期末模拟试卷E---

合集下载

专题07 八年级下册期末模拟试卷一(解析版)-2020-2021学年八年级数学期末复习特训(人教版)

专题07 八年级下册期末模拟试卷一(解析版)-2020-2021学年八年级数学期末复习特训(人教版)

专题07 八年级下册期末模拟试卷一(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在▱ABCD中,AB=6,AD=4,则▱ABCD的周长为()A.10B.20C.24D.12【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC=4,∴▱ABCD的周长为:2×(AB+AD)=2×(6+4)=20,故选:B.2.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.3.(3分)若甲、乙、丙、丁四人参加跳远比赛,经过几轮初赛,他们的平均成绩相同,方差分别是:=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45.你认为最应该派去的是()A.甲B.乙C.丙D.丁【解答】解:∵=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45,∴S乙2<<S丙2<S丁2,∴乙的成绩更加稳定,故选:B.4.(3分)下列计算正确的是()A.÷=B.﹣=C.+=D.×=【解答】解:A、原式==,所以A选项错误;B、与不能合并,所以B选项错误;C、与不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.5.(3分)下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,【解答】解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.6.(3分)下列各曲线中不能表示y是x的函数的是()A.B.C.D.【解答】解:当x取一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项A中的曲线,当x取一个值时,y的值可能有2个,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对.故A中曲线不能表示y是x的函数,故选:A.7.(3分)数学老师为了判断小颖的数学成绩是否稳定,对小颖在中考前的6次模拟考试中的成绩进行了统计,老师应最关注小颖这6次数学成绩的()A.方差B.中位数C.平均数D.众数【解答】解:由于方差反映数据的波动大小,故老师最关注小颖这6次数学成绩的稳定性,就是关注这6次数学成绩的方差.故选:A.8.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【解答】解:A.由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;B.由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不合题意;C.由AD∥BC,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D.由AB=AD,CD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;故选:C.9.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2B.x<﹣2C.x<2D.x>2【解答】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),∴当x>2时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集是x>2.故选:D.10.(3分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则的值为()A.B.C.D.【解答】解:如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2x,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2x,∴FM=PH=(PM﹣HF)=(2x﹣2x)=(﹣)x,∴==.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若二次根式有意义,则x的取值范围是x≥.【解答】解:∵二次根式有意义,∴2x﹣1≥0,解得:x≥.故答案为:x≥.12.(3分)如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞13米.【解答】解:如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC===13.答:小鸟至少要飞13米.故答案为:13.13.(3分)已知a,b,c,d的平均数是3,则2a﹣1,2b﹣1,2c﹣1,2d﹣1的平均数是5.【解答】解:∵a,b,c,d的平均数是3,∴a+b+c+d=12,∴[(2a﹣1)+(2b﹣1)+(2c﹣1)+(2d﹣1)]÷4=(2a﹣1+2b﹣1+2c﹣1+2d﹣1)÷4=[2(a+b+c+d)﹣4]×=﹣1=﹣1=6﹣1=5,故答案为:5.14.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的面积分别是3、5、2、3,则正方形E的边长是.【解答】解:设中间两个正方形的边长分别为x、y,正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13;即最大正方形E的面积为:z2=13.则正方形E的边长是.故答案为:.15.(3分)已知直线y=kx+b,若k+b+kb=0,且kb>0,那么该直线不经过第一象限.【解答】解:∵k+b+kb=0,且kb>0,∴k+b=﹣kb<0,k和b同号,∴k<0,b<0,∴直线y=kx+b经过第二、三、四象限,不经过第一象限,故答案为:一.16.(3分)已知三角形一边上的中线,与三角形三边有如下数量关系:三角形两边的平方和等于第三边一半的平方与第三边中线平方之和的2倍.即:如图1,在△ABC中,AD是BC边上的中线,则有AB2+AC2=2(BD2+AD2).请运用上述结论,解答下面问题:如图2,点P为矩形ABCD外部一点,已知P A=PC=3,若PD=1,则AC的取值范围为﹣1≤AC<2.【解答】解:如图,连接BD交AC于O,连接PO,∵四边形ABCD是矩形,∴AC=BD,AO=CO=BO=DO,∵PO是△ACP的中线,也是△PBD的中线,∴P A2+PC2=2(AO2+PO2),PB2+PD2=2(PO2+OD2),∴P A2+PC2=PB2+PD2,∴9+9=1+PB2,∴PB=,在△PBD中,﹣1≤BD≤+1,∴﹣1≤AC≤+1,当点P在AD上时,CD===2,∴AC===2,故答案为:﹣1≤AC<2.三.解答题(共8小题,满分72分)17.(6分)计算:(1)﹣+;(2)(+1)(﹣1)+÷.【解答】解:(1)原式=3﹣4+=0;(2)原式=()2﹣1+=2﹣1+=1+.18.(8分)如图,在△ABC中,点D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是平行四边形;(2)若AB=BC,连接BE、DF.请判断BE与DF的位置关系,并说明理由.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE是△CAB的中位线,EF是△ABC的中位线,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形;(2)解:BE与DF的位置关系为:BE⊥DF,如图所示,理由如下:由(1)得:DE是△CAB的中位线,EF是△ABC的中位线,∴DE=AB,EF=BC,∵AB=BC,∴DE=EF,∵四边形BDEF是平行四边形,∴四边形BDEF是菱形,∴BE⊥DF.19.(8分)已知一次函数y=(m﹣3)x+m+1的图象经过点(1,2).(1)求此一次函数解析式,并画出函数图象;(2)求此一次函数图象与坐标轴围成图形的面积.【解答】解:(1)把x=1,y=2代入一次函数解析式,得(m﹣3)+m+1=2.解得m=2.所以一次函数解析式为:y=﹣x+3.函数图象见右图.(2)当x=0时,y=3;当y=0时,x=﹣3.所以直线和x、y轴围成的三角形的面积为:×3×3=.20.(8分)某校九年级的一次数学小测试由20道选择题构成,每题5分.共100分.为了了解本次测试中同学们的成绩情况,某调查小组从中随机调查了部分同学,并根据调查结果绘制了如下尚不完整的统计图:请根据以上信息解答下列问题:(1)本次调查的学生人数为50人;(2)调查的学生中,该次测试成绩的中位数是90分;(3)调查的学生中,该次测试成绩的众数为95分;(4)补全条形统计图;(5)若测试成绩80分或80分以上为“优秀”,则估计该校九年级800名学生中,本次测试成绩达到“优秀”的人数是多少?【解答】解:(1)本次调查的学生有:5÷10%=50(人),故答案为:50;(2)∵3+18=21,21+12=33,∴这组数据的中位数是(90+90)÷2=90(分),故答案为:90;(3)85分的学生有50﹣(2+5+12+18+3)=10(人),故这组数据的众数是95分,故答案为:95;(4)由(3)知,85分的学生有10人,补全的条形统计图如右图所示;(5)800×=768(人),即该校九年级800名学生中,本次测试成绩达到“优秀”的人数是768人.21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,将△DCE沿DE翻折,使点C落在点A处.(1)设BD=x,在Rt△ABC中,根据勾股定理,可得关于x的方程62+x2=(8﹣x)2;(2)分别求DC、DE的长.【解答】解:(1)∵将△DCE沿DE翻折,使点C落在点A处.∴AD=CD,AE=EC,设BD=x,则DC=AD=8﹣x,∵AB2+BD2=AD2,∴62+x2=(8﹣x)2,故答案为:62+x2=(8﹣x)2;(2)由(1)得62+x2=(8﹣x)2,解得x=,∴BD=,∴DC=BC﹣BD=8﹣=.∵AB=6,BC=8,∴AC===,∴CE=AC=5,∴DE===.22.(10分)甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶.甲同学到达山顶休息1小时后再沿原路下山.他们离山脚的距离S(千米)随时间t(小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:(1)分别求出甲、乙两名同学上山过程中S与t的函数解析式;(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75千米;①求甲同学下山过程中S与t的函数解析式;②相遇后甲、乙两名同学各自继续下山和上山,求当乙到山顶时,甲离乙的距离是多少千米?【解答】解:(1)设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为S甲=k1t,S=k2t乙由题意,得2=4k1,2=6k2∴k1=,k2=,∴解析式分别为S甲=t,S乙=t;(2)①当y=4﹣0.75时,,解得t=,∴点F(,),甲到山顶所用时间为:4=8(小时)由题意可知,点D坐标为(9,4),设甲同学下山过程中S与t的函数解析式为s=kt+b,则:,解答,∴甲同学下山过程中S与t的函数解析式为s=﹣t+13;②乙到山顶所用时间为:(小时),当x=12时,s=﹣12+13=1,当乙到山顶时,甲离乙的距离是:4﹣1=3(千米).23.(12分)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD相交于点O.点M从点B向点C运动(到点C时停止),点N为CD上一点,且∠MAN=60°,连接AM交BD于点P.(1)求菱形ABCD的面积;(2)如图1,过点D作DG⊥AN于点G,若BM=4﹣2,求NG的长;(3)如图2,点E是AN上一点,且AE=AP,连接BE、OE.试判断:在运动过程中,BE+OE是否存在最小值?若存在,请求出;若不存在,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=2,∠ABC=∠ADC=60°,AC⊥BD,∴△ABC,△ACD都是等边三角形,∵∠AOB=90°,∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∴AC=2AO=2,BD=2OB=2,∴S菱形ABCD=•BD•AC=×2×2=2.(2)如图1中,过点A作AT⊥CD于T.∵△ABC,△ACD都是等边三角形,∴∠ACN=∠ABM=60°,AB=AC,∵∠MAN=∠BAC=60°,∴∠BAM=∠CAN,∴△BAM≌△ACN(ASA),∴BM=CN=4﹣2,∵AC=AD,AT⊥CD,∴CT=DT=1,AT=,∴TN=CT﹣CN=1﹣(4﹣2)=2﹣3,∴AN===3﹣,∵S△ADN=•AN•DG=•DN•AT,∴DG==,∴GN===2﹣.(3)如图2中,取CD的中点G,连接BG,CE,EG,过点G作GH⊥BD于H.∵∠BAC=∠P AE=60°,∴∠BAP=∠CAE,∵AB=AC,AP=AE,∴△BAP≌△CAE(SAS),∴∠ABP=∠ACE=30°,∵∠ACD=60°,∴∠OCE=∠GCE,∵∠COD=90°,∠ODC=∠ADC=30°,∴CD=2OC,∵CG=GD,∴OC=CG,∵CE=CE,∴△OCE≌△GCE(SAS),∴OE=EG,∴BE+OE=BE+EG≥BG,在Rt△BGH中,∵∠GHB=90°,GH=DG=,BH=,∴BG===,∴BE+OE≥,∴BE+OE的最小值为.24.(12分)如图,在平面直角坐标系xOy中,已知直线l1:y=x﹣2和直线l2:y=2x﹣4相交于点A.(1)已知点P(1﹣t,9﹣3t),求证:无论t为何值,点P总在直线y=3x+6上;(2)直线y=3x+6分别与x轴、y轴交于B、C两点,平移线段BC,使点B、C的对应点M、N分别落在直线l1和l2上,请你判断四边形BMNC的形状,并说明理由;(3)在(2)问的条件下,已知直线y=mx﹣6m+8 把四边形BMNC的面积分成1:3两部分,求m的值.【解答】(1)证明:对于直线y=3x+6,当x=1﹣t时,y=3(1﹣t)+6=﹣3t+9,∴P(1﹣t,9﹣3t)在直线y=3x+6上.(2)解:∵直线y=3x+6分别与x轴、y轴交于B、C两点,∴B(﹣2,0),C(0,6),∵线段MN是由线段BC平移得到,∴可以假设M(t,t﹣2),N(t+2,t﹣2+6),即N(t+2,t+4),∵N(t+2,t+4)在直线y=2x﹣4上,∴t+4=2(t+2)﹣4,解得t=4,∴M(4,2),N(6,8),∴BM==2,BC==2,∴BM=BC,∵BC=MN,BC∥MN,∴四边形BMNC是平行四边形,∵BC=BM,∴四边形BMNC是菱形.(3)∵直线y=mx﹣6m+8,∴x=6时,y=8,∴直线y=mx﹣6m+8经过定点(6,8),∴直线y=mx﹣6m+8经过点N(6,8),∵直线y=mx﹣6m+8把四边形BMNC的面积分成1:3两部分,∴直线y=mx﹣6m+8经过BC的中点G或经过BM的中点H,∵G是BC的中点,H是BM的中点,∴G(﹣1,3),H(1,1),把G(﹣1,3)代入y=mx﹣6m+8得到m=,把H(1,1)代入y=mx﹣6m+8得到m=,综上所述,满足条件的m的值为或.。

2022-2023学年高二数学下学期期末模拟试卷(选修+必修)(解析版)

2022-2023学年高二数学下学期期末模拟试卷(选修+必修)(解析版)

