人教版数学九年级上册期末考试试题及答案
人教版九年级数学上册期末测试题(附参考答案)
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。
人教版九年级数学上册期末考试试卷(附带有答案)
人教版九年级数学上册期末考试试卷(附带有答案)一、单选题1. 下列二次函数中,其图象的顶点坐标是(2,-1)的是( )A .()221y x =-+ B .()221y x =++ C .()221y x =--D .()221y x =+-2.下列事件属于必然事件的是( )A .明天我市最高气温为56℃B .下雨后有彩虹C .在1个标准大气压下,水加热到100℃沸腾D .中秋节晚上能看到月亮3.下列图形中,是中心对称图形的是( )A .B .C .D .4.不透明袋子中装有5个红球,3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,“摸出红球”的概率是( ) A .13B .15C .35D .585.如图,在O 中,弦AC 、BD 相交于点E ,23A ∠=︒和52BEC ∠=︒,则C ∠=( )A .23︒B .26︒C .29︒D .30︒6.如图,把ABC 绕点C 顺时针旋转某个角度a 得到△A ′B ′C ,∠A =30°,∠1=50°,则旋转角a 等于( )A .110︒B .70︒C .40︒D .20︒7.已知抛物线y =x 2+bx 的对称轴为直线x =3,则关于x 的不等式x 2+bx <﹣8的取值范围是( )A .1<x <5B .2<x <4C .0<x <6D .﹣1<x <78.如图,AB 是℃O 的直径,弦CD℃AB 于点E ,℃CDB=30°,℃O 的半径为3cm ,则弦CD 的长为( )A .32cmB .3cmC .3cmD .9cm9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M 、P 、H三点的圆弧与AH 交于R ,则图中阴影部分面积( )A .54π﹣52B .52π﹣5 C .2π﹣5 D .3π﹣210.如图,抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)关于直线1x =对称,与x 轴的其中一个交点坐标为(10)-,,下列结论中:①<0abc ;②关于x 的一元二次方程20ax bx c ++=的解是1213x x =-=,;③80a c +<;④2am bm a b +<+,其中正确的个数是( )A .1B .2C .3D .4二、填空题11.若点A (m ,5)与点B (-4,n )关于原点成中心对称,则m +n = . 12.已知方程 2510x x ++= 的两个实数根分别为 1x 和2x ,则1211x x += . 13.二次函数22y x =的图象经过点()11A y -,和()22B y ,,则1y 2y .(填“>”“<”或“=”)14.如图,正六边形ABCDEF 的边长是6+43,点O 1,O 2分别是℃ABF ,℃CDE 的内心,则O 1O 2= .15.如图,在平面直角坐标系中抛物线y=x 2-3x+2与x 轴交于A 、B 两点,与y 轴交于点C ,D 是对称轴右侧抛物线上一点,且tan℃DCB=3,则点D 的坐标为 。
人教版数学九年级上册期末考试数学试卷含答案解析
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
人教版九年级上学期期末考试数学试卷及答案解析(共4套)
人教版九年级上学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.2.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=03.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根4.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cm B.8cm C.10cm D.12cm5.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1 C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣2 6.学校要组织足球比赛.赛制为单循环形式如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径9.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)11.已知⊙O的半径为2,则其内接正三角形的面积为.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有件是次品.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= .15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.16.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是.17.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.18.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是.三、解答题(共8小题,满分66分)19.(8分)解方程:(1)x(x﹣2)+x﹣2=0(2)2x2﹣7x+6=0.20.(5分)已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.21.(8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB 的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A的坐标为;2(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.22.(6分)张师傅2014年1月份开了一家商店.2014年9月份开始盈利,10月份盈利2400元,12月份的盈利达到3456元,且从10月到12月,每月盈利的平均增长率都相同.(1)求2014年10月到12月,每月盈利的平均增长率;(2)按照这个平均增长率,预计2015年1月份这家商店的盈利将达到多少元?23.(8分)在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)24.(9分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?25.(10分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3(1)求抛物线的解析式并配成顶点式(要求写出过程);(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.2.方程x2=x的解为()A.x=﹣1或x=0 B.x=0 C.x=1 D.x=1或x=0【考点】A8:解一元二次方程﹣因式分解法.【分析】先把方程变形为一般式,然后利用因式分解法解方程.【解答】解:x2﹣x=0,x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1.故选D.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.判断一元二次方程x2﹣2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算出△=(﹣2)2﹣4×1×1=0,然后根据△的意义进行判断方程根的情况.【解答】解:∵△=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5cm B.8cm C.10cm D.12cm【考点】M3:垂径定理的应用;KQ:勾股定理.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2,即(r﹣2)2+42=r2,解得:r=5.∴该光盘的直径是10cm.故选:C.【点评】本题考查的是垂径定理的应用勾股定理;根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A.y=(x﹣3)2+2 B.y=(x﹣3)2﹣1 C.y=(x+3)2﹣1 D.y=(x﹣3)2﹣2 【考点】H6:二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2+1向左平移3个单位所得直线解析式为:y=(x+3)2+1;再向下平移2个单位为:y=(x+3)2+1﹣2.即:y=(x+3)2﹣1.故选:C.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.学校要组织足球比赛.赛制为单循环形式如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°【考点】MC:切线的性质;K7:三角形内角和定理;K8:三角形的外角性质;KH:等腰三角形的性质;M5:圆周角定理.【分析】连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选B.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.8.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、有两边及一角对应相等的两三角形全等是随机事件,故A错误;B、若a2=b2则有a=b是随机事件,故B错误;C、方程x2﹣x+1=0有两个不等实根是不可能事件,故C错误;D、圆的切线垂直于过切点的半径是必然事件,故D正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个【考点】MB:直线与圆的位置关系.【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【解答】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选:D.【点评】本题主要考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当﹣1<x<5时,y<0.其中正确的有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a>0,b>0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=﹣=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=2,∴﹣=2,∴b=﹣4a>0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴﹣=2,∴b=﹣4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(﹣1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当﹣1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共8小题,每小题3分,满分24分)11.已知⊙O的半径为2,则其内接正三角形的面积为3.【考点】MM:正多边形和圆.【分析】连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,由含30°角的直角三角形的性质得出OD,由勾股定理求出BD,得出BC,根据△ABC 计算即可.的面积=3S△OBC【解答】解:如图所示,连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠OBC=30°,∴OD=OB=1,∴BD==,∴BC=2BD=2,∴△ABC的面积=3S=3××BC×OD=3××2×1=3.△OBC【点评】本题考查了等边三角形的性质、垂径定理、勾股定理、三角形面积的计算;熟练掌握正三角形和圆的关系,并能进行推理计算是解决问题的关键.12.某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有30 件是次品.【考点】X3:概率的意义.【分析】利用总数×出现次品的概率=次品的数量,进而得出答案.【解答】解:由题意可得:次品数量=600×0.05=30.故答案为:30.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.13.若n(n≠0)是关于x的方程x2+mx+3n=0的一个根,则m+n的值是=3 .【考点】A3:一元二次方程的解.【分析】根据一元二次方程的解的定义得到n2+mn+3n=0,然后两边除以n即可得到m+n的值.【解答】解:把x=n代入x2+mx+3n=0得n2+mn+3n=0,∵n≠0,∴n+m+3=0,即m+n=﹣3.故答案是:﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b= ﹣1 .【考点】R6:关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),则a=2,b=﹣3,a+b=﹣1,故答案为:﹣1.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是60π.【考点】MP:圆锥的计算.【分析】圆锥的侧面积是一个扇形,根据扇形公式计算即可.【解答】解:底面圆的直径为12,则半径为6,∵圆锥的高为8,根据勾股定理可知:圆锥的母线长为10.根据周长公式可知:圆锥的底面周长=12π,∴扇形面积=10×12π÷2=60π.故答案为60π.【点评】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.16.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是10或8 .【考点】MA:三角形的外接圆与外心.【分析】有两种情况:(1)当两直角边是6和8时,求出AB长即可得到答案;(2)当一个直角边是6,斜边是8时,即可得出答案.【解答】解:此题有两种情况:(1)当两直角边是6和8时,由勾股定理得:AB===10,此时外接圆的半径是5,直径是10;(2)当一个直角边是6,斜边是8时,此时外接圆的半径是4,直径是8.故答案为:10或8.【点评】本题主要考查了三角形的外接圆和外心,勾股定理等知识点,解此题的关键是知道直角三角形的外接圆的半径等于斜边的长,求出斜边长即可,用的数学思想是分类讨论思想.17.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是x<﹣1或x>3 .【考点】HC:二次函数与不等式(组).【分析】由抛物线与x轴的一个交点(3,0)和对称轴x=1可以确定另一交点坐标为(﹣1,0),又y=ax2+bx+c>0时,图象在x轴上方,由此可以求出x的取值范围.【解答】解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故答案为:x<﹣1或x>3.【点评】解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是第45行,第10列.【考点】37:规律型:数字的变化类.【分析】根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2016所在的位置.【解答】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2016在第45行,向右依次减小,故201所在的位置是第45行,第10列.故答案为:第45行,第10列.【点评】此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(共8小题,满分66分)19.解方程:(1)x(x﹣2)+x﹣2=0(2)2x2﹣7x+6=0.【考点】A8:解一元二次方程﹣因式分解法.【分析】(1)通过提取公因式(x﹣2)对等式的左边进行因式分解;(2)利用十字相乘法对等式的左边进行因式分解.【解答】解:(1)由原方程,得(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得x1=﹣1,x2=2;(2)2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x 1=,x2=2.【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.20.已知点(3,0)在抛物线y=﹣3x2+(k+3)x﹣k上,求此抛物线的对称轴.【考点】H5:二次函数图象上点的坐标特征.【分析】把(3,0)代入y=﹣3x2+(k+3)x﹣k,求得k的值,然后根据二次函数的对称轴公式列式计算即可得解.【解答】解:把(3,0)代入y=﹣3x2+(k+3)x﹣k得,0=﹣27+(k+3)×3﹣k,解得,k=9,∴抛物线为y=﹣3x2+12x﹣9,∴对称轴为直线x=﹣=﹣=2,即直线x=2.【点评】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,熟记对称轴公式是解题的关键.21.如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为(1,0);(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为(﹣2,3);(3)在(2)中的旋转过程中,线段OA扫过的图形的面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;Q3:坐标与图形变化﹣平移.【分析】(1)根据平移的性质,上下平移在在对应点的坐标上,纵坐标上上加下减就可以求出结论;(2)过点O作OA的垂线,在上面取一点A2使OA2=OA,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,就可以相应的结论;(3)根据条件就是求扇形A2OA的面积即可.【解答】解:(1)由题意,得B1(1,3﹣3),∴B1(1,0).故答案为:(1,0);(2)如图,①,过点O作OA的垂线,在上面取一点A2使OA2=OA,②,同样的方法求出点B2,顺次连接A2、B2、O就得出△A2OB2,∴△A2OB2是所求作的图形.由作图得A2(﹣2,3).故答案为:(﹣2,3);(3)由勾股定理,得OA=,∴线段OA扫过的图形的面积为: =.故答案为:.【点评】本题考查了旋转作图的运用,勾股定理的运用,扇形的面积公式的运用,平移的运用,解答时根据图形变化的性质求解是关键.22.张师傅2014年1月份开了一家商店.2014年9月份开始盈利,10月份盈利2400元,12月份的盈利达到3456元,且从10月到12月,每月盈利的平均增长率都相同.(1)求2014年10月到12月,每月盈利的平均增长率;(2)按照这个平均增长率,预计2015年1月份这家商店的盈利将达到多少元?【考点】AD:一元二次方程的应用.【分析】(1)设该商店的月平均增长率为x,根据等量关系:10月份盈利额×(1+增长率)2=12月份的盈利额列出方程求解即可;(2)1月份盈利=12月份盈利×增长率列式计算即可.【解答】解:(1)设2014年10月到12月,每月盈利的平均增长率为x,由题意可得:2400(1+x)2=3456解得:x1=0.2=20%,x2=﹣2.2(舍去)答:2014年10月到12月,每月盈利的平均增长率为20%.(2)由题意:3456+3456×20%=4147.2(元)答:按照这个平均增长率,预计2015年1月份这家商店的盈利将达到4147.2元.【点评】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用﹣.23.在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.