有稀疏性或者可压缩性, 所以信号的稀疏表示就成为一个至关重要 的关键问题,直接关系到信号的重构精度。 • 设N时间信号x=[x(1),x(2),…,x(N)]T ∈RN通过 一组基 的线性组合表示: N {ψ i }i=1 •

形象易懂讲解算法II——压缩感知课件

形象易懂讲解算法II——压缩感知课件

形象易懂讲解算法II——压缩感知之前曾经写过一篇关于小波变换的回答,得到很多赞,十分感动。

之后一直说要更新,却不知不觉拖了快一年。

此次更新,思来想去,决定挑战一下压缩感知(compressed sensing, CS)这一题目。

在我看来,压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果,并在磁共振成像、图像处理等领域取得了有效应用。

压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。

基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律——奈奎斯特采样定律。

即,在信号采样的过程中,用很少的采样点,实现了和全采样一样的效果。

正是被它的精妙思想所打动,我选择它作为专栏第二篇的主题。

理解压缩感知的难度可能要比之前讲的小波还要大,但是我们从中依然可以梳理出清晰的脉络。

这篇文章的目标和之前一样,我将抛弃复杂的数学表述,用没有公式的语言讲清楚压缩感知的核心思路,尽量形象易懂。

我还绘制了大量示意图,因为排版问题,我将主要以PPT的形式呈现,并按slice标好了序号。

---------------------------------------------------------------------------------------------------------------------------一、什么是压缩感知(CS)?compressed sensing又称compressed sampling,似乎后者看上去更加直观一些。

没错,CS是一个针对信号采样的技术,它通过一些手段,实现了“压缩的采样”,准确说是在采样过程中完成了数据压缩的过程。

因此我们首先要从信号采样讲起:1. 我们知道,将模拟信号转换为计算机能够处理的数字信号,必然要经过采样的过程。

问题在于,应该用多大的采样频率,即采样点应该多密多疏,才能完整保留原始信号中的信息呢?---------------------------------------2. 奈奎斯特给出了答案——信号最高频率的两倍。

第二讲压缩感知基础

第二讲压缩感知基础
S. Mallat and Z. Zhang, “Matching pursuits with timefrequency dictionaries,” IEEE Trans. Signal Processing, 41(2), 3397-3415, 1993. T. Blumensath and M. Davies, “Iterative hard thresholding for compressive sensing,” Appl. Comput. Harmon. Anal., 27(3), 265-274, 2009.
能否将对信号的采样转化为对信息的“采样”?
背景——压缩感知问题来源
原始图片
10%有效样本
5%有效样本
利用信息采样方法具有实际背景
背景——压缩感知问题来源
1)存在先验信息的情况下,Nyquist采样率是信号精确复原的 充分条件,但非必要条件。 2)除带宽可作为先验信息外,实际应用中的大多数信号/图像 是非随机的,拥有大量的“结构信息”。由贝叶斯理论可 知:利用该结构信息可大大降低数据采集量。 3)JL(Johnson-Lindenstrauss)理论表明:只需K+1次测量, 即可以完美概率复原N维空间的K-稀疏信号(N远大于K)。
历史发展——国外进展
起始:21世纪初,Donoho,Tao等人发起 研究 发展:2004年-2008年,每年发表500篇以 上论文 高潮:08年,12年,Nature, Science
历史发展——国外进展
项目:
1) T. Tao, Random matrices, arithmetic combinatorics, and incidence geometry, 20132018, 150000 USDs, . (美国) 2)F. Krzakala: Statistical Physics Approach to Reconstruction in Compressed Sensing, 20122016, 1.08 million Euros, http://erc.europa.eu/. (欧盟) 3)E. Darryn, A new approach to compressed sensing, 2012-2014, 293686 AUDs, .au. (澳大利亚)

