2015数学花园探秘复赛高年级(含解析)(1)

合集下载

“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是3.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多个月.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加天.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有张积分卡.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过秒钟,乙才第一次到达B.11.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是.2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是2418 .【解答】解:(+++)×2015=()×2015==2418故答案为:2418.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是20685【解答】解:依题意可知:首先根据图中方框代表的是金三角,只能唯一情况是10﹣9.所以结果1中的百位和十位为10,那么除数的百位和十位就是10,商的首位是1.再根据结果2的首位数字是9,那么商的十位数字是9,根据尾数是5,推理出除数为105.商的前两位是19.最后结果3的数字经尝试不能是600多只能是105的7倍735.被除数为105×197=20685.故答案为:206853.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多10 个月.【解答】解:根据分析,因都是正常耗电,正常工作,故耗电速度一样,甲时钟耗尽电量所需时间是乙时钟的电池耗尽电量所需时间的6倍,所以甲时钟可以正常工作:6×2=12个月,比乙时钟多工作:12﹣2=10个月.故答案是:10.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的 3 倍.【解答】解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是 2 .【解答】解:假设原数分解质因数后为2a×3b,乘6后变为2a+1×3b+1,由题意:3(a+1)(b+1)=(a+2)(b+2),由于A要尽可能小,因此令a=1,b=0即可得到答案.所以满足条件的A最小值为2.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加15 天.【解答】解:365×47.9%×20%﹣20≈174.8×20%﹣20≈35.0﹣20=15(天)答:下半年需要使优良天气相比2013年同期至少增加15天.故答案为:15.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?【解答】解:由题意可知,有ab,ac,ad和ab,ac,bc两种不同的订阅类型:ab,ac,ad有×=5×(4×3×2)=5×24=120种;ab,ac,bc有×=10×6=60种.所以共有120+60=120种不同的订阅方式.8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是40 .【解答】解:根据分析,如图1所示,由对称性可知,△ADE与△OBE面积相等,因此可知,△AOD的面积与△AOB的面积相等,都等于△ABC面积的三分之一,由于△AOD与△ABC都是圆的内接正三角形,因此可以得到小圆的面积为大圆面积的三分之一,依此小圆面积为40故答案是:40.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有15 张积分卡.【解答】解:根据分析,假设第一、二句是对的,那么总和应该是20的倍数,根据第一句,希希与珊珊积分卡之比应该为15:5,根据第二句,希希与珊珊卡数之比应该为4:16,每个人差的11倍对应了7张卡,不是整数,舍去.假设第一、三句是对的,总和应该是12的倍数,根据第一句,二人积分卡之比为9:3,根据第二句,二人积分卡之比为10:2,差的1份为多给的2张,成立,因此希希和珊珊积分卡之比为6:24,根据第三句,希望和珊珊积分卡之比为25:5,相差的19份为9张,不是整数,不成立,舍去.综上,第一、三句是对的,希希有15张积分卡.故答案是:15.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过56 秒钟,乙才第一次到达B.【解答】解:甲经过12秒钟到从A到达B,则再过9秒钟后甲到达C点,且BC的长度等于AB长度的,则AC的长度等于AB长度的,即21秒钟的时间内,甲的路程为AB+BC=AB段,乙的路程为AC=AB,丙的路程为BC=AB,则速度比甲:乙:丙=7:1:3,丙从C到达A所用时间=21×=7(秒),此时乙从C点到达D点,所用时间也为7秒,因为CA=BC,则CD=AC,则CB=8CD,丙到达A后乙到达B的所需时间:8×7=56(秒)故答案为:5611.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是21436 .【解答】解:依题意可知:如图所示,D,E,F必然是1,2,4或者4,2,1.因此B,C一定是3和6.故可知A是5.而G,H,I为三个连续自然数,I存在2倍关系,则只能是1,2,3.故右上角为6.左上角为4.并可以判定B是6,C是3.因此C的右边临格为6.以此为突破口,可以填表如图所示:故答案为:21436声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:12:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式5×13×(1+2+4+8+16)的计算结果是.2.