绝密★考试结束前2022-2023学年高二下学期期末数学模拟试卷(试卷满分150分,考试用时120分钟)姓名___________ 班级_________ 考号_______________________注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.(2023春·湖南长沙·高二望城一中校考期末)已知集合{|27}A x x =−≤<,2{|1}B x x=≥,则()R A B 为( )A .{|27}x x −≤<B .{|20x x −≤<或27}x <<C .{|20x x −≤≤或27}x <<D .{|20x x −≤<或27}x ≤< 【答案】C【解析】因为2{|1}{|02}Bx x x x=≥=<≤,则{|0R B x x =≤ 或2}x >, 所以(){}|27{|0R A B x x x ∩−≤<∩≤ 或2}x >,{|20x x =−≤≤或27}.x <<故选:C 2.(2023秋·湖北恩施·高二校联考期末)已知()sin ,1a α= ,()1,2cos b α= ,若a b ⊥ ,则πtan 4α−=( )A .3−B .13− C .1− D .3 【答案】D【解析】因为a b ⊥,所以有sin 2cos 0αα+=,即tan 2α , 所以πtan 13tan 341tan 1ααα−−−=== +−.故选:D 3.(2023秋·江西萍乡·高二统考期末)从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为( ) A .12 B .35C .23 D .25【答案】A【解析】令事件A 为甲被选中的情况,事件B 为乙被选中的情况,故()P A 2435C 3C 5=,()1335C 3C 10P AB ==, 故()1(|)()2P AB P B A P A ==.故选:A . 4.(2022春·山东德州·高二校考期末)已知某8个数的期望为5,方差为3,现又加入一个新数据5,此时这9个数的期望记为()E X ,方差记为()D X ,则A .()5,()3E X D X => B .()5,()3E X D X =< C .()5,()3E X D X <> D .()5,()3E X D X << 【答案】B【解析】根据题意可知,58559E X ×+==(),238(55)8()393D X ×+−==<,故选B. 5.(2023秋·山东滨州·高二统考期末)如图,二面角A EF C −−的大小为45 ,四边形ABFE 、CDEF 都是边长为1的正方形,则B 、D 两点间的距离是( )A【答案】B【解析】因为四边形ABFE 、CDEF 都是边长为1的正方形,则AE EF ⊥,DE EF ⊥,又因为二面角A EF C −−的大小为45,即45AED ∠=,则,45EA ED =, 因为DB DE EA AB EA ED AB =++=−+ ,由图易知AB EA ⊥ ,AB ED ⊥,=故选:B.6.(2023秋·广东深圳·高二校考期末)已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x −是偶函数,则下列结论错误的是( )A .()f x 的图象关于直线=1x −对称B .()f x 的图象关于点(1,0)对称C .()31f −=D .()f x 的一个周期为8 【答案】C【解析】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x −+=−+∴−+=−+, 即()()2f x f x −+=−,即()()20f x f x +−+=, 故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x −是偶函数,故()()()()2121,11f x f x f x f x −−=−∴−−=−, 即()()2f x f x −−=,故()f x 的图象关于直线=1x −对称,A 结论正确; 由以上可知()()()22f x f x f x =−−=−−+,即()()22f xf x −=−+,所以()()4f x f x +=−,则()()4()8x x f f f x =−=++, 故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x −+=−+,令0x =,可得(1)(1),(1)0f f f =−∴=, 而()f x 的图象关于直线=1x −对称,故()30f −=,C 结论错误,故选:C 7.(2023秋·陕西西安·高二长安一中校考期末)已知函数()f x 的定义域为ππ,22−,其导函数是()f x ′. 有()()cos sin 0f x x f x x ′+<,则关于x 的不等式()π2cos 3f x f x<的解集为( )A .ππ,32B .ππ,62C .ππ,63−− D .ππ,26 −−【答案】A【解析】构造函数()()cos f x g x x=,其中ππ,22x∈−,则()()()2cos sin 0cos f x x f x xg x x′+′=<,所以,函数()g x 在ππ,22−上单调递减,因为ππ,22x ∈− ,则cos 0x >,由()π2cos 3f x f x < 可得()π3πcos cos 3f f x x<, 即()π3g x g < ,所以,π3ππ22x x >−<< ,解得ππ32x <<, 因此,不等式()πcos 3f x x <的解集为ππ,32.故选:A.8.(2023春·山东济南·高二统考期末)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作圆D 的切线与C 的两支分别交于M ,N 两点,且1245F NF ∠=°,则C 的离心率为( ) AC【答案】D【解析】如图,设双曲线的方程为22221x y a b−=,则AD a =. 设切线MN 与圆D 相切于点A ,过点2F 作2F B MN ⊥,垂足为B ,则2//AD BF .所以,有121212AD DFBF F F ==,所以222BF AD a ==. 又1245F NF ∠=°,2F B MN ⊥,所以2F BN 为等腰直角三角形, 所以22BN BF a ==,根据双曲线的定义可得,122NF NF a −=,所以12NF a =+.在12F NF △中,由余弦定理可得,222121212212cos F F NF NF NF NF F NF =+−⋅∠.所以,()()()2222422212ca a a =++−×+×,所以,223c a =,c =.所以,C 的离心率==c ea.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(2022春·河北石家庄·高二统考期末)下列说法正确的是( )A .甲、乙、丙、丁4人站成一排,甲不在最左端,则共有1333C A 种排法B .3名男生和4名女生站成一排,则3名男生相邻的排法共有4343A A 种C .3名男生和4名女生站成一排,则3名男生互不相邻的排法共有4345A A 种D .3名男生和4名女生站成一排,3名男生互不相邻且女生甲不能排在最左端的排法共有1296种【答案】ACD【解析】对于A :先排最左端,有13C 种排法,再排剩余3个位置,有33A 种排法,则共有1333C A 种排法,故A 正确;对于B :3名男生相邻,有33A 种排法,和剩余4名女生排列,相当于5人作排列,有55A 种排法,所以共有5335A A 种排法,故B 错误;对于C :先排4名女生,共有44A 种排法,且形成5个空位,再排3名男生,共有35A 4345A A 种排法,故C 正确;对于D :由C 选项可得3名男生和4名女生站成一排,则3名男生互不相邻的排法共有4345A A 种排法,若女生甲在最左端,且男生互不相邻的排法有3334A A 种排法,所以3名男生互不相邻且女生甲不能排在最左端的排法共有4345A A -3334A A =1296种,故D 正确.故选:ACD10.(2022春·湖北孝感·高二统考期末)已知数列{}n a 的前n 项和为n S ,且()*112,22n n a a S n N +==+∈,下列说法正确的有( )A .数列{}n a 是等比数列B .123n n a −=×C .数列{}n a 是递减数列D .数列{}n a 是递增数列 【答案】ABD【解析】由122n n a S +=+,则()1222n n a S n −+≥ 两式相减可得12n n n a a a +=−,即()132n n a a n +=≥ 由题意21122226a S a =+=+=,满足213a a =所以()*13n n a a n N +=∈,所以数列{}n a 是等比数列,故选项A 正确. 则11123n n n a a q −−==×,故选项B 正确.又1112323430n n n n n a a −−+−=×−×=×>,所以数列{}n a 是递增数列 故故选项C 不正确,故选项D 正确.故选:ABD11.(2022春·山东泰安·高二统考期末)对两个变量y 和x 进行回归分析,得到一组样本数据()()()1122,,,,,,i i x y x y x y 则下列结论正确的是( )A .若求得的经验回归方程为0.60.3y x =−,则变量y 和x 之间具有正的线性相关关系 B .若这组样本数据分别是()()()()1,1,2,1.5,4,3,5,4.5,则其经验回归方程ˆˆˆybx a =+必过点()3,2.25 C .若同学甲根据这组数据得到的回归模型1的残差平方和为11E =.同学乙根据这组数据得到的回归模型2的残差平方和为1 2.1E =,则模型1的拟合效果更好D .若用相关指数2R 来刻画回归效果,回归模型3的相关指数230.41R =,回归模型4的相关指数240.91R =,则模型4的拟合效果更好 【答案】ACD【解析】对于A :因为回归方程为0.60.3y x =−,0.60>, 所以变量y 和x 之间具有正的线性相关关系,故A 正确; 对于B :样本数据()()()()1,1,2,1.5,4,3,5,4.5的样本中心点为()3,2.5,且经验回归方程ˆˆˆy bx a =+必过样本中心点,但()3,2.25不是样本中心点,故B 错误; 对于C :因为残差平方和越小的模型,其拟合效果越好,故C 正确;对于D :相关指数2R 越接近1,说明关系越强,拟合效果越好,D 正确;故选:ACD12.(2023秋·湖南衡阳·高二衡阳市八中校考期末)已知函数()32142f x x x x =+−,则( ) A .1x =是()f x 的极小值点 B .()f x 有两个极值点 C .()f x 的极小值为1 D .()f x 在[]0,2上的最大值为2 【答案】ABD【解析】因为()32142f x x x x =+−,所以()()()234134f x x x x x ′=+−=−+, 当()4,1,3x ∈−∞−+∞时,()0f x >′;当4,13x∈− 时,()0f x <′, 故()f x 的单调递增区间为4,3 −∞−和()1,+∞,单调递减区间为4,13−,则()f x 有两个极值点,B 正确; 且当1x =时,()f x 取得极小值,A 正确; 且极小值为()512f =−,C 错误;又()00f =,()22f =,所以()f x 在[]0,2上的最大值为2,D 正确.故选:ABD.三、填空题:本题共4小题,每小题5分,共20分13.(2023秋·河南南阳·高二统考期末)若232nx x−展开式的二项式系数和为32,则展开式中的常数项为______.(用数字作答) 【答案】40【解析】因为二项式系数和232n =,因此5n =,又()()5521055132C C 2kkk kkk k T x x x −−+ =−=−, 令2k =,常数项为()225C 240−=. 故答案为:40.14.(2022春·河北邯郸·高二大名县第一中学校考期末)已知π3sin()34x −=,且π06x <<,则π2πsin()cos()63x x +−+的值为___________.【解析】令πππ,363t x=−∈,则ππ2π,π623x t x t +=−+=− ∵π3sin()sin 34x t −==,则cos t =()π2ππsin cos sin cos π2cos 632x x t t t+−+=−−−==15.(2022春·湖北·高二统考期末)某地区调研考试数学成绩X 服从正态分布()295,N σ,且(70)0.15P X <=,从该地区参加调研考试的所有学生中随机抽取10名学生的数学成绩,记成绩在[]70,120的人数为随机变量ξ,则ξ的方差为________. 【答案】2.1【解析】由正态分布知,均值95µ=,且(70)0.15P X <=,所以(120)0.15P X >= 每个人的数学成绩在[]70,120的概率为(70120)P X ≤≤=2(0.50.15)0.7×−=, 所以10名学生的数学成绩在[]70,120的人数~(10,0.7)B ξ, 所以()100.70.3 2.1D ξ=××=. 故答案为:2.1.16.(2022春·山东临沂·高二统考期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x −>−,则m 的最小值是________. 【答案】3【解析】由于当12x x <时,都有121212ln ln 3x x x x x x −>−,所以121212213()33ln ln x x x x x x x x −−<=−,即121233ln ln x x x x +<+, 令3()ln f x x x=+,所以当任意的()12,,x x m ∈+∞,且当12x x <时,都有12()()f x f x <, 所以()f x 在(),m +∞上递增, 因为由22133()0x f x xx x−′=−=>,得3x >, 所以()f x 在(3,)+∞上递增,所以3m ≥,所以m 的最小值是3, 故答案为:3四.解答题:本小题共6小题,共70分。

2022-2023学年贵州省贵阳第一中学高二物理第二学期期末联考模拟试题含解析

2022-2023学年贵州省贵阳第一中学高二物理第二学期期末联考模拟试题含解析

2022-2023学年高二下物理期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、单项选择题:本题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、如图所示,MN是一根固定的通电长直导线,电流方向向上,今将一金属线框abcd放在导线上,让线框的位置偏向导线左边,两者彼此绝缘.当导线中的电流突然增大时,线框整体受力情况为( )A.受力向右B.受力向左C.受力向上D.受力为零2、在相同的时间内,某正弦交变电流通过一阻值为100 Ω的电阻产生的热量,与一电流3 A的直流电通过同一阻值的电阻产生的热量相等,则( )A.此交变电流的有效值为3 A,最大值为32AB.此交变电流的有效值为32A,最大值为6 AC.电阻两端的交流电压的有效值为300 V,最大值不确定D.电阻两端的交流电压的有效值为3002V,最大值为600 V3、物块A置于倾角为30°的斜面上,用轻弹簧、细绳跨过定滑轮与物块B相连,弹簧轴线与斜面平行,A、B均处于静止状态,如图,,A、B重力分别为10 N和4 N,不计滑轮与细绳间的摩擦,则( )A.弹簧对A的拉力大小为6 NB.弹簧对A的拉力大小为10 NC.斜面对A的摩擦力大小为1 ND.斜面对A的摩擦力大小为6 N4、关于加速度,下列说法中不正确的是()A.速度变化越大,加速度一定越大B.速度变化越快,加速度一定越大C.速度变化一样但所用的时间越短,加速度一定越大D.单位时间内速度变化越大,加速度一定越大5、如图所示两半径为r的圆弧形光滑金属导轨置于沿圆弧径向的磁场中,磁场所在的平面与轨道平面垂直。

