初二数学期末复习【三】
八年级期末考试数学知识点
八年级期末考试数学知识点八年级数学是中学数学的重要基础课程之一,要求学生系统掌握九年级前所学的数学知识,加深对数学知识的理解和应用能力。
下面我们将对八年级期末考试数学知识点进行梳理和总结,为同学们的考试备考提供指导。
一、代数与函数1.线性方程组的解法:直接消元法和消元法配合消元律。
2.函数的概念和性质:定义域、值域、单调性、奇偶性等。
3.直线方程的求解:点斜式公式、截距式公式和一般式公式。
4.写出一元一次方程的一般式和标准形式。
5.解析式、表格和图像之间的相互转化。
6.函数间的运算及其性质:加、减、乘、除、复合等。
二、平面几何1.相似三角形的判定和性质。
2.三角形的性质:角平分线定理、垂心定理、中心定理、外心定理等。
3.直角三角形的勾股定理和三角函数的概念及其在计算中的应用。
4.平行线与三角形的应用。
5.圆的周长和面积的计算公式及其应用。
三、空间几何1.空间几何中的基本图形:点、直线、平面、棱柱、棱锥等。
2.空间几何中的正交投影与立体图形。
3.平行立方体和斜截面长方体的体积和表面积的计算。
4.棱锥和棱台的体积和表面积的计算公式及其应用。
四、数据统计1.数据统计中的统计量:平均数、中位数、众数等。
2.简单概率的概念和计算方法。
3.频率分布表及直方图、折线图等的构建和解读。
4.直角坐标系和数轴上的表示和应用。
五、数学应用1.百分数及其在实际问题中的应用。
2.计算、比较和应用带有根数的式子。
3.正比例函数和反比例函数的概念及其在实际问题中的应用。
4.计算和应用图形中的各种测量量:周长、面积、体积等。
五、解答题1.数学解题步骤:问题的分析、解题方法的选择、答案的验证和表述等。
2.数学语言的规范性和精确性。
3.解答题的思路和技巧:审题、画图、列式子和写方程等。
以上就是八年级期末考试数学知识点的概要梳理和总结。
同学们在备考中要认真复习和巩固每一个知识点,做好知识点的概念和性质的强化,才能在期末考试中取得好成绩。
2022-2023学年第一学期八年级数学期末复习冲刺卷(03)
2022-2023学年第一学期八年级数学期末复习冲刺卷(03)一.选择题(共8小题,满分16分,每小题2分)1.(2分)北京2022年冬奥会会徽“冬梦”已经发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A .B .C .D . 2.(2分)下列实数3.14159,√4,π,227,√3中无理数的有( ) A .2个 B .3个 C .4个 D .5个3.(2分)已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为( )A .1cmB .8cmC .10cmD .8cm 或10cm4.(2分)已知点P (x ,y ),若x +y <﹣2,xy >1,则点P 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2分)已知一次函数y =ax +b (a ,b 是常数且a ≠0)x 与y 的部分对应值如下表:x﹣1 0 1 2 3 y 9 6 3 0 ﹣3那么方程ax +b =0的解是( )A .x =﹣1B .x =0C .x =1D .x =26.(2分)如图,点E 、F 在AC 上,AD =BC ,AD ∥BC ,要使△ADF ≌△CBE ,下列条件中不成立的是( )A .AE =CFB .∠D =∠BC .DF =BED .DF ∥BE7.(2分)满足下列条件的△ABC 中,不是直角三角形的是( )A .∠B =∠A +∠C B .∠A :∠B :∠C =5:12:13C .a 2=b 2﹣c 2D .a :b :c =5:12:138.(2分)如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y =ax ,y =(a +1)x ,y =(a +2)x 相交,其中a >0.则图中阴影部分的面积是( )A .12.5B .25C .12.5aD .25a二.填空题(共10小题,满分20分,每小题2分)9.(2分)√x 3=−√y 3,则x +y = .10.(2分)一次函数y =﹣x +1的图象过点(a ,2),则a = .11.(2分)若点P (x ,y )在第二象限角平分线上,则x 与y 的关系是 .12.(2分)已知当﹣2≤x ≤3时,函数y =|2x ﹣m |(其中m 为常量)的最小值为2m ﹣54,则m = .13.(2分)如图,在数轴上点A 表示的数与−√2的和是 .14.(2分)在平面直角坐标系中,点P (﹣3,2)关于原点O 中心对称的点P '的坐标为 .15.(2分)如图,把一个长方形纸条ABCD 沿AF 折叠,点B 落在点E 处.已知∠ADB =24°,AE ∥BD ,则∠AFE 的度数是 .16.(2分)如图,某自动感应门的正上方A 处装着一个感应器,离地面的高度AB 为2.5米,一名学生站在C 处时,感应门自动打开了,此时这名学生离感应门的距离BC 为1.2米,头顶离感应器的距离AD 为1.5米,则这名学生身高CD 为 米.17.(2分)小明家、小华家、海洋公园大门位于同一笔直公路旁.中考在即,小明和小华相约去海洋公园游玩,以缓解紧张情绪,小明先从家出发,匀速步行至离海洋公园较近的小华家,小华立即与小明一起以小明之前的速度走向海洋公园.2分钟后,小华发现忘了带学生证,于是立即提速回家取,小明则以先前速度继续前行,小华取到学生证后,立即以提速后的速度追赶小明,最后两人同时到达海洋公园.小明和小华之间的距离y(米)与小明出发的时间x(分钟)之间的函数关系如图所示.小华取学生证的时间忽略不计,则小华家和海洋公园的距离为米.18.(2分)如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第3个阴影三角形的面积是,第2021个阴影三角形的面积是.三.解答题(共9小题,满分64分)19.(6分)计算:(1)√(−3)2−(√2+1)0+(﹣2)﹣2;(2)求(x+1)3﹣64=0中x的值.20.(6分)如图,点A的坐标为(4,2),点B与点A关于x轴对称,AB交x轴于点C.(1)在图中描出点B,并写出点C的坐标;(2)求△ABO的面积.21.(6分)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=10,AD=10√2.(1)求四边形ABCD的面积.(2)求对角线BD的长.22.(6分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.23.(6分)如图,AB=AC,CD∥AB,点E是AC上一点,且∠ABE=∠CAD,延长BE交AD于点F.(1)求证:△ABE≌△CAD;(2)如果∠ABC=65°,∠ABE=25°,求∠D的度数.24.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润是500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式.(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?25.(8分)如图,直线l:y=43x+b过点A(﹣3,0),与y轴交于点B,∠OAB的平分线交y轴于点C,过点C作直线AB的垂线,交x轴于点E,垂足是点D.(1)求点B和点C的坐标;(2)求直线DE的函数关系式;(3)设点P是y轴上一动点,当PA+PD的值最小时,请直接写出点P的坐标.26.(8分)在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△PAB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.27.(10分)在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数y=|x﹣b|的性质及其运用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…﹣2﹣1012345…y…43210123…根据表格中的数据直接写出y与x的函数解析式及对应的自变量x的取值范围:.(2)描点、连线:在下面的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:.(3)已知函数y1=2x并结合两函数图象,直接写出当y1<y时,x的取值范围.答案与解析一.选择题(共8小题,满分16分,每小题2分)1.(2分)北京2022年冬奥会会徽“冬梦”已经发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A 、不是轴对称图形,故本选项不合题意;B 、是轴对称图形,故本选项符合题意;C 、不是轴对称图形,故本选项不合题意;D 、不是轴对称图形,故本选项不合题意.故选:B .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下列实数3.14159,√4,π,227,√3中无理数的有( ) A .2个 B .3个 C .4个 D .5个【分析】根据无理数的概念即可判断.【解答】解:√4=2,无理数有:π,√3,共有2个,故选:A .【点评】本题考查了无理数.解题的关键是熟练掌握无理数的概念,属于基础题型.3.(2分)已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为( )A .1cmB .8cmC .10cmD .8cm 或10cm【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为2cm 或是腰长为4cm 两种情况.【解答】解:等腰三角形的两边长分别为2cm 和4cm ,当腰长是4cm 时,则三角形的三边是2cm ,2cm ,4cm ,2cm +2cm =4cm 不满足三角形的三边关系; 当腰长是4cm 时,三角形的三边是4cm ,4cm ,2cm ,三角形的周长是10cm .故选:C .【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.(2分)已知点P(x,y),若x+y<﹣2,xy>1,则点P所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用已知得出x,y的符号进而得出答案.【解答】解:∵x+y<﹣2,xy>1,∴x,y同号,且x,y都小于0,故点P(x,y)所在的象限为第三象限.故选:C.【点评】此题主要考查了点的坐标,正确得出x,y的符号是解题关键.5.(2分)已知一次函数y=ax+b(a,b是常数且a≠0)x与y的部分对应值如下表:x﹣10123y9630﹣3那么方程ax+b=0的解是()A.x=﹣1B.x=0C.x=1D.x=2【分析】方程ax+b=0的解为y=0时函数y=ax+b的x的值,根据图表即可得出此方程的解.【解答】解:根据图表可得:当x=2时,y=0;因而方程ax+b=0的解是x=2.故选:D.【点评】本题主要考查了一次函数与一元一次方程的关系:方程ax+b=0的解是y=0时函数y=ax+b的x 的值.6.(2分)如图,点E、F在AC上,AD=BC,AD∥BC,要使△ADF≌△CBE,下列条件中不成立的是()A.AE=CF B.∠D=∠B C.DF=BE D.DF∥BE【分析】利用全等三角形判定方法依次判断,可求解.【解答】解:∵AD∥BC,∴∠A=∠C,当AE=CF,可得AF=CE,由“SAS”可证△ADF≌△CBE,故选项A不合题意;当∠D=∠B,由“ASA”可证△ADF≌△CBE,故选项B不合题意;当DF=BE,不能证明△ADF≌△CBE,故选项C符合题意;当DF∥BE,可得∠AFD=∠BEC,由“AAS”可证△ADF≌△CBE,故选项D不合题意;故选:C.【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键.7.(2分)满足下列条件的△ABC中,不是直角三角形的是()A.∠B=∠A+∠C B.∠A:∠B:∠C=5:12:13C.a2=b2﹣c2D.a:b:c=5:12:13【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠B=∠A+∠C,又∠A+∠B+∠C=180°,则∠B=90°,是直角三角形,故此选项不符合题意;B、∠A:∠B:∠C=5:12:13,又∠A+∠B+∠C=180°,则∠C=180°×1330=78°,不是直角三角形,故此选项符合题意;C、由a2=b2﹣c2,得a2+c2=b2,符合勾股定理的逆定理,是直角三角形,故此选项不符合题意;D、设a=5k,b=12k,c=13k,由a2+b2=25k2+144k2=169k2=c2,符合勾股定理的逆定理,是直角三角形,故此选项不符合题意.故选:B.【点评】本题考查了勾股定理的逆定理,三角形内角和定理.解题的关键是掌握直角三角形的判定方法,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.(2分)如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a【分析】分别把x=1,x=2,x=3,x=4,x=5代入解析式,求出梯形或三角形的边长,根据面积公式求出即可【解答】解:把x=1分别代入y=ax,y=(a+1)x,y=(a+2)x得:AW=2,WQ=a+1﹣a=1,∴AQ=2﹣1=1,同理:BR=RK=2,CH=HP=3,DG=GL=4,EF=FT=5,2﹣1=1,3﹣2=1,4﹣3=1,5﹣4=1,∴图中阴影部分的面积是12×1×1+12×(1+2)×1+12×(2+3)×1+12×(3+4)×1+12×(4+5)×1=12.5, 故选:A .【点评】主要考查了一次函数和三角形的面积公式,要会根据点的坐标求出所需要的线段的长度,灵活运用面积公式求解.二.填空题(共10小题,满分20分,每小题2分)9.(2分)√x 3=−√y 3,则x +y = 0 .【分析】根据立方根的定义可得x =﹣y ,从而得结论.【解答】解:∵√x 3=−√y 3,∴x =﹣y ,∴x +y =0,故答案为:0.【点评】本题考查了立方根的定义,属于基础题.10.(2分)一次函数y =﹣x +1的图象过点(a ,2),则a = ﹣1 .【分析】直接把点(a ,2)代入一次函数y =﹣x +1,求出a 的值即可.【解答】解:∵一次函数y =﹣x +1的图象过点(a ,2),∴2=﹣a +1,解得a =﹣1.故答案为:﹣1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(2分)若点P (x ,y )在第二象限角平分线上,则x 与y 的关系是 x +y =0 .【分析】根据二四象限角平分线上点的特点即横纵坐标互为相反数解答.【解答】解:∵点P (x ,y )在第二象限角平分线上,∴x ,y 互为相反数,即x +y =0.【点评】解答此题的关键是熟知二四象限角平分线上点的坐标特征.12.(2分)已知当﹣2≤x ≤3时,函数y =|2x ﹣m |(其中m 为常量)的最小值为2m ﹣54,则m = 48 .【分析】根据题意,利用分类讨论的方法可以求得m 的值,本题得以解决.