(8分)如图中7个小正方形拼成一个大正方形.如果这7个小正方形的边长从小到大依次是1、1、2、3、5、8、13,那么这个大长方形的周长是.3.(8分)小数、小学、小花、小园、探秘5人获得了跳远比赛的前5名(无并列),他们说:小数:“我的名次比小学好”;小学:“我的名次比小花好”;小花:“我的名次不如小园”;小园:“我的名次不如探秘”;探秘:“我的名次不如小学”.已知小数、小学、小花、小园、探秘分别获得第A、B、C、D、E名且他们都是从不说谎的好学生,那么五位数.4.(8分)有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).二、填空题Ⅱ(每题10分,共40分)5.(10分)期末了,希希老师买来同样数量的签字笔、圆珠笔和橡皮发给班上同学,发给每位学生2支签字笔、3支圆珠笔和4块橡皮后,发现圆珠笔还剩下48支,剩下的签字笔数量恰好是剩下橡皮数量的2倍,聪明的你赶紧算一算,希希老师班上一共有名学生.6.(10分)如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=.7.(10分)小明和小强常去图书馆看书,小明在一月份的第一个星期三去图书馆,此后每隔4天去一次(即第2次去是星期一),小强是一月份的第一个星期四去图书馆,此后每隔3天去一次;如果一月份两人只有一次同时去了图书馆,那么这一天是1月号.8.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字,其中双向箭头表示箭头所指的两个方向的全部数字里有多少种不同的数字,那么图中的第二行从左到右所填数字依次组成的四位数是.(如图是一个3×3的例子)三、填空题Ⅲ(每题16分,共48分)9.(16分)一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有种.10.(16分)二十世纪(1900年~1999年)的某一天,弟弟对哥哥说:“哥哥,你看,把你出生年份中的四个数字加起来,就是我的年龄.”哥哥接着说道:“亲爱的弟弟,你说得对!对我来说也是一样的,把你出生年份的四个数字加起来就是我的年龄.另外如果把我们各自年龄的两个数字对调一下就能得到对方的年龄.”已知兄弟俩出生的年份不同,那么这段对话发生在年.11.(16分)甲和乙在一张20×15的棋盘上玩游戏,开始时把一个皇后放在棋盘除了右上角外的某格内;从甲开始,两个人轮流挪动皇后,每次可以按直线或斜线走若干格,但只能往右、上或右上走;谁把皇后挪到了右上角的格子,谁就获胜.那么这个棋盘上,有个起始格是让甲有必胜策略的.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)1.(8分)算式5×13×(1+2+4+8+16)的计算结果是2015.【解答】解:5×13×(1+2+4+8+16)=5×13×31=65×31=2015故答案为:2015.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!2.(8分)如图中7个小正方形拼成一个大正方形.如果这7个小正方形的边长从小到大依次是1、1、2、3、5、8、13,那么这个大长方形的周长是68.【解答】解:根据分析,如图:大长方形的长=8+13=21;宽=5+8=13,故大长方形的周长=2×(长+宽)=2×(21+13)=68,故答案是:68.3.(8分)小数、小学、小花、小园、探秘5人获得了跳远比赛的前5名(无并列),他们说:小数:“我的名次比小学好”;小学:“我的名次比小花好”;小花:“我的名次不如小园”;小园:“我的名次不如探秘”;探秘:“我的名次不如小学”.已知小数、小学、小花、小园、探秘分别获得第A、B、C、D、E名且他们都是从不说谎的好学生,那么五位数12543.【解答】解:根据分析,小数:“我的名次比小学好”可得:小数>小学;小学:“我的名次比小花好”可得:小数>小学>小花;小花:“我的名次不如小园”可得:小园>小花;小园:“我的名次不如探秘”可得:探秘>小园>小花;探秘:“我的名次不如小学”可得:小数>小学>探秘>小园>小花.小数第1名,小学第2名,探秘第3名,小园第4名,小花第5名,则:A=1,B=2,C=5,D=4,E=3,故答案是:12543.4.(8分)有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是360厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于:①到②、③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90(厘米),绳子的全长是90×4=360(厘米).答:这根绳子的总长度是360厘米.故答案为:360.二、填空题Ⅱ(每题10分,共40分)5.(10分)期末了,希希老师买来同样数量的签字笔、圆珠笔和橡皮发给班上同学,发给每位学生2支签字笔、3支圆珠笔和4块橡皮后,发现圆珠笔还剩下48支,剩下的签字笔数量恰好是剩下橡皮数量的2倍,聪明的你赶紧算一算,希希老师班上一共有16名学生.【解答】解:48﹣48×[(2+4)÷3]÷(2+1)=48﹣48×2÷3=48﹣32=16(名)答:希希老师班上一共有16名学生.故答案为:16.6.(10分)如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=4608.【解答】解:首先根据B﹣F=0,B+F尾数是1,可以判定B是比F大1,在减法中有借位,那么B=6,F=5.字母P为首位只能是1,根据C+E加上进位是3,那么E不是0也不是1,只能是2,C =0.那么C﹣G尾数为1,G=9,最后D﹣H没有借位只能是8﹣3.所以4608﹣2593=2015.106+25=131.故答案为:46087.