(1)随机从袋中取出一个球,求取出的球是黑球的概率;(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)【考点】X6:列表法与树状图法.【分析】(1)根据概率的意义解答即可;(2)根据袋中还剩5只球,然后根据概率的意义解答即可;(3)列出图表,然后根据概率公式列式进行计算即可得解.【解答】解:(1)∵一共有6只球,黑球1只,∴取出的球是黑球的概率为;(2)∵取出1只红球,∴袋中还有5只球,还有1只黑球,∴取出的球还是黑球的概率是;(3)根据题意列表如下:白1 白2 白3 红1 红2 黑白1 白1白1 白1白2 白1白3 白1红1 白1红2 白1黑白2 白2白1 白2白2 白2白3 白2红1 白2红2 白2黑白3 白3白1 白3白2 白3白3 白3红1 白3红2 白3黑红1 红1白1 红1白2 红1白3 红1红1 红1红2 红1黑红2 红2白1 红2白2 红2白3 红2红1 红2红2 红2黑黑黑白1 黑白2 黑白3 黑红1 黑红2 黑黑一共有36种情况,两次取出的球都是白球的情况数有9种,所以,P(两次取出的球都是白球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【解答】解:(1)设每千克应涨价x元,由题意列方程得:(5+x)(200﹣)=1500解得:x=5或x=10,答:为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x元时总利润为y,则y=(5+x)(200﹣)=﹣10x2+150x+1000=﹣10(x2﹣15x)+1000=﹣10(x﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点评】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.25.(10分)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【考点】MD:切线的判定.【分析】(1)连结OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=4,然后在Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=8.【解答】(1)证明:连结OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC=DC=4,在Rt△ABC中,∠B=30°,∴AB=2AC=8.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交与点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3(1)求抛物线的解析式并配成顶点式(要求写出过程);(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【考点】HF:二次函数综合题.【分析】(1)由矩形的性质可求得C、E的坐标,代入抛物线解析式可求得其解析式,再利用配方法化为顶点式即可;(2)由(1)可求得D点坐标,令y=0可求得A、B的坐标,则可求得AB的长,利用三角形的面积可求得△ABD的面积;(3)由旋转的性质可求得G点的坐标,再代入抛物线解析式进行验证即可.【解答】解:(1)∵四边形OCEF为矩形,∴OC=EF=3,∴C(0,3),∵OF=2,∴E(2,3),代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4;(2)由(1)可知D(1,4),在y=﹣x2+2x+3中,令y=0可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,=×4×4=8;∴S△ABD(3)点G不在抛物线上,理由如下:将△AOC绕点C逆时针旋转90°,点A对应点为点G,设O点对应点为H,如图,则CH=OC=3,HG=AO=1,∴G(3,2),。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形,可以看作中心对称图形的是()A .B .C .D .2.已知点P (-3,2)是反比例函数图象上的一点,则该反比例函数的表达式为()A .3y x=B .5y x=-C .6y x=D .6y x=-3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .12B .13C .310D .154.抛物线y =(x -2)2+1的顶点坐标是()A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)5.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于()A .30°B .40°C .50°D .60°6.在平面直角坐标系xOy 中,A 为双曲线6y x=上一点,点B 的坐标为(4,0).若 AOB 的面积为6,则点A 的坐标为()A .(﹣4,32)B .(4,32-)C .(﹣2,3)或(2,﹣3)D .(﹣3,2)或(3,﹣2)7.如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若4OP =,30P ∠=︒,则弦AB 的长为().A 5B .23C .25D .28.已知二次函数()20y ax bx c a =++≠的图像如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b >;⑤()()1a b m am b m +>+≠,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,二次函数y =ax 2+bx+c 与反比例函数y =kx的图象相交于点A(﹣1,y 1)、B(1,y 2)、C(3,y 3)三个点,则不等式ax 2+bx+c >kx的解集是()A .﹣1<x <0或1<x <3B .x <﹣1或1<x <3C .﹣1<x <0或x >3D .﹣1<x <0或0<x <110.如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数ky x=中k 的值是()A .﹣2B .﹣4C .﹣3D .﹣1二、填空题11.若点(),1a 与()2b -,关于原点对称,则b a =_______.12.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.13.正比例函数11y k x =和反比例函数22y k x=交于A 、B 两点.若A 点的坐标为(1,2)则B 点的坐标为_______________.14.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数________.15.如图, ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是___.16.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.17.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.三、解答题18.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?19.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC(1)求反比例函数的解析式;(2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.20.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x元.(1)商店若想获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(2)用含x的代数式表示商店获得的利润W元,并计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?22.如图,一次函数y=﹣x+4的图象与反比例kyx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.23.如图,抛物线L:y=12x2﹣54x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D ,求PD+35AD 的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线L :y =12x 2﹣54x ﹣3向右平移得到抛物线L′,直线AB 与抛物线L′交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L′的解析式.24.如图,在Rt ABC 中,∠ABC =90°,P 是斜边AC 上一个动点,以BP 为直径作⊙O 交BC 于点D ,与AC 的另一个交点E ,连接DE 、DP .点F 为线段CP 上一点,连接DF ,∠FDP =∠DEP .(1)求证:DF 是⊙O 的切线;(2)当 DP EP =时,求证AB =AP ;(3)当AB =15,BC =20时,是否存在点P ,使得 BDE 是以BD 为腰的等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由.25.解方程:2320x x --=.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.参考答案1.B 2.D 3.A 4.A 5.C 6.C 7.C 8.A 9.A 10.A 11.1212.22()1y x =-+13.(1,2)--14.30°或150°15.16.120°17.y =2x ﹣818.(1)见解析;(2)球回到乙脚下的概率大【详解】(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;传到乙脚下的概率=38,所以球回到乙脚下的概率大.【点睛】考点:列表法与树状图法.19.(1)8y x=;(2)(2)()1,8P 或()1,8P --.【分析】(1).首先求出点A 的坐标,然后将点A 的坐标代入反比例函数解析式求出解析式;(2).首先求出△ABC 的面积,然后根据面积相等求出点P 的坐标.【详解】解(1).将x=2代入y=2x 中,得y=4.∴点A 坐标为(2,4)∵点A 在反比例函数y=kx的图象上,∴k=2×4=8∴反比例函数的解析式为y=8x (2).()2,4,A B 关于原点对称,()2,4,B ∴--()()114228,22ABC A B S AC x x ∴=-=⨯⨯+= 设8,,P x x ⎛⎫⎪⎝⎭188,2OPC P S OC y x∴=== 1,x ∴=±经检验:1x =±是原方程的解且符合题意,∴P(1,8)或P(-1,-8)20.(1)证明详见解析;(2)163.【分析】(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.【详解】(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=13-5=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.【点睛】题目主要考查切线的判定、圆周角定理、角平分线的性质定理,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.21.(1)每个定价为70元,应进货200个;(2)W =﹣10(x ﹣15)2+6250,每个定价为65元时获得最大利润,可获得的最大利润是6250元【分析】(1)总利润=每个的利润×销售量,销售量为(400﹣10x )个,列方程求解,根据题意取舍;(2)利用函数的性质求最值.【详解】解:(1)根据题意得:(50﹣40+x )(400﹣10x )=6000,解得:x 1=10,x 2=20,当x =10时,400﹣10x =400﹣100=300,当x =20时,400﹣10x =400﹣200=200,要使进货量较少,则每个定价为50+20=70元,应进货200个.答:每个定价为70元,应进货200个.(2)根据题意得:W =(50﹣40+x )(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250,当x =15时,y 有最大值为6250.所以每个定价为65元时获得最大利润,可获得的最大利润是6250元.【点睛】一元二次方程和二次函数在实际生活中的应用是本题的考点,根据每个小家电利润×销售的个数=总利润列出方程是解题的关键.22.(1)3y x=,B(3,1);(2)①P(52,0);②M(4,0)【分析】(1)利用待定系数法即可解决问题;(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小;(3)直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,求得x 的值,即可求得M 的坐标.【详解】解:(1)把点A (1,a )代入一次函数y =﹣x+4,得a =3,∴A (1,3),把点A (1,3)代入反比例y =kx,得k =3,∴反比例函数的表达式y =3x,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,故B (3,1).(2)①作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小∴D (3,﹣1)设直线AD 的解析式为y =mx+n ,则331m n m n +=⎧⎨+=-⎩,解得25m n =-⎧⎨=⎩,∴直线AD 的解析式为y =﹣2x+5,令y =0,则x =52,∴P 点坐标为(52,0);②直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,则x =4,∴M 点的坐标为(4,0).【点睛】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题.23.(1)AB 解析式为y=34x-3,抛物线顶点坐标为125)2(413-,;(2)点P 的坐标为125)2(413-,,PD+35AD 的最大值为12132;(3)21133242y x x =-+.【分析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式,通过配方法可求顶点坐标;(2)CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,即可求解;(3)设点M (x 1,y 1),点N (x 2,y 2),则x 1+x 2=2(m+34),而点A 是MN 的中点,故x 1+x 2=8,进而求解.【详解】解:(1)∵抛物线L :y =12x 2﹣54x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B ,令0y =,则21530,24x x --=解得:123,4,2x x =-=令0,x =则3,y =-∴点A (4,0),点B (0,-3),设直线AB 解析式为:y=kx-3,∴0=4k-3,∴k=34,∴直线AB 解析式为:y=34x-3①,∵y =12x 2﹣54x ﹣3=2152412132x --)(,∴抛物线顶点坐标为125)2(413-;(2)∵点A (4,0),点B (0,-3),∴OA=4,OB=3,∴5==,则sin ∠BAO=35OBAB =,则CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,当点P 为抛物线顶点时,PC 最大,故点P 的坐标为125)2(413-,则PD+35AD 的最大值=PC 为最大,最大值为12132;(3)设平移后的抛物线L'解析式为21121()232y x m =--②,联立①②并整理得:223252()0416x m x m -++-=,设点M (x 1,y 1),点N (x 2,y 2),∵直线AB 与抛物线L'交于M ,N 两点,∴x 1,x 2是方程223252(0416x m x m -++-=的两根,∴x 1+x 2=2(3)4m +,∵点A 是MN 的中点,∴x 1+x 2=8,∴32()84m +=,∴m=134,∴平移后的抛物线L'解析式为221131211133()2432242y x x =--=-+.24.(1)见解析(2)见解析(3)存在,252或10【分析】(1)利用圆周角定理证明∠FDP=∠DBP ,∠DBP+∠OPD=90°,再证明OD ⊥DF ,即可证明结论;(2)先证明∠CBP=∠EBP ,易证∠C=∠ABE ,由∠APB=∠CBP+∠C ,∠ABP=∠EBP+∠ABE ,得出∠APB=∠ABP ,即可得出结论;(3)先证明△DCP ∽△BCA ,利用相似三角形的性质得到CP =54CD ,再分当BD =BE ,BD =ED 两种情况讨论,即可求解.(1)证明:连接OD ,∵ DPDP =,∴∠DBP =∠DEP ,∵∠FDP =∠DEP ,∴∠FDP=∠DBP ,∵BP 是⊙O 的直径,∴∠BDP=90°,∴∠DBP+∠OPD=90°,∵OD=OP ,∴∠OPD=∠ODP ,∴∠FDP+∠ODP=90°,∴OD ⊥DF ,∴DF是⊙O的切线;(2)证明:连接BE,如图所示:∵DP EP=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(3)解:由AB=15,BC=20,由勾股定理得:AC25,∵12AB•BC=12AC•BE,即12×15×20=12×25×BE,∴BE=12,∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴CPAC=CDBC,∴CP=AC CDBC⋅=2520CD=54CD,△BDE是等腰三角形,分两种情况:①当BD =BE 时,BD =BE =12,∴CD =BC ﹣BD =20﹣12=8,∴CP =54CD =54×8=10;②当BD =ED 时,可知点D 是Rt △CBE 斜边的中线,∴CD =12BC =10,∴CP =54CD =54×10=252;综上所述,△BDE 是等腰三角形,符合条件的CP 的长为252或10.25.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.26.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S = 120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD ∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AOD OAD S S ππ⨯-== 扇形.。
人教版九年级上册数学期末考试试题含答案
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
人教版九年级数学上册期末测试题(附参考答案)
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。
2024年全新九年级数学上册期末试卷及答案(人教版)
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
人教版九年级上册数学期末考试试卷含答案详解