【解答】解:∵函数y =|2x ﹣m |,∴y ={−2x +m (x ≤m 2)2x −m(x >m 2), 当﹣2≤m 2≤3时,得﹣4≤m ≤6,当x =m 2时,y 取得最小值,此时y =0≠2m ﹣54,不符合题意;当m 2<−2时,得m <﹣4,当x =﹣2时,y 取得最小值,此时y =2×(﹣2)﹣m =﹣4﹣m ,令﹣4﹣m =2m ﹣54,得m =503>−4,不符题意; 当m 2>3时,得m >6,当x =3时,y 取得最小值,此时y =﹣2×3+m =﹣6+m ,令﹣6+m =2m ﹣54,得m =48>6,符合题意;由上可得,m 的值是48,故答案为:48.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.13.(2分)如图,在数轴上点A 表示的数与−√2的和是 0 .【分析】本题首先根据已知条件利用勾股定理求得OB 的长度,OA =OB ,进而利用实数与数轴的关系解答即可求解.【解答】解:由勾股定理可知,OB =√12+12=√2,又OA =OB ,点A 在正半轴上,故A 表示的数是√2,故在数轴上点A 表示的数与−√2的和是0.故答案为:0.【点评】本题主要考查了勾股定理及实数与数轴之间的对应关系,有一定的综合性,不仅要结合图形,还需要灵活运用勾股定理.14.(2分)在平面直角坐标系中,点P (﹣3,2)关于原点O 中心对称的点P '的坐标为 (3,﹣2) .【分析】直接利用关于原点对称点的性质分析得出答案.【解答】解:点P (﹣3,2)关于原点O 中心对称的点P '的坐标为:(3,﹣2).故答案为:(3,﹣2).【点评】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.15.(2分)如图,把一个长方形纸条ABCD 沿AF 折叠,点B 落在点E 处.已知∠ADB =24°,AE ∥BD ,则∠AFE 的度数是 33° .【分析】由折叠得:∠BFA=∠AFE,∠ABC=∠E=90°,由平行线的性质,得出∠EAM=∠ADB=24°,进而求出∠EMA=66°,再根据三角形的外角的性质,得出∠AFE=12∠EMA,求出答案.【解答】解:由折叠得:∠BFA=∠AFE,∠ABC=∠E=90°,∵长方形ABCD,∴AD∥BC,∴∠BFA=∠MAF,∴∠AFE=∠MAF,∵AE∥BD,∴∠EAM=∠ADB=24°,∴∠EMA=90°﹣∠EAM=90°﹣24°=66°,∴∠AFE=∠MAF=12∠EMA=12×66°=33°.故答案为:33°.【点评】考查折叠轴对称的性质、平行线的性质、三角形的内角和定理等知识,掌握平行线的性质、三角形内角和定理是解决问题的关键.16.(2分)如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为1.6米.【分析】过点D作DE⊥AB于E,则CD=BE,DE=BC=1.2米,由勾股定理得出AE=0.9(米),则BE =AB﹣AE=1.6(米),即可得出答案.【解答】解:过点D作DE⊥AB于E,如图所示:则CD=BE,DE=BC=1.2米=65米,在R t△ADE中,AD=1.5米=32米,由勾股定理得:AE=√AD2−DE2=√(32)2−(65)2=0.9(米),∴BE=AB﹣AE=2.5﹣0.9=1.6(米),∴CD=BE=1.6米,故答案为:1.6.【点评】本题考查了勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.17.(2分)小明家、小华家、海洋公园大门位于同一笔直公路旁.中考在即,小明和小华相约去海洋公园游玩,以缓解紧张情绪,小明先从家出发,匀速步行至离海洋公园较近的小华家,小华立即与小明一起以小明之前的速度走向海洋公园.2分钟后,小华发现忘了带学生证,于是立即提速回家取,小明则以先前速度继续前行,小华取到学生证后,立即以提速后的速度追赶小明,最后两人同时到达海洋公园.小明和小华之间的距离y(米)与小明出发的时间x(分钟)之间的函数关系如图所示.小华取学生证的时间忽略不计,则小华家和海洋公园的距离为1440米.【分析】由图象可知,小明5分钟走了400米,据此可得小明的速度;小华走1.6分钟的路程与小明走2分钟的路程相等,可得小华的速度;然后根据追及问题列方程解答即可.【解答】解:小明的速度为:400÷5=80米/分;小华提速后的速度为:80×28.6−7=100米/分;设小明从小华家到海洋公园走了x分钟,根据题意得:80x=100(x﹣5.2)+80×2,解得x=18.故小华家和海洋公园的距离为:80×18=1440米.故答案为:1440.【点评】本题考查了一次函数的应用,观察函数图象,利用数量关系,求出小张、小明步行及跑步的速度是解题的关键.18.(2分)如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第3个阴影三角形的面积是32,第2021个阴影三角形的面积是2×42020.【分析】利用一次函数图象上点的坐标特征可求出点A1的坐标,结合等腰直角三角形的性质及三角形的面积可得出点B1的坐及△A1OB1的面积,同理可求出△A2B1B2和△A3B2B3的面积,设第n个阴影三角形的面积为S n(n为正整数),根据三角形面积的变化,即可找出变化规律“S n=2×4n﹣1(n为正整数)”,再代入n=2021即可求出结论.【解答】解:当x=0时,y=0+2=2,∴点A1的坐标为(0,2).∵△A1OB1为等腰直角三角形,∴OB1=OA1=2,∴点B1的坐标为(2,0),S△A1OB1=12×2×2=2;当x=2时,y=2+2=4,∴点A2的坐标为(2,4).∵△A2B1B2为等腰直角三角形,∴点B2的坐标为(6,0),S△A2B1B2=12×4×4=8;当x=6时,y=6+2=8,∴点A3的坐标为(6,8),∵△A3B2B3为等腰直角三角形,∴点B3的坐标为(14,0),S△A3B2B3=12×8×8=32.设第n个阴影三角形的面积为S n(n为正整数),则S n=2×4n﹣1,∴S 2021=2×42021﹣1=2×42020. 故答案为:32;2×42020.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形、规律型:点的坐标以及三角形的面积,根据三角形面积的变化,找出“S n =2×4n ﹣1(n 为正整数)”是解题的关键. 三.解答题(共9小题,满分64分)19.(6分)计算:(1)√(−3)2−(√2+1)0+(﹣2)﹣2; (2)求(x +1)3﹣64=0中x 的值.【分析】(1)利用二次根式的性质,零指数幂的意义和负整数指数幂的意义解答即可;(2)利用立方根的意义解答即可.【解答】解:(1)原式=|﹣3|﹣1+14=3﹣1+14=214; (2)∵(x +1)3﹣64=0,∴(x +1)3=64.∴x +1是64的立方根.∴x +1=4.∴x =3.【点评】本题主要考查了二次根式的性质,零指数幂的意义和负整数指数幂的意义,立方根的意义,正确使用上述法则进行运算是解题的关键.20.(6分)如图,点A 的坐标为(4,2),点B 与点A 关于x 轴对称,AB 交x 轴于点C .(1)在图中描出点B ,并写出点C 的坐标;(2)求△ABO 的面积.【分析】(1)过点A 作x 轴的垂线,垂足为点C ,延长AC 到点B ,使CB =AC ,根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得点B 点坐标,进而得出C 点坐标;(2)根据三角形的面积公式即可求解.【解答】解:(1)∵点A 的坐标为(4,2),点B 与点A 关于x 轴对称,AB 交x 轴于点C ,∴B (4,﹣2),C (4,0),如图所示:(2)△ABO 的面积=12AB •OC =12×4×4=8. 【点评】本题考查了关于x 轴对称的点的坐标,三角形的面积,坐标与图形性质,掌握关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标互为相反数,是解答本题的关键.21.(6分)如图,在四边形ABCD 中,∠ABC =90°,AB =6,BC =8,CD =10,AD =10√2.(1)求四边形ABCD 的面积.(2)求对角线BD 的长.【分析】(1)连接AC ,然后根据勾股定理可以求得AC 的长,再根据勾股定理的逆定理即可判断△ACD 的形状,从而可以求得四边形ABCD 的面积;(2)作DE ⊥BC ,然后根据三角形全等和勾股定理,可以求得对角线BD 的长.【解答】解:(1)连接AC ,∵∠ABC =90°,AB =6,BC =8,∴AC =√AB 2+BC 2=√62+82=10,∵CD =10,AD =10√2,∴CD 2+AC 2=102+102=200,AD 2=(10√2)2=200,∴CD 2+AC 2=AD 2,∴△ACD 是直角三角形,∴四边形ABCD 的面积是:AB⋅BC 2+AC⋅CD 2=6×82+10×102=24+50=74,即四边形ABCD 的面积是74;(2)作DE ⊥BC 交BC 的延长线于点E ,则∠DEC =90°,∵△ACD 是直角三角形,∠ACD =90°,∴∠DCE +∠ACB =90°,∵∠ABC =90°,∴∠CAB +∠ACB =90°,∴∠DCE =∠CAB ,在△ABC 和△CED 中,{∠ABC =∠CED∠CAB =∠DCE AC =CD,∴△ABC ≌△CED (AAS ),∴AB =CE ,BC =ED ,∵AB =6,BC =8,∴CE =6,ED =8,∴BE =BC +CE =8+6=14,∴BD =√BE 2+ED 2=√142+82=2√65.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.(6分)王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合.(1)求证:△ADC ≌△CEB ;(2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明△ADC ≌△CEB 即可;(2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC在△ADC 和△CEB 中{∠ADC =∠CEB∠DAC =∠BCE AC =BC,∴△ADC ≌△CEB (AAS );(2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.23.(6分)如图,AB =AC ,CD ∥AB ,点E 是AC 上一点,且∠ABE =∠CAD ,延长BE 交AD 于点F .(1)求证:△ABE ≌△CAD ;(2)如果∠ABC =65°,∠ABE =25°,求∠D 的度数.【分析】(1)根据ASA 可证明△ABE ≌△CAD ;(2)求出∠BAC =50°,则求出∠BAD =75°,可求出答案.【解答】(1)证明:∵CD ∥AB ,∴∠BAE =∠ACD ,∵∠ABE =∠CAD ,AB =AC ,∴△ABE ≌△CAD (ASA );(2)解:∵AB =AC ,∴∠ABC =∠ACB =65°,∴∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣65°=50°,又∵∠ABE =∠CAD =25°,∴∠BAD =∠BAC +∠CAD =50°+25°=75°,∵AB ∥CD ,∴∠D =180°﹣∠BAD =180°﹣75°=105°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、平行线的性质、三角形内角和定理等知识,解题的关键是熟练掌握全等三角形的判定与性质.24.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润是500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式.(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?【分析】(1)根据题意,可以写出y与x的函数关系式;(2)根据B型电脑的进货量不超过A型电脑的2倍,可以求得A型电脑数量的取值范围,再根据(1)中的函数关系式和一次函数的性质,即可得到该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少.【解答】解:(1)由题意可得,y=400x+500(100﹣x)=﹣100x+50000,即y关于x的函数关系式是y=﹣100x+50000;(2)∵B型电脑的进货量不超过A型电脑的2倍,∴100﹣x≤2x,解得,x≥331 3,∵y=﹣100x+50000,∴k=﹣100,y随x的增大而减小,∵x为整数,x≥331 3,∴当x=34时,y取得最大值,此时y=46600,100﹣x=66,答:该商店购进A型、B型电脑34台、66台时,才能使销售总利润最大,最大利润是46600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25.(8分)如图,直线l:y=43x+b过点A(﹣3,0),与y轴交于点B,∠OAB的平分线交y轴于点C,过点C作直线AB的垂线,交x轴于点E,垂足是点D.(1)求点B和点C的坐标;(2)求直线DE的函数关系式;(3)设点P是y轴上一动点,当PA+PD的值最小时,请直接写出点P的坐标.【分析】(1)把点A (﹣3,0)代入y =43x +b ,可求得B 的坐标,根据角平分线的性质得CD =CO ,设CD =CO =m ,根据勾股定理求出m 即可得点C 的坐标;(2)证明△BCD ≌△ECO (ASA ),根据全等三角形的性质得OE =BD ,可得E 的坐标,由点C 、E 的坐标利用待定系数法即可求解;(3)作点A 关于y 轴对称的点A ′,连接A ′D 交y 轴于点P ,即为所求的点P ,此时,PA +PD 的值最小,求得A ′D 的解析式,即可得点P 的坐标.【解答】解:(1)把点A (﹣3,0)代入y =43x +b ,得b =4,∴B (0,4),∴OB =4,∵A (﹣3,0),∴OA =3,在 R t △AOB 中,∠AOB =90°,∴AB =√OA 2+OB 2=5.∵AC 平分∠OAB ,CD ⊥AB ,CO ⊥OA ,∴CD =CO ,∠ACD =∠ACO ,∵AC =AC ,∴△ACD ≌△ACO (SAS ),∴AD =AO =3,BD =AB ﹣AD =2.设CD =CO =m ,则BC =4﹣m ,在R t △BDC 中,由勾股定理知,CD 2+BD 2=BC 2,∴m 2+22=(4﹣m )2,解得,m =32,∴C (0,32);(2)∵CD ⊥AB ,CO ⊥OA ,∴∠CDB =∠COE =90°,∵CD =CO ,∠BCD =∠ECO ,∴△BCD ≌△ECO (ASA ),OE =BD =2,∴E 的坐标(2,0),∵C (0,32), 设直线DE 的函数关系式为y =kx +32,∴0=2k +32,解得:k =−34,∴直线DE 的函数关系式为y =−34x +32;(3)作点A 关于y 轴对称的点A ′,连接A ′D 交y 轴于点P ,即为所求的点P ,此时,PA +PD 的值最小,过点D 作DF ⊥BC 于F ,∵CD =CO =32,OB =4,∴BC =52,∵CD ⊥AB ,BD =2,∴DF =BD⋅CD BC =65, ∵直线DE 的函数关系式为y =−34x +32,∴D (−65,125), ∵A (﹣3,0),∴A ′(3,0),设A ′D 的解析式为y =k ′x +b ′,∴{3k ′+b ′=0−65k′+b′=125,解得:{k ′=−47b′=127, ∴A ′D 的解析式为y =−47x +127,当x =0时,y =127,∴点P 的坐标为(0,127).