山东省青岛市即墨市七级中学2023学年九年级数学第一学期期末考试模拟试题含解析

山东省青岛市即墨市七级中学2023学年九年级数学第一学期期末考试模拟试题含解析

2023学年九年级上学期数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC =BC =2,则图中阴影部分的面积是( )A .π4B .1π24+C .π2D .1π22+ 2.为了迎接春节,某厂10月份生产春联50万幅,计划在12月份生产春联120万幅,设11、12月份平均每月增长率为,x 根据题意,可列出方程为( )A .()()2501501120x x +++=B .()()250501501120x x ++++=C .()2501120x +=D .()50160x += 3.对于二次函数y =-(x +1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x =1;③其图象的顶点坐标为(-1,3);④当x>1时,y 随x 的增大而减小.其中正确结论的个数为( )A .1B .2C .3D .44.如图是一根空心方管,则它的主视图是( )A .B .C .D .5.如图,在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,且EF ∥BC ,FD ∥AB ,则下列各式正确的是( )A . AE CD EB BD = B .EF AE BC DF = C .EF DF BC AB =D .AE BD AB BC= 6.一元二次方程23210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .只有一个实数根7.如图,在Rt OAB 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G ,线段22AB =,OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()2501182x +=B .()()250501501182x x ++++= C .()()2501501182x x +++= D .()50501182x ++= 9.关于x 的方程x 2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是( )A .﹣5B .5C .﹣2D .210.若点112233(,),(,),(,)A x y B x y C x y 在反比例函数()0k y k x=<的图象上,且1230y y y >>>,则下列各式正确的是( )A .123x x x <<B .213x x x <<C .132x x x <<D .321x x x <<二、填空题(每小题3分,共24分)11.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________.12.如图是某小组同学做“频率估计概率”的实验时,绘出的某一实验结果出现的频率折线图,则符合图中这一结果的实验可能是_______(填序号).①抛一枚质地均匀的硬币,落地时结果“正面朝上”;②在“石头,剪刀,布”的游戏中,小明随机出的是剪刀;③四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1.13.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有________种14.已知反比例函数y =k x的图象经过点(3,﹣4),则k =_____. 15.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)16.如图,已知电流在一定时间段内正常通过电子元件“”的概率是,在一定时间段内,A ,B 之间电流能够正常通过的概率为 .17.如图,在正方形铁皮上剪下一个扇形和一个半径为3cm 的圆形,使之恰好围成一个圆锥,则圆锥的高为____.18.如图是某幼儿园的滑梯的简易图,已知滑坡AB 的坡度是1:3 ,滑梯的水平宽是6m ,则高BC 为_______m .三、解答题(共66分)19.(10分)如图,AB 为O 的直径,C 、D 为O 上两点,BC CD =,CF AD ⊥,垂足为F .直线CF 交AB 的延长线于点E ,连接AC .(1)判断EF 与O 的位置关系,并说明理由;(2)求证:2AC AB AF =⋅.20.(6分)平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少21.(6分)已知△ABC 是等腰三角形,AB=AC .(1)特殊情形:如图1,当DE ∥BC 时,有DB EC .(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P 是等腰直角三角形ABC 内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.22.(8分)某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;(2)求出图1中表示科普类书籍的扇形圆心角度数;(3)本次活动师生共捐书2000本,请估计有多少本文学类书籍?23.(8分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,(1)在图①中画一个60的角,使点C或点E是这个角的顶点,且以CE为这个角的一边:AP CE.(2)在图②画一条直线AP,使得//24.(8分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.①求S与x之间的函数关系式;②如何围矩形花圃ABCD的面积会最大,并求最大面积.(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x 为正整数时,请直接写出所有满足条件的x、n的值.25.(10分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.26.(10分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.参考答案一、选择题(每小题3分,共30分)1、A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【详解】∵AB为直径,∴∠ACB=90°,∵2,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=22AC=1,∴S阴影部分=S扇形AOC=290?13604ππ⨯=.故选A.【点睛】本题考查了扇形面积的计算:圆面积公式:S=πr 2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.2、C【分析】根据“当月的生产量=上月的生产量⨯(1+增长率)”即可得.【详解】由题意得:11月份的生产量为50(1)x +万幅12月份的生产量为250(1)(1)50(1)x x x ++=+万幅则250(1)120x +=故选:C .【点睛】本题考查了列一元二次方程,读懂题意,正确求出12月份的生产量是解题关键.3、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵2(1)3y x =-++,∴抛物线开口向上,对称轴为直线x =−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x =−1,∴当x >−1时,y 随x 的增大而增大,∴当x >1时,y 随x 的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.4、B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.5、D【分析】根据EF∥BC,FD∥AB,可证得四边形EBDF是平行四边形,利用平行线分线段成比例逐一验证选项即可.【详解】解:∵EF∥BC,FD∥AB,∴四边形EBDF是平行四边形,∴BE=DF,EF=BD,∵EF∥BC,∴AE AFBE FC=,AE EF AFAB BC AC==,∴AE BDAB BC=,故B错误,D正确;∵DF∥AB,∴AF BDFC DC=,DF FCAB AC=,∴AE BDBE DC=,故A错误;∵EF AFBC AC=,DF FCAB AC=,故C错误;故选:D.【点睛】本题考查了平行四边形的的判定,平行线分线段成比例的定理,掌握平行线分线段成比例定理是解题的关键.6、B【分析】直接利用判别式△判断即可.【详解】∵△=()()22431160---=>∴一元二次方程有两个不等的实根故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式△时,正负号不要弄错了.7、D【分析】分两种情况:①当P 点在OA 上时,即2≤x≤2时;②当P 点在AB 上时,即2<x≤1时,求出这两种情况下的PC 长,则y=12PC•OC 的函数式可用x 表示出来,对照选项即可判断.【详解】解:∵△AOB 是等腰直角三角形,AB=∴OB=1.①当P 点在OA 上时,即2≤x≤2时,PC=OC=x ,S △POC =y=12PC•OC=12x 2, 是开口向上的抛物线,当x=2时,y=2;OC=x ,则BC=1-x ,PC=BC=1-x ,S △POC =y=12PC•OC=12x (1-x )=-12x 2+2x , 是开口向下的抛物线,当x=1时,y=2.综上所述,D 答案符合运动过程中y 与x 的函数关系式.故选:D .【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.8、B【分析】由题意根据增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,进而即可得出方程.【详解】解:设该厂五、六月份平均每月的增长率为x ,那么得五、六月份的产量分别为50(1+x )、50(1+x )2, 根据题意得50+50(1+x )+50(1+x )2=1.故选:B .【点睛】本题考查由实际问题抽象出一元二次方程的增长率问题,注意掌握其一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量,x 为增长率.9、C【分析】根据两根之积可得答案.【详解】设方程的另一个根为a ,∵关于x 的方程x 2﹣mx+6=0有一根是﹣3,∴﹣3a =6,解得a =﹣2,故选:C .【点睛】本题主要考查了根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系:若方程两个为1x ,2x ,则12b c x x a a=-=,. 10、C 【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可. 【详解】解:反比例函数为()0k y k x=<,∴函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大, 又1230y y y >>>,10x ∴<,230x x >>,132x x x ∴<<.故选C .【点睛】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.二、填空题(每小题3分,共24分)11、20%【分析】根据增长(降低)率公式()21a x b ±=可列出式子.【详解】设月平均增长率为x.根据题意可得:()24001+576x=. 解得:0.2x =.所以增长率为20%.故答案为:20%.【点睛】本题主要考查了一元二次方程的应用,记住增长率公式很重要.12、②【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案. 【详解】抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误; 在“石头,剪刀,布”的游戏中,小明随机出的是剪刀的概率是13 ,故本选项符合题意; 四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1的概率是0.25故答案为②.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.13、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形; ③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;∴有1种可能使四边形ABCD 为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.14、-1.【分析】直接把点(3,﹣4)代入反比例函数y =k x ,求出k 的值即可. 【详解】解:∵反比例函数y =k x 的图象经过点(3,﹣4), ∴﹣4=3k ,解得k =﹣1. 故答案为:﹣1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:22325x x x --=-,即 2420x x -+=,配方得:2(2)2x -=, 解得:1223x =+>,2220x =->, ∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.16、.【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是,即某一个电子元件不正常工作的概率为,则两个元件同时不正常工作的概率为;故在一定时间段内AB 之间电流能够正常通过的概率为1-=.故答案为:.17、315cm【分析】利用已知得出底面圆的半径为3cm ,周长为6cm π,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为3cm 的圆形∴底面圆的半径为3cm∴底面圆的周长为6cm π∴扇形的弧长为906180R ππ⋅⋅= ∴12R cm =,即圆锥的母线长为12cm22123315cm -=.故答案是:315cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.18、1【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC= 13×6=1m.故答案为:1.【点睛】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.三、解答题(共66分)19、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2) 连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵BC CD,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF 是⊙O 的切线;(2)连接BC ,∵AB 为直径,∴∠BCA=90°,又∵∠FAC=∠BAC ,∴△ACF ∽△ABC , ∴AC AF AB AC=, ∴2AC AB AF =⋅.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.20、60元【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x-40)[400-10(x-50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.21、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴DB EC AB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=22在△PEA中,PE2=(222=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.22、(1)本次抽样调查的书籍有40本;作图见解析(2)108︒(3)估计有700本文学类书籍【分析】(1)根据艺术类图书8本占20%解答;(2)根据科普类书籍占总数的1240,即可解答;(3)利用样本估计总体.【详解】(1)8÷20%=40(本),40-8-14-12=6(本),答:本次抽样调查的书籍有40本.补图如图所示:(2)1236010840⨯︒=︒,答:图1中表示科普类书籍的扇形圆心角度数为108°.(3)14200070040⨯=(本),答:估计有700本文学类书籍.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,两图结合是解题的关键.23、(1)见解析;(2)见解析.【分析】(1)连接CF,EF,得到△ECF为等边三角形,即可求解:(2)连接CF,BD,交点即为P点,再连接AP即可.【详解】() 1FCE ∠或FEC ∠即为所求;()2直线AP 即为所求.【点睛】此题主要考查四边形综合的复杂作图,解题的关键是熟知正方形、等边三角形的性质.24、(1)①S=﹣3x 2+18x ;②当x =3米时,S 最大,为27平方米;(2)n =3,x =11;或n =4,x =9,或n =15,x =3,或n =48,x =1【分析】(1)①根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围; ②通过函数关系式求得S 的最大值;(2)根据等量关系“花圃的长=(n +1)×花圃的宽”写出符合题中条件的x ,n .【详解】(1)①由题意得:S =x ×(18﹣3x )=﹣3x 2+18x ;②由S =﹣3x 2+18x =﹣3(x ﹣3)2+27,∴当x =3米时,S 最大,为27平方米;(2)根据题意可得:(n +2)x +(n +1)x =99,则n =3,x =11;或n =4,x =9,或n =15,x =3,或n =48,x =1.【点睛】此题主要考查二次函数的应用,解题的根据是根据题意找到等量关系列出方程或函数关系进行求解.25、(1)5a 2+3ab ;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a 与b 的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b )(2a+b )-(a+b )2=6a 2+5ab+b 2-a 2-2ab-b 2=5a 2+3ab ;(2)当a=3,b=2时,原式=2533324518=63⨯⨯⨯=++.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.26、(1)x 1=﹣3,x 2=1;(2)12x x ==【分析】(1)移项,方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解.【详解】解:(1)移项得:x 2+2x ﹣3=1,分解因式得:(x +3)(x ﹣1)=1,可得x +3=1或x ﹣1=1,解得:x 1=﹣3,x 2=1;(2)方程变形得:x 2﹣3x =﹣32, 配方得:x 2﹣3x +94=﹣32+94,即(x ﹣32)2=34,解得:12x x == 【点睛】 此题考查了解一元二次方程-因式分解法及配方法,熟练掌握各种解法是解本题的关键.。

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9 3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.76.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为.12.(4分)分解因式:3y2﹣12=.13.(4分)计算:=.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).16.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,BD为△ABC 的角平分线,则点D到边AB的距离为.17.(4分)对于两个不相等的实数a,b,我们规定符号Min{a,b}表示a,b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min(其中x≠0)的解为.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.20.(6分)先化简再求值:,其中x=1.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是.22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.2022-2023学年八年级(上)期末数学模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9【解答】解:A、4+5=9,不能构成三角形;B、8+8>15,能构成三角形;C、5+5<11,不能够组成三角形;D、3+6=9,不能构成三角形.故选:B.3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.【解答】解:(m+1)(m﹣1)=m2﹣1,故选项A正确;(﹣3a2)2=9a4,故选项B错误;a2⋅a3=a5,故选项C错误;2ab•(﹣ab)=﹣a2b2,故选项D错误;故选:A.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.6.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD【解答】解:A、符合HL定理,能推出△ABD≌△ACD,故本选项错误;B、符合SAS定理,能推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;D、符合SSS定理,能推出△ABD≌△ACD,故本选项错误;故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°【解答】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°.∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°﹣∠EBC=40°.故选:C.9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.【解答】解:A、BD=BA,不能得到AD+CD=BC,所以A选项错误;B、DA=DC,AD+CD=2CD,所以B选项错误;C、CD=CA,不能得到AD+CD=BC,所以C选项错误;D、BD=AD,则AD+CD=BD+CD=BC,所以D选项正确.故选:D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个【解答】解:如图:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,交AB 于H,△BCF,△BCH就是等腰三角形;④分别作AB,BC,AC的垂直平分线,也可以得到三个分别以AB,BC,AC为底的等腰三角形.所以一共有1+1+2+3=7(个)三角形.故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为x≠﹣2.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣212.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)计算:=4.【解答】解:原式=3+1=4,故答案为:4.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.【解答】解:∵两个正方形的边长分别为2a,a,∴△ABC的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).【解答】解:小海慢跑的速度是a米/秒(a>0),则小东骑车的速度是3a米/秒,小海花的时间比小东花的时间多:﹣==(秒); 故答案为:. 16.(4分)如图,Rt △ABC 中,∠ABC =90°,AB =6,BC =8,BD 为△ABC 的角平分线,则点D 到边AB 的距离为 .【解答】解:过D 作DE ⊥AB 于E ,DF ⊥BC 于F ,∵BD 为△ABC 的角平分线,∴DE =DF ,设DE =DF =R ,∵∠ABC =90°,AB =6,BC =8,∴S △ABC ===24, ∴S △ABD +S △DBC =24,∵AB =6,BC =8,∴R +=24, 解得:R =,即DF =,∴点D 到边AB 的距离是, 故答案为:.17.(4分)对于两个不相等的实数a ,b ,我们规定符号Min {a ,b }表示a ,b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min(其中x ≠0)的解为 4 .【解答】解:(1)x>0时,∵Min(其中x≠0),∴﹣=﹣1,∴=1,解得:x=4.(2)x<0时,∵Min(其中x≠0),∴=﹣1,∴=1,解得:x=2,∵2>0,∴x=2不符合题意.综上,可得:方程Min(其中x≠0)的解为4.故答案为:4.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.【解答】解:原式=2x2﹣6xy+5xy﹣2x2=﹣xy.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.【解答】解:∵∠ANC=∠B+∠BAN,∴∠BAN=∠ANC﹣∠B=80°﹣50°=30°,∵AN是∠BAC角平分线,∴∠BAC=2∠BAN=60°,在△ABC中,∠C=180°﹣∠B﹣∠BAC=70°.20.(6分)先化简再求值:,其中x=1.【解答】解:原式=(﹣)×=×=,当x=1时,原式==﹣.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是(2,0).【解答】解:(1)如图所示,△A1B1C1即为所求,点A1(﹣1,1).(2)S=3×3﹣×1×2﹣×1×3﹣×2×3=.△ABC(3)如图,点P即为所求作,P(2,0).22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?【解答】解(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=60+10=70,答:甲、乙两种救灾物资每件的价格分别为70元、60元;(2)设购买乙种物品件数为m件,根据题意得:2000﹣m≥1.5m,解得:m≤800,∴乙种物资最多能购买800件.答:乙种物资最多能购买800件.23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.【解答】证明:(1)∵△ABC、△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=120°,∵△ABD≌△ACE,∴∠AEC=∠ADB=120°,∴∠CED=∠AEC﹣∠AED=60°,∵CD⊥BE,∴∠CDE=90°,∴∠DCE=30°,∴BD=CE=2DE=6.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=﹣1,n=﹣6;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.【解答】解:(1)将a=﹣3,b=2代入(x+a)(x+b)得:(x+a)(x+b)=(x﹣3)(x+2)=x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6.故答案为:﹣1,﹣6.(2)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n.∴,∴+====﹣4.(3)∵a+b=m,ab=n=﹣1,,∴,∴,∴,∴m2﹣2×(﹣1)+4m+2=0,∴m2+4m+4=0,∴(m+2)2=0,∴m=﹣2.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.【解答】解(1)证明:∵CD⊥BE,∴∠CDE=∠BAC=90°,∵∠CED=∠AEB,∴∠DCE=∠ABF,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS);(2)∵△ABF≌△ACD,∴AF=AD,∠BAF=∠CAD,∴∠BAC=∠F AD=90°,∴∠ADF=45°,∵∠ACB=∠ADB=45°,∠AED=∠BEC,∴∠DAE=∠CBE,∵∠DAF=∠COF=90°,∴AD∥OC,∴∠DAE=∠ACO,∴∠CBE=∠ACO,∵∠ACF=2∠CBF,∴∠ACF=2∠ACO,∴∠FCO=∠ACO.(3)过点D作DH⊥OC交OC于点H,∵∠AOC=∠COF=90°,∠ACO=∠FCO,∴∠OAC=∠OFC,∴AC=CF,∵CA=CF,CO⊥AF,∴OA=OF=2,∴AD=AF=4,∵AD∥OC,∴AO=DH=2,∵DH⊥OC,∠DCG=45°,∴DH=HC=2,∴OC=OH+HC=6.。

人体解剖学模拟试卷(E)

人体解剖学模拟试卷(E)
A.咽鼓管圆枕B.咽隐窝C.咽后壁D.咽鼓管咽口周围E.以上均不正确
3.关于阑尾的叙述,正确的是( )
A.附于盲肠的下壁B.平均长约10~12厘米C.小儿阑尾壁较厚故不易穿孔
D.手术中寻找阑尾最可靠的方法是三条结肠带
E.阑尾根部的体表投影位于脐与右髂前上棘连线的中点处
4.关于喉的叙述,错误的是( )
C.肱二头肌受正中神经支配D.上丘是听觉反射中枢
E.脊髓丘脑束传导痛温觉和精细触觉
19.下面不属于骶丛分支的神经是( )
A.闭孔神经B.臀上神经C.臀下神经D.阴部神经E.坐骨神经
20.关于下面的描述,错误的是( )
A.营养食管的动脉包括甲状腺下动脉、胸主动脉的食管支和胃左动脉
B.门静脉由肠系膜上静脉与脾静脉在胰头后方汇合而成
11.输精管全长可分为四部.即____________、__________、_________和_______
12.输尿管全长有三处狭窄,它们分别位于___________、___________和_________
13.腹膜在子宫与膀胱之间形成的陷凹称____________;在子宫与直肠之间的陷凹称_____________.
4、分别写出食管、输尿管和男性尿道的三个狭窄处,并说明这些狭窄处的临床意义?
5、简要说明房水的产生、循环和临床意义?
南昌大学医学院临床、预防、全科等专业
<<人体解剖学>>(E卷)参考答案及评分标准
一、单项选择题:在以下每道试题中,请从备选答案中选出1个最佳答案,并填入下列相应的答题框中。
题号
1
2
3
4
四、英译中题:
1、喉
2、瞳孔
3、小肠
4、呼吸系统