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上3.若反比例函数y=﹣1x的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣13D.134.如图,直线y=kx与双曲线y=﹣2x交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6B.﹣12C.6D.125.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1B.0C.1D.-19.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对10.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A.40°B.35°C.30°D.25°11.如图,一个大正方形中有2个小正方形,如果它们的面积分别是S1,S2,则()A.S2>S1B.S1=S2C.S1>S2D.S1≥S212.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题13.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;14.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.15.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为_cm.16.关于x的一元二次方程2210ax x++=有实数解,那么实数a的取值范围是__________. 17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为____________.18.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.三、解答题19.解方程:x2+3x﹣2=0.20.如图为桥洞的形状,其正视图是由 CD和矩形ABCD构成.O点为 CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求 CD所在⊙O的半径DO.21.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.22.如图,抛物线2=-++与x轴交于A、B两点(点A在点B的左侧),点A的y x bx c坐标为()-,,与y轴交于点()10C,,作直线BC.动点P在x轴上运动,过点P作03PM x⊥轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.23.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.25.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.26.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).27.已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN;(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;:S四边形ABQP=1:4.若存在,求出t的值;若不存在,(3)是否存在某一时刻t,使S△QMC请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ.若存在,求出t的值;若不存在,请说明理由.参考答案1.D【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.2.B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.3.C【解析】试题分析:把点A代入解析式可知:m=﹣1 3.故选C.考点:反比例函数图象上点的坐标特征.4.B【解析】【分析】(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.【详解】(解法一)将y=kx代入到y=-2x中得:kx=-2x,即kx2=-2,解得:x1,x2∴y1=kx1y2=kx2,∴2x1y2-8x2y1=2×(×()=-12.(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2,∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1.∵x1y1=-2,∴2x1y2-8x2y1=6x1y1=-12.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及一元二次方程的解,解题的关键是:(解法一)求出点A、B的坐标;(解法二)根据对称性结合反比例函数图象上点的坐标特征求值.5.B【详解】试题分析:根据圆周角定理的推论可得:∠ACB=∠AOB=90°,故选B.考点:圆周角定理的推论6.A【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【详解】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴===,60cmOM∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.7.A【解析】试题解析:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.8.D【分析】根据二次函数图象上点的坐标特征得到-m2+1=0,解得m1=1,m2=-1,然后根据二次函数的定义确定m的值.【详解】把(0,0)代入y=(m-1)x2-mx-m2+1得-m2+1=0,解得m1=1,m2=-1,而m-1≠0,所以m=-1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.9.C【详解】根据二次函数的定义,易得S是R的二次函数,故选C.10.B【解析】∵PC与⊙O相切,∴∠OCP=90°.∵∠P=20°,∴∠POC=90°-20°=70°,∴∠A=70°÷2=35°.故选B.11.C【解析】【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【详解】如图,设大正方形的边长为x ,根据等腰直角三角形的性质知,BC ,,∴AC=2CD ,CD=3x ,∴S 2x ,S 2的面积为29x 2,S 1的边长为2x ,S 1的面积为14x 2,∴S 1>S 2.故选:C .【点睛】本题考查了正方形的性质和等腰直角三角形的性质,掌握勾股定理及正方形的性质是解题的关键.12.B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a =1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.3x 2-10x-4=0.【解析】先把一元二次方程3x (x ﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.14.4 9【详解】试题分析:观察这个图形可知:黑色区域(4块)的面积占总面积(9块)的4 9,则它最终停留在黑色方砖上的概率是4 9;故答案为4 9.考点:几何概率.15.4【解析】【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【详解】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴,∴侧面积S侧22,解得r=4,,∴圆锥的高h=4cm,故答案为:4.【点睛】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式.16.10a a≤≠且【解析】∵关于x的一元二次方程ax2+2x+1=0有实数根,∴△=4−4a≥0且a≠0,∴a≤1且a≠0.故答案是:10a a且≤≠.17.1:4.【详解】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.考点:位似变换.18..【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴,∴点P到边AB距离的最小值是.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.19.∴x 1=2-,x 2=32-【解析】首先找出公式中的a ,b ,c 的值,再代入求根公式求解即可.本题解析:∵a=1,b=3,c=﹣2,∴△=b 2﹣4ac=32﹣4×1×(﹣2)=17,∴x=32-±,∴x 1x 220.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴CD 所在⊙O 的半径DO 为5米.21.(1)图形见解析;(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线长是52π.【详解】试题分析:(1)题目已给出了旋转中心、旋转角度和旋转方向,可连接DA 、DB 、DC,然后根据要求旋转得到对应的顶点A 1、B 1、C 1,再顺次连接三点即可.(2)由(1)得到的图形,可根据A 1、C 1的位置来确定它们的坐标.(3)点A 旋转到A 1所经过的路线长是以D 为圆心、90°为圆心角、DA 为半径的弧长,先求出DA 的长,然后根据弧长公式计算即可.试题解析:(1)(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线是弧AA 1,∵AD=5,∠ADA 1=90°,∴弧AA 1的长=;∴点A 旋转到A 1所经过的路线长是.考点:1.旋转变换,2.弧长的计算.22.(1)y=﹣x 2+2x+3,y=﹣x+3;(2)当m=32时,MN 有最大值,MN 的最大值为94;(3)32+或32.【解析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值本题解析:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得10{3b c c --+==,解得2{3b c ==,∴抛物线解析式为y=﹣x 2+2x+3,令y=0可得,﹣x 2+2x+3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y=kx+s ,把B 、C 坐标代入可得30{3k s s +==,解得1{3k s =-=,∴直线BC 解析式为y=﹣x+3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m+3),N (m ,-m+3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m=﹣(m ﹣32)2+94,∴当m=32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC=MN ,当点P 在线段OB 上时,则有MN=﹣m 2+3m ,∴﹣m 2+3m=3,此方程无实数根,当点P 不在线段OB 上时,则有MN=﹣m+3﹣(﹣m 2+2m+3)=m 2﹣3m ,∴m 2﹣3m=3,解得或,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32或32.23.(1)12;(2)公平,理由见解析.【解析】【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【详解】(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,∴P (甲胜)=612=12(2)公平.∵P (乙胜)=612=12,∴P (甲胜)=P (乙胜),∴这个游戏规则对甲、乙双方公平【点睛】本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)a=4,m=﹣4;(2)双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).【解析】试题分析:(1)将A 坐标代入一次函数解析式中即可求得a 的值,将A (﹣1,4)坐标代入反比例解析式中即可求得m 的值;(2)解方程组=−2+2=−4,即可解答.试题解析:(1)∵点A 的坐标是(﹣1,a ),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数=,∴m=﹣4.(2)解方程组:=−2+2=−4,解得:=−1=4或=2=−2,∴该双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)12;(3【分析】(1)要证明△ABD ∽△AEB ,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB :BC=4:3,可设AB=4,BC=3,求出AC 的值,再利用(1)中结论可得2AB AD AE =⋅,进而求出AE 的值,所以tanE=ED AB BE AE=;(3)设AB=4x ,BC=3x ,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【详解】(1)证明:∵∠ABC=90°,∴90ABD DBC ∠=︒-∠,由题意知:DE 是直径,∴∠DBE=90°,∴90E BDE ∠=︒-∠,∵BC=CD ,∴∠DBC=∠BDE ,∴∠ABD=∠E ,∵∠A=∠A ,∴△ABD ∽△AEB ;(2)解:∵AB :BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC -CD=5-3=2,由(1)可知:△ABD ∽△AEB ,∴ABADBDAE AB BE ==,∴2AB AD AE =⋅,∴242AE =,∴AE=8,在Rt △DBE 中,41tan ==82BD ABE BE AE ==;(3)过点F 作FM ⊥AE 于点M ,∵:4:3AB BC =,∴设AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC ,∴BFABEF AE =,∴4182BF xEF x ==,∵1tan 2E =,∴cos E =5,sin E =∴BD BE =∴5BE x =,∴23EF =,5BE =,∴sin 5MFE EF ==,∴85MF x =,∵1tan 2E =,∴1625ME MF x ==,∴245AM AE ME x =-=,∵222AF AM MF =+,∴22248455x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,∴8x =,∴⊙C的半径为:3x =【点睛】本题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解题的关键是熟练掌握有关性质.26.(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE ≌△ACD ;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC ﹣∠EAC=60°﹣∠EAC ,∠DAC=∠DAE ﹣∠EAC=60°﹣∠EAC ,∴∠BAE=∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE=∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC ,∠ABE=∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM=AN ,∠MAB=∠NAC .∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.27.(1)t=209;(2)y=-236105t t +;(3)1:4;(4)t=32【分析】(1)当PQ ∥MN 时,可得:CP CQ PA QB =,从而得到:45t t t t -=-,解方程求出t 的值;(2)作PD BC ⊥于点D ,则可以得到CPD CBA ∽,根据相似三角形的性质可以求出3(4)5PD t =-,CQ t =,利用三角形的面积公式求出S 与t 的关系式;(3)根据S △QMC :1:4ABQP S =四边形可以得到关于t 的方程,解方程求出t 的值;(4)作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,利用相似三角形的性质可以得到:2123()55t -16999()()5555t t =-+,解方程求出t 的值.【详解】解:(1)如图所示,若PQ ∥MN ,则有CP CQ PA QB =,∵CQ PA t ==,4CP t =-,5QB t =-,∴45t t t t-=-,即22209t t t -+=,解得209t =(2)如图所示,作PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCB BA =,∵3BA =,4CP t =-,5BC =,∴453tPD-=,∴3(4)5PD t =-又∵CQ t =,∴△QMC 的面积为:()21336425105y t t t t=⨯-=-+(3)存在2t =时,使得S △QMC :1:4ABQP S =四边形理由如下:∵PM ∥BC ∴236105PQC QMC S S t t∆∆==-+∵S △QMC :1:4ABQP S =四边形,∴S △PQC :S △ABC =1:5,∵3462ABC S ⨯== .∴236:61:5105t t ⎛⎫-+= ⎪⎝⎭∴2440t t -+=∴122t t ==∴存在当2t =时,S △QMC :1:4ABQP S =四边形;(4)存在某一时刻32t =,使PQ MQ⊥理由如下:如图所示,作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCDCB BA CA==∵3BA =,4CP t =-,5BC =,4CA =,∴4534tPD CD-==,∴3(4)5PD t =-,4(4)5CD t =-∵PQ ⊥MQ ,∴△PDQ ∽△QEM ,∴PD DQQE EM =,即··PD EM QE DQ=∵3123(4)555EM PD t t ==-=-,4169(4)555DQ CD CQ t t t =-=--=-,4995[(4)]555QE DE DQ t t t =-=---=+,∴2123()55t -16999()()5555t t =-+,即2230t t -=,∴32t =,0t =(舍去)∴当32t =时,使PQ ⊥MQ .【点睛】本题考查相似三角形的综合运用;一元二次方程的应用.。
人教版九年级上册数学期末考试试卷及答案解析