【点评】本题属于一次函数综合题,考查了待定系数法求一次函数解析式,角平分线的性质,全等三角形的判定和性质,轴对称﹣最短路线,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用轴对称找出符合条件的点的位置.26.(8分)在平面直角坐标系中,直线y 1=kx +b 经过点P (2,2)和点Q (0,﹣2),与x 轴交于点A ,与直线y 2=mx +n 交于点P .(1)求出直线y 1=kx +b 的解析式;(2)当m <0时,直接写出y 1<y 2时自变量x 的取值范围;(3)直线y 2=mx +n 绕着点P 任意旋转,与x 轴交于点B ,当△PAB 是等腰三角形时,点B 有几种位置?请你分别求出点B 的坐标.【分析】(1)利用待定系数法确定函数解析式;(2)由函数图象可以直接得到答案;(3)对于本题中的等腰△PAB 的腰不确定,需要分类讨论:以PA 为底和PA 为腰.由两点间的距离公式和方程思想解答.【解答】解:(1)把P (2,2)和点Q (0,﹣2)分别代入y 1=kx +b ,得{2k +b =2b =−2. 解得{k =2b =−2. 则直线y 1=kx +b 的解析式为:y 1=2x ﹣2;(2)如图所示,P (2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=√5,AM=1当m<0时,点B有3种位置使得△PAB为等腰三角形①当AP=AB时,AB=√5,∴B(√5+1,0)②当PA=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=√5x2−(√52)2解得x=2.5,∴B(3.5,0)当m>0时,点B有1种位置使得△PAB为等腰三角形.当AB=AP时,OB=√5−1,∴B(1−√5,0).综上所述,点B有4种位置使得△PAB为等腰三角形,坐标分别为(√5+1,0)、(3,0)、(3.5,0)、(1−√5,0).【点评】考查了一次函数综合题,主要运用了待定系数法确定函数解析式,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式,等腰三角形的性质,用方程的思想解决问题是解本题的关键.27.(10分)在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数y=|x﹣b|的性质及其运用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…﹣2﹣1012345…y…43210123…根据表格中的数据直接写出y与x的函数解析式及对应的自变量x的取值范围:全体实数.(2)描点、连线:在下面的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:函数图象关于直线x=2对称.(3)已知函数y1=2x并结合两函数图象,直接写出当y1<y时,x的取值范围x<23.【分析】(1)将(2,0)点代入y=|x﹣b|,求解即可;(2)将表中的数据标记到平面直角坐标系中,连线即可,根据函数图像可得函数关于x=2对称;(3)在平面直角坐标系中,画出y1=2x的图像,观察图像求解不等式即可.【解答】解:(1)将(2,0)代入y=|x﹣b|得,|2﹣b|=0解得b=2所以y与x的函数解析式为y=|x﹣2|,自变量x的取值范围为全体实数;故答案为:全体实数;(2)画出函数图象如图,观察图象可知:函数图象关于直线x =2对称;故答案为:函数图象关于直线x =2对称;(3)解{y =2x y =2−x 得{x =23y =43, ∴函数y 1=2x 的图象与函数y =|x ﹣2|的交点为(23,43), 由图象可知:当y 1<y 时,x 的取值范围是x <23;故答案为:x <23.【点评】本题考查的是一次函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.。
数学初二第三章总结知识点
数学初二第三章总结知识点一、比例的概念1.比例的定义比例是指两个或两个以上的有相同或相似性质的量的比较关系。
在比例中,我们通常用冒号“:”或者分数“a/b”来表示。
2.比例的基本性质(1)等比例的意义如果两个比例的比值相等,我们就称这两个比例为等比例。
即a/b=c/d,我们就说a、b、c、d成等比例。
(2)反比例的意义如果两个比例的积为常数,我们称这两个比例成反比例。
即a/b=c/d,如果a×b=c×d,我们就说a、b、c、d成反比例。
3.比例的延伸在学习比例时,我们还需要掌握比例的延伸。
比例的延伸就是通过已知的比例,求解相关的未知量。
比如已知a/b=c/d,求解b、c、d等未知量。
二、比例的应用比例在日常生活中有着较广泛的应用,比如购物打折、图案的放大缩小等。
同时,在数学学习中也常常用到比例的运用解决实际问题。
比如利用比例解决物品的定价、地图的测量等问题。
在学习比例的应用时,我们也要注意对比例方法的掌握,以及灵活应用比例解决实际问题的能力。
三、图形的性质本章介绍了数学初二的第三章还介绍了一些图形的性质,其中包括直角三角形、等腰三角形、等边三角形、相似三角形等的性质。
这些图形的性质对于初中阶段的数学学习来说是很重要的,因为这些性质不仅在数学学习中频繁出现,而且这些图形的性质也是训练逻辑思维、分析问题的重要手段。
四、重点难点解析1.比例的性质在学习比例的过程中,学生往往对于比例性质的运用比较生疏。
因此,学习比例时要注意加强比例的性质掌握,并通过大量的练习来提高比例的应用能力。
2.图形的性质图形的性质需要通过较多的练习来巩固,特别是各种图形的边、角性质的掌握,学生需要通过多角度地理解和理解图形的性质,透彻学习各种图形的相互关系。
五、总结通过对数学初二第三章的学习,我们了解了比例和图形的知识点,并且掌握了比例的概念、比例的性质、比例的应用以及图形的性质。
这些知识点对于数学学习来说是非常重要的。
【解析版】初中数学八年级下期末经典复习题(课后培优)(3)
一、选择题1.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 4.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形5.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,246.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.18.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.729.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.8210.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.的自变量取值范围是( )11.(0分)[ID:10175]函数y=√x+3A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.313.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .614.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.19.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.20.(0分)[ID :10295]一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.21.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22.(0分)[ID :10260]在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10251]A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.25.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.三、解答题26.(0分)[ID :10421]如图,菱形ABCD 中,对角线AC 、BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.27.(0分)[ID:10412]如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC 的中点,若DE=3,求B C的长.28.(0分)[ID:10365]如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC 上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.29.(0分)[ID:10359]已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF=.求证:四边形AECF是菱形.30.(0分)[ID:10337]将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.C5.A6.B7.C8.D9.B10.C11.B12.D13.C14.D15.B二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形∴AD=BD=5根据勾股定理C23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a千米/小时乙车的速度为b千米/小时解得∴AB两地的距离为:80×9=7225.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.6.B解析:B【解析】【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.8.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.13.C解析:C【解析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.故答案为y=3x+2.17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.三、解答题26.(1)证明见解析;(2)2165. 【解析】【分析】(1)由DE ∥AC ,CE ∥BD 可得四边形OCED 为平行四边形,又AC ⊥BD 从而得四边形OCED 为矩形;(2)过点O 作OH ⊥BC ,垂足为H ,由已知可得三角形OBC 、OCD 的面积,BC 的长,由面积法可得OH 的长,从而可得三角形OCF 的面积,三角形OCD 与三角形OCF 的和即为所求.【详解】(1)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.又∵四边形ABCD 是菱形,∴AC ⊥BD .∴∠DOC=90°.∴四边形OCED 为矩形.(2)∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =12BD =6,OA =OC =12AC =8,∴CF=CO=8,S △BOC =S △DOC =12OD OC ⋅=24,在Rt △OBC 中,BC =10,.作OH ⊥BC 于点H ,则有12BC·OH=24,∴OH=245,∴S △COF =12CF·OH=965.∴S 四边形OFCD =S △DOC +S △OCF =2165.【点睛】本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH 的长度是解题关键.27.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC 的长即可.【详解】∵ D 、E 是AB 、BC 的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.28.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.29.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.30.(1)见解析,223x-<<;(2)21b--【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-101112y x =+ 121 12 y =|x|1 0 1 描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩= ∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩ ∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2), ∴观察图象可知:223x -<<时,112x +比||x 大; (2)如图,观察图象可知满足条件的b 的值为21b --,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。
八年级下册数学期末 (3)
八年级下册数学期末前言数学是一门重要的学科,对于学生的学习和思维能力的培养至关重要。
随着学期的结束,八年级下册数学期末考试也即将到来。
本文将为大家总结八年级下册数学的重点内容和复习方法,希望能够帮助大家在考试中取得好成绩。
一、重点知识点梳理八年级下册数学的内容涵盖了多个知识点,下面将对其中的重点知识进行梳理。
1. 有理数有理数是整数和分数的统称,包括正整数、负整数、零以及有理数的四则运算。
在考试中,有理数的加减乘除运算是一个重要的考点,需要熟练掌握。
2. 几何几何是数学中与形状、结构、空间关系等有关的内容,包括图形的性质和变换等。
几何知识点包括角度的概念、三角形的分类和性质、平行线与平行四边形、相似形、全等形等。
在考试中,需要注意掌握各种图形的性质和判断方法。
3. 线性方程组线性方程组是数学中重要的代数内容,包括一元一次方程、一元一次方程组、一次函数等。
在考试中,需要掌握方程组的解法和应用。
4. 统计与概率统计与概率是数学中与数据处理和随机现象相关的内容。
包括数据的收集整理、数据分析与图表的表示、概率的基本概念和计算等。
在考试中,需要掌握各种统计方法和概率计算。
二、复习方法与技巧为了有效地复习八年级下册数学知识,下面为大家介绍几种复习方法与技巧。
1. 制定复习计划在复习前,制定一个合理的复习计划是非常重要的。
可以根据自己的情况合理安排学习时间,将知识内容进行分类整理,并确定每天的复习目标。