(10分)小明和小强常去图书馆看书,小明在一月份的第一个星期三去图书馆,此后每隔4天去一次(即第2次去是星期一),小强是一月份的第一个星期四去图书馆,此后每隔3天去一次;如果一月份两人只有一次同时去了图书馆,那么这一天是1月17号.【解答】解:依题意可知:若第一个星期三和星期四在同一个星期,则两人会在下一个星期一碰见,再碰见时时间间隔是4×5=20天还会碰见,所以1月份的第一天是星期四.则小强去的日期是1,5,9,13,17,21,25,29.小明去的日期是:7,12,17,22,27.故答案为:178.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字,其中双向箭头表示箭头所指的两个方向的全部数字里有多少种不同的数字,那么图中的第二行从左到右所填数字依次组成的四位数是3122.(如图是一个3×3的例子)【解答】解:根据分析,逆向推导,从第一列开始推导,易得M=1,且第一列有三个不同的数,故得N=3,O=2;F处指向左边两个数,因G指向右边两个数不可能填3,故F=2;H处,L处只能是1或2,若H为1,则L为1,B必须为1,显然B不能为1,因为A=1,B指向左边三个数,左边已经有1和3,故只能是2或3,故H和L均只能为2,综上,第二行的数已经确定,为:3122.所填数字如下图:故第二行应填的四个数字为:3122.故答案是:3122.三、填空题Ⅲ(每题16分,共48分)9.(16分)一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有26种.【解答】解:骰子各面已经确定,所以在空间中一点观察分3种情况:①能看到3个面,即从每个顶点观察,有8种;②能看到2个面,即从每条边处观察,有12种;③能看到1个面,即从每个面处观察,有6种;综上,共计:8+12+6=26(种).答:从空间一点看,能看到的不同点数的组合一共有26种.故答案为:26.10.(16分)二十世纪(1900年~1999年)的某一天,弟弟对哥哥说:“哥哥,你看,把你出生年份中的四个数字加起来,就是我的年龄.”哥哥接着说道:“亲爱的弟弟,你说得对!对我来说也是一样的,把你出生年份的四个数字加起来就是我的年龄.另外如果把我们各自年龄的两个数字对调一下就能得到对方的年龄.”已知兄弟俩出生的年份不同,那么这段对话发生在1941年.【解答】解:设哥哥出生于19ab年,弟弟出生于19cd年,则这段对话发生时,哥哥10+c+d岁,弟弟10+a+b岁;哥哥年龄的十位数=弟弟年龄的个位数,哥哥年龄的个位数=弟弟年龄的十位数,(1)c+d<10时,①c+d=0时,哥哥的年龄是10岁,弟弟的年龄是01岁,不符合题意;②c+d=1时,哥哥和弟弟的年龄都是11岁,出生的年份相同,不符合题意;③c+d取2﹣9中的任何一个数字时,弟弟的年龄大于哥哥的年龄,不符合题意;(2)c+d>10时,哥哥21岁,弟弟12岁,c+d=11,a+b=2;(3)因为a+b=2,所以哥哥出生的年份有3种情况:1911、1902、1920,又因为哥哥比弟弟大9(21﹣12=9)岁,所以弟弟出生的年份有3种情况:1920、1911、1929,因为1+9+2+0=12≠21,1+9+1+1=12≠21,1+9+2+9=21,所以弟弟出生于1929年,因为1929+12=1941(年),所以这段对话发生在1941年.答:这段对话发生在1941年.故答案为:1941.11.(16分)甲和乙在一张20×15的棋盘上玩游戏,开始时把一个皇后放在棋盘除了右上角外的某格内;从甲开始,两个人轮流挪动皇后,每次可以按直线或斜线走若干格,但只能往右、上或右上走;谁把皇后挪到了右上角的格子,谁就获胜.那么这个棋盘上,有287个起始格是让甲有必胜策略的.【解答】解:上面阴影的格子一共13个.棋盘上一共有20×15=300个格子,300﹣13=287故此题填287.。

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛c卷)

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛c卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛C卷)一、填空题Ⅰ(每题6分,共24分)1.(6分)算式2015﹣22×28的计算结果是.2.(6分)如图中共能数出个三角形.3.(6分)在2015和131之间插两个数,使这四个数从大到小排列起来,相邻两个数的差都相等,那么插入的两个数的和是.4.(6分)如图减法算式中,不同的汉字代表不同的数字.那么四位数的最小值是.二、填空题Ⅱ(每题10分,共40分)5.(10分)黑板上写有一些自然数,平均数是30;再写上100,平均数就变成了40;如果最后再写上一个数,平均数就变成了50,那么最后写上的这个数是.6.(10分)如图是一个棋盘,开始时,警察在位置A,小偷在位置B.双方交替走棋,警察先走,每次必须沿着线走一步.那么警察至少需要走步才能保证抓住小偷.7.(10分)30只老虎和30只狐狸分为20组,每组3只动物.老虎总说真话,狐狸总说假话,当问及组“组内是否有狐狸”时,结果这60只动物中有39只回答“没有”.那么同组3只动物全是老虎的共有组.8.(10分)正六边形中如图摆放着两个面积各为30平方厘米的等边三角形,那么正六边形的面积是平方厘米.三、填空题Ⅲ(每题12分,共48分)9.(12分)如图,AB是一条长28米的小路,M是AB的中点,一条小狗从M左侧一点出发在小路上奔跑.第一次跑10米,第二次跑14米;…;第奇数次跑10米,第偶数次跑14米;出发时或每次跑完后小狗按如下一次的奔跑方向;每次如果M点在它右边,它就向右跑;如果M点在它左边,它就向左跑.如果它跑了20次之后在B点左侧1米处,那么小狗开始时距A点米.10.(12分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么四位数是(如图是一个3×3的例子).11.(12分)任取一个非零自然数,如果它是偶数就把它除以2,如果它是奇数就把它乘3再加上1.