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知关于x 的一元二次方程(k -2)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围是()A .k >43B .k >34C .k >43且k≠2D .k >34且k≠22.如图,AB 为O 的直径,弦CD AB ⊥于点E ,25C ∠= ,6AB =,则劣弧 CD的长为A .10πB .52πC .53πD .56π3.小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏()A .不公平B .公平C .对甲有利D .对乙有利4.方程()2330x x -+=的二次项系数、一次项系数及常数项的和是()A .3B .2C .1-D .3-5.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a+3b+c <0;③c >﹣1;④关于x 的方程ax 2+bx+c=0(a≠0)有一个根为1a-,其中正确结论的个数为()A .1B .2C .3D .46.若α、β是方程2220090x x +-=的两个根,则:23ααβ++的值为()A .2010B .2009C .2009-D .20077.圆中有两条等弦AB=AE ,夹角∠A=88°,延长AE 到C ,使EC=BE ,连接BC ,如图.则∠ABC 的度数是()A .90°B .80°C .69°D .65°8.如图,在Rt △ABC 中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于()A .55°B .60°C .65°D .80°9.在ABC 中,1AB AC cm ==,D 是BC 边的中点,以A 为圆心,1cm 长为半径作A ,则A 、B 、C 、D 四点中,在圆内的有()A .4个B .3个C .2个D .1个10.如图,AB 是O 的直径,弦CD AB ⊥,40CAB ∠= ,连接BD 、OD ,则AOD ABD ∠+∠的度数为()A .100°B .110°C .120°D .150°二、填空题11.指令(),s θ的意义:以原地原方向为基准,沿逆时针方向旋转θ角,再沿旋转后的方向行进s 米,现有一位于A 点处的机器人,面朝正东方向,按指令()5,60运动至B 点,再按指令()5,120运动至C 点,则AC =________米.12.四边形ABCD 中,//AD BC ,E 是CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结BE .则,点C 与点________关于点E 对称,ADE 与FCE 成________对称;若AB AD BC =+,则ABF 是________三角形,BE 是ABF 的________(将你认为正确的结论填上一个就行)13.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为14、720和25,试估计黄、蓝、红三种球的个数分别是________.14.已知平面直角坐标系上的三个点()0,0D ,()1,1A -,()1,0B -.将ABD 绕点D 旋转180 ,则点A 、B 的对应点A 、B 的坐标分别是1A ________,1B ________15.点(),A a b 和B 关于x 轴对称,而点B 与点()2,3C 关于y 轴对称,那么,a =________,b =________,点A 和C 的位置关系是________.16.抛物线2235y x x =--与y 轴交于点________,与x 轴交于点________.17.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.三、解答题19.解方程:()2121x x +=()()22(3)230x x -+-=()2x--=()23(2)270x+=431.20.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.21.制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)求将材料加热时,y与x的函数关系式;(2)求停止加热进行操作时,y与x的函数关系式;(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?22.如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD 延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD 的长.23.如图,抛物线y 1=﹣12x 2+bx+c 经过点A (4,0)和B (1,0),与y 轴交于点C .(1)求出抛物线的解析式;(2)求点C 的坐标及抛物线的顶点坐标;(3)设直线AC 的解析式为y 2=mx+n ,请直接写出当y 1<y 2时,x 的取值范围.24.已知,如图,⊙O 是ABC ∆的外接圆,»»AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =.(1)求证:AD CE =;(2)如果点G 在线段上(不与点D 重合),且,求证:四边形是平行四边形.25.已知二次函数y=ax 2﹣2ax+c (a <0)的最大值为4,且抛物线过点(72,﹣94),点P (t ,0)是x 轴上的动点,抛物线与y 轴交点为C ,顶点为D .(1)求该二次函数的解析式,及顶点D 的坐标;(2)求|PC ﹣PD|的最大值及对应的点P 的坐标;(3)设Q (0,2t )是y 轴上的动点,若线段PQ 与函数y=a|x|2﹣2a|x|+c 的图象只有一个公共点,求t 的取值.26.如图,△ABC 内接与⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF(1)判断AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为4,AF=3,求AC 的长.参考答案1.D 【解析】a=(k -2)2,b=2k +1,c=1,()221k =+ -4()22k ->0,k-20≠,解得k >34且k≠22.C【解析】如图,连结OC ,OD ,根据圆周角定理得到∠AOD =2∠C =50°,再根据垂径定理得到 AC AD =,则∠AOC =∠AOD =50°,即∠COD =100°,然后根据弧长公式计算劣弧 CD的长.【详解】如图,连结OC ,OD ,∵∠C =25°,∴∠AOD =2∠C =50°,∵CD ⊥AB ,∴ AC AD =,∴∠AOC =∠AOD =50°,∴∠COD =100°,而OD =12AB =3,∴劣弧 CD的长=100··351803ππ=.故选C.【点睛】本题考查了弧长的计算:弧长公式180n Rl =π(弧长为l ,圆心角度数为n ,圆的半径为R ).也考查了圆周角定理和垂径定理.3.A 【解析】【分析】两人获胜概率相同,则游戏公平;反之,游戏不公平.【详解】因为瓶盖质地不均匀,可能盖底着地,也可能盖口着地,但两种情况出现的可能性不同,故两人获胜概率不同,所以这个游戏不公平.故选A.【点睛】本题主要考查概率与公平性,分析甲乙两人获胜概率是否相同是解答本题的关键.4.C 【详解】原方程去括号整理得:2x 2﹣6x+3=0,则二次项系数、一次项系数及常数项的和是2+(﹣6)+3=﹣1.故选C.5.C 【解析】【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC ,且OA<1,可判断③;把1a-代入方程整理可得ac 2-bc+c=0,结合③可判断④;从而可得出答案.【详解】解:由图象开口向下,可知a<0,与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为x=2,所以02ba->,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1,∵OA=OC ,∴OC<1,即-c<1,c>-1,故③正确:假设方程的一个根为x=1a -,把x=1a -代入方程可得10bc a a-+=,整理可得ac-b+1=0,两边同时乘c 可得ac 2-bc+c=0,即方程有一个根为x=-c ,由②可知-c=OA ,而x=OA 是方程的根,∴x=-c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个;故答案为C.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC ,是解题的关键.6.D【分析】根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-ba,x1x2=ca,而α2+3α+β=α2+2α+(α+β),据此进行求解即可得.【详解】α,β是方程x2+2x-2009=0的两个实数根,则有α+β=-2,α是方程x2+2x-2009=0的根,得α2+2α-2009=0,即:α2+2α=2009.所以α2+3α+β=α2+2α+(α+β)=α2+2α-2=2009-2=2007,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程的根与系数的关系,熟练掌握相关知识并能将根与系数的关系、方程根的定义与代数式变形相结合是解题的关键.7.C【分析】根据题意可得出△ABE、△BEC是等腰三角形,在等腰三角形中先求出∠AEB的度数,然后利用外角的性质可求出∠EBC的度数,继而可得出答案.【详解】解:∵AB=AE,EC=BE,∴∠ABE=∠AEB,∠EBC=∠ACB,又∵∠A=88°,∴∠ABE=∠AEB=46°,∠EBC=∠ACB=12∠AEB=23°,∴∠ABC=∠ABE+∠EBC=69°.故选C.点评:此题考查了等腰三角形的性质及三角形外角的性质,解答本题的关键是求出∠ABE 及∠EBC的度数,难度一般.8.B【详解】试题分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=12BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选B.9.C【解析】【分析】AB=AC=1cm,即B、C到圆心A的距离等于半径,因而B、C在圆上;而D是BC边的中点,则D到圆心的距离小于半径,因而D在圆内,所以在圆内的点有两个,即A和D.【详解】如图所示,连结AD,AD⊥BC,∵以A为圆心,1cm长为半径作⊙A,AB=AC=1cm,即B、C到圆心A的距离等于半径,∴B、C在圆上,又∵△ABD中,∠ADB=90°,∴AD<AB,∴点D在⊙A内,∴在圆内的点有两个,即A和D.故选C.【点睛】本题考查了对点与圆位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.10.D【解析】【分析】先根据圆周角定理求出∠BDC的度数,再由直角三角形的性质得出∠ABD的度数,进而可得出∠AOD的度数,据此可得出结论.【详解】∵∠CAB=40°,∴∠BDC=40°.∵CD⊥AB,∴∠ABD=90°-40°=50°,∴∠AOD=2∠ABD=100°,∴∠AOD+∠ABD=100°+50°=150°.故选D.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.11.15【解析】【分析】根据旋转角求出AC在同一直线上,然后列式计算即可得解.【详解】∵A按照指令(5,60°)运动至B点,再按指令(5,120°)运动至C点,60°+120°=180°,∴AC在同一条直线上,∴AC=5+(5+5)=15米.故答案为15.【点睛】本题考查了坐标与图形变化-旋转,读懂题目信息,理解指令的意义并求出AC在同一条直线上是解题的关键.12.D中心等腰高【解析】【分析】根据中心对称的性质和等腰三角形三线合一的性质分别填空即可.【详解】四边形ABCD中,AD∥BC,E是CD中点,连结AE并延长BC的延长线于点F,连结BE.则点C与点D关于点E对称,△ADE和△FCE成中心对称;若AB=AD+BC,则△ABF 是等腰三角形,BE是△ABF的高.故答案为D,中心,等腰,高.【点睛】本题考查了中心对称,等腰三角形的判定与性质,事迹性质并准确识图是解题的关键.13.20、28、32【解析】【分析】根据得到各小球的概率以及小球的总个数,分别求出晓求得个数即可.【详解】∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为17240205、、,∴黄、蓝、红三种球的个数分别是:80×12=40(个),80×720=28(个),80×25=32(个).故答案为20、28、32.【点睛】此题主要考查了利用频率估计概率,根据概率的意义求出小球的个数是解题关键.14.()1,1-()1,0【解析】【分析】根据旋转的性质,旋转不改变图形大小和形状.【详解】旋转180°后,各对应点将关于原点对称,∴A 1(1,-1),B 1(1,0).故答案为:()1,1-;()1,0【点睛】本题考查旋转的性质,解答本题关键要理解旋转180°即成了中心对称.15.-2-3关于原点对称【解析】【分析】根据坐标中点的对称关系进行解答即可.【详解】∵B 与点C (2,3)关于y 轴对称,∴B 点的坐标是(﹣2,3),又∵A (a ,b )与点B 关于x 轴对称,∴点A 的坐标是(﹣2,﹣3),∴a =﹣2,b =﹣3,点A 与点C 的位置关系是关于原点对称.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),关于y 轴的对称点是(﹣x ,y ),关于原点的对称点是(﹣x ,﹣y ).16.()0,5-()1,0-,(52,0)【解析】【分析】抛物线与x 轴的交点的纵坐标等于0,抛物线与y 轴交点的横坐标等于0.【详解】令x =0,则y =﹣5,即抛物线y =2x 2-3x -5与y 轴交于点(0,﹣5);令y =0,则2x 2-3x -5=0,解得x =52或﹣1,∴抛物线y =2x 2-3x -5与y 轴交于点(﹣1,0)和(52,0).故答案是(0,﹣5);(﹣1,0)、(52,0)【点睛】本题考查了抛物线与x 轴的交点.掌握坐标轴上的点的坐标特征和二次函数图像上点的坐标特征是解题的关键.17.10%.【解析】试题解析:设这两次的百分率是x ,根据题意列方程得100×(1﹣x )2=81,解得x 1=0.1=10%,x 2=1.9(不符合题意,舍去).答:这两次的百分率是10%.考点:一元二次方程的应用.18.3【详解】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.19.()()12121212x x ==,;1231x x ,==;(3)x 1=332,x 2=332-;(4)1233x x ==.【分析】(1)方程整理为一般形式,找出a ,b ,c 的值,代入求根公式即可求出解.(2)方程利用因式分解法求出解即可.(3)利用开平方的定义解方程.(4)方程移项,则左边是完全平方式,右边是常数,再利用直接开平方法即可求解.【详解】解:(1)方程整理得:x 2+2x ﹣1=0,这里a=1,b=2,c=﹣1.∵△=4+4=8,∴2222-±x 121,x 2=21--;(2)分解因式得:(x ﹣3)(x ﹣3+2)=0,可得x ﹣3=0或x ﹣1=0,解得:x 1=3,x 2=1.(3)移项得:(x ﹣2)2=27开平方得:x ﹣3移项得:x 1=332,x 2=332-+.(4)∵3x 23,∴3x 2﹣33﹣1)2=0,∴x 1=x 2=33.【点睛】本题考查了解一元二次方程的应用,熟练掌握解一元二次方程的方法是解答本题的关键.20.(1)13;(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P (甲胜)=59,P (乙胜)=49.∴P (甲胜)≠P (乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(1)y=9x+15;(2)y=300x;(3)15分钟【分析】(1)根据题意判断材料加热时成正比例函数关系式,通过待定系数法即可求出函数解析式;(2)根据题意可得停止加热时y 与x 成反比例函数关系式,用待定系数法求得函数的解析式即可;(3)分别令两个函数的函数值为15,解得两个x 的值相减即可得到答案.【详解】解:(1)设加热过程中一次函数表达式为y=kx+b (k≠0),该函数图象经过点(0,15),(5,60),56015k b b +⎧⎨⎩==解得915 kb⎧⎨⎩==,∴一次函数的表达式为y=9x+15(0≤x≤5),(2)设加热停止后反比例函数表达式为ayx=(a≠0),该函数图象经过点(5,60),即a=5×60=300,所以反比例函数表达式为300yx=(x≥5);(3)当y=15时,代入y=9x+15有x=0当y=15时,代入300 yx =得x=20∴20-5=15(分钟).答:该材料进行特殊处理所用时间为15分钟.【点睛】本题考查了反比例函数的应用,解题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.22.(1)证明见解析;(2)PD【分析】(1)连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线.(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.【详解】(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°.∴OA⊥AP.∴AP是⊙O的切线.(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°.33∴∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°.∴∠P=∠PAD.∴323.(1)抛物线的解析式是y=﹣12x2+52x﹣2;(2)顶点坐标是(52,98);(3)x<0或x>4.【解析】【分析】(1)代入A和B点并联立方程求解即可;(2)令x=0求解c点坐标,再运用配方法将一般式化为顶点式即可;(3)由图像可知,C点左侧以及A点右侧部分均符合问题要求.【详解】(1)根据题意得:−12×16+4b+c=0−12+b+c=0,解得b=52c=−2则抛物线的解析式是y=﹣12x2+52x﹣2;(2)在y=−12x2+52x﹣2中令x=0,则y=﹣2,则C的坐标是(0,﹣2).y=﹣12x2+52x﹣2=﹣12(x﹣52)2+98,则抛物线的顶点坐标是(52,98);(3)由图像可知,C点左侧以及A点右侧部分均符合问题要求,故当x<0或x>4时均满足y1<y2.24.(1)证明见解析;(2)证明见解析.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【详解】(1)在⊙O中,∵»»AB AC=,∴AB AC=,∴B ACB∠=∠.∵AE∥BC,∴EAC ACB∠=∠,∴B EAC∠=∠.又∵BD AE=,∴ABD∆≌CAE∆,∴AD CE=;(2)联结AO并延长,交边BC于点H,∵»»AB AC =,OA 是半径,∴AH BC ⊥,∴BH CH =.∵AD AG =,∴DH HG =,∴BH DH CH GH -=-,即BD CG =.∵BD AE =,∴CG AE =.又∵CG ∥AE ,∴四边形AGCE 是平行四边形.25.(1)2y x 2x 3=-++,D (1,4);(2)2,P (﹣3,0);(3)t 的取值是32≤t <3或t=72或t≤﹣3.【解析】试题分析:(1)先利用对称轴公式x=2b a -计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC ﹣PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数22y a x a x c =-+(x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(﹣3,0),即点P 与点(﹣3,0)重合时,线段PQ 与当函数22y a x a x c =-+(x <0)时也有一个公共点,则当t≤﹣3时,都满足条件;综合以上结论,得出t 的取值.(1)∵22y ax ax c =-+的对称轴为:x=1,∴抛物线过(1,4)和(72,94-)两点,代入解析式得:24499744a a c a a c -+=⎧⎪⎨-+=-⎪⎩,解得:a=﹣1,c=3,∴二次函数的解析式为:2y x 2x 3=-++,∴顶点D 的坐标为(1,4);(2)∵C 、D 两点的坐标为(0,3)、(1,4);由三角形两边之差小于第三边可知:|PC ﹣PD|≤|CD|,∴P 、C 、D 三点共线时|PC ﹣PD|取得最大值,此时最大值为,由于CD 所在的直线解析式为y=x+3,将P (t ,0)代入得t=﹣3,∴此时对应的点P 为(﹣3,0);(3)22y a x a x c =-+的解析式可化为:2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩设线段PQ 所在的直线解析式为y=kx+b ,将P (t ,0),Q (0,2t )代入得:线段PQ 所在的直线解析式:y=﹣2x+2t ,分三种情况讨论:①当线段PQ 过点(0,3),即点Q 与点C 重合时,线段PQ 与函数2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩有一个公共点,此时t=32,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,t=3,此时线段PQ 与2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩有两个公共点,所以当32≤t <3时,线段PQ 与2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩有一个公共点;②将y=﹣2x+2t 代入2y x 2x 3=-++(x≥0)得:22322x x x t -++=-+,24320x x t -++-=,令△=16﹣4(﹣1)(3﹣2t )=0,t=72>0,所以当t=72时,线段PQ 与2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩也有一个公共点;③当线段PQ 过点(﹣3,0),即点P 与点(﹣3,0)重合时,线段PQ 只与223y x x =--+(x<0)有一个公共点,此时t=﹣3,所以当t≤﹣3时,线段PQ与2223(0)23(0)x x xyx x x⎧-++≥=⎨--+<⎩也有一个公共点,综上所述,t的取值是32≤t<3或t=72或t≤﹣3.点睛:本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.26.解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF 为圆O 的切线,即AF 与⊙O 的位置关系是相切.(2)∵△AOF ≌△COF ,∴∠AOF=∠COF .∵OA=OC ,∴E 为AC 中点,即AE=CE=12AC ,OE ⊥AC .∵OA ⊥AF ,∴在Rt △AOF 中,OA=4,AF=3,根据勾股定理得:OF=5.∵S △AOF =12•OA•AF=12•OF•AE ,∴AE=245.∴AC=2AE=.【详解】试题分析:(1)连接OC ,先证出∠3=∠2,由SAS 证明△OAF ≌△OCF ,得对应角相等∠OAF=∠OCF ,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF ,再由三角形的面积求出AE ,根据垂径定理得出AC=2AE .试题解析:(1)连接OC,如图所示:∵AB 是⊙O 直径,∴∠BCA=90°,∵OF ∥BC ,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF ⊥AC ,∵OC=OA ,∴∠B=∠1,∴∠3=∠2,在△OAF 和△OCF 中,{32OA OCOF OF=∠=∠=,∴△OAF ≌△OCF (SAS ),∴∠OAF=∠OCF ,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴=∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=12AF•OA=12OF•AE,∴3×4=5×AE,解得:AE=12 5,∴AC=2AE=24 5.考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.。