2022-2023学年四川成都市成华区数学九年级第一学期期末学业质量监测试题含解析

2022-2023学年四川成都市成华区数学九年级第一学期期末学业质量监测试题含解析

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图,在ABC △中,DE BC ∥,且DE 分别交AB ,AC 于点D ,E ,若:=2:3AD AB ,则△ADE 和△ABC 的面积之比等于( )A .2:3B .4:9C .4:5D .2:32.某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( ) A . B . C .D .3.如图,直线y =34x +3与x 、y 轴分别交于A 、B 两点,则cos∠BAO 的值是( )A .45B .35C .43D .544.如图是某体育馆内的颁奖台,其左视图是( )A .B .C .D . 5.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是( )A .4.5米B .8米C .5米D .5.5米6.如图,把长40cm ,宽30cm 的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm (纸板的厚度忽略不计),若折成长方体盒子的表面积是9502cm ,则x 的值是( )A .3B .4C .4.8D .5 7.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .8.如图,一张扇形纸片OAB ,∠AOB =120°,OA =6,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为( )A .3B .12π﹣3C 932D .6π9329.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是( )A .155B .14C .13D .15410.已知圆心O 到直线l 的距离为d ,⊙O 的半径r =6,若d 是方程x 2–x –6=0的一个根,则直线l 与圆O 的位置关系为( )A .相切B .相交C .相离D .不能确定二、填空题(每小题3分,共24分)11.如图,矩形纸片ABCD 中,8cm AB =,12cm BC =,将纸片沿EF 折叠,使点A 落在BC 边上的A '处,折痕分别交边AB 、AD 于点F 、E ,且5AF =.再将纸片沿EH 折叠,使点D 落在线段EA '上的D 处,折痕交边CD 于点H .连接FD ',则FD '的长是______cm .12.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表:节水量/m 3 0.2 0.25 0.3 0.4 0.5 家庭数/个 2 4 6 7 1 请你估计这400名同学的家庭一个月节约用水的总量大约是_____m 3.13.已知方程x 2+mx +3=0的一个根是1,则它的另一个根是_____,m 的值是______.14.已知函数22(0)(0)x x x y x x ⎧-+>=⎨≤⎩的图象如图所示,若直线y x m =+与该图象恰有两个不同的交点,则m 的取值范围为_____.15.写出一个顶点坐标是(1,2)且开口向下的抛物线的解析式________.16.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.17.如图,AB为O的直径,弦CD⊥AB于点E,点F在圆上,且DF=CD,BE=2,CD=8,CF交AB于点G,则弦CF的长度为__________,AG的长为____________.18.如图是小孔成像原理的示意图,点O与物体AB的距离为30cm,与像CD的距离是14cm,//AB CD. 若物体AB 的高度为15cm,则像CD的高度是_________cm.三、解答题(共66分)19.(10分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了15天的销售数量和销售单价,其中销售单价y(元/个)与时间第x天(x为整数)的数量关系如图所示,日销量p(个)与时间第x天(x为整数)的函数关系式为:()() 201801960900915x xPx x⎧+≤≤⎪=⎨-+≤≤⎪⎩()1直接写出y与x的函数关系式,并注明自变量x的取值范围;()2设日销售额为W(元) ,求W(元)关于x(天)的函数解析式;在这15天中,哪一天销售额w(元)达到最大,最大销售额是多少元;()3由于需要进货成本和人员工资等各种开支,如果每天的营业额低于1800元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态20.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.21.(6分)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?22.(8分)如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧AB所围成的封闭图形的面积.23.(8分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。

黑龙江省大庆市第六十九中学2022-2023学年数学九年级第一学期期末经典模拟试题含解析

黑龙江省大庆市第六十九中学2022-2023学年数学九年级第一学期期末经典模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O )20米的A 处,则小明的影子AM 的长为( )A .1.25米B .5米C .6米D .4米2.方程3x 2-4x -1=0的二次项系数和一次项系数分别为( )A .3和4B .3和-4C .3和-1D .3和13.小明在太阳光下观察矩形木板的影子,不可能是( )A .平行四边形B .矩形C .线段D .梯形4.如图,在ABC ∆中,90ACB ∠=,30B ∠=,AD 平分BAC ∠,E 是AD 的中点,若8AB =,则CE 的长为( )A .4B .33C 3D .2335.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( )A .a ∥bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b 6.有一等腰三角形纸片ABC ,AB =AC ,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A.甲B.乙C.丙D.丁7.如图所示的几何体的左视图为()A.B.C.D.8.抛物线y=4x2﹣3的顶点坐标是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)9.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm10.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是()A.5 B.1 C.-1 D.011.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A.71.4410⨯B.70.14410⨯C.81.4410⨯D.80.14410⨯12.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.35B.38C.58D.34二、填空题(每题4分,共24分)13.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.14.一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是 .15.已知二次函数222(1)22y x m x m m =--+--(m 为常数),若对于一切实数m 和均有y ≥k ,则k 的最大值为____________.16.如图是抛物线21(0)y ax bx c a =++≠图象的一部分,抛物线的顶点坐标为(1,3)A ,与x 轴的一个交点为(4,0)B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;②>0abc ;③抛物线与x 轴的另一个交点时(4,0)-;④方程23ax bx c ++=-有两个不相等的实数根;⑤4a b c m n -+<+;⑥不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是_____________.(填写序号即可)17.下面是“用三角板画圆的切线”的画图过程.如图1,已知圆上一点A ,画过A 点的圆的切线.画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.所以直线AD就是过点A的圆的切线.请回答:该画图的依据是______________________________________.18.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为________________.三、解答题(共78分)19.(8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=23AD,AC=3,求CD的长.20.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.21.(8分)在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣2ax+4(a≠0).(1)当a=1时,①抛物线G的对称轴为x=;②若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是;(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.22.(10分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.23.(10分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=43,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:FE AE EC DC=; (3)当△EFC 为等腰三角形时,求点E 的坐标.24.(10分)如图,已知抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,求抛物线经过A (1,0),C (0,3)两点,与x 轴交于A 、B 两点.(1)若直线y=mx+n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在该抛物线的对称轴x=﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC 为直角三角形的点P 的坐标.(提示:若平面直角坐标系内有两点P (x 1,y 1)、Q (x 2,y 2),则线段PQ 的长度221212()()x x y y -+-.25.(12分)已知:在同一平面直角坐标系中,一次函数4y x =-与二次函数22y xx c =-++的图象交于点(1,)A m -.(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标.26.解方程:(1)x 2+2x ﹣3=0;(2)x (x+1)=2(x+1).参考答案一、选择题(每题4分,共48分)1、B【分析】易得:△ABM ∽△OCM ,利用相似三角形对应边成比例可得出小明的影子AM 的长.【详解】如图,根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM =+ ,即1.6820AM AM=+, 解得AM=5m . 则小明的影子AM 的长为5米.故选:B .【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.2、B【详解】方程3x 2-4x -1=0的二次项系数是3,和一次项系数是-4.故选B.3、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.4、B【分析】首先证明AD BD =,然后再根据在直角三角形中,斜边上的中线等于斜边的一半,即12CE AD =. 【详解】解:90,30,ACB B ∠=︒∠=︒60.CAB ∴∠=︒AD CAB ∠又平分30CAD DAB ∴∠=∠=︒DAB B ∴∠=∠.AD BD ∴=1.2Rt ACD CD AD =在中, 设,AD BD x == 则12CD x =, 142AC AB == 在Rt ACD 中,222AC CD AD += 即222142x x ⎛⎫+= ⎪⎝⎭解得x = E 为AD 中点, 12CE AD ∴== 故选B【点睛】本题主要考查了角平分线的性质、直角三角形斜边上的中线,含30度角的直角三角形.5、C【详解】解:∵e 是单位向量,且2a e =-,4b e =,∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误,故选C.6、D【分析】根据相似三角形的性质求得甲的面积和丙的面积,进一步求得乙和丁的面积,比较即可求得.【详解】解:如图:∵AD ⊥BC ,AB =AC ,∴BD =CD =5+2=7,∵AD =2+1=3,∴S △ABD =S △ACD =1732⨯⨯=212 ∵EF ∥AD ,∴△EBF ∽△ABD , ∴ABD S S 甲=(57)2=2549, ∴S 甲=7514, ∴S 乙=2175362147-=, 同理ACD S S ∆丙=(23)2=49, ∴S 丙=143, ∴S 丁=212﹣143=356, ∵3575361461473>>>, ∴面积最大的是丁,故选:D .【点睛】本题考查了三角形相似的判定和性质,相似三角形面积的比等于相似比的平方.解题的关键是熟练掌握相似三角形的判定和性质进行解题.7、D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D 选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B 、C.8、B【分析】根据抛物线2y ax b =+的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标, 【详解】解:抛物线243y x =-, ∴该抛物线的顶点坐标为()0,3-,故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.9、B【分析】由CD ⊥AB ,可得DM=1.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=1cm ,OM=R-2, 在RT △OMD 中,OD²=DM²+OM²即R²=1²+(R-2)², 解得:R=5,∴直径AB 的长为:2×5=10cm . 故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.10、B【分析】根据平均数的定义计算即可.【详解】这组数据的平均数为(﹣1+0+1+2+3)÷5=1.故选:B.【点睛】本题考查了平均数.掌握平均数的求法是解答本题的关键.11、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】14400000=1.44×1.故选:A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、B【解析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、y=2x﹣1【分析】过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(4,0),B(0,2),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.【详解】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD , ∴∠ABO =∠CAD , 在△ACD 和△BAO 中ABO CAD AOB CDA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BAO (AAS ) ∴AD =OB =2,CD =OA =4, ∴C (6,4)设直线AC 的解析式为y =kx +b , 将点A ,点C 坐标代入得4064k b k b +=⎧⎨+=⎩, ∴28k b =⎧⎨=-⎩∴直线AC 的解析式为y =2x ﹣1. 故答案为:y =2x ﹣1. 【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,求得C 的坐标是解题的关键,难度中等. 14、12. 【解析】试题分析:如图所示,∵共有4种结果,两次摸出小球的数字和为偶数的有2次,∴两次摸出小球的数字和为偶数的概率=24=12.故答案为12.考点:列表法与树状图法. 15、134-【分析】因为二次函数系数大于0,先用含有m 的代数式表示出函数y 的最小值,得出min y 23m m =+-,再求出于m 的函数23M m m =+-的最小值即可得出结果.【详解】解: 222(1)22y x m x m m =--+--, 22min41(22)4(1)41m m m y ⨯⨯----=⨯23m m =+-,关于m 的函数为23M m m =+-, 2min 41(3)113=414M ⨯⨯--=-⨯,∴134k -≥,∴k 的最大值为134-. 【点睛】本题考查二次函数的最值问题,先将函数化为顶点式,即可得出最值. 16、①④【分析】①由对称轴x=1判断;②根据图象确定a 、b 、c 的符号;③根据对称轴以及B 点坐标,通过对称性得出结果;③根据23ax bx c ++=-的判别式的符号确定;④比较x=1时得出y 1的值与x=4时得出y 2值的大小即可;⑤由图象得出,抛物线总在直线的下面,即y 2>y 1时x 的取值范围即可.【详解】解:①因为抛物线的顶点坐标A (1,3),所以对称轴为:x=1,则-2ba=1,2a+b=0,故①正确; ②∵抛物线开口向下,∴a <0,∵对称轴在y 轴右侧,∴b >0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc <0,故②不正确;③∵抛物线对称轴为x=1,抛物线与x 轴的交点B 的坐标为(4,0),∴根据对称性可得,抛物线与x 轴的另一个交点坐标为(-2,0),故③不正确;④∵抛物线与x 轴有两个交点,∴b 2-4ac >0,∴23ax bx c ++=-的判别式,∆=b 2-4a (c+3)= b 2-4ac-12a,又a <0,∴-12a >0,∴∆= b 2-4ac-12a >0,故④正确;⑤当x=-1时,y 1=a-b+c >0;当x=4时,y 2=4m+n=0,∴a-b+c >4m+n,故⑤不正确; ⑥由图象得:2mx n ax bx c +>++的解集为x <1或x >4;故⑥不正确; 则其中正确的有:①④. 故答案为:①④. 【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b 的值都是利用抛物线的对称轴来确定;②抛物线与x 轴的交点个数确定其△的值,即b 2-4ac 的值:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x 轴的另一交点.17、90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线【详解】解:利用90°的圆周角所对的弦是直径可得到AB为直径,根据经过半径外端并且垂直于这条半径的直线是圆的切线可判断直线AD就是过点A的圆的切线.故答案为90°的圆周角所对的弦是直径,经过半径外端并且垂直于这条半径的直线是圆的切线.点睛:本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18、1 yx =【解析】∵∠BAC=30°, AB=AC,∴∠ACB=∠ABC=18030752-=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴CE ACAB DB=,即11yx=,∴1 yx =.故答案为1 yx =.三、解答题(共78分)19、(1)证明见解析;(1)CD=1.【解析】分析:(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(1)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=23AD、AC=3,即可求出CD的长.详(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(1)∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴BD CD AD AC=.∵BD=23 AD,∴23 BDAD=,∴2=3 CDAC,又∵AC=3,∴CD=1.点睛:本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(1)利用相似三角形的性质找出2=3 CDAC.20、(1)20s;(2)2511 222 y x⎛⎫=+-⎪⎝⎭【解析】(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为y =2x 2+2x , 当y =840时,2x 2+2x =840, 解得:x =20(负值舍去), 即他需要20s 才能到达终点; (2)∵y =2x 2+2x =2(x +12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x +2+12)2﹣12﹣5=2(x +52)2﹣112. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律. 21、(1)①1;②m >2或m <0;(2)﹣43<a ≤﹣12或a =1.【分析】(1)当a =1时,①根据二次函数一般式对称轴公式2bx a=-,即可求得抛物线G 的对称轴; ②根据抛物线的对称性求得()12,y 关于对称轴1x =的对称点为()10y ,,再利用二次函数图像的增减性即可求得答案; (2)根据平移的性质得出()1,0A -、()4,0B ,由题意根据函数图象分三种情况进行讨论,即可得解. 【详解】解:(1)①∵当a =1时,抛物线G :y =ax 2﹣2ax +1(a ≠0)为:224y x x =-+ ∴抛物线G 的对称轴为2122b x a -=-=-=; ②画出函数图象:∵在抛物线G 上有两点(2,y 1),(m ,y 2),且y 2>y 1,10a =>,∴①当1x >时,y 随x 的增大而增大,此时有2m >;②当1x <时,y 随x 的增大而减小,抛物线G 上点()12,y 关于对称轴1x =的对称点为()10y ,,此时有0m <. ∴m 的取值范围是2m >或0m <;(2)∵抛物线G :y =ax 2﹣2ax +1(a ≠0的对称轴为x =1,且对称轴与x 轴交于点M ∴点M 的坐标为(1,0) ∵点M 与点A 关于y 轴对称 ∴点A 的坐标为(﹣1,0) ∵点M 右移3个单位得到点B ∴点B 的坐标为(1,0)依题意,抛物线G 与线段AB 恰有一个公共点 把点A (﹣1,0)代入y =ax 2﹣2ax +1,可得43a =-; 把点B (1,0)代入y =ax 2﹣2ax +1,可得12a =-; 把点M (1,0)代入y =ax 2﹣2ax +1,可得a =1.根据所画图象可知抛物线G 与线段AB 恰有一个公共点时可得:4132a -<≤-或4a =. 故答案是:(1)①1;②m >2或m <0;(2)4132a -<≤-或4a = 【点睛】本题考查了二次函数图像的性质、二次函数图象上的点的坐标特征以及坐标平移,解决本题的关键是综合利用二次函数图象的性质.22、(1)见解析;(2)见解析;(3)8米【解析】【试题分析】(1)点B 在地面上的投影为M .故连接MB ,并延长交OP 于点P.点P 即为所求; (2)连接PD ,并延长交OM 于点 即为所求; (3)根据相似三角形的性质,易得:AB AM OP OM ∴=,即1.6 2.510 2.5OP =+, 解得8OP =.从而得求. 【试题解析】()1如图:()2如图:()3//AB OP ,MAB ∴∽MOP ,AB AM OP OM ∴=,即1.6 2.510 2.5OP =+, 解得8OP =.即路灯灯泡P 到地面的距离是8米.【方法点睛】本题目是一道关于中心投影的问题,涉及到如何确定点光源,相似三角形的判定,相似三角形的性质,难度中等.23、(1)AC =20,D (12,0);(2)见解析;(3)(8,0)或(143,0). 【分析】(1)在Rt △ABC 中,利用三角函数和勾股定理即可求出BC 、AC 的长度,从而得到A 点坐标,由点D 与点A 关于y 轴对称,进而得到D 点的坐标; (2)欲证FE AEEC DC=,只需证明△AEF 与△DCE 相似,只需要证明两个对应角相等即可.在△AEF 与△DCE 中,易知∠CAO =∠CDE ,再利用三角形的外角性质证得∠AEF =∠DCE ,问题即得解决;(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD,即可求出E点坐标;②当EF=FC时,利用等腰三角形的性质和解直角三角形的知识易求得CE65EF=,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;③当CE=CF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在.【详解】解:(1)∵四边形ABCO为矩形,∴∠B=90°,∵AB=16,tan∠ACB=43,∴4163ABBC BC==,解得:BC=12=AO,∴AC=22AB BC+=20,A点坐标为(﹣12,0),∵点D与点A关于y轴对称,∴D(12,0);(2)∵点D与点A关于y轴对称,∴∠CAO=∠CDE,∵∠CEF=∠ACB,∠ACB=∠CAO,∴∠CDE=∠CEF,又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE,∴∠AEF=∠DCE,∴△AEF∽△DCE.∴FE AE EC DC=;(3)当△EFC为等腰三角形时,有以下三种情况:①当CE=EF时,∵△AEF∽△DCE,∴△AEF≌△DCE,∴AE=CD=20,∴OE=AE﹣OA=20﹣12=8,∴E(8,0);②当EF=FC时,如图1所示,过点F作FM⊥CE于M,则点M为CE中点,∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=1262205EF EF⨯=.∵△AEF∽△DCE,∴EF AECE CD=,即:6205EF AEEF=,解得:AE=503,∴OE=AE﹣OA=143,∴E(143,0).③当CE=CF时,则有∠CFE=∠CEF,∵∠CEF=∠ACB=∠CAO,∴∠CFE=∠CAO,即此时F点与A点重合,E点与D点重合,这与已知条件矛盾.所以此种情况的点E不存在,综上,当△EFC为等腰三角形时,点E的坐标是(8,0)或(143,0).【点睛】本题综合考查了矩形的性质、等腰三角形的性质、勾股定理、相似三角形的判定和性质、轴对称的性质、三角形的外角性质以及解直角三角形等知识,熟练掌握相似三角形的判定与性质是解题关键.难点在于第(3)问,当△EFC为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.24、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐标是(﹣1,2);(3)P的坐标是(﹣1317+1317-或(﹣1,4)或(﹣1,﹣2).【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【详解】(1)A(1,0)关于x=﹣1的对称点是(﹣3,0),则B的坐标是(﹣3,0)根据题意得:303m nn-+=⎧⎨=⎩解得13 mn=⎧⎨=⎩则直线的解析式是y=x+3;根据题意得:解得:93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩则抛物线的解析式是y=﹣x 2﹣2x+3(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =−1+3=2,∴M (−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)如图,设P (−1,t ),又∵B (−3,0),C (0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2;②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3172+,t 2=3172-; ∴P 的坐标是(﹣1,3172+)或(﹣1,3172-)或(﹣1,4)或(﹣1,﹣2).【点睛】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.25、(1)5m =-,2c =-;(2)对称轴为直线1x =,顶点坐标(1,1)-.【分析】(1)把A 点坐标代入一次函数解析式可求得m 的值,得出A 点坐标,再代入二次函数解析式可得c ; (2)将(1)中得出的二次函数的解析式化为顶点式可求得其顶点坐标和对称轴.【详解】解:(1)∵点A 在一次函数图象上,∴m=-1-4=-5,∵点A 在二次函数图象上,∴-5=-1-2+c ,解得c=-2;(2)由(1)可知二次函数的解析式为:()22y 2211x x x =-+-=---,∴二次函数图象的对称轴为直线x=1,顶点坐标为(1,-1).【点睛】本题考查的知识点是一次函数的性质以及二次函数的性质,熟记各知识点是解此题的关键.26、(1)x 1=-3,x 2=1;(2)x 1=-1,x 2=2【分析】(1)利用“十字相乘法”对等式的左边进行因式分解;又可以利用公式法解方程;(2)利用因式分解法解方程.【详解】(1)解一:(x+3)(x ﹣1)=0解得:x 1=﹣3,x 2=1解二:a=1,b=2,c=﹣3解得: 即x 1=﹣3,x 2=1.(2)x (x+1)﹣2(x+1)=0(x+1)(x ﹣2)=0x 1=﹣1,x 2=2点睛: 本题主要考查了因式分解法和公式法解一元二次方程的知识,解题的关键是掌握因式分解法解方程的步骤以及熟记求根公式.。