在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这种变换,我们就得到一个问题:是否对于所有的自然数最终都能变换到1呢?这就是数学上著名的“角谷猜想”.如果某个自然数通过上述变换能变成1,我们就把第一次变成1时所经过的变换次数成为它的路径长,那么“角谷猜想”中所有路径长为10的自然数的总和是.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛C卷)参考答案与试题解析一、填空题Ⅰ(每题6分,共24分)1.(6分)算式2015﹣22×28的计算结果是1399.【解答】解:2015﹣22×28=2015﹣616=1399故答案为:1399.2.(6分)如图中共能数出11个三角形.【解答】解:根据分析可得,(3+2+1)+2+2+1=6+5=11(个)答:图中共能数出11个三角形.故答案为:11.3.(6分)在2015和131之间插两个数,使这四个数从大到小排列起来,相邻两个数的差都相等,那么插入的两个数的和是2146.【解答】解:根据分析,插入两个数后,排成的数成等差数列,利用等差数列的性质,可求出两个数的和,中间两个数之和=2015+131=2146.故答案是:2146.4.(6分)如图减法算式中,不同的汉字代表不同的数字.那么四位数的最小值是1930.【解答】解:依题意可知:若要四位数的最小值那么需要取到最大值.首先分析千位和百位数字是固定的1和9.那么当可以取到87时,尾数不能有5.那么当为86时,尾数是9才能构成5不符合题意.当为85时.2015﹣85=1930.故答案为:1930黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!二、填空题Ⅱ(每题10分,共40分)5.(10分)黑板上写有一些自然数,平均数是30;再写上100,平均数就变成了40;如果最后再写上一个数,平均数就变成了50,那么最后写上的这个数是120.【解答】解:(100﹣40)÷(40﹣30)=60÷10=6(个)6+1=7(个)7+1=8(个)50×8﹣40×7=400﹣280=120答:最后写上的这个数是120.故答案为:120.6.(10分)如图是一个棋盘,开始时,警察在位置A,小偷在位置B.双方交替走棋,警察先走,每次必须沿着线走一步.那么警察至少需要走4步才能保证抓住小偷.【解答】解:如图,把六个位置编号如下:第一步警察由F走到C,小偷只能由B走到A;第二步警察由C走到D,小偷只能由A走到B;第三步警察由D走到F,小偷只能由B到A或者B到C第四步小偷无论往哪个方向走都会被警察抓住.答:警察最少需要4步才能抓住小偷.故答案为:4.7.(10分)30只老虎和30只狐狸分为20组,每组3只动物.老虎总说真话,狐狸总说假话,当问及组“组内是否有狐狸”时,结果这60只动物中有39只回答“没有”.那么同组3只动物全是老虎的共有3组.【解答】解:根据分析,因为狐狸有30只,它们都说谎话,当问及“组内是否有狐狸”时,它们肯定都说“没有”,所以狐狸说“没有”的一共30声.老虎说真话,当有老虎的这一组中狐狸时,老虎就会说“有”,而当3只动物都是老虎时,它们才说“没有”.因此有3只老虎在同一组时,就会有3声“没有”.故同组3只动物全是老虎的共有:(39﹣30)÷3=9÷3=3(组).故答案是:3.8.(10分)正六边形中如图摆放着两个面积各为30平方厘米的等边三角形,那么正六边形的面积是135平方厘米.【解答】解:根据分析,如图,连接FH、EH、BG、CG、AD,由题意可知,△ABG、△DCG、△DEH、△AFH的面积全等,且均与△AOH的面积相等,△BCG、△EFH的面积相等,且二者拼接后如图2所示,因四边形BHCG为棱形,且∠B=∠HAG=60°,∠H=∠AGD=120°,BH:DH=1:2,S棱形BHCG:S棱形AGDH=1:4;S△ABG+S△DCG+S△DEH+S△AFH=S△AOG+S△DOG+S△DOH+S△AOH=S阴影;S△EFH+S△BCG=S棱形BHCG=;===135(平方厘综上,正六边形的面积═2×S阴影+米).故答案是:135.三、填空题Ⅲ(每题12分,共48分)9.(12分)如图,AB是一条长28米的小路,M是AB的中点,一条小狗从M左侧一点出发在小路上奔跑.第一次跑10米,第二次跑14米;…;第奇数次跑10米,第偶数次跑14米;出发时或每次跑完后小狗按如下一次的奔跑方向;每次如果M点在它右边,它就向右跑;如果M点在它左边,它就向左跑.如果它跑了20次之后在B点左侧1米处,那么小狗开始时距A点7米.【解答】解:设中点的位置为0,左边为负,右边为正则第20次之后的位置是28÷2=14,14﹣1=13,表示为+13第19次之后的位置是+13﹣14=﹣1第18次之后的位置是﹣1﹣10=﹣11第17次之后的位置是﹣11+14=+3第16次之后的位置是+3+10=+13从上面可以看出,经过4次之后又回到了+13这个位置由此可以退出,第4次之后,小狗回到了+13这个位置第3次之后小狗回到+13﹣14=﹣1位置第2次之后小狗位置是﹣1﹣10=﹣11第1次之后小狗的位置是﹣11+14=+3位置因为原始位置在M点左侧,所以原始位置是+3﹣10=﹣7位置原始位置距离A点14﹣7=7米故此题填7.10.(12分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么四位数是2112(如图是一个3×3的例子).【解答】解:如图,由第二行第一个,第二行第三个,第三行第二个,箭头只指向一个箭头,此位置的数只能是1,如图红色数字,第三行第一个箭头指向两个数字不同的箭头,所以只能是2,所以,第四行第一个位置的数字必是3,如果第四行第二个位置是1,那么此行第三个必须是3,但不符合此行第四个数字,所以,第四行第二个箭头上的数字只能是2,此行第三个数只能是1,即可得出第三列的数字全部是1,第二行第二个和第四个也是2,进而第一行第二个数字也是2,第一行第四个只能是3,第三行第四个必是2,即:A,B,C,D位置的数分别是2,1,1,2,故答案为2112.11.(12分)任取一个非零自然数,如果它是偶数就把它除以2,如果它是奇数就把它乘3再加上1.在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这种变换,我们就得到一个问题:是否对于所有的自然数最终都能变换到1呢?这就是数学上著名的“角谷猜想”.如果某个自然数通过上述变换能变成1,我们就把第一次变成1时所经过的变换次数成为它的路径长,那么“角谷猜想”中所有路径长为10的自然数的总和是1604.【解答】解:从1开始倒推1024+170+28+168+160+26+4+24=1604。