人教版九年级上册数学期末考试试卷及答案
人教版九年级上册数学期末考试试题一、单选题1.下列四个图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .2.已知关于x 的一元二次方程()2330x m x m +++=总有两个不相等的实数根,则m 的取值范围是()A .3m ≥B .3m ≠C .3m >且0m ≠D .3m >3.如图,将OAB 绕点O 逆时针旋转55°得到OCD ,若20AOB ∠=︒,则BOC ∠的度数是()A .25°B .30°C .35°D .75°4.将抛物线()221y x =-向右平移2个单位,向下平移3个单位得到的抛物线解析式是()A .()2233y x =-+B .()2233y x =--C .()2213y x =++D .()2213y x =+-5.已知,在圆中圆心角度数为45°,半径为10,则这个圆心角所对的扇形面积为()A .52πB .5πC .10πD .252π6.已知,点()13,A y ,()20,B y ,()31,C y -在二次函数22y x x c =++图象上,则1y ,2y ,3y 的大小关系是()A .132y y y <<B .321y y y <<C .123y y y <<D .213y y y <<7.二次函数()20y ax bx c a =++≠图象经过点()1,1-,且图象对称轴为直线2x =,则方程()210ax bx c a ++=-≠的解为()A .1x =B .1x =,2x =C .2x =,3x =D .1x =,3x =8.如图,在ABC 中,AB AC =,点D 为BC 边上一点,将ABD △沿直线AD 翻折得到AB D 'V ,AB '与BC 边交于点E ,若3AB BD =,点E 为CD 中点,6BC =,则AB 的长为()A .457B .6C .454D .1529.如图,AB 是⊙O 的直径,若AC=4,∠D=60°,则BC 长等于()A .8B .10C .D .10.如图,将△ABC 绕点A 顺时针旋转60°得到△AED .若线段AB =3,则BE =()A .2B .3C .4D .5二、填空题11.方程220x x +=的根是________.12.关于x 的方程220x x c -+=有一个根是3,那么实数c 的值是______13.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中有绿球______个.14.甲、乙两人同时从A 地出发,骑自行车去B 地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A 、B 两地相距30千米,则乙每小时_______千米.15.某工厂生产一款零件的成本为500元,经过两年的技术创新,现在生产这款零件的成本为405元,求该款零件成本平均每年的下降率是多少?设该款零件成本平均每年的下降率为x ,可列方程为______.16.如图,O 为ABP △的外接圆,2AB =,30APB ∠=︒,则O 直径长为______.17.如图,点A ,B 分别在函数11(0)k y k x =>与22(0)k y k x=<的图象上,线段AB 的中点M 在y 轴上.若AOB 的面积为2,则12k k -的值是______.三、解答题18.用适当的方法解方程(1)2560x x --=;(2)2210x -+=.19.如图,某中学准备建一个面积为2150m 的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是40m ,求垂直于墙的边AB 的长度?(后墙MN 最长可利用25米)20.如图,正比例函数y kx =图象与反比例函数n y x=图象交于(),1A m -,()2,1B 两点:(1)求反比例函数n y x=的函数表达式;(2)点C 为x 轴负半轴上一点,直线AC 与y 轴交于点D ,且OC OD =,求ACB △的面积.21.如图,在平行四边形ABCD 中,点O 为AD 边上一点,以O 为圆心,OA 为半径作O 恰好经过点B ,与AD 边交于点E ,CD 边所在直线与O 相切,切点为H ,连接AH ,EH ,若2180HAB C ∠+∠=︒:(1)求证:CB 为O 切线;(2)若1DE =,求O 半径.22.某经销商以140元/件的价格购进一款服装,若以300元/件的价格出售,每周可售出300件,该经销商在“元旦”之前购进若干该款服装准备在“元旦”黄金周进行降价促销,若销售单价每降低1元,则每周可多售出5件,且“元旦”黄金周的销售量不超过500件:设“元旦”黄金周该款服装售价为x 元/件,销售利润为y 元:(1)求y 与x 之间的函数关系式;(2)当售价为多少元/件时,“元旦”黄金周的销售利润最大,最大利润为多少元?23.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m .(1)建立如图的直角坐标系,求抛物线的解析式;(2)一艘货船宽8m ,水面两侧高度2m ,能否安全通过此桥?24.如图,等腰Rt ABC 中,,90BA BC ABC =∠=︒,点D 在AC 上,将ABD △绕点B 沿顺时针方向旋转90︒后,得到CBE △,(1)求DCE ∠的度数;(2)若4,3AB CD AD ==,求DE 的长.25.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,BD 平分∠ABC ,DE ⊥BE ,DE 交BC 的延长线于点E .(1)求证:DE 是⊙O 的切线;(2)如果CE =1,AC =7O 的半径r .26.如图,抛物线22y x x c =--+的经过(2,3)D -,与x 轴交于A 、B 两点(点A 在点B 的左侧)、与y 轴交于点C .(1)求抛物线的表达式和A 、B 两点坐标;(2)在y 轴上有一点P ,使得OAP BCO ∠=∠,求点P 的坐标;(3)点M 在抛物线上,点N 在抛物线对称轴上,点Q 在坐标平面内.①当90ACM ∠=︒时,直接写出点M 的坐标___________;②是否存在这样的点Q 与点N ,使以Q 、N 、A 、C 为顶点的四边形是以AC 为边的矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.D2.B3.C4.B5.D6.B7.D8.A9.D10.B11.10x =,22x =-12.3-13.3.14.1215.2500(1)405x -=16.417.418.(1)11x =-,26x =,(2)1222x x ==【详解】解:(1)2560x x --=,(1)(6)0x x +-=,1060x x +=-=,,11x =-,26x =;(2)2210x -+=,21)0-=,10-=,1222x x ==.19.15m 【分析】花园总共有三条边组成,可设AB 为x ,则BC 为402x -,根据题意有()402150x x -=,解得x=15或5,又因为BC 不大于25m ,可知x=5要舍去.【详解】解:设AB 为x ,则BC 为402x -,根据题意得方程:()402150x x -=,22401500x x -+=,解得:115x =,25x =,∵40225x -≤,∴7.5x ≥,∴5x =不合题意,应舍去,∴垂直于墙的边AB 的长度为15m .20.(1)2y x=;(2)1【分析】(1)把点B 坐标代入反比例函数n y x =,求出n 的值即可;(2)把点A 坐标代入2y x=求得m=-2,由OC OD =得45DCO ∠=︒可知直线AC 平行直线y=x ,可设直线AC 的解析式为y=x+b ,把点A 坐标代入求出b ,进而求OC ,即可得到结论.【详解】解:(1)把B (2,1)代入n y x =,得12n =∴2n =∴反比例函数的表达式为2y x =;(2)把A (m ,-1)代入2y x =,得21m -=∴2m =-∴A (-2,-1)∵OC OD =,90DOC ∠=︒∴45DCO ∠=︒∴直线AC 平行直线y=x ,设直线AC 的表达式为y x b=+把A (-2,-1)代入得,21b -+=-∴b=1∴OC=1∴1111||||111112222ACB A B S OC y OC y =⨯⨯+⨯⨯=⨯⨯+⨯⨯=△21.(1)见解析;(2)1+【分析】(1)连接OB 、OH ,由圆周角定理可知2HOB HAB ∠=∠,即易得出180HOB C ∠+∠=︒,再由切线的性质可知90CHO ∠=︒,最后根据四边形内角和为360︒,即可求出90OBC ∠=︒,即证明CB 为⊙O 切线;(2)根据题意易推出//AD BC ,//AB CH .即可证明90BOA ∠=︒,从而证明AOB 为等腰直角三角形,可推出45BAD ABO ODH ∠=∠=∠=︒,即易证明DHO 是等腰直角三角形,从而得出OH DH OE ==.设OH x =,则OE DH x ==,1OD x =+.根据勾股定理,列出方程,求出x 即可.【详解】(1)如图,连接OB 、OH ,由图可知2HOB HAB ∠=∠,∴180HOB C ∠+∠=︒.∵CD 边所在直线与⊙O 相切,切点为H ,∴OH CH ⊥,即90CHO ∠=︒.∵在四边形BCHO 中,360HOB OBC BCH CHO ∠+∠+∠+∠=︒,∴18090360OBC ︒+∠+︒=︒,∴90OBC ∠=︒,即OB BC ⊥,∴CB 为⊙O 切线;(2)∵四边形ABCD 是平行四边形,∴//AD BC ,//AB CH .∵90OBC ∠=︒∴90BOA ∠=︒,∴AOB 为等腰直角三角形,∴45BAD ABO ∠=∠=︒,∴45ODH BAD ∠=∠=︒.∵90CHO ∠=︒,即90DHO ∠=︒,∴DHO 是等腰直角三角形,∴OH DH OE ==.设OH x =,则OE DH x ==,1OD OE DE x =+=+.∵在DHO 中,222OH DH OD +=,即222(1)x x x +=+解得:11x =+,21x =-(舍)∴⊙O半径为122.(1)252500252000(260300)y x x x =-+-≤<;(2)当售价为260元/件时,“元旦”黄金周的销售利润最大,最大利润为60000元.【分析】(1)根据题意即可直接列出y 与x 之间的函数关系式,再根据题意列出关于x 的不等式组,即求出x 的取值范围.(2)将(1)求出的二次函数关系式改写为顶点式,再根据自变量的取值范围结合二次函数的图象和性质即可得出结果.【详解】解:(1)根据题意可得:[](140)3005(300)y x x =-+-,且3001403005(300)500x x x <⎧⎪>⎨⎪+-≤⎩,整理得:252500252000(260300)y x x x =-+-≤<.(2)22525002520005(250)60500(260300)y x x x x =-+-=--+≤<,∵该二次函数对称轴为250x =,且开口向下,∴当260x =时,y 有最大值,且2max 5(260250)6050060000y =--+=.∴当售价为260元/件时,“元旦”黄金周的销售利润最大,最大利润为60000元.23.(1)21y x 5=-(2)货船不能安全通过此桥【分析】(1)根据题意选择合适坐标系即可,结合已知条件得出点B 的坐标即可,根据抛物线在坐标系的位置,可设抛物线为2y ax =来求解析式;(2)将4B x '=代入解析式可得y 的值,再与3-比较即可.(1)解:设抛物线解析式为2y ax =,则()5,5B -,∴255a -=⨯,解得15a =-,215y x ∴=-;(2)解:若8A B ''=,则4B x '=,∴2145B y '=-⨯,1635-<-,∴货船不能安全通过此桥,24.(1)90DCE ∠=︒(2)DE =【分析】(1)解:∵ABC ∆为等腰直角三角形,∴45BAD BCD ∠=∠=︒,由旋转的性质可知45BAD BCE ∠=∠=︒,∴454590DCE BCE BCA ∠=∠+∠=︒+︒=︒;(2)解:BA BC = ,90ABC ∠=︒,AC ∴==,3CD AD = ,AD ∴=,DC =由旋转的性质可知:AD EC ==,DE ∴==.25.(1)证明过程见解析(2)4【分析】(1)连接OD ,则∠OBD=∠ODB ,再由BD 平分∠ABC 得到∠OBD=∠DBE ,可得出∠ODB=∠DBE ,则OD ∥BE ,从而得出OD ⊥DE ;(2)设OD 交AC 于点M ,证明四边形DECM 为矩形,得到EC=DM=1;再证明MO 为△ABC的中位线,得到r ,则MO=DO-DM=r-1,最后在Rt △AMO 中使用勾股定理即可求出r .(1)解:连接OD ,如下图所示:∵OB=OD ,∴∠OBD=∠ODB ,∵BD 平分∠ABC ,∴∠OBD=∠DBE ,∴∠ODB=∠DBE ,∴OD ∥BE ,∵DE ⊥BE 于点E ,∴∠E=90°,∴∠ODE=180°-∠E=180°-90°=90°,∴OD ⊥DE ;∴DE 是⊙O 的切线.(2)解:设OD 交AC 于点M ,如下图:∵AB 为⊙O 的直径,∴∠ACB=∠ACE=90°,由(1)知,∠ODE=90°,∴∠ACE=∠E=∠ODE=90°,∴四边形DECM 为矩形,∴EC=DM=1,∵MO ∥CB ,O 为AC 的中点,∴MO 为△ABC 的中位线,且∠AMO=∠ACB=90°,∴AM=MC=12设圆的半径为r ,则MO=DO-DM=r-1,在Rt △AMO 中,由勾股定理可知:AO²=AM²+MO²,代入数据:222(1)r r =+-,解出:4r =,故圆⊙O 的半径为4.【点睛】本题考查了切线的判定及性质,圆周角定理及其推论,矩形判定,勾股定理解直角三角形等知识点,熟练掌握各图形性质及定理是解题的关键.26.(1)A (-3,0),B (1,0)(2)()10,1P ;2P ()10,-(3)()11,4N -,()21,2N --【分析】(1)利用待定系数法确定函数关系式解答即可;(2)利用相似三角形的判定和性质以及轴对称的性质解答即可;(3)①证出ME=EC ,设点()2,23M a a a --+,则ME a =-,22MC a a =--,代入即可求解;②利用矩形的性质,找到边与边的关系,注意分类讨论,即可求解.(1)解:∵抛物线22y x x c =--+的经过D (-2,3),∴-4+4+c=3,解得:c=3,即抛物线的表达式为:223y x x =--+,设y=0,则2023x x =--+,解得:1x =-3,2x =1,∵点A 在点B 的左侧,∴A (-3,0),B (1,0);(2)连接BC ,在x 轴的上方,作OAP BCO ∠=∠,交y 轴于点P∵A (-3,0),B (1,0),c=3;∴OC=3,OB=1,OA=3∵90AOP COB ∠=∠=︒,OAP BCO∠=∠∴OAP OCB△∽△∴OA OP OC OB =即331OP =∴1OP =∴点()10,1P 当点P 在x 轴的下方时,即与点P 1关于x 轴对称时,点2P ()0,-1;综上所述:点P 的坐标为:()10,1P ;2P()0,-1.(3)①过点C 作MC ⊥AC ,垂足为C ,交抛物线于点M ,过点M 作ME ⊥y 轴,垂足为E ,交y 轴于点E∵(2)知:AO=CO ,∴ACO=∠CAO=45°,∵MC ⊥AC ,ME ⊥y 轴∴∠ECM=∠EMC=45°设点()2,23M a a a --+,∵ME a =-,222332MCa a a a=--+-=--∴22a a a -=--∴0a =(舍去)或1a =-∴()1,4M -.②如图点N 在对称轴上,四边形11Q ACN 是矩形,四边形22Q CAN 是矩形,过点1N 作11N F ⊥x 轴,垂足为1F ,交轴于点1F ,过点2N 作22N F ⊥x 轴,垂足为2F ,交y 轴于点2F .∵抛物线的表达式为:223y x x =--+,∴对称轴:1x =-设()11,N y -,则111N F =,13CF y =-同理①,111N F CF =即13y =-∴4y =∴()11,4N -设()21,N y -,则221N F =,∵45CAO ∠=︒∵四边形22Q CAN 是矩形,∴2AO ON =∴31y -=-∴()21,2N --所以N 有两点,此M 的坐标为()11,4N -,()21,2N --.。
人教版九年级数学上册期末考试卷(附含参考答案)