2. 多做练习题练习题是检验自己对知识掌握情况的重要方法。
可以选择教材中的习题进行练习,还可以参考一些习题集和模拟试卷。
在做题过程中,要注意分析解题思路,理解题目要求,并多进行思考和总结。
3. 查漏补缺在复习过程中,可能会发现有些知识点掌握不牢固或者有些概念不清楚。
这时可以通过查阅教科书或者课堂笔记来进行查漏补缺。
如果仍然无法理解,可以请教老师或者同学,互相讨论,共同解决问题。
4. 做好笔记复习过程中,可以适当做一些笔记,将重点知识和解题方法进行整理和总结。
初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)
2019-2020学年八年级数学下册同步闯关练(人教版)第十七章《勾股定理》17.117.2勾股定理及勾股定理的逆定理知识点1:勾股定理【例1】(2020春•朝阳区校级月考)如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,DE是AC 的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD等于()A.4B.3C.2.5D.2.4【变式1-1】(2019秋•雨花区校级期末)如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4【变式1-2】(2020•浙江自主招生)如图,边长为的立方体中,B,C,D为三条棱中点,过BCD的平面切割立方体得四面体,则以△BCD为底面的四面体的高为.【变式1-3】(2019秋•南岸区校级期末)如图,在Rt△ABC,∠ACB=90°,AD在△ABC外,AD=AC,∠CAD=∠ABC,连接BD.若AB=5,AC=3,则BD=.【变式1-4】(2019秋•高安市校级期末)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD =4,CD=10,求BD的长.【变式1-5】(2019秋•邳州市期末)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.【变式1-6】(2019秋•南召县期末)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.知识点2:勾股定理的证明【例2】(2019春•德州期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【变式2-1】(2019秋•铁西区校级月考)“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.9B.36C.27D.34【变式2-2】(2017秋•新泰市期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于.【变式2-3】(2017春•厦门期末)公元3世纪,我国数学家赵爽用弦图证明了勾股定理,在前面的学习中,我们知道根据勾股定理可以用长为有理数的线段来作出长为,,的线段.若一个直角三角形的一条边长为,其他两边长均为有理数,则其它两边的长可以为,.【变式2-4】(2018秋•泰兴市校级月考)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2.【变式2-5】(2018秋•商河县期中)如图1是用硬纸片做成的两个全等的直角三角形,两条直角边长分别为a和b,斜边为c;图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图,并用它验证勾股定理;(2)假设图3中的直角三角形有若干个,你能运用图中所给的直角三角形拼出另一种能够验证勾股定理的图形吗?画出拼成图形的示意图(不写验证过程).【变式2-6】(2016秋•甘州区校级月考)请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)【变式2-7】(2018春•遵义期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD =a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.知识点3:勾股定理的逆定理【例3】(2019春•贵池区期中)△ABC的三边分别为a,b,c,下列条件能推出△ABC是直角三角形的有()①a2﹣c2=b2;②(a﹣b)(a+b)+c2=0;③∠A=∠B﹣∠C;④∠A:∠B:∠C=1:2:3;⑤;⑥a=10,b=24,c=26.A.2个B.3个C.4个D.5个【变式3-1】(2019秋•义乌市期末)在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC 是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a:b:c=1:1:【变式3-2】(2019秋•南岸区校级月考)如图,在四边形ABCD中,AB=BC=2,DC=3,AD=,∠ABC=90°,则四边形ABCD的面积是【变式3-3】(2019•郫都区模拟)如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.【变式3-4】(2019秋•泰安期末)如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.【变式3-5】(2018秋•长丰县期末)如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点E 自A向B以2cm/s的速度运动,动点F自B向C以4cm/s的速度运动,若E、F同时分别从A、B出发.(1)试问出发几秒后,△BEF为等边三角形?(2)填空:出发秒后,△BEF为直角三角形?【变式3-6】(2019春•三台县期中)如图,在四边形ABCD中,O是BD的中点,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的长和四边形ABCD的面积.知识点4:勾股数【例4】(2017秋•靖江市校级月考)下列一组数是勾股数的是()A.1.5,2,2.5B.7,40,41C.5,12,13D.12,15,20【变式4-1】下列各组数为勾股数的是()A.2,2,5B.15,8,17C.9,12,13D.3a,4a,5a【变式4-2】(2019秋•眉山期中)观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.【变式4-3】(2017春•永城市期中)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.【变式4-4】(2015秋•泰兴市期末)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.【变式4-5】(2014秋•兴化市校级月考)观察下列等式:32=4+5=(5+4)(5﹣4)=52﹣42;52=12+13=(13+12)(13﹣12)=132﹣122;72=24+25=(25+24)(25﹣24)=252﹣242;…(1)仿照上述等式的规律写出:92=+=2﹣2(2)从上面的式子中,可以得到哪些勾股数?按此规律,你还能写出哪些勾股数?(至少三个)【变式4-6】(2018秋•内江期末)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称,;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)知识点5:勾股定理的应用【例5】(2019春•江岸区校级月考)在平静的湖面上,有一支红莲,高出水面0.1米,一阵风吹来,红莲吹到一边花朵齐及水面,已知红莲移动的水平距离为0.5米,则这里的水深是()A.1米B.1.5米C.1.2米D.1.3米【变式5-1】(2019秋•诸暨市校级月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A.6秒B.8秒C.10秒D.18秒【变式5-2】(2019秋•温州期末)如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为米.【变式5-3】(2019春•金州区校级月考)如图,有一个长方体的盒子,它的长、宽、高分别是4m,3m和12m,则盒内可放的木棒最长为m.【变式5-4】(2019秋•金台区期末)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【变式5-5】(2019春•马山县期中)如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮.经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.(1)求这块四边形空地的面积;(2)若每平方米草皮需要200元,则种植这片草皮需要多少元?【变式5-6】(2019秋•泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?。
华二初中初二第一学期数学期末复习卷三
1华二初中初二第一学期数学期末复习卷三2016-1-11(满分:150分 时间:100分钟)一、选择题(每题4分,满分24分)1. 下列四点中,在函数y=3x +2的图象上的点是 ( )A .(-1,1) B.(-1,-1) C.(2,0) D.(0,-1.5) 2. 不能判定一个四边形是平行四边形的条件是( )A .两组对边分别平行B .一组对边平行另一组对边相等C .一组对边平行且相等D .两组对边分别相等3. 若两个相似三角形的面积之比为1:4,则它们的最大边的比是( ) ( A ) 1:2;( B ) 1:4;( C ) 1:5;( D ) 1:164. 下列命题中,假命题的是……………………………………………………………( ) (A )两个等边三角形一定相似; (B )有一个锐角相等的两个直角三角形一定相似; (C )两个全等三角形一定相似; (D )有一个锐角相等的两个等腰三角形一定相似.5. 如图,已知直线////a b c ,直线m n 、与a b c 、、分别交于点,4,6,3,A C E B D F AC CE BD ===、、、、、则BF =( )( A ) 7; ( B ) 7.5; ( C ) 8; ( D ) 8.5.6. 如图,在平行四边形ABCD 中,AB=3cm ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( )A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm2二、填空题(每题4分,满分48分) 7. 已知函数xk x f 2)(-=的图像过二、四象限,则k 的取值范围是 8. 已知线段b 是线段a c 、的比例中项,且9,6,a b ==那么_________c = 9. 二次函数y=-x 2-6x+k 的图像顶点在x 轴上,则k=_____________ 10. 一个多边形的每一个外角都等于18°,它是___________边形11. 若平行四边形的各内角平分线围成一个四边形,那么这个四边形是12. 如图,菱形ABCD 的边长为8cm ,∠A=60°,DE⊥AB 于点E ,DF⊥BC 于点F ,则四边形BEDF 的面积为 cm 2.12题 13题 13. 如图,DE 是△ABC 的中位线,2DE =cm ,12AB AC +=cm ,梯形DBCE 的周长为_______cm .14. 如图,在□ABCD 中,BC=16,DE=6,EB 交AC 于F ,AF=12.则AC=________; 15. 已知在△ABC 中,AB =AC =5,BC =8,点G 为重心,那么GA = . 16. 已知等腰梯形的上、下两底长分别为4cm 和6cm ,将它的两腰分别延长交于一点,这个交点到上、下两底的距离之比为 . 17. 如图,已知∠ABC=∠CDB=90º,AC=5cm ,BC=4cm ,若图中的两个直角三角形相似,则BD=_______.18.如图,在ABC ∆中,MN ∥AC ,直线MN 将ABC ∆分割成面积相等的两部分.将BMN ∆沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE ∥CN ,则:AE NC = . 三.解答题(本大题共7题,满分78分)19.(本题满分10分,第(1)小题7分,第(2)小题3分) 某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需购买行李票,行李票费用y (元)是行李质量x (千克)的一次函数,其图象如图所示. (1)求y 与x 的函数关系式;(并写出定义域)D ABCE F 第14题DC BA(第17题图)(第18题图)ABCMNE(2)旅客甲携带行李35千克,问:是否要购买行李票?若要购买,需多少元;若不要购买行李票,试说明理由.20.(本题满分10分,第(1)小题6分,第(2)小题4分)已知:如图,在▱ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3,求AD的长.21.(本题满分10分)如图,AC∥BD, AB交CD于E,EF∥BD交AD于F。
八年级数学下册期末备考知识点复习资料
八年级数学下册期末备考知识点复习资料八年级数学下册期末备考知识点复习资料第一章一次函数1函数的定义,函数的定义域、值域、表达式,函数的图像2一次函数和正比例函数,包括他们的表达式、增减性、图像3从函数的观点看方程、方程组和不等式第二章数据的描述1了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2会用各种统计图表示出一些实际的问题第三章全等三角形1全等三角形的性质:全等三角形的对应边、对应角相等2全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.第四章轴对称1轴对称图形和关于直线对称的两个图形2轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的.垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3用坐标表示轴对称点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等.(等角对等边)5等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.在三角形中,大角对大边,大边对大角.第五章整式1整式定义、同类项及其合并2整式的加减3整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4乘法公式(1)平方差公式(2)完全平方公式5整式的除法(1)同底数幂的除法(2)整式的除法6因式分解(1)提共因式法(2)公式法(3)十字相乘法。
八年级上册数学期末复习资料【拔高题】-【答案】