人教PEP版2022-2023学年四年级英语上册期末模拟试卷(附答案和音频)

人教PEP版2022-2023学年四年级英语上册期末模拟试卷(附答案和音频)

人教PEP版2022-2023学年四年级英语上册期末模拟试卷(附答案和音频)★听力部分一、听音,选择听到的内容(10分)1.听录音,选出你所听到的单词,并将其标号填入题前括号内。

每题读两遍。

2.听录音,根据问句选择相应答句。

( ) 1). A.I’d like some chicken. B.She is in the kitchen.( ) 2). A.It’s in the bag.B.Some story books.( ) 3). A.It’s blue and white.B.It’s a teacher’s desk.( ) 4). A.They are in the door.B.Yes, they are.( ) 5). A.She is a nurse.B.There are four.二、听音判断(5分)3.听录音判断下列句子与所听到的句子是(T) 否(F) 一致。

() 1). The picture is near the door.() 2). My cousin is short and thin.() 3). My friend has black shoes.() 4). Mike is in the bedroom.() 5). I’d like some beef for dinner.三、听音排序(5分)4.听录音,你将听到五段对话,根据对话内容给下列图片排序。

★笔试部分四、词汇选择题(5分)选出下列单词中不同类的一项。

5.( )A.father B.teacher C.doctor 6.( )A.noodles B.bed C.rice7.( )A.Chinese B.English C.book8.( )A.quiet B.apple C.friendly 9.( )A.uncle B.aunt C.bowl 五、单选题(20分)10.—______ people are there in your family? () —Six.A.What B.Where’s C.How many11.______ name is Amy. She’s a girl. ()A.Her B.She C.His12.—Is he your brother? ()—______A.Yes, it is.B.No, he isn’t.C.No , they aren’t. 13.How many ______ are there in the zoo? () A.a tiger B.tiger C.tigers14.—What’s his mother’s jo b? ()—______A.Yes, she is.B.She’s 30.C.She’s a doctor. 15.I’d like ________ rice and soup. ()A.a B.an C.some16.—______ my English book? ()—It’s in the desk.A.Where’s B.What’s C.How’s17.My uncle ________ a football player. ( )A.am B.is C.are18.—Who is that boy? ()—______A.He’s in the living room.B.He’s a boy.C.He’s my baby brother. 19.—Are the pictures near the window? ()—No, ______.A.it is B.they are C.they aren’t六、情景选择(10分)20.你想表达“让我们尝尝吧!”,你应该说:()A.Let’s go and see!B.Let’s try it!C.I’d like to go!21.如果Jim找到了你丢失的书包,你应该对他说:()A.You’re right.B.OK.C.Thank you so much.22.家里来了客人,你招呼别人吃东西,应该说:( )A.Eat, please.B.Help yourself.C.I don’t know.23.你想表达“我的家有四口人”,你应该说:()A.My family have five people.B.My family has four people.C.My family is four people.24.如果你想询问别人姑姑的工作是什么,你应该问:()A.What’s your job?B.What’s your uncle’s job?C.What’s your aunt’s job?七、选词/短语填空(5分)八、句子匹配(5分)30.What would you like? () 31.Is this Tom’s aunt? ()32.Are they on the fridge? ()33.Would you like some beef?()34.Is Amy in the study? ()九、连词成句(10分)35.the, in, kitchen, She’s (!)_________________________________ 36.job, What’s, sister’s, your (?)______________________________________ 37.people, in, many, there, are, How, family, his (?) ______________________________________ 38.you, lunch, What, like, would, for (?)__________________________39.table they Are the on(?)______________________________________十、选内容补全对话/短文(5分)A: Dad, I can’t find my notebook.B: ___40___A: Thank you!B: ___41___A: It’s blue.B: ___42___A: No, it isn’t.B: ___43___A: Some storybooks.B: Oh! It’s in your hand!A: ___44___ Silly me!B: Haha!A.Yes, it is.B.Let me help you.C.Is it in your schoolbag?D.What colour is it?E.What’s in your schoolbag?十一、阅读选择(10分)My name is Jam. I am from the USA.My Chinese teacher is Wang Mei. She is a good teacher. I have many friends at school. Jimmy is my best friend. He is from Canada. He is tall and he has brown hair. He likes tigers very much. Mary is a short girl. She likes elephants. Sarah is from UK. She has long brown hair. She likes monkeys. Wang Dong is from China. He has short black hair. He speaks English well.45.Wang Mei is Jam’s ______. ()A.teacher B.friend C.mother46.______ is from Canada. ()A.Wang Dong B.Jimmy C.Sarah47.______ has long brown hair and likes monkeys. ()A.Mary B.Sarah C.Wang Dong48.Wang Dong speaks ______ well. ()A.Japanese B.China C.English49.How many friends does Jam have? () A.Three.B.Four.C.Five.十二、阅读判断(10分)50.It has 7 rooms in the house. ( ) 51.The sofa is in the study. ( ) 52.The table is in the kitchen. ( ) 53.It’s 1500 yuan a month for rent. ( ) 54.The house is on Quancheng Road. ( )参考答案1.C A A B C【详解】1). Turn on the computer.2). Write the letters f-r-i.3). The key is yellow.4). Read the letters b-d-p-q.5). Drive the taxi.2.B B A A A【详解】1). Where is Amy?2). What’s in your school bag?3). What colour is it?4). Where are the keys?5). What’s your sister’s job?3.T F F T F【详解】1). The picture is near the door.2). My cousin is tall and strong.3). My friend has brown shoes.4). Mike is in the bedroom.5). I’d like some bread for dinner.4.2315 4【详解】1). A: Would you like a knife and fork?B: Yes, please.2). A: What’s your aunt’s job.B: She’s a nurse.3). A: Where are the toys?B: They’re o n the sofa.4). A: Would you like some juice?B: No, thanks. I’d like some milk.5). A: Where is Amy? Is she in the living room?B: Yes, she is.5.A6.B7.C8.B9.C【解析】5.A爸爸,B老师,C医生,BC都是职业,A是家庭称谓。