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛b卷)

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是.2.(8分)如图中共能数出个长方形.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是平方厘米.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共个.8.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有个.10.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有种不同的覆盖方法.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作次.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!1.(8分)算式2015﹣20×15的计算结果是1715.【解答】解:2015﹣20×15=2015﹣300=1715故答案为:1715.2.(8分)如图中共能数出11个长方形.【解答】解:根据分析可得,4+7=11(个)答:图中共能数出11个长方形.故答案为:11.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是59387.【解答】解:根据题意可知:首先确定结果的首位数字一定是5,因为百位数字有0,无借位所以结果中千位数字一定是9.在剩下的数字0,2,3,4,6,7,8中.看尾数符合的组合有7+5=12,8+5=13两组.当尾数是8+5组合时,没有满足条件的数字.当尾数是7+5=12的组合时.十位数字需要向百位借位才满足条件,同时百位数字相差1.分析可得:故答案为:59387二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是5120.【解答】解:根据分析,若丙说的话是真的,则他拿的是奇数,而显然矛盾,故他拿的是偶数而且不是0,故他拿的是2;剩下一个偶数,和两个奇数,故还有两个人说的话是真话,有一个人说的是假话,而和2差1的只有1,故乙拿的是1,而没有相差1的数只有5,故甲拿的是5,剩下的是0显然就是丁拿的了,故答案是:5120.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是126平方厘米.【解答】解:6×6×3.5=36×3.5=126(平方厘米)答:图中阴影部分的面积是126平方厘米.故答案为:126.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共20个.【解答】解:设单独出售星际飞船共x个,单独出售机甲为y个,打包销售共个8x+26y+×33=370化简得:17x﹣19y=283因为x和y都是小于31的整数,同时17x大于283,那么x>16的整数.枚举法即可解得x=20,y=3.故答案为:208.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).【解答】解:根据分析,从第二行第一个开始推导,故第一个应填1;第二个指向右边两空,只能填1或2,若填1,因第三个指向右边一个数故只能填1,故第四个箭头只能填1,而第四个箭头指向下面两个数,若为1则第三行第四个箭头只能填3,而第三行第四个指向上面两个数,不能填3,故矛盾,所以第二个指向只能填2;第二行第三个指向右边,而右边只有一个数,故只能填1;而第二行第四个指向下面两个,又前面第二个指向说明,第四个数和第三个数不同,故四个数只能填2.所以,第二行应填入的数是:1212,如图:故此四个数为:1212,故答案是:1212.三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有735个.【解答】解:设后来的每一份分别为:a,2a,3a,4a,5a,6a.那么他们原来就是a+150,2a﹣10,3a﹣20,4a﹣30,5a﹣40,6a﹣50.根据后面的数字得到公差为5a﹣40﹣(4a﹣30)=a﹣10.那么根据根据公差2a﹣10前面应该是a﹣20.所以a+150为数列的最大值.a+150﹣(a﹣10)=160.那么6a﹣50=160.所以a=35.故后来的数量为35,70,105,140,175,210.总数为35+70+105+140+175+210=735(个)故答案为:73510.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有20种不同的覆盖方法.【解答】解:将正六边形棋盘分为内外两部份(分法见下图),接下来分类讨论:①内外两部份分开各自密铺:外面环形有2种密铺法,里面小正六边形也有2种密铺法,故此时有2×2=4种;②里面有2个三角形与外面相邻的环形上2个三角形相接密铺,这2个三角形必须相邻或相对:当这2个三角形相邻时,共有6种密铺法;当这2个三角形相对时,共有3种密铺法;此时共有6+3=9种;③里面有4个三角形与外面相邻的环形上4个三角形相接密铺,由于里面剩下的2个三角需要组成菱形,所以剩下这2个三角形相邻,故此时有6种密铺法:④里面有6个三角形与外面相邻的环形上6个三角形相接密铺时,此时有1种密铺法;综上,此题一共有4+9+6+1=20种.