八年级上册数学期末复习资料【3】一.选择题(共10小题)1.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°2.用五根木棒钉成如图四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个3.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.64.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.605.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B.4 C.D.5【4】【5】【6】7.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b28.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.669.若分式,则分式的值等于()A.﹣ B.C.﹣D.10.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1二.填空题(共10小题)11.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.12.如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=.14.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是.17.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.18.若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.19.某感冒药用来计算儿童服药量y的公式为,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是.20.甲、乙两种糖果的单价分别为20元/千克和24元/千克,将两种糖果按一定的比例混合销售.在两种糖果混合比例保持不变的情况下,将甲种糖果的售价上涨8%,乙种糖果的售价下跌10%,使调整前后混合糖果的单价保持不变,则两种糖果的混合比例应为:甲:乙=.三.解答题(共10小题)21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC 外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.22.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.23.如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.24.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=°,∠C=°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.25.(1)填空:(a﹣b)(a+b)=;(a﹣b)(a2+ab+b2)=;(a﹣b)(a3+a2b+ab2+b3)=.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.26.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.27.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?28.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?29.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.30.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?八年级上学期期末复习资料【3】参考答案与试题解析一.选择题(共10小题)1.(2015秋•谯城区期末)如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选(B)2.(2010秋•黄州区校级期中)用五根木棒钉成如图四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个第二个图形根据三角形具有稳定性,左边与上边的木棒稳定,所以,另两根也稳定;第三个图形,根据三角形具有稳定性,左边与上边的木棒稳定,所以,另两根也稳定;第四个图形,根据三角形具有稳定性,右边与下边的木棒稳定,所以,另两根也稳定,所以具有稳定性的有4个.故选D.3.(2015•高新区校级模拟)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED 的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.4.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B.4 C.D.5【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S△ABC=AB•CM=AC•BC,∴CM===,即PC+PQ的最小值为.故选:C.7.(2015•金平区一模)将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:甲图形的面积为a2﹣b2,乙图形的面积为(a+b)(a﹣b),根据两个图形的面积相等知,a2﹣b2=(a+b)(a﹣b),故选:C.8.(2015•日照)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66【解答】解:解:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.9.(2016•大庆校级自主招生)若分式,则分式的值等于()A.﹣ B.C.﹣D.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.10.(2015•广西自主招生)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.二.填空题(共10小题)11.(2013春•碑林区校级期中)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=45°.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.12.(2015•杭州模拟)如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=54°.【解答】解:连接AA'、BB'.由题意得:∠1+∠2+∠FEA'+∠EFB'+∠D+∠C=360°,又∵∠C=72°,∠D=81°,∴∠FEA'+∠EFB'+∠1+∠2=207°;又∵∠AEF+∠BFE+∠FEA'+∠EFB'+∠1+∠2=360°,四边形A'B'FE是四边形ABEF翻转得到的,∴∠FEA'+∠EFB'=∠AEF+∠BFE,∴∠FEA'+∠EFB'=153°,∴∠1+∠2=54°.故答案是:54°.13.(2015秋•绍兴校级期中)如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.14.(2014秋•宣武区校级期末)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,﹣1)或(5,﹣1).【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).15.(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A 的度数是12°.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.16.(2016•聊城模拟)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.17.(2015•合肥校级自主招生)已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=0.【解答】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.18.(2012•市中区校级二模)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.19.(2015•宁波校级模拟)某感冒药用来计算儿童服药量y的公式为,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是12岁.【解答】解:当儿童服药量占成人服药量的一半时,即=,解得:x=12,检验得:当x=12时,x+12≠0,∴x=12是原方程的根,即:12岁的儿童服药量占成人服药量的一半.故答案是:12岁.20.(2014•江宁区二模)甲、乙两种糖果的单价分别为20元/千克和24元/千克,将两种糖果按一定的比例混合销售.在两种糖果混合比例保持不变的情况下,将甲种糖果的售价上涨8%,乙种糖果的售价下跌10%,使调整前后混合糖果的单价保持不变,则两种糖果的混合比例应为:甲:乙=3:2.【解答】解:设甲:乙=1:k,即混合时若甲糖果需1千克,乙糖果就需k千克,根据题意,得=,解得:k=,所以甲、乙两种糖果的混合比例应为甲:乙=1:=3:2.故答案为:3:2.三.解答题(共10小题)21.(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.22.(2014•重庆)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.23.(2012秋•镇江期中)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.【解答】解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.24.(2015秋•淮安期中)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=36°,∠C=72°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2 ①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.【解答】解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.25.(2015•内江)(1)填空:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.【解答】解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4;故答案为:a2﹣b2,a3﹣b3,a4﹣b4;(2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.法二:29﹣28+27﹣…+23﹣22+2=29﹣28+27﹣…+23﹣22+2﹣1+1==34226.(2016春•东阿县期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1.③根据②求出:1+2+22+…+234+235的结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣127.(2014•泰安)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.28.(2015•铜仁市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.29.(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【解答】解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.30.(2015•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.。
八年级数学期末必背知识点
八年级数学期末必背知识点数学在我们的学习中一直扮演着重要的角色。
数学知识点的掌握是学习数学的前提,也是期末考试的关键。
本文将为大家整理八年级数学期末必背的知识点,希望同学们能够针对这些知识点进行针对性的学习,以提高自己的数学成绩。
一、代数式的计算
1. 一元一次方程式的概念及解法
2. 带有绝对值符号的一元一次方程式的解法
3. 一元二次方程式的概念及解法
4. 一元高次方程式的概念及基本解法
5. 代数式的合并、分离、配方法
二、三角形
1. 三角形的定义及分类
2. 直角三角形的性质
3. 三角形内角和定理
4. 三角形外角和定理
5. 三角形的相似性质
6. 三角形的余弦定理和正弦定理
7. 三角形面积公式及应用
三、平面图形
1. 平面图形的基本性质及分类
2. 六边形的性质及面积计算
3. 圆的基本概念及性质
4. 圆的面积和周长计算
四、空间图形
1. 立体图形的基本概念及分类
2. 正方体、长方体、正四面体、正六面体、棱柱、棱锥、圆柱、圆锥的性质及计算
五、统计与概率
1. 数据的收集、整理、描述和分析
2. 常见的统计图及其绘制方法
3. 概率的基本概念及计算方法
以上就是八年级数学期末必背知识点的全部内容。
除了正常的课堂学习之外,同学们一定要多做习题,加深对知识点的理解和掌握。
如果遇到不理解的地方,可以向老师和同学请教,一定要不断地复习和巩固。
相信只要同学们认真对待数学学习,期末考试一定能够取得优异的成绩。
初二数学期末复习资料大全
初二数学期末复习资料大全(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)??(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式_2 +(p+q)_+pq=(_+q)(_+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(_+q)(_+p)的形式。
浙教版2021-2022学年八年级数学下册期末复习卷(3)及答案