2022-2023学年河南省郑州高新区九年级数学第一学期期末考试模拟试题含解析

2022-2023学年河南省郑州高新区九年级数学第一学期期末考试模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,点M为AD边上一点,且AM2DM,连接CM,对角线BD与CM相交于点N,若CDN 的面积等于3,则四边形ABNM的面积为()A.8B.9C.11D.122.如图,在正方形ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13 CD;④AF=AB+CF.其中正确结论的个数为()A.1 个B.2 个C.3 个D.4 个3.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.54.如图,O 的直径10AB =,C 是O 上一点,点D 平分劣弧BC ,OD 交BC 于点E ,1DE =,则图中阴影部分的面积等于( )A .25242-πB .25242-πC .252πD .2548π-5.如图,过以AB 为直径的半圆O 上一点C 作CD AB ⊥,交AB 于点D ,已知3cos 5ACD ∠=,6BC =,则AC 的长为( )A .7B .8C .9D .106.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,连接AD ,若∠BAC =26°,则∠ADE 的度数为( )A .13°B .19°C .26°D .29°7.把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -8.如图,DE 是ABC ∆的中位线,则 BDEAEDC S S ∆四边形的值为( )A .12B .13C .14D .259.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.610.⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是A .相切B .相交C .相离D .不能确定二、填空题(每小题3分,共24分)11.如图示一些小正方体木块所搭的几何体,从正面和从左面看到的图形,则搭建该几何体最多需要 块正方体木块.12.设a ,b 是方程x 2+x ﹣2018=0的两个实数根,则(a ﹣1)(b ﹣1)的值为_____.13.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S 1,S 2,S 3,…,S 10,则S 1+S 2+S 3+…+S 10= .14.如图,面积为6的矩形OABC 的顶点B 在反比例函数()0k y x x=<的图像上,则k =__________.15.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=2:3,则△ADE 与△ABC 的面积之比为________.16.如图,在平面直角坐标系中,点()3,0A ,点()0,1B ,作第一个正方形111OA C B 且点1A 在OA 上,点1B 在OB 上,点1C 在AB 上;作第二个正方形1222A A C B 且点2A 在1A A 上,点2B 在12A C 上,点2C 在AB 上…,如此下去,其中1C 纵坐标为______,点n C 的纵坐标为______.17.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.18.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.三、解答题(共66分)19.(10分)快乐的寒假即将来临小明、小丽和小芳三名同学打算各自随机选择到A ,B 两个书店做志愿者服务活动. (1)求小明、小丽2名同学选择不同书店服务的概率;(请用列表法或树状图求解)(2)求三名同学在同一书店参加志愿服务活动的概率.(请用列表法或树状图求解)20.(6分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”.(1)如图1,已知A 、B 是⊙O 上两点,请在圆上画出满足条件的点C ,使ABC 为“智慧三角形”,并说明理由;(2)如图2,OBC ∆是等边三角形,4OB =,以点O 为圆心,O 的半径为1画圆,M 为BC 边上的一动点,过点M 作O 的一条切线,切点为N ,求MN 的最小值;(3)如图3,在平面直角坐标系中,⊙O 的半径为1,点Q 是直线3x =上的一点,若在⊙O 上存在一点P ,使得OPQ △为“智慧三角形”,当其面积取得最小值时,求出此时点P 的坐标.21.(6分)如图,在平面直角坐标系中,顶点为(11,﹣2512)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,8).(1)求此抛物线的解析式; (2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)连接AC ,在抛物线上是否存在一点P ,使△ACP 是以AC 为直角边的直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.22.(8分)如图,正方形ABCD 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,点B 在双曲线4-y x =(x <0)上,点D 在双曲线k y x=(x >0)上,点D 的坐标是 (3,3) (1)求k 的值;(2)求点A 和点C 的坐标.23.(8分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为21000m 的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为()2x m ,种草所需费用1y (元)与()2x m 的函数关系式为()()112060060006001000k x x y k x x ⎧⎪=⎨+<⎪⎩,其大致图象如图所示.栽花所需费用2y (元)与()2x m 的函数关系式为()220.01203000001000y x x x =--+.(1)求出1k ,2k 的值;(2)若种花面积不小于()2400m时的绿化总费用为w (元),写出w 与x 的函数关系式,并求出绿化总费用w 的最大值.24.(8分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y 随时间x (min )变化的函数图象如图所示(y 越大表示注意力越集中).当010x ≤≤时,图象是抛物线的一部分,当1020x ≤≤和2040x ≤≤时,图象是线段.(1)当010x ≤≤时,求注意力指标数y 与时间x 的函数关系式.(2)一道数学综合题,需要讲解24min ,问老师能否安排,使学生听这道题时,注意力的指标数都不低于1.25.(10分)如图,Rt ABC △中,90ABC ∠=︒,以AB 为直径作半圆O 交AC 与点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆O 的切线;(2)若30BAC ∠=︒,2DE =,求AD 的长.26.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W 2至少为多少万元.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平行四边形判断△MDN∽△CBN,利用三角形高相等,底成比例即可解题.【详解】解:∵四边形ABCD 是平行四边形, 2AM DM =,∴易证△MDN∽△CBN ,MD:BC=DN:BN=MN:CN=1:3,∴S △MDN : S △DNC =1:3, S △DNC : S △ABD =1:4,(三角形高相等,底成比例)∵S CDN =3,∴S △MDN =1,S △DNC =3,S △ABD =12,∴S 四边形ABNM =11,故选C.【点睛】本题考查了相似三角形的性质,相似三角形面积比等于相似比的平方,中等难度,利用三角形高相等,底成比例是解题关键.2、B【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF , ∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴=5AE AF ,=5BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选 B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.3、D【详解】解:∵OM ⊥AB ,∴AM=12AB=4, 由勾股定理得:22AM OM +2243+;故选D .4、A 【分析】根据垂径定理的推论和勾股定理即可求出BC 和AC ,然后根据S 阴影=S 半圆O -S △ABC 计算面积即可.【详解】解: ∵直径10AB =∴OB=OD=152AB =,∠ACB=90° ∵点D 平分劣弧BC ,1DE =∴BC=2BE ,OE ⊥BC ,OE=OD -DE=4在Rt △OBE 中,3=∴BC=2BE=6根据勾股定理:8=∴S 阴影=S 半圆O -S △ABC =21122OB AC BC π⨯-• =25242π- 故选A .【点睛】此题考查的是求不规则图形的面积,掌握垂径定理与勾股定理的结合和半圆的面积公式、三角形的面积公式是解决此题的关键.5、B【分析】根据条件得出CBD ACD ∠∠=,解直角三角形求出BD ,根据勾股定理求出CD ,代入35CD cos ACD AC ∠==,即可求出AC 的长.【详解】∵AB 为直径,∴90ACB ∠=︒,∵CD ⊥AB ,∴90ADC BDC ∠=∠=︒,∴9090ACD BCD CBD BCD ∠∠+∠=︒+∠=︒,,∴CBD ACD ∠=∠, ∵35cos ACD ∠=,BC=6, ∴356BD BD cos CBD cos ACD BC ∠=∠===, ∴318655BD =⨯=,∴245CD ===, ∵35CD cos ACD AC ∠==, ∴24355AC =,∴8AC =.故选:B .【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.6、B【分析】根据旋转的性质可得AC =CD ,∠CDE =∠BAC ,再判断出△ACD 是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA =45°,根据∠ADE =∠CDA ﹣∠CDE ,即可求解.【详解】∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,∴AC =CD ,∠CDE =∠BAC =26°,∴△ACD 是等腰直角三角形,∴∠CDA =45°,∴∠ADE =∠CDA ﹣∠CDE =45°﹣26°=19°.故选:B .【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键, 7、B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.8、B【分析】由中位线的性质得到DE ∥AC ,DE=12AC ,可知△BDE ∽△BCA ,再根据相似三角形面积比等于相似比的平方可得BDE BCA S 1=S 4,从而得出 BDE AEDC S S ∆四边形的值. 【详解】∵DE 是△ABC 的中位线,∴DE ∥AC ,DE=12AC ∴△BDE ∽△BCA∴2BDE BCA S DE 1==SAC 4 ∴ 1=3四边形∆BDEAEDCS S 故选B.【点睛】本题考查了中位线的性质,以及相似三角形的判定与性质,解题的关键是掌握相似三角形的面积比等于相似比的平方. 9、A【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB10、B【分析】根据圆O 的半径和圆心O 到直线L 的距离的大小,相交:d <r ;相切:d=r ;相离:d >r ;即可选出答案.【详解】∵⊙O 的半径为8,圆心O 到直线L 的距离为4,∵8>4,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故选B .二、填空题(每小题3分,共24分)11、16【解析】根据俯视图标数法可得,最多有1块;故答案是1.点睛:三视图是指一个立体图形从上面、正面、侧面(一般为左侧)三个方向看到的图形,首先我们要分清三个概念:排、列、层,比较好理解,就像我们教室的座位一样,横着的为排,竖着的为列,上下的为层,如图所示的立体图形,共有两排、三列、两层.仔细观察三视图,可以发现在每一图中,并不能同时看到排、列、层,比如正视图看不到排,这个很好理解,比如在教室里,如果第一排的同学个子非常高,那么后面的同学都被挡住了,我们无法从正面看到后面的同学,也就无法确定有几排.所以,我们可以知道正视图可看到列和层,俯视图可看到排和层列,侧视图可看到排和层.12、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣ba、两根之积等于ca是解题的关键.13、π.【解析】图1,过点O做OE⊥AC,OF⊥BC,垂足为E. F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD =AE =3−r ,BD =4−r∴3−r +4−r =5,r =3452+-=1 ∴S 1=π×12=π图2,由S △ABC =12×3×4=12×5×CD ∴CD =125由勾股定理得:AD =221293()55-= ,BD =5−95=165, 由(1)得:⊙O 的半径=912335525+-=, ⊙E 的半径=1216445525+-=, ∴S 1+S 2=π×(35)2+π×(45)2=π.图3,由S △CDB =12×125×165=12×4×MD ∴MD =4825, 由勾股定理得:CM 22124836()()52525-=,MB =4−3625=6425, 由(1)得:⊙O 的半径=35, ⊙E 的半径=1225, ∴⊙F 的半径=1625, ∴S 1+S 2+S 3=π×(35)2+π×(1225)2+π×(1625)2=π 14、-1 【分析】根据反比例函数系数k 的几何意义可得|k|=1,再根据函数所在的象限确定k 的值. 【详解】解:∵反比例函数()0k y x x =<的图象经过面积为1的矩形OABC 的顶点B , ∴|k|=1,k=±1, ∵反比例函数()0k y x x =<的图象经过第二象限, ∴k=-1.故答案为:-1.【点睛】 主要考查了反比例函数()0k y x x=<中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|. 15、4:1【解析】由DE 与BC 平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE 与三角形ABC 相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【详解】∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =(AD :AB )2=4:1. 故答案为:4:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键. 16n⎝⎭【分析】先确定直线AB 的解析式,然后再利用正方形的性质得出点C 1和C 2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB 的解析式y=kx+b则有:01b b +==⎪⎩,解得:31k b ⎧=-⎪⎨⎪=⎩所以直线仍的解析式是:y=1-+ 设C 1的横坐标为x,则纵坐标为y=1x -+ ∵正方形OA 1C 1B 1∴x=y,即1x x =+,解得32x -== ∴点C 1同理可得:点C 2=232⎛- ⎝⎭∴点C n的纵坐标为n⎝⎭.n ⎝⎭. 【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.17、1a 4>-且a 0≠ 【解析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0>,继而可求得a 的范围. 【详解】关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>, 解得:1a 4>-, 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.18、74【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523, 故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.三、解答题(共66分)19、(1)12;(2)14【分析】(1)用树状图列出所有可能的情况,然后即可得出其概率;(2)用树状图列出所有可能的情况,然后即可得出其概率.【详解】(1)P (2人选择不同的书店)2142==(2)P (3人选择同一书店)2184==【点睛】此题主要考查利用树状图求概率,熟练掌握,即可解题.20、(1)见解析;(2)11;(1)122,33⎛⎫ ⎪ ⎪⎝⎭或122,33⎛⎫- ⎪ ⎪⎝⎭【分析】(1)连接AO 并且延长交圆于1C ,连接AO 并且延长交圆于2C ,即可求解;(2)根据MN 为⊙O 的切线,应用勾股定理得22221MN OM ON OM =-=-,所以OM 最小时,MN 最小;根据垂线段最短,得到当M 和BC 中点重合时,OM 最小为23,此时根据勾股定理求解DE ,DE 和MN 重合,即为所求;(1)根据“智慧三角形”的定义可得OPQ △为直角三角形,根据题意可得一条直角边为1,当写斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为1,根据勾股定理可求得另一条直角边,再根据三角形面积可求得斜边的高,即点P 的横坐标,再根据勾股定理可求点P 的纵坐标,从而求解.【详解】(1)如图1,点1C 和2C 均为所求理由:连接BO 、AO 并延长,分别交O 于点1C 、2C , 连接AB 、1AC ,∵1BC 是O 的直径,∴112AO BC =, ∴1ABC ∆是“智慧三角形”同理可得,2ABC ∆也是“智慧三角形”(2)∵MN 是O 的切线,∴90ONM ∠=︒,∴22221MN OM ON OM =-=-,∴当OM 最小时,MN 最小,即当OM BC ⊥时,OM 取得最小值,如图2,作OD BC 于点D ,过点D 作O 的一条切线,切点为E ,连接OE ,∵OBC ∆是等边三角形,OD BC , ∴4BC OB ==,122BD CD BC ===, ∴22224223OD OB BD =-=-=,∵DE 是O 的一条切线,∴OE DE ⊥,1OE =,∴2222(23)111DE OD OE =-=-=,当点M 与D 重合时,N 与E 重合,此时=11MN 最小.(1)由“智慧三角形”的定义可得OPQ ∆为直角三角形,根据题意,得一条直角边1OP =.∴当PQ 最小时,POQ ∆的面积最小,即OQ 最小时.如图1,由垂线段最短,可得OQ 的最小值为1.∴223122PQ =-=.过P 作PM x ⊥轴,∵1122OPQ S OQ PM OP PQ ∆=⋅=⋅, ∴223OP PQ PM OQ ⋅==. 在Rt OPM ∆中,22221133OM ⎛⎫=-= ⎪ ⎪⎝⎭, 故符合要求的点P 坐标为122,33⎛⎫ ⎪ ⎪⎝⎭或122,33⎛⎫- ⎪ ⎪⎝⎭.【点睛】本题考查了圆与勾股定理的综合应用,掌握圆的相关知识,熟练应用勾股定理,明确“智慧三角形”的定义是解题的关键.21、(1)21118126y x x =-+;(2)对称轴l 与⊙C 相交,见解析;(3)P (30,﹣2)或(41,100) 【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可;(3)分∠ACP =90°、∠CAP =90°两种情况,分别求解即可.【详解】解:(1)设抛物线为y =a (x ﹣11)2﹣2512, ∵抛物线经过点A (0,8),∴8=a (0﹣11)2﹣2512, 解得a =112, ∴抛物线为y =2125(11)1212x --=21118126x x -+; (2)设⊙C 与BD 相切于点E ,连接CE ,则∠BEC =∠AOB =90°.∵y =2125(11)1212x --=0时,x 1=11,x 2=1.∴A (0,8)、B (1,0)、C (11,0),∴OA =8,OB =1,OC =11,BC =10;∴AB=10,∴AB =BC .∵AB ⊥BD ,∴∠ABC =∠EBC+90°=∠OAB+90°,∴∠EBC =∠OAB ,∴0AB EBC AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OAB ≌△EBC (AAS ),∴OB =EC =1.设抛物线对称轴交x 轴于F .∵x =11,∴F (11,0),∴CF =11﹣11=5<1,∴对称轴l 与⊙C 相交;(3)由点A 、C 的坐标得:直线AC 的表达式为:y =﹣12x+8, ①当∠ACP =90°时,则直线CP 的表达式为:y =2x ﹣32, 联立直线和抛物线方程得22321118126y x y x x =-⎧⎪⎨=-+⎪⎩, 解得:x =30或11(舍去),故点P (30,﹣2);当∠CAP =90°时,2281118126y x y x x =+⎧⎪⎨=-+⎪⎩同理可得:点P (41,100),综上,点P (30,﹣2)或(41,100);【点睛】本题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识,正确表示出S △PAC =S △AQP +S △CQP 是解题关键.22、(1)k=9,(2)A (1,0), C (0,5).【分析】(1)根据反比例函数过点D,将坐标代入即可求值,(2)利用全等三角形的性质,计算AM,AN,CH 的长即可解题.【详解】解:将点D 代入(0)k y x x =>中, 解得:k=9,(2)过点B 作BN⊥x 轴于N, 过点D 作DM ⊥x 轴于M ,∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD,∵∠BAN+∠ABN=90°,∴∠BAN=∠ADM,∴△ABN ≌△DAM (AAS ),∴DM=AN=3,设A (a,0),∴N (a-3,0),∵B 在4(0)y x x =-< 上, ∴BN=43a --=AM, ∵OM=a 43a --=3,整理得:a 2-6a+5=0, 解得:a=1或a =5(舍去),经检验,a=1是原方程的根,∴A (1,0),过点D 作DH⊥Y 轴于H,同理可证明△DHC ≌△DMA,∴CH=AM=2,∴C (0,5),综上, A (1,0), C (0,5).【点睛】本题考查了反比例函数的性质,三角形的全等,难度较大,作辅助线,通过全等得到长度是解题关键.23、(1)130k =,220k =;(2)w 20.011030000x x =-++,绿化总费用w 的最大值为32500元.【分析】(1)将x=600、y=18000代入y 1=k 1x 可得k 1;将x=1000、y=26000代入y 1=k 2x+6000可得k 2;(2)根据种花面积不小于()2400m ,则种草面积小于等于()2600m ,根据总费用=种草的费用+种花的费用列出二次函数解析式,然后依据二次函数的性质可得.【详解】解:(1)由图象可知,点()600,18000在11y k x =上,代入得:118000600k =,解得130k =,由图象可知,点()600,18000在226000y k x =+上,解得220k =;(2)∵种花面积不小于()2400m, ∴种草面积小于等于()2600m,由题意可得: ()2300.012030000w x x x =+--+20.011030000x x =-++()20.0150032500x =--+,∴当500x =时,w 有最大值为32500元.答:绿化总费用w 的最大值为32500元..【点睛】本题考查了一次函数的应用,以及二次函数的应用,掌握待定系数法求函数解析式及二次函数的性质是解题的关键.24、(1)y =212455x x -++20(0≤x ≤10);(2)能,理由见解析.【分析】(1)利用待定系数法假设函数的解析式,代入方程的点分别求出a 、b 、c 的值,即可求出当010x ≤≤时,注意力指标数y 与时间x 的函数关系式.(2)根据函数解析式,我们可以求出学生在这这道题时,注意力的指标数都不低于1时x 的值,然后和24进行比较,即可得到结论.【详解】(1)设010x ≤≤ 时的抛物线为2y ax bx c =++ .由图象知抛物线过(0,20),(5,39),(10,48)三点,所以20255391001048c a b c a b c =⎧⎪++=⎨⎪++=⎩. 解得1524520a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩所以()21252001054y x x x =-++≤≤ (2)由图象知,当2040x ≤≤ 时, 7765y x =-+ . 当010x ≤≤ 时,令36y ,2125362055x x =-++. 解得:12420x x ==, (舍去).当2040x ≤≤ 时,令36y,得736765x =-+ , 解得: 20042877x == 因为44284242477-=>, 所以老师可以通过适当的安排,在学生的注意力指标数不低于1时,讲授完这道数学综合题.【点睛】本题考查了二次函数的应用,掌握待定系数法求解函数解析式是解题的关键.25、(1)见解析;(2)1.【分析】(1)连接OD ,OE ,BD ,证△OBE ≌△ODE (SSS ),得∠ODE=∠ABC=90°;(2)证△DEC 为等边三角形,得DC=DE=2.【详解】(1)证明:连接OD ,OE ,BD ,∵AB 为圆O 的直径,∴∠ADB=∠BDC=90°,在Rt △BDC 中,E 为斜边BC 的中点,∴DE=BE ,在△OBE 和△ODE 中,OB OD OE OE BE DE =⎧⎪=⎨⎪=⎩,∴△OBE ≌△ODE (SSS ),∴∠ODE=∠ABC=90°,则DE 为圆O 的切线;(2)在Rt △ABC 中,∠BAC=30°,∴BC= 12AC , ∵BC=2DE=4,∴AC=8,又∵∠C=10°,DE=CE ,∴△DEC 为等边三角形,即DC=DE=2,则AD=AC-DC=1.【点睛】考核知识点:切线的判定和性质.26、(1)W 1=﹣x 2+32x ﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W 2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.。