故答案为:20.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作10次.【解答】解:根据分析,逆向推导:①777←770←700←755←778←988←944←995←455←441←221←111;②777←770←700←773←433←449←599←554←144←122←111,③777←770←700←755←778←988←999←990←900←955←996←366←333←330←300←337←677←661←331←211←229←119←299←227←④777←770←700←755←778←988←999←990←900←991⑤777←770←700←易知,至少需要操作10次.故答案是:10.。

“迎春杯”数学花园探秘科普活动试卷(小中组决赛b卷)

“迎春杯”数学花园探秘科普活动试卷(小中组决赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是.2.(8分)如图中共能数出个长方形.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是平方厘米.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共个.8.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有个.10.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有种不同的覆盖方法.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作次.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)1.(8分)算式2015﹣20×15的计算结果是1715 .【解答】解:2015﹣20×15=2015﹣300=1715故答案为:1715.2.(8分)如图中共能数出11 个长方形.【解答】解:根据分析可得,4+7=11(个)答:图中共能数出11个长方形.故答案为:11.3.(8分)有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120 厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.4.(8分)请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是59387 .【解答】解:根据题意可知:首先确定结果的首位数字一定是5,因为百位数字有0,无借位所以结果中千位数字一定是9.在剩下的数字0,2,3,4,6,7,8中.看尾数符合的组合有7+5=12,8+5=13两组.当尾数是8+5组合时,没有满足条件的数字.当尾数是7+5=12的组合时.十位数字需要向百位借位才满足条件,同时百位数字相差1.分析可得:故答案为:59387二、填空题Ⅱ(每题10分,共40分)5.(10分)现有四张卡片,分别写有2、0、1、5,甲、乙、丙、丁四人各分了一张卡片.甲说:你们三人拿的数字中没有我拿的数字差1的;乙说:你们三人拿的数字中必有我拿的数字差1的;丙说:我拿的数字不能作四位数的首位数字;丁说:我拿的数字不能作四位数的个位数字.如果发现,凡是拿偶数数字的都说假话,而拿奇数数字的都说真话.那么甲、乙、丙、丁四人所拿数字依次组成的四位数是5120 .【解答】解:根据分析,若丙说的话是真的,则他拿的是奇数,而显然矛盾,故他拿的是偶数而且不是0,故他拿的是2;剩下一个偶数,和两个奇数,故还有两个人说的话是真话,有一个人说的是假话,而和2差1的只有1,故乙拿的是1,而没有相差1的数只有5,故甲拿的是5,剩下的是0显然就是丁拿的了,故答案是:5120.6.(10分)大长方形中如图摆放了四个小正方形,如果每个小正方形的边长都是6厘米,那么图中阴影部分的面积是126 平方厘米.【解答】解:6×6×3.5=36×3.5=126(平方厘米)答:图中阴影部分的面积是 126平方厘米.故答案为:126.7.(10分)一家玩具店出售一类拼装积木:星际飞船每个售价8元,机甲每个售价26元;一个星际飞船和一个机甲可以拼出终极机甲,终极机甲每套售价33元.如果店主一个星期共售出了星际飞船与机甲共31个,收入370元;那么其中单独售出的星际飞船共20 个.【解答】解:设单独出售星际飞船共x个,单独出售机甲为y个,打包销售共个8x+26y+×33=370化简得:17x﹣19y=283因为x和y都是小于31的整数,同时17x大于283,那么x>16的整数.枚举法即可解得x=20,y=3.故答案为:208.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么图中第二行从左到右所填数字依次组成的四位数是(如图是一个3×3的例子).【解答】解:根据分析,从第二行第一个开始推导,故第一个应填1;第二个指向右边两空,只能填1或2,若填1,因第三个指向右边一个数故只能填1,故第四个箭头只能填1,而第四个箭头指向下面两个数,若为1则第三行第四个箭头只能填3,而第三行第四个指向上面两个数,不能填3,故矛盾,所以第二个指向只能填2;第二行第三个指向右边,而右边只有一个数,故只能填1;而第二行第四个指向下面两个,又前面第二个指向说明,第四个数和第三个数不同,故四个数只能填2.所以,第二行应填入的数是:1212,如图:故此四个数为:1212,故答案是:1212.三、填空题Ⅲ(每题16分,共48分)9.(16分)有六堆苹果,它们的个数刚好组成一个等差数列,俊俊挑选出其中一堆,拿出了其中的150个苹果,分配给其余5堆,每堆依次分配给其余5堆,每堆依次是10个、20个、30个、40个、50个.