浙教版2021-2022学年八年级数学下册期末复习卷(3) 1.已知2<m<3,化简:√4−4m+m2−√m2−6m+9.2.先化简,再求值:2a−1−1a−1,其中a= √2+1.3.已知,求的值.4.如图,某农户准备围成一个面积为120平方米的长方形养鸡场,养鸡场靠墙AB(AB=18米),另三边利用现有的34米长的篱笆围成,若要在与墙垂直的一边和与墙平行的一边各开一扇2米宽的门,且篱笆没有剩余,则这个养鸡场与墙垂直的一边和与墙平行的一边各是多少米?晓华的解题过程如下:解:设与墙垂直的一边长为x米,则与墙平行的一边长为(38-2x)米.依题意,得x(38-2x)=120,整理,得x2-19x+60=0,解得x1=15,x2=4.当x=15时,38-2x=8;当x=4时,38-2x=30.答:这个养鸡场与墙垂直的一边和与墙平行的一边各是15米、8米或4米、30米.请问晓华的解题过程正确吗?如果不正确,请你给出正确的解题过程.5.如图,△ABC中,∠C=90°,BC=5厘米,AB=5 √5厘米,点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动,同时,点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动,P、Q两点运动几秒时,P、Q两点间的距离是2 √10厘米?6.已知:ABCD的两边AB,AD的长是关于x的方7.程x²-mx+ m2-14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么ABCD的周长是多少?7.经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是吨.(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?8.已知a=√6+√2,b=√6−√2,求a2b−ab2的值.9.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.10.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.若设每件衬衫降价x元,解答下列问题:(1)当每件衬衫降价5元,则每件利润元,平均每天可售出件.(2)若平均每天获利为y元,请求出y与x的函数关系式.(3)若商场想平均每天盈利1200元,每件衬衫应降价多少元?11.某校举行了“风雨百年路,青春心向党”知识竞赛,现从七、八年级中各随机抽取20名学生的测试成绩(满分10分,8分及以上为优秀)进行整理和分析如下:七年级20名学生的测试成绩为:7,8,7,8,7,5,5,9,10,9,7,5,8,7,7,7,9,8,10,7八年级20名学生的测试成绩如下:两个年级分析数据如表:根据以上信息,解答下列问题:(1)a=,b=,c=;(2)如果八年级参加测试有500名学生,估计成绩为优秀的学生人数有多少人?(3)根据以上数据,你认为七、八年级中哪个年级学生测试成绩较好?请说理由.12.为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A.党史宣讲;B.歌曲演唱;C.校刊编撰;D.诗歌创作等四个小组,团支部将各组人数情况制成了如下统计图表(不完整).各组参加人数情况统计表:各组参加人数情况的扇形统计图:根据统计图表中的信息,解答下列问题:(1)求a和m的值;(2)求扇形统计图中D所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如表所示:求这一周四个小组所有成员平均每人参与活动的时间.13.如图,在▱ABCD中,点E是边AB的中点,连结DE并延长,交CB延长线于点F,且DE平分∠ADC.(1)求证:△ADE≌△BFE.(2)若BF=5,EF=5√3,求△FCD的面积.14.如图,▱ABCD的对角线AC,BD相交于点Q,E,F分别是OB,OD的中点,连接AE,AF,CE,CF.(1)求证:四边形AECF是平行四边形:(2)若AB⊥AC,AB=3,BC=5,求BD的长.15.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别为OB,OD的中点,延长AE 至点G,使AE=GE,连接CG,CF.(1)求证:△AOE≌△COF;(2)只需添加一个条件,即▲ ,可使四边形CGEF为矩形,请加以证明.16.已知:如图,在矩形ABCD中,BE⊥AC,DF⊥AC,点E,F是垂足.(1)联结DE,FB,求证:四边形DFBE是平行四边形;(2)如果AF=EF=2,求矩形ABCD的面积.17.如图,在△ABC中,D、E分别是AB、AC的中点,F是DE上一点,∠AFC=90°.(1)求证:DF=12(BC﹣AC);(2)若∠CAF=∠ACB,求证:∠CAF=60°.18.在△ABC中,∠ACB=90°,∠BAC=30°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.19.已知正方形ABCD,点F是射线DC上一动点(不与C,D重合),连接AF并延长交直线BC于点E,交BD于点H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH②猜想线段CG与EF的数量关系并说明理由(2)取DF中点M,连结MG,若MG=4,正方形边长为6,求BE的长20.已知,点E在正方形ABCD的AB边上(不与点A,B重合),BD是对角线,延长AB到点F,使BF=AE,过点E作BD的垂线,垂足为M,连接AM,CF.(1)根据题意补全图形,并证明:MB=ME;(2)若AM=√2,求CF的长;(3)用等式表示线段AM,BM,DM之间的数量关系,并证明.21.如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE= 1n AD(n为大于2的整数),连接BE,BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG。
八年级下数学期末复习资料内容
八年级下数学期末复习资料内容自觉地经常进行系统数学知识复习,将使你断取得好的成绩。
以下是店铺为大家整理的八年级下数学期末复习资料内容,希望你们喜欢。
八年级下数学期末复习资料内容(一)一次函数一、一次函数的概念之所以称为一次函数,是因为它们的关系式是用一次整式表示的。
学习此概念要从两个方面来理解。
(1)从其表达式上:一次函数通常是指形如:y=kx+b(k、b为常数,k≠0)的函数,凡是成这种形式的函数都是一次函数。
而当b=0时,即y=kx(k≠0的常数),则称为正比例函数,其中k为比例系数。
(2)从其意义上:它们表示的是两个变量之间的关系,这种函数关系具有特定的意义,如,如果说两各变量之间具有一次函数关系,我们就可按照概念设出函数关系式,成正比例关系的也同样,如,若s与t成正比例关系,我们便可设s=kt(k≠0,t为自变量)“正比例函数”与“成正比例”的区别:正比例函数一定是y=kx这种形式,而成正比例则意义要广泛得多,它反映了两个量之间的固定正比例关系,如a+3与b-2成正比例,则可表示为:a+3=k(b-2)(k≠0)二、一次函数的图象正比例函数和一次函数的图象都是一条直线,所以对于其解析式也称为“直线y=kx+b,直线y=kx”。
因为一次函数的图象是一条直线,所以在画一次函数的图象时,只要描出两个点,在通过两点作直线即可。
1、画正比例函数y=kx(k≠0的常数)的图象时,只需要这两个特殊点:(0,0)和(1,k)两点;2、画一次函数y=kx+b(k、b为常数,k≠0)的图象时,只需要找出它与坐标轴的两个交点即可。
一次函数与x轴的交点坐标是:(0,b),与y轴的交点坐标b是:k ,0)3、若两个不同的一次函数的一次项的系数相同,则这它们的图象平行。
4、将y=kx的图象沿着沿着轴向上(b>0)或向下(b<0)平移|b|各单位长度即可得到y=kx+b。
5、求两一次函数的交点坐标:联立解两各函数解析式得到的二元一次方程组,求的自变量x的值为交点的横坐标,求出的y的值为交点的纵坐标。
八年级期末数学知识点归纳
八年级期末数学知识点归纳随着八年级学年的结束,期末考试即将到来,作为数学学科的学生,要想获得一个好成绩,需要仔细学习、复习各个知识点,以下是本文对八年级学生需要掌握的数学知识点的归纳和总结。
一. 代数式及其运算1. 代数式的概念和含义2. 代数式的基本形式及性质3. 代数式的化简和加减乘除4. 一元一次方程及其解法5. 一元一次不等式及其解法二. 比例与相似1. 比例的概念和性质2. 比例的运算及应用3. 相似的概念和性质4. 相似的判定和应用三. 平面图形的认识1. 平面图形的分类2. 四边形的性质和分类3. 三角形的性质和分类4. 圆的定义和性质四. 几何变换1. 平移、旋转、翻折和对称的基本概念2. 几何变换的性质和特点3. 进行几何变换的方法和技巧五. 数据的处理1. 平均数、中位数、众数的概念和计算方法2. 极差、方差、标准差的概念和意义3. 统计数据的图表和分析方法六. 空间与图形1. 空间图形的基本概念2. 空间图形的计算思想和计算方法3. 空间图形的投影和截面七. 三角函数1. 角度和弧度的概念及互相转换2. 正弦、余弦、正切等三角函数的概念和计算方法3. 三角函数的图像和性质八. 概率与统计1. 随机试验的基本概念和性质2. 随机事件的概念和计算方法3. 概率的基本概念和计算方法4. 统计的数据和图表的应用以上是八年级数学学科的主要知识点总结,在期末考试前的复习中,学生们应该认真掌握这些知识点,可以通过课堂上、辅导班的教学和练习题的练习来增强自己的考试能力,在平时的学习中,应该注意强化数学思维和解题能力,提高抽象思维和实际应用水平,积极探究数学中的奥秘,以扎实的知识储备和高超的解题技巧迎接期末考试的挑战,取得优异的成绩。
八年级上册数学期末复习资料【拔高题】【答案】
八年级上册数学期末复习资料【3】一.选择题(共10小题)1.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°2.用五根木棒钉成如图四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个3.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.64.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.605.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B.4 C.D.5【4】【5】【6】7.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b28.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.669.若分式,则分式的值等于()A.﹣B.C.﹣D.10.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1二.填空题(共10小题)11.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD= .12.如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2= .13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB= .14.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是.17.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)= .18.若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.19.某感冒药用来计算儿童服药量y的公式为,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是.20.甲、乙两种糖果的单价分别为20元/千克和24元/千克,将两种糖果按一定的比例混合销售.在两种糖果混合比例保持不变的情况下,将甲种糖果的售价上涨8%,乙种糖果的售价下跌10%,使调整前后混合糖果的单价保持不变,则两种糖果的混合比例应为:甲:乙= .三.解答题(共10小题)21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.22.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.23.如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.24.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= °,∠C= °;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.25.(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.26.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)= .②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)= .③根据②求出:1+2+22+…+234+235的结果.27.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?28.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?29.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.30.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?八年级上学期期末复习资料【3】参考答案与试题解析一.选择题(共10小题)1.(2015秋•谯城区期末)如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选(B)2.(2010秋•黄州区校级期中)用五根木棒钉成如图四个图形,具有稳定性的有()第二个图形根据三角形具有稳定性,左边与上边的木棒稳定,所以,另两根也稳定;第三个图形,根据三角形具有稳定性,左边与上边的木棒稳定,所以,另两根也稳定;第四个图形,根据三角形具有稳定性,右边与下边的木棒稳定,所以,另两根也稳定,所以具有稳定性的有4个.故选D.3.(2015•高新区校级模拟)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.4.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.5.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B.4 C.D.5【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S△ABC=AB•CM=AC•BC,∴CM===,即PC+PQ的最小值为.故选:C.7.(2015•金平区一模)将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:甲图形的面积为a2﹣b2,乙图形的面积为(a+b)(a﹣b),根据两个图形的面积相等知,a2﹣b2=(a+b)(a﹣b),故选:C.8.(2015•日照)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66【解答】解:解:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.9.(2016•大庆校级自主招生)若分式,则分式的值等于()A.﹣B.C.﹣D.