压缩感知PPT课件

压缩感知PPT课件

Low-rate
8
Concept
Goal: Identify the bucket with fake coins.
Nyquist:
Weigh a coin from each bucket
Compression numbers
Bucket # 1 number
Compressed Sensing:
1
上次课内容回顾
Lecture 1: 压缩感知概述
• 为什么研究压缩感知 • 压缩感知的涵义 • 压缩感知的过程 • 压缩感知的关键问题
2
From Nyquist to CS
3
Compression
“Can we not just directly measure the part that will not end up being thrown
13
Vector space
Unit spheres in for the norms with quasinorm with
is uniquely determined by
Donoho and Elad, 2003
with high probability
Donoho, 2006 and Candès et. al., 2006
Convex and tractable
Donoho, 2006 and Candès et. al., 2006
10
CS theory
Compressed sensing (2003/4 and on) – Main results
is uniquely determined by
Donoho and Elad, 2003

压缩感知介绍课件

压缩感知介绍课件
图像重建
通过压缩感知技术,可以从部分 观测数据中重建出原始图像,这 在医学成像、遥感等领域具有广 泛的应用。
无线通信中的信号处理
信号编码
利用压缩感知对信号进行编码,可以在有限带宽下传输更多的数据,提高通信效率。
信号恢复
在接收端,通过压缩感知技术,可以从接收到的信号中恢复出原始信号,降低噪声和干扰的影响。
发展初期
2006年以后,众多学者开始关 注并研究压缩感知理论及其应用。
应用拓展期
近年来,压缩感知在各个领域 得到了广泛的应用和发展。
未来展望
随着技术的不断进步和应用需 求的增加,压缩ቤተ መጻሕፍቲ ባይዱ知有望在未
来发挥更加重要的作用。
02
压缩感知的基本原 理
稀疏表示
稀疏表示
在压缩感知中,信号被表示为稀 疏的形式,即大部分系数为零或 接近零。这使得信号在变换域中
具有高度的可压缩性。
稀疏基
使用稀疏基(如离散余弦变换、离 散小波变换等)对信号进行变换, 使其在变换域内具有稀疏性。
压缩感知应用
稀疏表示使得压缩感知在图像处理、 信号处理、雷达成像等领域具有广 泛的应用前景。
测量矩阵
测量矩阵
在压缩感知中,测量矩阵用于将稀疏 信号从高维空间投影到低维空间,同 时保留足够的信息以恢复原始信号。
优化算法
优化算法(如L1最小化算法、梯度下降算法等)可以求解更为复杂的压 缩感知问题,但计算复杂度较高。
03
压缩感知算法比较
不同压缩感知算法具有各自的优缺点,适用于不同类型和规模的信号处
理问题。在实际应用中,需要根据具体需求选择合适的算法。
03
压缩感知的算法 实 现
匹配追踪算法
总结词

压缩感知介绍PPT

压缩感知介绍PPT

使得信号在该基下的系数呈指数腐败,这样的信号 可以高度压缩。如假设 ,且 若存在常数 ,使得 ,则称其系 数呈指数腐败,q越大,腐败速度越快,信号可压 缩越多。
1.4 Sensing matrices
压缩感知的测量系统可以表示为 其中 是一个 的矩阵,称作感知矩阵,
是测量信号,
恢复出原信号。
是原信号。目的是通过测量信号
1.5 Signal recovery via
minimization
若原信号 是稀疏信号或可压缩信号,则已知观测 信号 ,可以通过求解下列优化问题恢复出 其中 。若观测信号带噪声,则

若原信号不是稀疏的,则上面的优化问题可修改为
其中
由于目标函数 是一个非突函数,因此求解上面 的问题为 。为了简化计算,将上面的优化问 题转换成如下的突优化问题。
(3) 组合算法:这类方法要求信号的采样支持通过分 组测试快速重建,如代表性方法Sparse Bayesian。 该类方法位于前两者之间。
1.7 Multiple measurement vectors
原信号 {xi } , i 1, , l , X ( x1 , , xl )
规范的向量空间即定义了范数的向量空间,常 见的范数有:
1.2.2 Bases and frames
若集合 则称 为 ,使得 线性无关,且可以涨成空间 , 的基,则对任意的 ,存在
若基
满足
则称它为标准正交基。
设 为由空间 的矩阵,若对任意的 则称 为框架。 中的向量集 组成
由于框架是一线性相关 的向量组,所以对任意的 ,其用框架线性表示的方法不唯一。为了 表示方法唯一,引进了dual frame ,满足
观测信号