人教版九年级数学上册期末考试卷(附含参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件是必然事件的是( )A .某人体温是100℃B .三角形的内角和等于180度C .购买一张彩票中奖D .经过有交通信号灯的路口,遇到红灯2.下列现象是平移的是( )A .钟摆的运动B .方向盘的转动C .汽车车轮的运动D .电梯的升降3.二次函数265y x x =-+与x 轴的交点个数是( ) A .只有一个交点 B .有两个交点 C .没有交点 D .无法确定4.2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A .1(1)3802x x -=B .(1)380x x -=C .1(1)3802x x += D .(1)380x x +=5.一元二次方程27x x =的解是( )A .=7xB .21 3.5x x ==C .1=0x ,27x =D .1=0x 和27x =-6.已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D外任意一点,则∠CPD 的度数为( )A .30°B .30°或150°C .60°D .60°或120°7.如图,在⊙O 中,AB 为弦,OD⊥AB 于D ,∠BOD=53°,过A 作⊙O 的切线交OD 延长线于C ,则∠C=( )A.27°B.30°C.37°D.53°8.5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这件事情属()A.不可能发生B.可能发生C.很可能发生D.必然发生9.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.给出下列结论:①小球在空中经过的路程是80m;②小球运动的时间为6s;③小球抛出3s时,速度为0;④当 4.5st 时,小球的高度h是30m,其中正确的是()A.②③B.①②③④C.①②④D.①③④11.如图,4×4的正方形网格中,△MNP绕某点逆时针旋转一定的角度,得到△M1N1P1,则其旋转的角度可能是( )A.45°B.60°C.90°D.180°12.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M 是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为()A .1+3πB .1+6π C .2sin20°+29π D .23π 二、填空题 13.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的100元降至81元,那么平均每次降价的百分率是 .14.在平面直角坐标系中,点()7,3关于原点对称的点的坐标是 .15.若方程2490x -=,则x=16.抛物线y =(x ﹣1)2+3的顶点坐标为 .17.二次函数2y ax bx c =++的部分图象如右图所示,对称轴为直线1x =,则使0y >的x 的取值范围是 .18.如右图,Rt△ABC 中,∠B =90°,AC =10cm ,BC =8cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AB向终点B 移动;点Q 以2cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ ,若经x 秒后P ,Q 两点之间的距离为42 ,那么x 的值为 .19.如图,ABC 的内切圆O 与BC ,CA ,AB 分别相切于点D ,E ,F 且8AB =,BC=17,CA=15,则阴影部分的面积为 .20.已知抛物线()2210y ax ax a a =-++≠过点(),2A m ,(),2B n 两点,若线段AB 的长不大于2,则代数式23a a --的最小值是 .21.如图,将ABC 绕点A 逆时针旋转70°,得到ADE ,若点B 的对应点D 在线段BC 的延长线上,则BDE ∠的度数为 °(19题图) (21题图)22.在平面直角坐标系中,已知点()4,0A ,()0,4B -和BC x ∥轴,点D 在直线BC 上1BD =,点P 是y 轴上一动点,若AP DP ⊥,则点P 的坐标是 .三、解答题23.在“世界读书日”来临之际,某学校开展了“我因阅读面成长”的赠书活动,如图,设置了一个可以自由转动的转盘,并规定.每位学生可获得一次转动转盘的机会,当转盘停止.时,指针落在哪一区域就可以获得一本相应的书籍,下表是活动中的一组统计数据.转动转盘的次数n 100 200 400500 1000 落在《红星照耀中国》区域的次数m 4492 182 225 450 落在《红星照耀中国》区域的频率m n0.44 0.46 0.455 0.45 0.45(1)如图,自由转动转盘,计算转盘停止后,指针落在《海底两万里》区域的概率;(2)根据上表,如果转动转盘1500次,则指针落在《红星照耀中国》区域大约有多少次?24.某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需化简):时间第一个月第二个月清仓时单价(元)80 40销售量(件)200(2)如果销售这批T恤获得的利润用W元表示,求W与x之间的函数关系式;(3)如果批发商希望销售这批T恤的利润不低于8000元,那么第二个月的降价幅度应在什么范围内?25.某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如下两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有__________人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.26.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,求2015年至2017年“双十一”交易额的年平均增长率?27.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元?28.如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F交⊙O于E,连接DE,BE,BD,AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=3,求AC的长;4(3)如果DE∥AB,AB=10,求四边形AEDB的面积.29.已知:关于x的方程()21230-++-=x m x m(1)求证:不论m取何值时,方程总有两个不相等的实数根(2)若方程的一个根为1,求m的值及方程的另一根答案: 1.B 2.D3.B 4.B 5.C 6.B 7.C 8.D 9.C 10.B 11.C 12.A 13.10%14.()7,3--15.32±16.(1,3)17.13x -<<18.2或2519.920.3-21.11022.()0,222-+或()0,222--或()0,2-23.(1)14;(2)675次 24.(1)80﹣x ,200+10x ,800﹣200﹣(200+10x );(2)W=﹣10x 2+200x+8000;(3)第二个月的降价幅度为:0≤x≤20.25.(1)60;(2)144°;(3)2326.2015年至2017年“双十一”交易额的年平均增长率为10%.27.这种台灯的售价应定为65元时,最大利润为12250元.28.(1)(2)203AC =;(3)7534 29.(1)(2)m=3,另一根为3;。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。
人教版九年级上册数学期末考试试卷含答案详解
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列电视台的台标,是中心对称图形的是()A.B.C.D.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣23.直径分别为8和6的两圆相切,则这两圆的圆心距等于()A.14B.2C.14或2D.7或14.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠05.若两圆的半径分别为5和2,圆心距是4,则这两圆的位置关系是()A.外离B.外切C.相交D.内含6.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.7.当x0>时,函数5yx=-的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A.12B.13C.14D.159.方程(x+1)(x-3)=5的解是A.x1=1,x2=-3B.x1=4,x2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=210.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是()A .(2﹣3x )(1﹣2x )=1B .12(2﹣3x )(1﹣2x )=1C .12(2﹣3x )(1﹣2x )=1D .12(2﹣3x )(1﹣2x )=2二、填空题11.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.12.已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx(m <0)图象上的两点,则y 1____y 2(填“>”“=”或“<”).13.如图,在Rt AOB 中,OA=OB=O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为_____.14.如图,在平面直角坐标系中,抛物线()22y a x k =-+(a 、k 为常数且0a ≠)与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作//CD x 轴与抛物线交于点D .若点A 的坐标为()4,0-,则OBCD的值为____.15.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.161x-x的取值范围是_______.173x-x的取值范围是_______.18.边长为1的正三角形的内切圆半径为________三、解答题19.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:D为BC的中点;(2)过点O作OF⊥AC,于F,若AF=74,BC=2,求⊙O的直径.20.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.21.如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2)AN AM CN CM=.22.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.23.如图,已知直线PT与⊙O相交于点T,直线PO与⊙O相交于A、B两点,已知PTA B∠=∠.(1)求证:PT是⊙O的切线;(2)若PT BT==24.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上是否有一点D (x ,y )使S △ABD =S △ABC ,求点D 的坐标.25.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C ,(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为,求BC 的长.26.如图,直线y =﹣13x +m 与x 轴,y 轴分别交于点B 、A 两点,与双曲线相交于C 、D 两点,过C 作CE ⊥x 轴于点E ,已知OB =3,OE =1.(1)求直线AB 和双曲线的表达式;(2)设点F 是x 轴上一点,使得2CEF COB S S △△=,求点F 的坐标.参考答案1.D 【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2.A 【解析】∵x 2+2x=0,∴x (x+2)=0,∴x=0或x+2=0,∴x 1=0或x 2=﹣2,故选A .3.D 【解析】当两圆外切时,则圆心距等于8÷2+6÷2=7;当两圆内切时,则圆心距等于8÷2-6÷2=1.故选D .4.A 【分析】分两种情况讨论:(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根.【详解】(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根:()4410k ∆=--≥,解得1k ≥-,综上所述,1k ≥-.故选:A .【点睛】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.5.C 【解析】∵两圆的半径分别为5和2,圆心距为4.则5-2=3<4<5+2=7,∴两圆相交.故选C 6.C 【详解】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM=DN=4,由垂径定理,勾股定理得:,∵AB ,CD 是互相垂直的两条弦,∴∠DPB=90°∵OM AB ⊥,ON CD ⊥,∴∠OMP=∠ONP=90°∴四边形MONP 是正方形,∴=选C 7.A 【分析】根据反比例函数()ky k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.【详解】∵反比例函数5yx=-的系数50-<,∴图象两个分支分别位于第二、四象限.∴当x0>时,图象位于第四象限.故选A.8.C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:1 4,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.9.B【解析】(x+1)(x-3)=5,x²-3x+x-3-5=0,x²-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,故选B.10.A【解析】人行通道的宽度为x千米,则矩形绿地的长为:12(2﹣3x)千米,宽为(1﹣2x)千米,由题意可列方程:2×12(2﹣3x)(1﹣2x)=12×2×1,即:(2﹣3x)(1﹣2x)=1,故选A.【点睛】本题考查了一元二次方程的应用,正确分析,根据题意找到等量关系列出方程是解题的关键.11.29【详解】根据题意,画出树形图如下:∵从树形图可以看出,摸出两球出现的所有等可能结果共有9种,两个球号码之和为5的结果有2种,∴两次摸取的小球标号之和为5的概率是2 9.12.>【解析】分析:m<0,在每一个象限内,y随x的增大而增大.详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,所以y2<y1,即y1>y2.故答案为>.点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.13.【详解】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.14.2【分析】由抛物线解析式可知抛物线对称轴直线x=2,由A、C的横坐标可知B、D的横坐标,进而求出OB=8,CD=4,即可解答OB.【详解】解:∵抛物线的解析式为y=a(x-2)2+k,∴抛物线的对称轴为直线x=2.∵点A的横坐标为-4,点C的横坐标为0,∴点B的横坐标为8,点D的横坐标为4,∴OB=8,CD=4,∴824OBCD==.故答案为2.【点睛】本题考查了抛物线与x轴的交点,根据抛物线的对称轴找出点B、D的横坐标是解题的关键.15.4【分析】要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.【详解】解:由题意知:展开图扇形的弧长是2×3π=6π,设母线长为L,则有12×6πL=15π,解得:L=5,∵由于母线,高,底面半径正好组成直角三角形,∴在直角△AOC中高AO4.故填:4.【点睛】此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般.x≥16.1【详解】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.x≥3【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x﹣3≥0,解得:x≥3,故答案为x≥3.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.18【解析】如图,∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=12,∴tan∠OBD=O O=∴内切圆半径12=,【点睛】本题主要考查了三角形的内切圆,根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形是解决本题的关键.19.(1)证明见解析;(2)⊙O的直径为4.【解析】试题分析:(1)连接AD,根据直径所对的圆周角是直角,以及三线合一定理即可证得;(2)先根据垂径定理,求得AE=2AF=72;再运用圆周角定理的推论得∠ADB=∠ADC=∠BEA=∠BEC=90°,从而可证得∴△BEC∽△ADC,即CD:CE=AC:BC,根据此关系列方程求解即可得⊙O的直径.试题解析:(1)连接AD∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴点D是BC的中点;(2)∵OF⊥AC于F,AF=7 4,∴AE=2AF=7 2,连接BE,∵AB为直径D、E在圆上,∴∠ADB=∠ADC=∠BEA=∠BEC=90°,∴在△BEC、△ADC中,∠BEC=∠ADC,∠C=∠C,∴△BEC∽△ADC,即CD:CE=AC:BC,∵D为BC中点,∴CD=12 BC,又∵AC=AB,∴12BC2=CE•AB,设AB=x,可得x(x﹣72)=2,解得x1=﹣12(舍去),x2=4,∴⊙O的直径为4.20.(1)证明见解析;(2)a的值为﹣或﹣2【解析】【试题分析】(1)欲证明方程总有两个不相等的实数根,只需证明根的判别式大于0即可.△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4>0,从而得证;(2)根据韦达定理,将x12+x22=10转化为两根之和与两根之积的形式,代入得到关于a的方程,从而求出a即可.x12+x22=(x1+x2)2﹣2x1x2=10,即(a+3)2﹣2(a+1)=10,解得a1=﹣2+,a2=﹣2﹣.【试题解析】(1)证明:△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4,∵(a+1)2≥0,∴(a+1)2+4>0,即△>0,∴方程总有两个不相等的实数根;(2)根据题意得x1+x2=﹣(a+3),x1x2=a+1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=10,∴(a+3)2﹣2(a+1)=10,整理得a2+4a﹣3=0,解得a1=﹣2+,a2=﹣2﹣,即a的值为﹣2+或﹣2﹣.【方法点睛】本题目是一道一元二次方程的题目,涉及到根的判别式与韦达定理.在证明一元二次方程根的情况时,通常通过证明根的判别式与0的大小关系解决问题.在涉及到两根的等量关系时,通常转化为两根之和与两根之积的形式,从而求出参数.21.(1)证明见解析;(2)证明见解析.【详解】试题分析:(1)要证M为BD的中点,即证BM=DM,由∠BAM=∠DAN,∠BCM=∠DCN,及圆周角的性质易证明△BAM∽△CBM,△DAM∽△CDM得出比例的乘积形式,可证明BM=DM;(2)欲证AN AMCN CM=,可以通过平行线的性质证明,需要延长AM交圆于点P,连接CP,证明PC∥BD,得出比例式,相应解决MP=CM的问题即可.试题解析:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA,又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM,∴△BAM∽△CBM,∴BM AMCM BM=,即BM2=AM•CM,①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则DM AMCM DM=,即DM2=AM•CM,②由式①、②得:BM=DM,即M为BD的中点;(2)如图,延长AM交圆于点P,连接CP,∴∠BCP=∠PAB=∠DAC=∠DBC,∵PC∥BD,∴AN AM NC PM=,③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP,而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM,④由式③、④得:AN AM CN CM=.22.不公平.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.试题解析:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P(姐姐参加)=416=14,P(弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(1)证明见解析;(2)6π【分析】(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT与⊙O 相切;(2)利用TP=TB得到∠P=∠B,而∠OAT=2∠P,所以∠OAT=2∠B,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12 AB,△AOT为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S扇形OA T-S△AOT进行计算.