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.10.(2015•广西自主招生)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.二.填空题(共10小题)11.(2013春•碑林区校级期中)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD= 45°.【解答】解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.12.(2015•杭州模拟)如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2= 54°.【解答】解:连接AA'、BB'.由题意得:∠1+∠2+∠FEA'+∠EFB'+∠D+∠C=360°,又∵∠C=72°,∠D=81°,∴∠FEA'+∠EFB'+∠1+∠2=207°;又∵∠AEF+∠BFE+∠FEA'+∠EFB'+∠1+∠2=360°,四边形A'B'FE是四边形ABEF翻转得到的,∴∠FEA'+∠EFB'=∠AEF+∠BFE,∴∠FEA'+∠EFB'=153°,∴∠1+∠2=54°.故答案是:54°.13.(2015秋•绍兴校级期中)如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB= 132°.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.14.(2014秋•宣武区校级期末)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,﹣1)或(5,﹣1).【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).15.(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.16.(2016•聊城模拟)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.17.(2015•合肥校级自主招生)已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)= 0 .【解答】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.18.(2012•市中区校级二模)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2 .【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.19.(2015•宁波校级模拟)某感冒药用来计算儿童服药量y的公式为,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是12岁.【解答】解:当儿童服药量占成人服药量的一半时,即=,解得:x=12,检验得:当x=12时,x+12≠0,∴x=12是原方程的根,即:12岁的儿童服药量占成人服药量的一半.故答案是:12岁.20.(2014•江宁区二模)甲、乙两种糖果的单价分别为20元/千克和24元/千克,将两种糖果按一定的比例混合销售.在两种糖果混合比例保持不变的情况下,将甲种糖果的售价上涨8%,乙种糖果的售价下跌10%,使调整前后混合糖果的单价保持不变,则两种糖果的混合比例应为:甲:乙= 3:2 .【解答】解:设甲:乙=1:k,即混合时若甲糖果需1千克,乙糖果就需k千克,根据题意,得=,解得:k=,所以甲、乙两种糖果的混合比例应为甲:乙=1:=3:2.故答案为:3:2.三.解答题(共10小题)21.(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.22.(2014•重庆)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.23.(2012秋•镇江期中)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.【解答】解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.24.(2015秋•淮安期中)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= 36 °,∠C= 72 °;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.【解答】解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.25.(2015•内江)(1)填空:(a﹣b)(a+b)= a2﹣b2;(a﹣b)(a2+ab+b2)= a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)= a4﹣b4.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= a n﹣b n(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.【解答】解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4;故答案为:a2﹣b2,a3﹣b3,a4﹣b4;(2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.法二:29﹣28+27﹣…+23﹣22+2=29﹣28+27﹣…+23﹣22+2﹣1+1==34226.(2016春•东阿县期末)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)= x7﹣1 .②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)= x n+1﹣1 .③根据②求出:1+2+22+…+234+235的结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣127.(2014•泰安)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.28.(2015•铜仁市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.29.(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.【解答】解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.30.(2015•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.。
初二下册数学期末重点
初二下册数学期末重点【导语】学习这件事,顺序绝对不能乱,不能什么都抓,结果什么都抓不到。
我们要参加考试,应当去抓住考点和重点去学习,然后集中去突破,那考试自然能考个好成绩。
做题的时候,也要分清主干,抓住问题的核心,不能偏离主干,受题目旁枝错节的因素影响。
以下是作者为您整理的《初二下册数学期末重点》,供大家学习参考。
1.初二下册数学期末重点篇一分解因式一、公式:1、ma+mb+mc=m(a+b+c);2、a2-b2=(a+b)(a-b);3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的情势,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的情势,是乘法运算。
2、把一个多项式化成几个整式的积的情势,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的情势.找公因式的一样步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式。
四、分解因式的一样步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式。
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。
(3)每一个多项式都要分解到不能再分解为止。
五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
分解因式的方法:1、提公因式法。
2、运用公式法。
2.初二下册数学期末重点篇二分式的四则运算乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
◆除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
◆乘方法则:分式乘方要把分子、分母各自乘方。
用式子表示是:(其中n是正整数)◆加减法则:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
八下数学期末复习资料【3】【含解析】
八下数学期末复习资料【3】一.选择题(共10小题)1.若a<0,则化简得()A.a B.﹣a C.a D.﹣a2.化简二次根式,结果正确的是()A.B.C.D.3.已知实数a满足,那么a﹣20002的值是()A.1999 B.2000 C.2001 D.20024.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定5.如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值()A.13 B.19 C.25 D.1696.如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是()A.2 B.C.D.7.如图,在梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点,已知两底差是6,两腰和是12,则△EFG的周长是()A.8 B.9 C.6 D.48.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.2.5 B.2.4 C.2.2 D.2【5】【6】【7】【8】9.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A.B.C.D.10.如图,在平面直角坐标系xOy中,点A、B都是直线y=﹣2x+m(m为常数)上的点,A、B的横坐标分别是﹣1,2,AC∥y轴,BC∥x轴,则三角形ABC的面积为()A.6 B.9 C.12 D.因m不确定,故面积不确定二.填空题(共10小题)11.若成立,则x满足.12.把根式a根号外的a移到根号内,得.13.若最简二次根式与是同类二次根式,则a=.14.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=.15.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.16.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是.17.如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE,若AE=6.5,AD=5,则AC=;△ABE的周长是.18.将长为20cm,宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.19.已知y是x的一次函数,当﹣2≤x≤2时,﹣1≤y≤3,那么这个函数的解析式是.20.直线与x轴、y轴分别交于点A和点B,在x轴上取点C,使△ABC为等腰三角形,则点C的坐标是.三.解答题(共8小题)21.某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.22.已知,且x为偶数,求的值.23.已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.24.如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F 是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.25.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?26.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x﹣2与x 轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.27.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.八下数学期末复习资料【3】参考答案与试题解析一.选择题(共10小题)1.(2014春•射阳县校级期末)若a<0,则化简得()A.a B.﹣a C.a D.﹣a【解答】解:∵a<0,∴=﹣a.故选:B.2.(2013秋•云梦县校级期末)化简二次根式,结果正确的是()A.B.C. D.【解答】解:==,故选D.3.(2015秋•乐亭县期末)已知实数a满足,那么a﹣20002的值是()A.1999 B.2000 C.2001 D.2002【解答】解:∵a﹣2001≥0,∴a≥2001,则原式可化简为:a﹣2000+=a,即:=2000,∴a﹣2001=20002,∴a﹣20002=2001.选C.4.(2016春•谷城县期末)△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.5.(2010秋•南海区校级期末)如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值()A.13 B.19 C.25 D.169【解答】解:由图可知,直角三角形两直角边a、b符合a﹣b=1,且正方形面积为13,则边长为,∴a2+b2=13,解得a=3,b=2,∴(a+b)2=25.故选C.6.(2016春•南陵县期末)如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD 的面积是()A.2 B.C.D.【解答】解:在Rt△ABC中,AB=1,BC=1,根据勾股定理得:AC==,在△ACD中,CD=2,AD=,∴AC2+CD2=AD2,∴△ACD为直角三角形,则S=S△ABC+S△ACD=×1×1+×2×=+.故选B7.(2014春•莱州市期末)如图,在梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点,已知两底差是6,两腰和是12,则△EFG的周长是()A.8 B.9 C.6 D.4【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又∵FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.8.