压缩感知-TV-ART图像重构课件

压缩感知-TV-ART图像重构课件

ART算法的实现步骤
总结词
ART算法的实现步骤包括初始化、模式匹配、权重调 整和分类决策等步骤。
详细描述
在实现ART算法时,首先需要对神经网络进行初始化, 设置初始的权值和阈值等参数。然后,将输入的模式 与神经网络中的模式进行匹配,如果匹配成功则进行 下一步,否则重新调整神经网络的权值。接着,根据 匹配结果和一定的规则对神经网络的权值进行调整, 以使神经网络更好地适应输入模式。最后,根据调整 后的权值和阈值进行分类决策,输出分类结果。
ART
模拟退火算法,一种全局优化 算法,用于求解组合优化问题。
图像重构的应用领域
医学成像
视频处理
通过压缩感知和图像重构技术,可以 从低质量的医学图像中恢复出高分辨 率的图像,用于疾病诊断和治疗。
在视频处理领域,压缩感知和图像重 构技术可用于视频去噪、去模糊和超 分辨率等应用,提高视频质量和观感。
遥感成像
图像修复等领域。
案例三:ART算法在图像处理中的应用
要点一
总结词
要点二
详细描述
用于图像分割和特征提取,提高图像分析和识别精度。
ART(Adaptive Resonance Theory)算法是一种自适应 神经网络算法,它可以用于图像分割和特征提取。通过学 习和识别图像中的特征,ART算法可以将图像划分为不同 的区域,并提取出相应的特征向量。在图像处理中,ART 算法广泛应用于目标检测、人脸识别、手势识别等领域, 可以提高图像分析和识别的精度。
医学成像
1.B 通过压缩感知技术实现高分辨率、高帧率
的医学成像,如MRI、CT等。
地球物理学
1.C 用于地震勘探、电磁成像等领域,提高数据 处理速度和探测精度。
遥感

压缩感知理论介绍共29页文档

压缩感知理论介绍共29页文档

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
压缩感知理论介绍
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思

压缩感知第二章

压缩感知第二章
压缩感知理论及其应用
1
2.1 奇异值分解的定义和性质
奇异值分解:
左奇异矩阵 右奇异矩阵
m n m m V C nn,以及 对于矩阵 A C ,存在酉阵U C , 唯一的非负数列 1 2 min{m, n} 0 使得
A UΣV H
mn Σ diag { , , , } R 其中, 。 1 2 min{m, n}
5
2.1 奇异值分解的定义和性质
简化的奇异值分解:
r 1 r 2 0 。 如果 A 的秩是 r ,则 1 r 为正数,
mr diag{ , ,, } Rrr , U u , , u C 定义 Σ , 1 2 r 1 r
2 2
min (A) inf Ax 2 inf Bx 2 (A B)x 2
x 2 1
min (B) (A B) 22
交换A和B有类似结论:
min (B) min (A) (A B) 22
min (A) min (B) (A B) 22