【详解】(1)证明:连接OT,∵AB是⊙O的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT,∴∠OAT=∠2,∵∠PTA=∠B,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT与⊙O相切;(2)∵PT BT==∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt△ABT中,设AT=a,则AB=2AT=2a,∴a 22=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形,11224AOT S ∴=⨯⨯= .∴阴影部分的面积2Δ 601360464AOT AOT S S ππ⨯=-=-=-扇形.【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.(1)1;(2)B (﹣12,0);(3)D 的坐标是(12,1)或(14,﹣1)或(14,﹣1)【分析】(1)把点A 的坐标代入函数解析式,利用方程来求m 的值;(2)令y =0,则通过解方程来求点B 的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A (1,0)代入y =﹣2x 2+x+m ,得﹣2×12+1+m =0,解得m =1;(2)由(1)知,抛物线的解析式为y =﹣2x 2+x+1.令y =0,则﹣2x 2+x+1=0,故x 134-±-,解得x 1=﹣12,x 2=1.故该抛物线与x 轴的交点是(﹣12,0)和(1,0).∵点为A (1,0),∴另一个交点为B 是(﹣12,0);(3)∵抛物线解析式为y =﹣2x 2+x+1,∴C (0,1),∴OC =1.∵S △ABD =S △ABC ,∴点D 与点C 的纵坐标的绝对值相等,∴当y =1时,﹣2x 2+x+1=1,即x (﹣2x+1)=0解得x =0或x =12.即(0,1)(与点C 重合,舍去)和D (12,1)符合题意.当y =﹣1时,﹣2x 2+x+1=﹣1,即2x 2﹣x ﹣2=0解得x =14.即点(14,﹣1)和(14,﹣1)符合题意.综上所述,满足条件的点D 的坐标是(12,111).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D 还可以在x 轴的下方是解题关键.25.(1)证明见解析;(2)BC=2.【详解】试题分析:(1)连接OB ,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB ,得出∠BAC=∠OBA ,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC ∽△PBO ,得出对应边成比例,即可求出BC 的长.试题解析:(1)证明:连接OB ,如图所示:∵AC 是⊙O 的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为,∴,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC OB OP=,8=,∴BC=2.考点:切线的判定26.(1)y=﹣13x+1,y=﹣43x;(2)F(﹣7,0)或(5,0);【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)根据三角形面积公式求得EF的长,即可求得点F的坐标;【详解】解:(1)∵OB =3,OE =1,∴B (3,0),C 点的横坐标为﹣1,∵直线y =﹣13x +m 经过点B ,∴0=﹣13×3+m ,解得m =1,∴直线为:y =﹣13x +1,把x =﹣1代入y =﹣13x +1得,y =﹣13×(﹣1)+1=43,∴C (﹣1,43),∵点C 在双曲线y =kx (k ≠0)上,∴k =﹣1×43=﹣43,∴双曲线的表达式为:y =﹣43x ;(2)∵OB =3,CE =43,∴S △COB =12×3×43=2,∵S △CEF =2S △COB ,∴S △CEF =12×EF ×43=4,∴EF =6,∵E (﹣1,0),∴F (﹣7,0)或(5,0).【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的运用.。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列交通标志中,是中心对称图形的是()A .B .C .D .2.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是 AC 的中点,则D ∠的度数是A .30°B .40︒C .50︒D .60︒3.下列事件中是不可能事件.....的是()A .守株待兔B .瓮中捉鳖C .水中捞月D .百步穿杨4.一元二次方程2x ﹣16=0的解是()A .x =4B .1x =4,2x =0C .1x =4,2x =﹣4D .x =85.将抛物线y =12x 2向左平移一个单位,所得抛物线的解析式为()A .y =12x 2+1B .y =12x 2﹣1C .y =12(x+1)2D .y =12(x ﹣1)26.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A .110B .910C .15D .457.某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x 名同学,根据题意,列出方程为()A .x (x+1)=1892B .x (x−1)=1892×2C .x (x−1)=1892D .2x (x+1)=18928.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切9.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③10.反比例函数y=﹣3x(x<0)如图所示,则矩形OAPB的面积是()A.3B.﹣3C.32D.﹣32二、填空题11.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.12.若某扇形花坛的面积为6m2,半径为3m,则该扇形花坛的弧长为_____m.13.己知正六边形的边长为2,则它的内切圆的半径为__________.14.如图, ABC的内切圆与三边分别相切于点D、E、F,若∠B=50°,则∠EDF=_____度.15.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形的边有公共点,则实数a的取值范围是_____.16.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最小值是_______.17.如图,AB 与O 相切于点B ,AO 的延长线交O 于点C ,连接BC ,若120ABC ∠=︒,3OC =,则劣弧BC 的长为___(结果保留π).18.二次函数y =4(x ﹣3)2+7的图象的顶点坐标是_____.三、解答题19.解方程:3(x ﹣4)2=﹣2(x ﹣4)20.已知关于x 的一元二次方程(a+1)x 2+2x+1﹣a 2=0有一个根为﹣1,求a 的值.21.在下面的网格图中,每个小正方形的边长均为1, ABC 的三个顶点都是网格线的交点,已知A ,B ,C 的坐标分别为(0,2),(﹣1,﹣1),(1,﹣2),将 ABC 绕着点C 顺时针旋转90°得到A B C ''△.在图中画出A B C ''△并写出点A '、点B ′的坐标.22.甲、乙两人分别从A、B、C这3个景点随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是.23.若a2+b2=c2,则我们把形如ax22=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a=3,b=4时,写出相应的“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax22cx+b=0(a≠0)必有实数根.24.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.25.如图,在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.26.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.27.如图,在平面直角坐标系中,抛物线l1:y=x2+bx+c过点C(0,﹣3),且与抛物线l2:y=﹣12x2﹣32x+2的一个交点为A,已知点A的横坐标为2.点P、Q分别是抛物线l1、抛物线l2上的动点.(1)求抛物线l1对应的函数表达式;(2)若点P在点Q下方,且PQ∥y轴,求PQ长度的最大值;(3)若以点A、C、P、Q为顶点的四边形为平行四边形,直接写出点P的坐标.参考答案1.D【分析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.A【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理解答.【详解】连接OB,∵点B是 AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选:A.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.3.C【分析】不可能事件是一定不会发生的事件,依据定义即可判断.【详解】解:A、守株待兔,不一定就能达到,是随机事件,故选项不符合;B、瓮中捉鳖是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,选项不符合;D、百步穿杨,未必达到,是随机事件,故选项不符合;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】先移项,写成2x=16的形式,从而把问题转化为求16的平方根.【详解】解:移项得2x=16,开方得,x=±4即1x=4,2x=﹣4.故选:C.【点睛】本题考查了直接开平方法求解一元二次方程,熟练掌握移项转化成2x=a(a≥0)是解题的关键.5.C【分析】按照“左加右减,上加下减”的规律.【详解】解:将抛物线y=12x2向左平移1个单位,得y=12(x+1)2;故选:C.【点睛】本题考查了抛物线的平移以及抛物线解析式的化规律:左加右减,上加下减.6.C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是21 105 .故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.7.C【解析】试题分析:∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1892.故选C.点睛:本题考查由实际问题抽象出二元一次方程组.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.9.A【分析】由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,用待定系数法求得解析式,再逐个选项分析或计算即可.【详解】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=40 9 -,∴h=409-(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=409-(t﹣3)2+40,解得t=3±2,故③错误;④令t=2,则h=409-(2﹣3)2+40=3209m,故④错误.综上,正确的有①②.故选:A.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法及二次函数的性质是解题的关键.10.A【解析】解:∵点P在反比例函数3yx=-(x<0)的图象上,∴可设P(x,3x-),∴OA=﹣x,PA=3x-,∴S矩形OAPB =OA•PA=﹣x•(3x-)=3,故选A.点睛:本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.11.-6【详解】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.12.4【分析】直接根据扇形的面积公式计算即可.【详解】解:设弧长为l,∵扇形的半径为3m,面积是6m2,∴136 2l⨯⋅=,∴l=4(m).故答案为4.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算公式是解题的关键.13【详解】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×2∴边长为214.65【分析】设△ABC的内切圆圆心为O,连接OE,OF,根据△ABC的内切圆与三边分别相切于点D、E、F,可得OE⊥AB,OF⊥BC,再根据四边形内角和可得∠EOF的度数,再根据圆周角定理即可得结论.【详解】解:如图,设△ABC的内切圆圆心为O,连接OE,OF,∵△ABC的内切圆与三边分别相切于点D、E、F,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵∠B=50°,∴∠EOF=180°﹣50°=130°,∴∠EDF=12∠EOF=65°.故答案为:65.【点睛】本题考查切线的性质,圆周角与圆心角的关系,四边形内角和,掌握切线的性质,圆周角与圆心角的关系,四边形内角和是解题关键.15.19≤a≤3【分析】求出抛物线经过两个特殊点时的a的值即可解决问题.【详解】解:设抛物线的解析式为y=ax2,当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=1 9,观察图象可知19≤a≤3,故答案为:19≤a≤3.【点睛】本题考查抛物线与正方形的交点问题,掌握抛物线与点的关系,利用待定系数方法求出抛物线张口最小时a的值与张口最大时a的值是解题关键.16.1【分析】当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,分别利用三角形中位线定理可求得OD和OP的长,则可求得PQ的最小值.【详解】当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,如图所示:∵AC为圆的切线,∴OD⊥AC,∵AC=8,BC=6,AB=10,∴AC2+BC2=AB2,∴∠ACB=90°,∴OD∥BC,且O为AB中点,∴OD为△ABC的中位线,∴OD=12BC=3,同理可得PO=12AC=4,∴PQ=OP-OQ=4-3=1,故答案是:1.【点睛】考查切线的性质及直角三角形的判定,先确定出当PQ最得最小值时点P的位置是解题的关键.17.2π;【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【详解】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC-∠ABO=30°,∵OB=OC,∴∠C=∠OBC=30°,∴∠BOC=120°,∴弧BC的长=1203=2 180ππ⨯,故答案为:2π.【点睛】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.18.(3,7)【分析】由抛物线解析式可求得答案.【详解】∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).19.x1=4,x2=10 3.【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=10 3.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.20.a=0或a=1【分析】将x=﹣1代入原方程可求出a的值.【详解】解:将x=﹣1代入原方程,得(a+1)﹣2+1﹣a2=0,整理得:a2﹣a=0,即:a(a﹣1)=0解得:a=0或a=1.【点睛】本题考查了一元二次方程的解,将x=-1代入原方程求出a值是解题的关键.21.见解析,(5,﹣1),(2,0)【分析】将点A、B分别绕点C顺时针旋转90°得到对应点,再与点C首尾顺次连接即可,根据点A、B、C坐标建立平面直角坐标系,从而得出点A′、B′的坐标.【详解】解:如图所示,△A′B′C即为所求,由△ABC绕点C旋转90°得△A′B′C则△ABC≌△A′B′CBC=B′C,AC=A′C设A′(m,n),B′(,a b)a-1=-1-(-2),a=2;b-(-2)=1-(-1),b=0,B′(2,0)m-1=2-(-2),m=5,n-(-2)=1-0,n=-1,A′(5,-1).【点睛】本题考查画旋转图形,求旋转后坐标,利用全等构造等式是解题关键22.(1)29;(2)1 3【分析】(1)列举出所有可能出现的结果,利用概率公式求解即可;(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.【详解】(1)解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,∴P (A 、B )=29;(2)共有9种可能出现的结果,其中选择景点相同的有3种,∴P (景点相同)=31=93.故答案为:13.【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键.23.(1)3x 22x+4=0;(2)见解析【分析】(1)由a =3,b =4,由a 2+b 2=c 2求出c =±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.【详解】(1)解:由a 2+b 2=c 2可得:当a =3,b =4时,c =±5,相应的勾系一元二次方程为3x 22x+4=0;(2)证明:根据题意,得2)2﹣4ab=2(a 2+b 2)﹣4ab=2(a ﹣b )2≥0∵△≥0,∴勾系一元二次方程ax 22cx+b =0(a≠0)必有实数根.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.24.(1)y=﹣2x+44(5≤x<443);(2)S=﹣2x2+44x,矩形场地的最大面积为242m2【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y﹣2)+(x﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,∵墙面长为34米∴y=﹣2x+44≤34解得x≥5∵x<y∴x<﹣2x+44解得x<44 3∴自变量x的取值范围是5≤x<44 3;(2)S=xy=x(﹣2x+44)=﹣2x2+44x=﹣2(x﹣11)2+242,∴当x=11时,S取得最大值,最大值为242,即矩形场地的最大面积为242m2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.25.(1)32yx;(2)5;(3)6432(,55【分析】(1)根据在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),可以求得点A的坐标,进而求得反比例函数的解析式;(2)根据题意和勾股定理可以求得OP的长;(3)根据题意可以求得点P的坐标,本题得以解决.【详解】解:(1)∵函数y =12x 的图象过点A (8,a ),∴a =12×8=4,∴点A 的坐标为(8,4),∵反比例函数y =k x (k≠0)图象过点A (8,4),∴4=8k ,得k =32,∴反比例函数的解析式为y =32x ;(2)设BP =b ,则AP =b+2,∵点A (8,4),AB ⊥x 轴于点B ,∴AB =4,∠ABP =90°,∴b 2+42=(b+2)2,解得,b =3,∴OP =8﹣3=5,即线段OP 的长是5;(3)设点D 的坐标为(d ,12d ),∵点A (8,4),点B (8,0),点P (5,0),S △ODP =S △ABO ,∴1258422d ⨯⨯=,解得,d =645,∴12d =325,∴点D 的坐标为(645,325).