2023届浙江省宁波市南三县九年级数学第一学期期末学业水平测试模拟试题含解析

2023届浙江省宁波市南三县九年级数学第一学期期末学业水平测试模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是( )A .已知:在⊙O 中,∠AOB=∠COD ,弧AB=弧CD .求证:AB=CDB .已知:在⊙O 中,∠AOB=∠COD ,弧AB=弧BC .求证:AD=BCC .已知:在⊙O 中,∠AOB=∠COD .求证:弧AD=弧BC ,AD=BCD .已知:在⊙O 中,∠AOB=∠COD .求证:弧AB=弧CD ,AB=CD2.式子2x +在实数范围内有意义,则x 的取值范围是( )A .x >﹣2B .x≥﹣2C .x <﹣2D .x≤﹣2 3.如图,点A 、B 、C 是⊙0上的三点,若∠OBC=50°,则∠A 的度数是( )A .40°B .50°C .80°D .100° 4.如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac <;②方程20ax bx c ++=的根是121,3x x =-=③ 0a b c ++>;④当1x >时,y 随x 的增大而增大;⑤20a b -=;⑥240b ac ->,正确的说法有( )A .1B .2C .3D .45.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .36.若2y -7x =0,则x ∶y 等于( )A .2∶7B .4∶7C .7∶2D .7∶47.如图,在平面直角坐标系中,点P 在函数y =2x(x >0)的图象上从左向右运动,PA ∥y 轴,交函数y =﹣6x (x >0)的图象于点A ,AB ∥x 轴交PO 的延长线于点B ,则△PAB 的面积( )A .逐渐变大B .逐渐变小C .等于定值16D .等于定值24 8.已知函数()22y x =--的图像上两点()1,A a y ,()21,B y ,其中1a <,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法判断9.下列事件是必然事件的是( )A .明天太阳从西方升起B .打开电视机,正在播放广告C .掷一枚硬币,正面朝上D .任意一个三角形,它的内角和等于180°10.如图,在锐角△ABC 中,∠A=60°,∠ACB=45°,以BC 为弦作⊙O ,交AC 于点D ,OD 与BC 交于点E ,若AB 与⊙O 相切,则下列结论:①∠BOD=90°;②DO ∥AB ;③CD=AD ;④△BDE ∽△BCD ;⑤2BE DE 正确的有( )A .①②B .①④⑤C .①②④⑤D .①②③④⑤二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy 中,点A 在函数y =2x(x >0)的图象上,AC ⊥x 轴于点C ,连接OA ,则△OAC 面积为_____.12.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.13.已知点A (a ,2019)与点A ′(﹣2020,b )是关于原点O 的对称点,则a +b 的值为_____.14.如图,点A 在双曲线y =4x上,点B 在双曲线y =k x (k ≠0)上,AB ∥x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为D ,C ,若矩形ABCD 的面积是9,则k 的值为_____.15.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.16.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.17.如图,是一个半径为6cm ,面积为215cm π的扇形纸片,现需要一个半径为R 的圆形纸片,使两张纸片刚好能组合成圆锥体,则R =_____.18.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.三、解答题(共66分)19.(10分)如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系.(1)若将ABC ∆沿x 轴对折得到111A B C ∆,则1C 的坐标为 .(2)以点B 为位似中心,将ABC ∆各边放大为原来的2倍,得到22A BC ∆,请在这个网格中画出22A BC ∆.(3)若小明蒙上眼睛在一定距离外,向1010⨯的正方形网格内掷小石子,则刚好掷入22A BC ∆的概率是多少? (未掷入图形内则不计次数,重掷一次)20.(6分)某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?21.(6分)如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系 ;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;(3)在图②的基础上,将△CED 绕点C 继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.22.(8分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为()3,1-,()2,1,将BOC ∆绕点O 逆时针旋转90度,得到11B OC ∆,画出11B OC ∆,并写出B 、C 两点的对应点1B 、1C 的坐标,23.(8分)如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -.()1求一次函数和反比例函数的表达式;()2请直接写出12>时,x的取值范围;y y()3过点B作BE//x轴,AD BE=,求点C的坐标.⊥于点D,点C是直线BE上一点,若AC2CD24.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.25.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.26.(10分)如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.(1)求证:直线PC是⊙O的切线;(2)若CD=4,BD=2,求线段BP的长.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.2、B【分析】根据二次根式有意义的条件可得20x+≥,再解不等式即可.【详解】解:由题意得:20x+≥,解得:2x≥-,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3、A【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.4、D【分析】根据抛物线开口向上得出a>1,根据抛物线和y轴的交点在y轴的负半轴上得出c<1,根据图象与x轴的交点坐标得出方程ax 2+bx+c=1的根,把x=1代入y=ax 2+bx+c 求出a+b+c <1,根据抛物线的对称轴和图象得出当x >1时,y 随x 的增大而增大,2a=-b ,根据图象和x 轴有两个交点得出b 2-4ac >1.【详解】∵抛物线开口向上,∴a >1,∵抛物线和y 轴的交点在y 轴的负半轴上,∴c <1,∴ac <1,∴①正确;∵图象与x 轴的交点坐标是(-1,1),(3,1),∴方程ax 2+bx+c=1的根是x 1=-1,x 2=3,∴②正确;把x=1代入y=ax 2+bx+c 得:a+b+c <1,∴③错误;根据图象可知:当x >1时,y 随x 的增大而增大,∴④正确; ∵-2b a=1, ∴2a=-b ,∴2a+b=1,不是2a-b=1,∴⑤错误;∵图象和x 轴有两个交点,∴b 2-4ac >1,∴⑥正确;正确的说法有:①②④⑥.故答案为:D .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性.5、B【解析】过点O 作OC⊥AB,垂足为C ,则有AC=12AB=12×24=12,在Rt △AOC 中,∠ACO=90°,AO=13, ∴OC=22AO AC =5,即点O 到AB 的距离是5.6、A【分析】由2y -7x =0可得2y =7x ,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.7、C【分析】根据反比例函数k的几何意义得出S△POC =12×2=1,S矩形ACOD=6,即可得出13PCAC=,从而得出14PCPA=,通过证得△POC∽△PBA,得出2POCPAB116S PCS PA⎛⎫==⎪⎝⎭,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=12×2=1,S矩形ACOD=6,∵S△POC=12OC•PC,S矩形ACOD=OC•AC,∴POCACOD 1OC?PC1 2OC?AC6S S ==矩形,∴13 PCAC=,∴14 PCPA=,∵AB∥x轴,∴△POC∽△PBA,∴2POCPAB116 S PCS PA⎛⎫==⎪⎝⎭,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键. 8、B【分析】由二次函数()22y x =--可知,此函数的对称轴为x =2,二次项系数a =−1<0,故此函数的图象开口向下,有最大值;函数图象上的点与坐标轴越接近,则函数值越大,故可求解.【详解】函数的对称轴为x =2,二次函数()22y x =--开口向下,有最大值,∵1a <,A 到对称轴x =2的距离比B 点到对称轴的距离远,∴12y y <故选:B .【点睛】本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y =ax 2+bx +c (a ≠0)的图象性质.9、D【分析】必然事件就是一定会发生的事件,依次判断即可.【详解】A 、明天太阳从西方升起,是不可能事件,故不符合题意;B 、打开电视机,正在播放广告是随机事件,故不符合题意;C 、掷一枚硬币,正面朝上是随机事件,故不符合题意;D 、任意一个三角形,它的内角和等于180°是必然事件,故符合题意;故选:D .【点睛】本题是对必然事件的考查,熟练掌握必然事件知识是解决本题的关键.10、C【解析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到BD 的度数为90°,故选项①正确;又因OD=OB ,所以△BOD 为等腰直角三角形,由∠A 和∠ACB 的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB 与圆切线,根据切线的性质得到∠OBA 为直角,求出∠CBO=∠OBA -∠ABC=90°-75°=15°,由根据∠BOE 为直角,求出∠OEB=180°-∠BOD -∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确;由D 不一定为AC 中点,即CD 不一定等于AD ,而选项③不一定成立;又由△OBD 为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD 为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC,由相似三角形性质和平行线的性质,得比例BE DBDE DC=,由BD=2OD,等量代换即可得到BE等=2DE,故选项⑤正确.综上,正确的结论有4个.故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据反比例函数比例系数k的几何意义可得S△OAC=12×2=1,再相加即可.【详解】解:∵函数y=2x(x>0)的图象经过点A,AC⊥x轴于点C,∴S△OAC=12×2=1,故答案为1.【点睛】本题考查了反比例函数比例系数k的几何意义,掌握过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.12、5【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC 35x -,则CD=AB﹣AD﹣BC=x﹣2×35x-=1,解得:x=2+5.故答案为:2+5【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.13、1.【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故答案为:1.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键.14、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB 的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=4x上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.15、2【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴30.6 3x=+,解得:x=2,故黑球的个数为2个.故答案为2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得AB OECD OF=,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OECD OF==23,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.17、5 2【分析】先根据扇形的面积和半径求出扇形的弧长,即圆锥底面圆的周长,再利用圆的周长公式即可求出R.【详解】解:设扇形的弧长为l ,半径为r , ∵扇形面积1161522S lr l π==⨯=, ∴5l π=,∴52R ππ= ,∴52R =. 故答案为:52. 【点睛】 本题主要考查圆锥的有关计算,掌握扇形的面积公式是解题的关键.18、3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2.三、解答题(共66分)19、(1)(4,-1);(2)见解析;(3)325. 【分析】(1)根据对称的特点即可得出答案;(2)根据位似的定义即可得出答案;(3)分别求出三角形和正方形的面积,再用三角形的面积除以正方形的面积即可得出答案.【详解】解:(1)()41-,(2)(3)∵22164122A BC S ∆=⨯⨯=,1010100S =⨯=正方形∴12310025 P==【点睛】本题考查的是对称和位似,比较简单,需要掌握相关的基础知识.20、(1)y=600-5x(0≤x<120);(2)7到13棵【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.21、AE;(2),证明详见解析;(3)结论不变,AE,理由详见解析.【分析】(1)如图①中,结论:AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.【详解】解:(1)如图①中,结论:AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,结论:AE .理由:连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE .(3)如图③中,结论不变,AE .理由:连接EF ,延长FD 交AC 于K .∵∠EDF=180°﹣∠KDC ﹣∠EDC=135°﹣∠KDC ,∠ACE=(90°﹣∠KDC )+∠DCE=135°﹣∠KDC ,∴∠EDF=∠ACE ,∵DF=AB ,AB=AC ,∴DF=AC在△EDF 和△ECA 中,DF AC EDF ACE DE CE =∠=⎪∠⎧⎪⎨⎩=,∴△EDF ≌△ECA ,∴EF=EA ,∠FED=∠AEC ,∴∠FEA=∠DEC=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .【点睛】本题考查四边形综合题,综合性较强.22、详见解析;点1B ,1C 的坐标分别为()1,3,()1,2-【分析】利用网格特点和旋转的性质画出B 、C 的对应点B 1、C 1即可.【详解】解:如图,11B OC ∆为所作,点1B ,1C 的坐标分别为()1,3,()1,2-【点睛】本题考查了画图−性质变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23、()1反比例函数的解析式为22y x =,一次函数解析式为:1y x 1=+;()2当2x 0-<<或x 1>时,12y y >;()3当点C 的坐标为()13,1-或)31,1-时,AC 2CD =. 【分析】(1)利用待定系数法求出k ,求出点B 的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD ,分点C 在点D 的左侧、点C 在点D 的右侧两种情况解答.【详解】()1点()A 1,2在反比例函数2k y x=的图象上, k 122∴=⨯=,∴反比例函数的解析式为22y x=, 点()B 2,m -在反比例函数22y x=的图象上, 2m 12∴==--, 则点B 的坐标为()2,1--,由题意得,{a b 22a b 1+=-+=-, 解得,{a 1b 1==,则一次函数解析式为:1y x 1=+; ()2由函数图象可知,当2x 0-<<或x 1>时,12y y >;()3AD BE ⊥,AC 2CD =,DAC 30∠∴=,由题意得,AD 213=+=,在Rt ADC 中,CD tan DAC AD ∠=,即CD 3=解得,CD =当点C 在点D 的左侧时,点C 的坐标为()11--,当点C 在点D 的右侧时,点C 的坐标为)1,1-,∴当点C 的坐标为()11-或)1,1-时,AC 2CD =.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.24、(1)14;(2)116【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.25、(1)详见解析;(2)1.【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB =∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22-=6,于是得到结论.BE BD【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22-6,BE BD∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.26、(1)详见解析;(2)10 3【分析】(1)连接OC,由AB是⊙O的直径证得∠ACO+∠BCO=90°,由OA=OC证得∠2=∠A=∠ACO,由此得到∠PCO=90°,即证得直线PC是⊙O的切线;(2)利用∠1=∠A证得∠CDB=90°,得到CD2=AD•BD,求出AD,由此求得AB=10,OB=5;在由∠OCP=90°推出OC2=OD•OP,求出OP=253,由此求得线段BP的长.【详解】(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠A=∠ACO,∵∠A=∠1=∠2,∴∠2=∠ACO,∴∠2+∠BCO=90°,∴∠PCO=90°,∴OC⊥PC,∴直线PC是⊙O的切线;(2)∵∠ACB=90°,∴∠A+∠ABC=90°∴∠1=∠A,∴∠1+∠ABC=90°,∴∠CDB=90°,∴CD2=AD•BD,∵CD=4,BD=2,∴AD=8,∴AB=10,∴OC=OB=5,∵∠OCP=90°,CD⊥OP,∴OC2=OD•OP,∴52=(5﹣2)×OP,∴OP=253,∴PB=OP﹣OB=103.【点睛】此题是圆的综合题,考查圆的切线的判定定理,圆中射影定理的判定及性质,(2)中求出∠CDB=90°是此题解题的关键,由此运用射影定理求出线段的长度.。

福建上杭县第一中学2022-2023学年高一上数学期末学业水平测试模拟试题含解析

福建上杭县第一中学2022-2023学年高一上数学期末学业水平测试模拟试题含解析

;②
(2)若函数 的定义域为 D,且具有性质 ,则“ 存在零点”是“

.
”的___________条件,说明理由;(横
线上填“充分而不必要”、“必要而不充分”、“充分必要”、“既不充分也不必要”)
(3)若存在唯一的实数 a,使得函数

具有性质 ,求实数 t 的值.
参考答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题. 6、B 【解析】根据交集定义运算即可
【详解】因为
M
{x
|
0
x
4}, N
{x
|
1 3
x
5} ,所以
M
N
x|
1 3
x
4 ,
故选:B. 【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.
7、C 【解析】
根据函数 y 3cos(2x ) 的图像关于点 ( 4 , 0) 中心对称,由 cos(8 ) 0 求出 的表达式即可.
3
3
【详解】因为函数 y 3cos(2x ) 的图像关于点 ( 4 , 0) 中心对称, 3
所以 cos(8 ) 0 , 3
所以 8 k ,
3
2
解得 k 13 , k Z , 6
【解析】若 m⊂α,α∥β,则 m∥β;
若 m⊥α,α∥β,则 m⊥β
故答案为(1)③⑤(2)②⑤
9、B
【解析】由图可知, 3 T 5 ( ) ,所以T 4 2 ,所以 3 ,又当
46 6
3