j 1 k j 1
ij
( A B) i j ( A) i j (B)
j 1 j 1
A 和 B 为共轭对称矩阵。
1 i1 ik n

j
( X) j ( Y ) j ( X Y )
j 1
k
1 ( X) l ( X) 0 1 ( Y) l ( Y) 0
定义:
包含集合T R N 的最小凸锥称为锥壳,记作 cone(T )。
n cone(T ) ti xi : n 1, t1 ,, tn 0, x1 , x 2 ,, x n T i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lecture 6: Stable
1
Recovery
Comments on x∗ − x
2
¯ ˜ ≤ C · + C · k −1/2 x − xk
1.
1. Suppose
= 0; focus on the last term;
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x
2
¯ ˜ ≤ C · + C · k −1/2 x −stants C and C . Proof sketch: Similar to the previous one, except x is no longer k-sparse and eS 1 > eS 1 is no longer valid. ¯
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x
2
¯ ˜ ≤ C · + C · k −1/2 x − xk
1
¯ ˜ for some constants C and C . Proof sketch: Similar to the previous one, except x is no longer k-sparse and eS 1 > eS 1 is no longer valid. Instead, we get ¯ e S 1 + 2 x − xk 1 > e S 1 . ¯
Lecture 6: Stable
Consider A sparse x
1
Recovery
Noisy CS measurements b ← Ax + z, where z Apply the BPDN model: min x
1
2

s.t. Ax − b
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x 2 ≤ C · for some constant C . Proof sketch: Let e = x ∗ − x. S = {i : largest 4k |x|(i) }. One can show e
Consider A sparse x
1
Recovery
Noisy CS measurements b ← Ax + z, where z Apply the BPDN model: min x
1
2

s.t. Ax − b
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x 2 ≤ C · for some constant C .
Lecture 6: Stable
Consider A sparse x
1
Recovery
Noisy CS measurements b ← Ax + z, where z Apply the BPDN model: min x
1
2

s.t. Ax − b
2
≤ .
Lecture 6: Stable
2
≤ C1 eS
2
≤ C2 Ae
2
≤C· .
Lecture 6: Stable
Consider A sparse x
1
Recovery
Noisy CS measurements b ← Ax + z, where z Apply the BPDN model: min x
1
2

s.t. Ax − b
2
≤ C1 eS
2
≤ C2 Ae
2
≤C· .
1st inequality essentially from eS 1 > eS 1 , ¯ 2nd inequality essentially from the RIP; 3rd inequality essentially from the constraint.
Lecture 6: Stable
Consider
1
Recovery
a nearly sparse x = xk + w , xk is the vector x with all but the largest (in magnitude) k entries set to 0, CS measurements b ← Ax + z, where z
Lecture 6: Stable
1
Recovery, Comments
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x 2 ≤ C · for some constant C . Comments: The result is universal and more general than exact recovery; The error bound is order-optimal: knowing supp(x) will give C · at best;
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x
2
¯ ˜ ≤ C · + C · k −1/2 x − xk
1
¯ ˜ for some constants C and C .
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x 2 ≤ C · for some constant C . Proof sketch: Let e = x ∗ − x. S = {i : largest 4k |x|(i) }. One can show e
Lecture 6: Robust Compressive Sensing
In order to be practically powerful, CS must deal with Nearly sparse signals Measurement noise or both Goal: To obtain accurate reconstructions from highly undersampled measurements, or in short, stable recovery.
Lecture 6: Stable
1
Recovery, Comments
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x 2 ≤ C · for some constant C . Comments: The result is universal and more general than exact recovery; The error bound is order-optimal: knowing supp(x) will give C · at best; x ∗ is almost as good as if one knows where the largest k entries are and directly measure them.
2
≤ .
Theorem
Assume that δ3k + 3δ4k < 2. The solution of the BPDN model returns a solution x ∗ satisfying x∗ − x
2
¯ ˜ ≤ C · + C · k −1/2 x − xk
1
¯ ˜ for some constants C and C . Proof sketch: Similar to the previous one, except x is no longer k-sparse and eS 1 > eS 1 is no longer valid. Instead, we get ¯ eS 1 + 2 x − xk 1 > eS 1 . Then, ¯ e 2 ≤ C1 e4k 2 + C k −1/2 x − xk 1 , ......
Lecture 6: Stable
Consider
1
Recovery
a nearly sparse x = xk + w , xk is the vector x with all but the largest (in magnitude) k entries set to 0, CS measurements b ← Ax + z, where z
相关文档
最新文档