(2015春•硚口区期末)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,D是AB上一动点,过点D作DE⊥AC 于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.2.5 B.2.4 C.2.2 D.2【解答】解:如图,连接CD.∵∠C=90°,AC=3,BC=4,∴AB==5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×4×3=×5•CD,解得CD=2.4,∴EF=2.4.故选B.9.(2014春•自贡期末)如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A.B.C.D.【解答】解:∵直线l1:经过第一、三象限,∴a>0,∴﹣a<0.又∵该直线与y轴交于正半轴,∴b>0.∴直线l2经过第一、三、四象限.故选C.10.(2014秋•盐都区校级期末)如图,在平面直角坐标系xOy中,点A、B都是直线y=﹣2x+m(m为常数)上的点,A、B的横坐标分别是﹣1,2,AC∥y轴,BC∥x轴,则三角形ABC的面积为()A.6 B.9C.12 D.因m不确定,故面积不确定【解答】解:∵点A、B都是直线y=﹣2x+m(m为常数)上的点,A、B的横坐标分别是﹣1,2,∴y A=2+m,y B=﹣4+m;又AC∥y轴,BC∥x轴,∴AC=y A﹣y B=6,BC=x B﹣x A=3,∴S△ABC=×3×6=9,故选B.二.填空题(共10小题)11.(2016春•许昌县校级月考)若成立,则x满足2≤x<3.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.12.(2012秋•合浦县期末)把根式a根号外的a移到根号内,得﹣.【解答】解:∵有意义,∴﹣≥0,即a<0,∴原式=﹣=﹣;13.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a=±1.【解答】解:∵最简二次根式与是同类二次根式,∴4a2+1=6a2﹣1,∴a2=1,解得a=±1.故答案为:±1.14.(2016春•乌拉特前旗期末)如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=12.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.15.(2014春•吉安期末)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=1或2时,△PBQ是直角三角形.【解答】解:根据题意得AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3﹣t)cm,△PBQ中,BP=3﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°时,BQ=BP,即t=(3﹣t),t=1(秒),当∠BPQ=90°时,BP=BQ,3﹣t=t,t=2(秒).答:当t=1秒或t=2秒时,△PBQ是直角三角形.故答案为:1或2.16.(2010春•余姚市校级期末)如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是①②③④.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的),∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),故④正确.∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,故②正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③,故答案为①②③④.17.(2012秋•义乌市期末)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE,若AE=6.5,AD=5,则AC= 6.5;△ABE的周长是25.【解答】解:∵AD⊥AB,∴△ABD为直角三角形.又∵点E是BD的中点,∴BD=AE=BE=6.5,∴∠EAB=∠B,∴∠AEC=∠B+∠EAB=2∠B=∠C,即∠AEC=∠C,∴AE=AC=6.5.在Rt△ABD中,AD=5,BD=2AE=2×6.5=13∴AB=12(勾股定理),∴△ABE的周长是AB+AE+BE=12+6.5+6.5=25.故答案分别是:6.5;25.18.(2016春•宜春期末)将长为20cm,宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为y=17x+3.【解答】解:由题意得:y=20x﹣(x﹣1)×3=17x+3,故答案为:y=17x+3.19.(2014秋•肥东县期末)已知y是x的一次函数,当﹣2≤x≤2时,﹣1≤y≤3,那么这个函数的解析式是y=x+1或y=﹣x+1.【解答】解:∵y是x的一次函数,当﹣2≤x≤2时,﹣1≤y≤3,设所求的解析式为y=kx+b,则(1)﹣1=﹣2k+b,3=2k+b,联立解得k=1,b=1.则函数的解析式是y=x+1.(2)﹣1=2k+b,3=﹣2k+b,联立解得k=﹣1,b=1.则函数的解析式是y=﹣x+1.故函数的解析式是y=x+1或y=﹣x+1.20.(2015春•唐山期末)直线与x轴、y轴分别交于点A和点B,在x轴上取点C,使△ABC为等腰三角形,则点C的坐标是(,0)或(2,0)或(3,0)或(﹣8,0).【解答】解:∵直线方程为,∴易求A(﹣3,0),B(0,4).设C点坐标为(x,0).①当以AB为底时,可得AC=BC,即3+x=,解得x=,则C(,0);②当以BC为底时,可得AC=AB,即3+x=5,或﹣3﹣x=5解得x=2或x=﹣8则C(2,0)或(﹣8,0);③当以AC为底时,可得AB=BC,即得=5,解得x=±3,则C(3,0).综上所述,满足条件的点C的坐标是(,0)或(2,0)或(3,0)或(﹣8,0).故答案是:(,0)或(2,0)或(3,0)或(﹣8,0).三.解答题(共8小题)21.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.【解答】解:该同学的答案是不正确的.当a≥1时,原式=a+a﹣1=2a﹣1,当a<1时,原式=a﹣a+1=1,∵该同学所求得的答案为,∴a≥1,∴2a﹣1=,a=与a≥1不一致,∴该同学的答案是不正确的.22.(2016春•澄城县期末)已知,且x为偶数,求的值.【解答】解:由题意得,解得:6<x≤9,∵x为偶数,∴x=8.原式=(1+x)=(x+1)=.∴当x=8时,原式=.23.(2015春•建昌县期末)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为32m;(2)在图2中,当BA=BD=10m时,△ABD的周长为(20+4)m;(3)在图3中,当DA=DB时,求△ABD的周长.【解答】解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).24.(2013春•义乌市期末)如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.【解答】(1)证明:∵∠BEG=90°,点F是DG的中点,∴EF=DF=DG,∵正方形ABCD中,∠BCD=90°,点F是DG的中点,∴CF=DF=DG,∴EF=CF;(2)证明:∵EF=DF,CF=DF,∴∠FDE=∠FED,∠FCD=∠FDC,∴∠EFC=∠EFG+∠CFG=∠FDE+∠FED+∠FCD+∠FDC=2∠FDE+2∠FDC=2∠BDC,在正方形ABCD中,∠BDC=45°,∴∠EFC=2×45°=90°,∴EF⊥CF;(3)解:△CEF是等腰直角三角形.理由如下:如图,延长EF交CD于H,∵∠BEG=90°,∠BCD=90°,∴∠BEG=∠BCD,∴EG∥CD,∴∠EGF=∠HDF,∵点F是DG的中点,∴DF=GF,在△EFG和△HFD中,,∴△EFG≌△HFD(ASA),∴EG=DH,EF=FH,∵BE=EG,BC=CD,∴BC﹣EB=CD﹣DH,即CE=CH,∴EF⊥CF(等腰三角形三线合一),CF=EF=EH,∴△CEF是等腰直角三角形.25.(2016春•罗山县期末)以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?【解答】解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.26.(2016春•惠安县期末)如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.【解答】解:(1)①设点C的坐标为(m,2),∵点C在直线y=x﹣2上,∴2=m﹣2,∴m=4,即点C的坐标为(4,2),∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∴点D的坐标为(1,2);②设经过点D且与FC平行的直线函数表达式为y=x+b,将D(1,2)代入y=x+b,得b=1,∴经过点D且与FC平行的直线函数表达式为y=x+1;(2)存在.∵△EBC为等腰直角三角形,∴∠CEB=∠ECB=45°,又∵DC∥AB,∴∠DCE=∠CEB=45°,∴△PDC只能是以P、D为直角顶点的等腰直角三角形,如图,①当∠D=90°时,延长DA与直线y=x﹣2交于点P1,∵点D的坐标为(1,2),∴点P1的横坐标为1,把x=1代入y=x﹣2得,y=﹣1,∴点P1(1,﹣1);②当∠DPC=90°时,作DC的垂直平分线与直线y=x﹣2的交点即为点P2,所以,点P2的横坐标为=,把x=代入y=x﹣2得,y=,所以,点P2(,),综上所述,符合条件的点P的坐标为(1,﹣1)或(,);(3)当y=0时,x﹣2=0,解得x=2,∴OE=2,∵以点M、D、C、E为顶点的四边形是平行四边形,∴若DE是对角线,则EM=CD=3,∴OM=EM﹣OE=3﹣2=1,此时,点M的坐标为(﹣1,0),若CE是对角线,则EM=CD=3,OM=OE+EM=2+3=5,此时,点M的坐标为(5,0),若CD是对角线,则平行四边形的中心坐标为(,2),设点M的坐标为(x,y),则=,=2,解得x=3,y=4,此时,点M的坐标为(3,4),综上所述,点M的坐标为(﹣1,0),(5,0)(3,4).27.(2014春•富平县期末)如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.【解答】解:(1)甲比乙出发更早,要早2﹣1=1小时;(2)乙比甲早到B城,早了5﹣3=2个小时;(3)由图可知:M(2,0),N(3,50),Q(2,20),R(5,50)设直线QR的函数表达式为y1=k1x+b1,直线MN的函数表达式为y2=k2x+b2,将各点坐标代入对应的表达式,得:⇒,⇒,∴y1=10x,y2=50x﹣100,联立两式可得直线QR、MN的交点的坐标为O(2.5,25)所以乙出发半小时后追上甲;(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B城;(5)乙的速度为=50千米/时,甲的平均速度为=12.5千米/时.28.(2016秋•郓城县期末)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差=[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.。
初二期末复习资料初中数学
初二期末复习资料初中数学初中数学作为一个基础课程,在学习中常常遇到许多难题。
随着学习的深入,初二期末考试也即将到来,为此,我们需要做好充分的复习准备。
下面就来分享一些初二数学期末复习资料。
一、代数代数是初中数学中一个重要的部分。
常见的代数基础知识包括整式、多项式、因式分解、配方法、方程和不等式等。
代数的学习需要我们理解和掌握这些知识。
对于一元一次方程和一元二次方程,我们需要注意以下几点:1.方程类型的判断。
主要是确定方程的类型,以及根据题目条件进行二次方程的求解。
2.求解方程的方法。
例如运用牛顿—莱布尼茨法、二次公式等进行求解。
3.方程解的验证。
即对方程最终答案的验证,以确保解的正确性。
二、几何几何是初中数学中的一部分,包括平面几何和空间几何两部分。
平面几何包括点、线、面、角度、三角形和四边形等。
空间几何主要研究球体、立体图像、投影和立体角等。
在几何学习中,需要我们理解并熟练掌握以下知识:1.几何基本概念。
例如点、直线、矩形等基本几何概念的定义。
2.几何基本定理。
例如三角形中位线定理、正弦定理和余弦定理等定理。
3.几何作图。
包括利用规则和非规则仪器绘制几何图形等。
三、数学运算数学运算是初中数学中也是重要的一部分,包括数的大小比较、有理数运算、整数运算、分数运算、百分数及简单的代数运算等。
在进行复习时,我们要注意以下几点:1.数的除法的运算技巧:设被除数是A、除数是B、商是C、余数是D,那么有A=BxC+D。
2.数的运算顺序:括号先,指数次之,乘除法在加减法之前。
3.小数的运算:注意小数位对齐,然后合理地进行整体位移,避免出现误差。
综上所述,初二期末考试需要我们掌握扎实的数学基础知识,同时要注意理解数学概念和定理,学会灵活运用数学方法。
希望以上初中数学复习资料对大家的期末复习有所帮助。
最后,祝大家都能取得好成绩。
八年级数学期末复习知识点
八年级数学期末复习知识点数学是一门需要掌握扎实的学科,八年级的数学期末考试即将到来,为了更好地备考,我们需要对重要的知识点进行复习总结。
一、代数基础知识1、代数式的概念与运算代数式由字母和数字组成,可以进行加、减、乘、除的运算。
其中,加减法规则是同类项相加减;乘法规则是分配律、结合律、交换律;除法规则是有理数除以非零有理数的定律。
2、一元一次方程一元一次方程是指方程中只有一个未知数和一次方程的方程式,一元一次方程的解法主要有加减消元法、配方法和公式法。
3、二元一次方程二元一次方程是指方程中有两个未知数和一次方程的方程式,二元一次方程的解法主要有消元法、代入法和思路法。
二、平面几何1、角度知识角是由两条射线公共端点A所夹的空间部分,可以表示为∠A。
角可以分为锐角、直角、钝角和周角;角的度数可以用度或弧度来表示。
2、三角形三角形是由三条线段围成的平面图形,可以分为等边三角形、等腰三角形、直角三角形和普通三角形。
3、相似三角形相似三角形是指两个三角形对应角度相等的三角形,它们的对应边长成比例。
三、概率与统计1、概率基础知识概率是描述事件发生可能性大小的数值,常用公式是P(A)=N(A)/N(S)。
在计算概率时要注意选择适当的计算方法和样本空间。
2、统计基础知识统计是对某一群体的数据进行收集、组织、分析和解释的过程。
常用方法有频率分布表、直方图和饼图等。
四、函数1、函数的概念函数是输入值和输出值之间存在一种明确的对应关系的一种特殊关系。
2、函数的图像特征函数图像的特征可以通过拐点、极值点、零点和单调性来描述。
以上是八年级数学期末考试的重点知识点的总结,我们需要对这些知识点进行深入理解,并进行针对性的练习和巩固。
只有在掌握了这些基础知识后,我们才能更好地应对数学考试,并取得优异的成绩。