分配好了之后,俊俊神奇地发现,这5堆苹果的个数依次是被他选出那一堆的2倍、3倍、4倍、5倍、6倍.那么这六堆苹果一共有735 个.【解答】解:设后来的每一份分别为:a,2a,3a,4a,5a,6a.那么他们原来就是a+150,2a﹣10,3a﹣20,4a﹣30,5a﹣40,6a﹣50.根据后面的数字得到公差为5a﹣40﹣(4a﹣30)=a﹣10.那么根据根据公差2a﹣10前面应该是a﹣20.所以a+150为数列的最大值.a+150﹣(a﹣10)=160.那么6a﹣50=160.所以a=35.故后来的数量为35,70,105,140,175,210.总数为35+70+105+140+175+210=735(个)故答案为:73510.(16分)图1是由2个小等边三角形组成的菱形纸片;图2是一个固定好的正六边形棋盘ABCDEF,它由24个同样大小的小等边三角形组成,现用12块菱形纸片完全覆盖正六边形棋盘,共有20 种不同的覆盖方法.【解答】解:将正六边形棋盘分为内外两部份(分法见下图),接下来分类讨论:①内外两部份分开各自密铺:外面环形有2种密铺法,里面小正六边形也有2种密铺法,故此时有2×2=4种;②里面有2个三角形与外面相邻的环形上2个三角形相接密铺,这2个三角形必须相邻或相对:当这2个三角形相邻时,共有6种密铺法;当这2个三角形相对时,共有3种密铺法;此时共有6+3=9种;③里面有4个三角形与外面相邻的环形上4个三角形相接密铺,由于里面剩下的2个三角需要组成菱形,所以剩下这2个三角形相邻,故此时有6种密铺法:④里面有6个三角形与外面相邻的环形上6个三角形相接密铺时,此时有1种密铺法;综上,此题一共有4+9+6+1=20种.故答案为:20.11.(16分)现有一个三位数111,每次操作是将其中2位数字都变成这两位数字和的个位数字.例如:111→122→144→554→004(允许首位为0).如果要将111变成777,那么至少需要操作10 次.【解答】解:根据分析,逆向推导:①777←770←700←755←778←988←944←995←455←441←221←111;②777←770←700←773←433←449←599←554←144←122←111,③777←770←700←755←778←988←999←990←900←955←996←366 ←333←330←300←337←677←661←331←211←229←119←299←227←④777←770←700←755←778←988←999←990←900←991⑤777←770←700←易知,至少需要操作10次.故答案是:10.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:11:40;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。

2014-2015年度_五年级“数学花园探秘”初赛_考前辅导班_教师版

2014-2015年度_五年级“数学花园探秘”初赛_考前辅导班_教师版

五年级(初赛)2014年11月巨人学校数学花园探秘教师用书考前辅导目录第一部分讲义使用说明——写给授课教师 (1)第二部分授课讲义部分 (2)第一讲数论、计数、数字谜 (2)第二讲应用题 (10)第三讲计算、几何 (18)第三部分考试方法技巧 (24)第四部分2009年~2014年初赛真题试卷及答案 (28)2009年“数学解题能力展示”读者评选活动 (28)2010年“数学解题能力展示” 读者评选活动 (31)2011年“数学解题能力展示”读者评选活动 (33)2012年“数学解题能力展示”读者评选活动 (36)2013年“数学解题能力展示”初赛笔试试题 (39)2014年“数学花园探秘”(迎春杯)初赛 (41)第一部分讲义使用说明-------写给授课教师一、授课建议1.提前备课“数学花园探密”题目偏难,希望大家能提前备课,同时让学生提前做一下预习,这样的授课效果会非常地好.2.给学生信心“数学花园探密”是所有竞赛中难度最高的一个,大家在授课过程中肯定会遇到一些问题(学生听不懂、个别题目要讲好长时间……主要是题目太难),但是不管怎样,请各位老师牢记,一定要鼓励学生充满信心,拿到能拿的分数、不留遗憾就是胜利者.3.把握上课时间有些题目主要给学生讲技巧和方法,不用把题目讲的非常细致,大家注意我们主要讲的是应试的技巧,即如何在考试中处理这些题目,至于题目的最终答案,可以让学生自己回家做,特别简单题目教师讲方法、公布答案即可,节约课上时间.4.讲义编写问题回馈由于时间紧,任务重,肯定有些题目的做法不一定是最简单的.给各位老师做出来,就是提供一个参考,如果您有更好的解答方式,希望您能不吝赐教,和我们分享一下,多谢大家了!二、讲义内容编写说明1.★:所代表的是题目难度,在课堂上,请老师结合自己班级学生的接受能力进行酌情处理,个别题目可以选择不讲.2.解答:只有教师版中出现,为大家备课提供一定的参考.3.拓展:只有教师版中出现,供提前完成学生版内容的教师作补充之用.4.题目:所有题目均为最近十年的比赛真题,如需铺垫和拓展题目,请教师自行安排.最后,衷心感谢各位授课教师的辛勤劳动,谢谢大家!第二部分 授课讲义部分 第一讲 数论、计数、数字谜例题精讲一、计算例题1. (2010年迎春杯五年级初赛第4题,难度星级★★)20102009200920092009⨯⨯⋅⋅⋅⨯个的个位数字是________.【答案】:1.【分析与解答】:20102009200920092009⨯⨯⋅⋅⋅⨯个的个位数字相当于20109999⨯⨯⋅⋅⋅⨯个的个位数字,9的乘方的个位数字为:9,1,9,1,9,1,……以2为周期,第2010个是1.例题2. (2012年迎春杯五年级初赛第5题,难度星级★★)一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是ABCD 2011,那么ABCD =________.【答案】:1221.【分析与解答】:2011123110119912110÷=;所以1231101221ABCD =-=.