【点睛】本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.26.(1)证明详见解析;(2)163.【解析】试题分析:(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.试题解析:(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.考点:切线的判定;圆周角定理.27.(1)y =x 2﹣2x ﹣3;(2)12124;(3)(﹣1,0)或(3,0)或(43-,139)或(﹣3,12)【分析】(1)将x =2代入y =﹣12x 2﹣32x+2,从而得出点A 的坐标,再将A (2,﹣3),C (0,﹣3)代入y =x 2+bx+c ,解得b 与c 的值,即可求得抛物线l 1对应的函数表达式;(2)设点P 的坐标为(m ,m 2﹣2m ﹣3),则可得点Q 的坐标为(m ,﹣12m 2﹣32m+2),从而PQ 等于点Q 的纵坐标减去点P 的纵坐标,利用二次函数的性质求解即可;(3)设点P的坐标为(n,n2﹣2n﹣3),分两类情况:第一种情况:AC为平行四边形的一条边;第二种情况:AC为平行四边形的一条对角线.分别根据平行四边形的性质及点在抛物线上,得出关于n的方程,解得n的值,则点P的坐标可得.【详解】解:(1)将x=2代入y=﹣12x2﹣32x+2,得y=﹣3,∴点A的坐标为(2,﹣3).将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得23=2+23b cc⎧-+⎨-=⎩,解得23 bc=-⎧⎨=-⎩,∴抛物线l1对应的函数表达式为y=x2﹣2x﹣3;(2)∵点P、Q分别是抛物线l1、抛物线l2上的动点.∴设点P的坐标为(m,m2﹣2m﹣3),∵点P在点Q下方,PQ∥y轴,∴点Q的坐标为(m,﹣12m2﹣32m+2),∴PQ=﹣12m2﹣32m+2﹣(m2﹣2m﹣3),=﹣32m2+12m+5,∴当m=﹣112=3622⎛⎫⨯- ⎪⎝⎭时,PQ长度有最大值,最大值为:﹣23126⎛⎫⨯ ⎪⎝⎭+1126⨯+5=12124;∴PQ长度的最大值为121 24;(3)设点P的坐标为(n,n2﹣2n﹣3),第一种情况:AC为平行四边形的一条边.AC=2①当点Q在点P右侧时,点Q的坐标为(n+2,﹣12(n+2)2﹣32(n+2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,,得n2﹣2n﹣3=﹣12(n+2)2﹣32(n+2)+2,解得,n=0或n=﹣1.∵n=0时,点P与点C重合,不符合题意,舍去,∴n =﹣1,∴点P 的坐标为(﹣1,0);②当点Q 在点P 左侧时,点Q 的坐标为(n ﹣2,﹣12(n ﹣2)2﹣32(n ﹣2)+2),将Q 的坐标代入y =﹣12x 2﹣32x+2,得n 2﹣2n ﹣3=﹣12(n ﹣2)2﹣32(n ﹣2)+2,解得n =3或n =﹣43.∴此时点P 的坐标为(3,0)或(﹣43,139);第二种情况:AC 为平行四边形的一条对角线.Q 点的纵坐标y Q ,n 2-2n-3-(-3)=-3-y Q ,y Q =-n 2+2n-3,点Q 的坐标为(2﹣n ,﹣n 2+2n ﹣3),将Q 的坐标代入y =﹣12x 2﹣32x+2,得﹣n 2+2n ﹣3=﹣12(2﹣n )2﹣32(2﹣n )+2,解得,n =0或n =﹣3.∵n =0时,点P 与点C 重合,不符合题意,舍去,∴n =﹣3,∴点P 的坐标为(﹣3,12).综上所述,点P的坐标为(﹣1,0)或(3,0)或(43 ,139)或(﹣3,12).【点睛】本题考查抛物线解析式,平行y轴线段的最值,平行四边形的性质,掌握抛物线解析式,平行y轴线段的最值,平行四边形的性质,利用平形四边形的性质构造方程是解题关键.。
人教版九年级上册《数学》期末考试卷及答案【可打印】
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
人教版九年级数学上册期末考试试题及答案精选6套
人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。
4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。
5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。
9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九年级上册期末考试试卷一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形是中心对称图形的是()A.B.C.D.2.下列事件中,是确定事件的是()A.度量三角形的内角和,结果是360°B.买一张电影票,座位号是奇数C.打开电视机,它正在播放花样滑冰D.明天晚上会看到月亮3.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.84.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°5.下面方程中,有两个不等实数根的方程是()A.x2+x﹣1=0 B.x2﹣x+1=0 C.x2﹣x+=0 D.x2+1=06.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣27.给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③8.下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补9.如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )A. 133 B.92 C.4313 D.2 5 第6题图FE OBN11.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a+2b+c>0;③B点坐标为(4,0);④当x<﹣1时,y>0.其中正确的是()A.①②B.③④C.①④D.②③12.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.10二、填空题(本大题共6小题,每小题4分,共24分)13.方程(x﹣3)(x﹣9)=0的根是.14.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.15.某高速公路全长为,那么汽车行完全程所需的时间与行驶的平均速度之间的关系式为________.16.在△ABC中,∠C = 90°,AC = 8 cm,BC = 6 cm,以C为圆心,r为半径作圆,当r = 4.5 cm,4.8cm,5 cm时,圆与AB的位置关系分别是________;17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为.18.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′,点A的对应点为A′,则抛物线上PA段扫过的区域的面积为.三、解答题(本大题共8小题,共78分)19.如图,CD为⊙O直径,以C点为圆心,CO为半径作弧,交⊙O于A、B两点,求证:AD=BD=BA.20.已知P(﹣5,m)和Q(3,m)是二次函数y=2x2+bx+1图象上的两点.(1)求b的值;(2)将二次函数y=2x2+bx+1的图象沿y轴向上平移k(k>0)个单位,使平移后的图象与x轴无交点,求k的取值范围.21.已知x1,x2是方程x2-x-3=0的两个根,求x12+x22的值.【解析】根据根与系数的关系得x1+x2=1,x1-x2=-3∴x12+x22=(x1+x2)2-2x1x2=12-2×(-3)=7.请根据解题过程中体现的数学方法解决下面的问题:已知:△ABC的两边AB、AC的长是关于x的方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.试问:k取何值时,△ABC是以BC为斜边的直角三角形?22.去年以来,我国中东部地区持续出现雾霾天气.我市某记者为了了解“雾霾天气的主要成因”,随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计表:组别观点频数A 大气气压低,空气不流动120B 地面灰尘多,空气湿度低MC 汽车尾气排放ND 工厂造成的污染 180E 其它 90请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= ,扇形统计图中E 组所占百分比为 ;(2)若该市人口约有75万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C 组“观点”的概率是多少?23.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米324.在平面直角坐标系中,点A 的坐标是(0,3),点B 在x 轴上,将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F.(1)若点B 的坐标是()40- ,,请在图中画出△AEF ,并写出点E ,F 的坐标; (2)当点F 落在x 轴上方时,试写出一个符合条件的点B 的坐标.25.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠AOC :∠BOC=1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.26.已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.答案解析一、选择题1.【考点】中心对称图形.【分析】根据中心对称图形的特点即可求解.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.【考点】随机事件.【分析】不确定事件就是一定不发生或一定发生的事件,依据定义即可判断.解:A、度量三角形的内角和,结果是360°是不可能事件,是确定事件,选项正确;B、买一张电影票,座位号是奇数是不确定事件,选项错误;C、打开电视机,它正在播放花样滑冰是不确定事件,选项错误;D、明天晚上会看到月亮是不确定事件,选项错误.故选A.【点评】本题考查了确定事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【考点】根与系数的关系.【分析】利用根与系数的关系来求方程的另一根.解:设方程的另一根为α,则α+2=6,解得α=4.故选C.【点评】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.4.【考点】旋转的性质.【分析】先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.5.【考点】根的判别式.【分析】分别计算各选项的△,来判断根的情况,一元二次方程有两个不等实数根即判别式的值大于0.解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根.B、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根.C、∵△=b2﹣4ac=1﹣1=0,∴方程有两个相等的实数根.D、移项后得,x2=﹣1∵任何数的平方一定是非负数.∴方程无实根.故错误.故选A.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【考点】抛物线与x轴的交点.【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.【点评】本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>0;②抛物线与x轴无交点,则△<0;③抛物线与x轴有一个交点,则△=0.7.【考点】一次函数、正比例函数、反比例函数、二次函数的性质【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.【点睛】本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.8.【考点】命题与定理【分析】根据正多边形的内角和的计算公式、矩形的性质、菱形的判定、圆内接四边形的性质判断即可.解:正五边形的内角和=(5﹣2)×180°=540°,A是真命题;矩形的对角线相等,B是真命题;对角线互相垂直的平行四边形是菱形,C是假命题;圆内接四边形的对角互补,D是真命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.【分析】把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.解:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确;∵E是抛物线的顶点,∴AE=EC,∴无法得出AC=AE,故②错误;当y=3时,3=(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=2,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵(x+1)2+1=(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误.故选:B.【点评】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.10.【考点】切线的性质;矩形的性质,勾股定理【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.【点评】本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键11.【考点】二次函数图象与系数的关系;二次函数的性质.【分析】根据对称轴为x=1可判断出2a+b=0正确;当x=2时,4a+2b+c<0;根据抛物线的对称轴和A点坐标得到B点坐标为(3,0);由图象可知当x<﹣1时,y>0.解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴2a+b=0,故①正确;∵抛物线与y轴交于负半轴,即x=0时,y<0,又对称轴为x=1,∴x=2时,y<0,∴4a+2b+c<0,故②错误;∵点A坐标为(﹣1,0),对称轴为x=1,∴点B坐标为(3,0),故③错误;由图象可知当x<﹣1时,y>0.故④正确.故选:C.【点评】此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k.解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故选:C.【点评】本题考查了正方形的性质,全等三角形的判定与性质,反比例函数圄象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键【点评】本题考查了正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.二、填空题13.【考点】解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.14.【考点】概率公式【分析】根据题意和题目中的数据可以求得小明随意吃了一个,则吃到腊肉棕的概率.解:由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.15.【考点】反比例函数的应用【分析】根据路程=速度×时间,可得出t(h)与V(km/h)之间的关系式.解:由题意得,Vt=200,则故答案为:.【点睛】考查实际问题列反比例函数关系式,掌握路程=速度×时间是解题的关键.16.【考点】直线与圆的位置关系【分析】判断圆与直线AB边的位置关系,关键是比较点C到直线AB的距离与半径的大小关系.解:过C点作CD⊥AB,垂足为D,∵由勾股定理,得根据三角形计算面积的方法可知,BC×AC=AB×CD,∴时,圆与AB的位置关系是相离.时,圆与AB的位置关系是相切.时,圆与AB的位置关系是相交.故答案为:相离,相切,相交.【点睛】考查直线与圆的位置关系,根据等面积法求出点到直线的距离是解题的关键.17.【考点】全等三角形的判定,勾股定理,扇形的面积公式,旋转的性质【分析】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.解:∵∠ACB=90°,AC=BC=2,∴AB=2,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案为:.【点评】本题考查了扇形的面积公式,正确理解:阴影部分的面积等于扇形DAB的面积是关键.18.【考点】二次函数图象与几何变换.【分析】连结PA、P′A′,如图,作AH⊥PP′,利用抛物线的对称性得到抛物线上PA段扫过的区域的面积等于平行四边形APP′A′的面积,根据两点间的距离公式计算出OP==2,则PP′=2OP=4,再利用面积法得到OP•AH=×3×2,可计算出AH=,然后根据平行四边形的面积公式计算即可.解:连结PA、P′A′,如图,作AH⊥PP′,∵顶点为P(﹣2,2)的抛物线平移到顶点为P′的抛物线,∴抛物线上PA段扫过的区域的面积等于平行四边形APP′A′的面积,∵点P的坐标为(﹣2,2),∴OP==2,PP′=2OP=4,∴S△APO=OP•AH=×3×2,∴AH==,∴平行四边形APP′A′的面积=×4=12,即抛物线上PA段扫过的区域的面积为12.故答案为12.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.三、解答题19.【考点】圆周角定理【分析】利用CA=CB=CO可判断△OBC和△OAC都是等边三角形,则∠BCO=∠ACO=60°,∠BOC=∠AOC=60°,根据圆周角定理得∠ADB=60°,即∠ACD=∠BCD=∠ADB,所以,然后根据圆心角、弧、弦的关系易得AD=BD=BA.证明:∵CA=CB=CO,∴OB=BC=OC=OA=AC,∴△OBC和△OAC都是等边三角形,∴∠BCO=∠ACO=60°,∠BOC=∠AOC=60°,∴∠AOB=120°,∴∠ADB=60°,∴∠ACD=∠BCD=∠ADB,∴,∴AD=BD=BA.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等边三角形的判定与性质.20.【考点】二次函数图象上点的坐标特征;二次函数图象与几何变换;抛物线与x轴的交点.【分析】(1)利用P(﹣3,m)和Q(1,m)是二次函数y=2x2+bx+1图象上的两点,得出图象的对称轴,进而得出b的值;(2)利用图象与x轴无交点,则b2﹣4ac<0,即可求出k的取值范围.解:(1)∵点P、Q是二次函数y=2x2+bx+1图象上的两点,∴此抛物线对称轴是直线x=﹣1.∵二次函数的关系式为y=2x2+bx+1,∴有﹣=﹣1.∴b=4.(2)平移后抛物线的关系式为y=2x2+4x+1+k.要使平移后图象与x轴无交点,则有b2﹣4ac=16﹣8(1+k)<0,k>1.【点评】此题主要考查了二次函数图象与几何变换以及图象与x轴交点个数确定方法,利用二次函数的对称性得出对称轴是解题关键.21.【考点】勾股定理,一元二次方程根的判别式,根与系数的关系【分析】先根据根与系数的关系,用k表示出两边之积与两边之和的值;再利用勾股定理求出k 的值,然后将k值代入后解方程,最后还要验根.解:设边AB=a,AC=b.∵a、b是方程x2-(2k+3)x+k2+3k+2=0的两根∴a+b=2k+3,ab=k2+3k+2又∵△ABC是以BC为斜边的直角三角形,且BC=5∴a2+b2=25即(a+b)2-2ab=25∴(2k+3)2-2(k2+3k+2)=25∴k2+3k-10=0∴k1=-5或k2=2.当k=-5时,方程为x2+7x+12=0解得:x1=-3,x2=-4(舍去).当k=2时,方程为x2-7x+12=0,解得:x1=3,x2=4∴当k=2时,△ABC是以BC为斜边的直角三角形.【点评】本题重点考查了勾股定理及一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题。