中医内科学期末模拟试卷(卷8)

中医内科学期末模拟试卷(卷8)

中医内科学试题及答案1、瘀血停滞之胃痛,痛甚者常加何药A.木香.陈皮B.桃仁.红花C.川楝子.元胡D.三棱.莪术E.元胡.木香.郁金【答案】E2、李某,男,33岁。

病起发热,热后突然出现肢体软弱无力,肌肉瘦削,皮肤干燥,心烦口渴,咳呛少痰,咽干不利者,宜选用A.桑杏汤B.六味地黄丸C.虎潜丸D.加味二妙散E.清燥救肺汤【答案】E3、聚证的基本治则是A.疏肝理气,行气消聚B.活血化瘀,软坚散结C.行气导滞,通腑泻实D.理气活血,祛痰消积E.攻补兼施,补虚消积【答案】A4、刘某,78岁。

哮喘病史20余年,近1周,咳吐涎沫,不渴,短期不足以息,头眩,神疲乏力,食少,形寒,小便数,咳嗽时尿失禁,舌质淡,脉虚弱。

治宜选用A.麦门冬汤B.甘草干姜汤C.生姜甘草汤D.清燥救肺汤E.真武汤【答案】B C5、腹痛中虚脏寒证可选用的方剂是A.大建中汤B.小建中汤C.附子理中汤D.良附丸E.枳实导滞丸【答案】A B C6、肺痨的治疗大法以A.滋阴益气B.治痨杀虫C.化痰通络D.温肺止咳E.补虚培元【答案】B E7、厥之虚证的特点有A.眩晕昏厥B.面色苍白C.声低息微D.口开手撒E.舌胖或淡【答案】A B C D E8、水肿湿毒浸淫证,疮痍湿盛糜烂者,应加用A.麻黄.杏仁B.苏子.葶苈子C.白鲜皮.地肤子D.苦参.茯苓E.茯苓.泽泻9、痢疾的病位在A.肝B.脾C.肾D.肠E.心【答案】D10、湿热下注扰动精室之遗精应选用A.龙胆泻肝汤B.苍术二陈汤C.程氏萆薢分清饮D.八正散E.知柏地黄丸【答案】C11、症见腹中气聚,攻窜胀痛,时聚时散,苔白脉弦,治法为A.理气化浊B.理气活血C.疏肝解郁E.祛瘀活血【答案】C D12、以下何项症状为胃痞之主症A.胃脘疼痛B.胃脘满闷C.胸脘痞闷D.满闷不舒E.胸脘闷痛【答案】B13、下列哪些为感冒的特征A.恶寒发热B.鼻塞声重C.周身疼痛D.喷嚏流涕E.咳喘痰多【答案】A B C D14、李某,男性,56岁。

2023届四川省资阳市高中(物理高二下期末教学质量检测模拟试题含解析

2023届四川省资阳市高中(物理高二下期末教学质量检测模拟试题含解析

2022-2023学年高二下物理期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、单项选择题:本题共6小题,每小题4分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、23290Th经过一系列α衰变和β衰变后变成20882Pb,则20882Pb比23290Th少A.16个中子,8个质子B.8个中子,16个质子C.24个中子,8个质子D.8个中子,24个质子2、下列四幅图是交流电的图象,其中能正确反映我国居民日常生活所用交流电的是()A.B.C.D.3、如图,一重为25N的球固定在弹性杆AB的上端,现用测力计沿与水平方向成37°角斜向右上方拉球,使杆发生弯曲,此时测力计的示数为15N,已知sin37°=0.6,cos37°=0.8则杆AB对球作用力的大小为A.40NB.25NC.20ND.15N4、如图所示,两块相互垂直的光滑挡板OP、OQ,OP竖直放置,小球a、b固定在轻弹簧的两端,并斜靠在OP、OQ 挡板上.现有一个水平向左的推力F作用于b上,使a、b紧靠挡板处于静止状态.现保证b球不动,使竖直挡板OP 向右缓慢平移一小段距离,则()A.b对挡板OQ的压力变大B.挡板OP对a的弹力不变C.推力F变大D.弹簧长度变长5、用同一实验装置如图甲研究光电效应现象,分别用A、B、C三束光照射光电管阴极,得到光电管两端电压与相应的光电流的关系如图乙所示,其中A、C两束光照射时对应的遏止电压相同,均为U c1,下列论述正确的是A.B光束光子的能量最小B.A、C两束光的波长相同,且比B光的波长短C.三个光束中B光束照射时单位时间内产生的光电子数量最多D.三个光束中B光束照射时光电管发出的光电子最大初动能最大6、如图所示,使一个水平铜盘绕过其圆心的竖直轴OO 转动,且假设摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则A.铜盘转动将变快B.铜盘转动将变慢C.铜盘仍以原来的转速转动D.因磁极方向未知,无法确定二、多项选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京财经大学成人教育模拟试题(E卷)一、判断题(判断对错,每小题1分,共15分)1. 亚当·斯密及其之后的其他古典经济学家和新古典经济学家都主张经济自由放任,强调政府不干预经济。

(√)2. 在“有效政府”阶段,政府的职能是为市场创造各种基础条件,通过有效的政策支持市场的运作。

(√)3. 为了对高收入水平进行调节,国家可以征收累进的个人所得税、社会保障税等。

(√)4. 国家的职能及政府的活动范围决定了一定时期内财政支出的项目、方向和比例。

(√)5. 政府采购与一般采购行为相比更加具有政策性、广泛性、公共性和公开性。

(√)6. 转移性支出是政府的市场性再分配活动,主要包括社会保障支出、财政扶贫支出等。

(×)7. 与私人部门相比,政府公共支出绩效评估标准的确定更加简单。

(×)8. 政府的财政投资性支出与非政府部门的投资性质相同,完全可以由其取代。

(×)9. 财政补贴总是与相对价格的变动联系在一起,这一点与社会保障支出相同。

(×)10. 保证政府公共支出正常合理的需要是确定宏观税负的最高量限。

(×)11. 公共财政收入占GDP的比重越高,表明政府占有和控制的数量越多,程度越深,力度越大。

(√)12. 国债结构指一国各类债务相搭配以及各类债务收入来源的有机组合。

(√)13. 1.特里希的“偏好误识”理论属于西方财政分权理论。

(√)14. .向地方政府倾斜原则是西方国家划分政府间职责范围的基本原则。

(√)15. “双扩张”政策搭配模式主要适用于经济严重萧条的情况,可以强有力的作用于社会总需求的扩大,促使经济复苏。

(√)二、名词解释(每小题3分,共15分)1. 社会公共需要:是指社会安全、公共秩序、公民基本权利的维护和经济发展的条件等公众共同利益的需要。

2.国库集中支付制度:是指由财政部门代表政府设置国库单一账户体系,所有的财政性资金均纳入国库单一账户体系收缴、支付和管理的制度。

3.社会保险税:主要是指以企业的工资支付额为课征对象,由雇员和雇主分别缴纳,税款主要用于各种社会福利开支的一种目的税。

4.超额累进税率:是把课税对象按数额大小划分为不同的等级,每个等级由低到高分别规定税率,各等级分别计算税额,一定数额的课税对象同时使用几个税率。

5.国债市场:是指政府债券市场,它是以国债券(并不一定是实物)为对象而形成的供求关系的总和。

三、简答题(每小题5分,共40 分)1. 课税对象与税目的区别。

课税对象又称税收客体,它是指税法规定的征税的标的物,即对什么征税,它是征税的依据。

税目是课税对象的具体项目或课税对象的具体划分。

税目规定了一个税种的征税范围,反映了征税的广度。

一般来说,一个课税对象往往包括多个税目,如关税就有近百个税目,当然也有的课税对象是十分简单的,不再划分税目。

2.文教科学卫生支出的性质和意义。

文教科学卫生支出是国家财政用于文化、教育、科学、卫生等各项公益性事业发展所需经费的支出。

从性质上看,文教科学卫生支出属于社会消费性支出。

从性质上看,文教科学卫生支出属于社会消费性支出。

从内容上看,文教科学卫生支出仅指财政用于文教科学卫生支等部门的经费支出,不包括财政向这些部门拨付的基本建设支出、科技三项费用等投资性支出。

从费用构成上看,文教科学卫生支出绝大部分用于支付这些单位的人员经费和公用经费。

所以,从总体上看,文教科学卫生支出属于一种社会消费性支出。

文教科学卫生支出还属于非生产性支出。

文教科学卫生等部门是非物质生产部门。

它们不直接从事物质产品的生产,也不生产性劳务。

从这个意义上划分,文教科学卫生支出属于非生产性支出。

3.商品课税的特征。

商品课税的特征有:1)课征对象是商品(劳务)的流转额。

2)商品税具有累退性,较难体现公平税负原则。

3)商品课税的税源普遍,收入相对稳定,税负能够转嫁。

4)商品课税征收管理的便利性。

5)配合社会经济政策的有效性。

4.斯蒂格勒的最优分权模式。

斯蒂格勒的理论贡献在于提出了地方政府存在的必要性的两条基本原则,进而说明由地方政府来进行资源配置比中央政府更有效率。

他提出了这两条原则,一是与中央政府相比,地方政府更接近于自己的民众,地方政府更了解它所管辖公民的效用与要求;二是一国国内的人们有权对不同种类和不同数量的公共服务进行投票表决。

这就说明了地方政府的存在是为了更有效地配备资源,进而实现社会福利的最大化。

同时斯蒂格勒并不否认中央一级政府的作用。

他指出,行政级别高的政府对于实现配置的有效性和分配的公平性目标来说也是必要的。

尤其是对于解决分配上的不公平和地方政府之间的竞争与摩擦这类问题而言,中央政府更为有效。

5.国债发行的条件。

1)发行权限的规定;2)发行对象和发行额度:3)发行价格、利率和票面金额;4)发行时间与国债凭证:5)关于国债流动性与安全性的规定。

6.财政监督管理的现实必要性。

财政监督管理的现实必要性主要体现在三个方面:1、强化财政监督机制是推进民主政治的本质要求。

2、强化财政监督机制是保证国家宏观调控政策目标有效实现的重要条件。

3、强化财政监督机制是从源头上防治腐败的重要措施。

7.相机抉择的财政政策与自动稳定器政策的区别。

相机抉择的财政政策,也称为“斟酌使用的财政政策”,是指政府根据不同时期的经济形势,相应采取变动政府支出和税收的措施,以消除经济波动,谋求实现经济稳定增长的目标。

之所以将它称为相机抉择的财政政策,是因为它不是自动地发挥作用,而是一种人为的政策调节。

这种财政政策要依靠政府对宏观经济形势的分析和判断,经过深思熟虑在决定采取什么样的政策措施。

自动稳定的财政政策,就是随着经济形势的周期性变化,一些政府支出和税收自动发生增减变化,从而对经济的波动发挥自动抵消的作用。

之所以将它称之为自动稳定的财政政策,是因为它不是政府斟酌经济形势变化后所决定的,而是一种非人为的自动调节。

这种财政政策不需要政府预先做出判断和采取措施,而是依靠财政税收制度本身所具有的内在机制,自行发挥作用,收到稳定经济的效果。

8.我国政府间转移支付制度现状分析。

建立规范转移支付制度总的指导思想是在既定的财政体制下,均等化各地的财政地位,抑制地区间社会经济发展水平差距过大的趋势,实行全国范围内各级政府提供公共产品和服务能力的均等化。

具体做法是:1、以“因素法”取代“基数法”,设计出一套科学的计算公式,作为转移支付制度的拨付依据,以提高透明度,防止主观性和随意性。

2、确定转移支付规模,并保持一定的弹性。

3、进一步完善《预算法》,增补转移支付制度方面的内容,尽快出台《政府间转移支付法》,为实施规范的转移支付制度建立一个必需的法制环境。

4、尽快建立省以下政府间的规范的转移支付制度,解决基层政府政府财政困难问题。

四、论述题(15分)论述转移性支出的社会经济的影响。

转移支出对社会经济的影响表现在分配、生产、流通以及不同利益主体的预算约束等方面。

(一)对分配的影响。

转移性支出所起的作用,是通过支出过程使政府资金转移到领受者手中,它只是资金使用权的转移,对分配产生直接影响。

(二)对生产和流通的影响。

微观经济主体获得了转移性支出资金以后,究竟是否用于购买商品和劳务以及购买哪些商品和服务,这已脱离开了政府的限制,因此,在这类支出中,财政对生产和流通的影响是间接的。

(三)对经济主体活动的影响。

1、对政府的效益约束。

在安排转移性支出时,政府并没有十分明确的原则可以遵循,而且,财政支出的效益也极难换算。

所以,转移性支出的规模及其结构也在相当大的程度上只能根据政府同微观经济主体、中央政府与地方政府的谈判情况而定。

2、对微观经济主体的预算约束。

微观经济主体在同政府的转移性支出发生联系时,并无交换发生。

因而,对于可以得到政府转移性支出的微观经济主体来说,他们的收入的高低在很大程度上并不取决于自己的能力和生产能力程度,而取决于同政府讨价还价的能力。

显然,转移性支出对微观经济主体的预算约束是软的。

五、案例分析题(15分)案例资料:人口老龄化有两个方含义:一是指老年人口相对增多,在总人口中所占比例不断上升的过程;二是指社会人口结构呈现老年状态,进入老龄化社会。

国际上通常看法是,当一个国家或地区60岁以上老年人口占人口总数的10%,或65岁以上老年人口占人口总数的7%,即意味着这个国家或地区的人口处于老龄化社会。

从2000年到2007年,我国60岁以上的老年人口由1.26亿增长到1.53亿人,占总人口的比例从10.2%提高到11.6%,占全球老年人口的21.4%,相当于欧洲60岁以上老年人口的总和。

人口老龄化年均增长率高达3.2%,约为总人口增长速度的5倍。

预计2020年老年人口将达到2.4亿人,占总人口的17.17%;到2050年,老年人口总量将超过4亿,老龄化水平推进到30%以上。

养老社会化问题十分迫切,同时社会养老和社会保障的任务也非常艰巨。

要求:结合此案例谈谈人口老龄化的原因以及对我国社会保障制度的要求和实现途径。

人口老龄化的原因:一是长期的生育率低下。

二是人口寿命大大延长。

对我国社会保障制度的要求有:1、全方位的保障功能,即根据人的生命周期的不同阶段的不同保障需要设定保障对象。

2、全社会的保障范围,即将社会每个成员都纳入保障体系。

3、社会保障基金(税)专款专用,并与经济发展保持动态平衡。

要以社会保障税的形式统一征收保障基金,并将其纳入财政预算,明确专门机构,专款专用。

实现途径有:1、抓紧制定、颁布较为完备的社会障法,明确社会保障的基本目标和管理办法。

2、逐步以税务部门统一征收社会保障税的办法取代以单位、部门扣缴各项保险费的做法。

3、配合社会保障立法,大张旗鼓地进行宣传动员,对公民普遍进行社会保障知识教育,以调动所有公民参与社会保障体系建设的自觉性、积极性,从而为实施新的保障制度创造良好的舆论氛围。

相关文档
最新文档