二、数论例题3. (2010年迎春杯五年级初赛第7题,难度星级★★★)己知一个五位回文数等于45与一个四位回文数的乘积(即:45abcba deed =⨯),那么这个五位回文数最大的可能值是________.【答案】:59895.【分析与解答】:abcba 能被45整除,因此abcba 一定是5的倍数,个位只能是0或5,而回文数的个位不能为0,因此5a =.abcba 一定小于6000,又6000451333÷≈,deed 最大是1331,验证可知133********⨯=满足条件.例题4. (2012年迎春杯五年级初赛第8题,难度星级★★★)今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是________.【答案】:231.【分析与解答】:因为0、1、2、7都不是合数,所以这些组成的合数都至少是两位数.若组成4个两位合数,由于11是质数,从而4个1必须分别位于四个两位合数中,其中必有1个1和7在同一个合数中,而17、71都是质数,矛盾!所以至少有一个合数是三位数或以上.若组成的合数中最大的为三位数,还剩5个数字,数字个数为奇数,不可能使剩下的合数全为两位数,所以还得有一个合数是三位数.设组成的合数为ABC 、DEF 、GH ,则有()()10010ABC DEF GH A D B E G C F H ++=⨯++⨯+++++ ()()1001110011227231≥⨯++⨯+++++=另一方面,这三个合数可以是102、117、12. 综上所述,这些合数的和的最小值是231.例题5. (2013年五年级初赛试题第10题)有一个奇怪的四位数(首位不为零),它是一个完全平方数,它的数字和也是一个完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还等于它的数字和,那当然也是完全平方数.如果这个四位数的各位数字互不相同,那么这个四位数是_______.【答案】:2601.【分析与解答】:现在是平方数的有:这个四位数、这个四位数的数字和、这个四位数的约数个数,这个四位数的数字和有可能为1、4、9、16、25,经验证,由后两个平方数决定了该四位数的数字和为9,而且该四位数的分解质因数后的形式为223a ⨯ ,其中a 为质数,根据位数估算,32a < ,验证11、13、17、19、23、39、31,可得当17a = 时满足,此时四位数为2601.例题6. (2009年迎春杯五年级初赛第11题,难度星级★★★)有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……,100,同时还向每位观众赠送单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备________种颜色的喇叭.【答案】:4种.【分析与解答】:给1号观众发放红色喇叭,则3号、4号、6号、8号、12号、14号、18号……不能发同色喇叭;继续给3号观众发放黄色喇叭,则6号、8号、14号……仍不能发同色喇叭;6号不能与1、3号相同,继续给6号观众发放蓝色喇叭,则8号……仍然不能发同色喇叭;8号不能与1、3、6号相同,还要继续给8号观众发放绿色喇叭,因此至少需要4种颜色的喇叭.给编号除以4余数相同的观众发放同一种喇叭,则拿到相同喇叭的观众编号之差都是4的倍数,没有质数,满足题目要求,因此答案就是4种.拓展(学生版无,教师选讲)(难度星级★★)现有一叠2元和5元的纸币若干,把它们分成钱数相同的两堆,第一堆中2元和5元的张数相同,第二堆中2元和5元的钱数相等,那么这一叠钱至少有________元.【答案】:280.【分析与解答】:因为第一堆中2元和5元的张数相同,所以第一堆的钱数是7的倍数,由于第二堆中2元和5元的钱数相等,所以第二堆的钱数的一半是2和5的公倍数,随意第二堆的钱数是20的倍数,所以这样可知每一堆的钱数是7和20的公倍数,最小是140,从而这一叠钱最少是280元.拓展(学生版无,教师选讲)(2009年25届迎春杯五年级初赛第10题,难度星级★★★)200名同学编为1至200号面向南站成一排.第1次全体同学向右转(转后所有的同学面朝西);第2次编号为2 的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有________名.【答案】:8.【分析与解答】:每名同学向右转的次数就是他的编号的约数个数,面向东的同学是向右转了3次,7次、11次、……的同学,对应的编号约数是3个、7个、11个、……因此约数个数是奇数,所以一定是完全平方数,1至200中完全平方数有21至214,其中约数个数3个、7个、11个、……的有8个平方数,即面向东的同学有8名.拓展(学生版无,教师选讲)(2007年迎春杯五年级初赛第2题,难度星级★★★)甲,乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是________.【答案】:360.【分析与解答】:与数字和有关的一般看除以9的余数.甲除以9余1,乙除以9余8,则甲乙乘积除以9余8,则此五位数为31031.又310317111331=⨯⨯⨯,则甲、乙只能为217和143,所以和为360.三、计数例题7. (2012年迎春杯五年级初赛第4题,难度星级★★)在右图中,共能数出________个三角形.【答案】: 40.【分析与解答】:八边形被分成了17块,按组成三角形的块数来分类. 一块的三角形:16;两块的三角形:16;三块的三角形:8. 所以,三角形一共16+16+8=40(个).例题8. (2010年迎春杯五年级初赛第10题,难度星级★★★★)九个大小相等的小正方形拼成了下图.现从点A 走到点B ,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从点A 走到点B 共有________种不同的走法.【答案】: 9种.【分析与解答】:如上右图:从A 点到B 点只能经过图中的虚线,枚举可知:(1)A →G →C →D →H →B ;(2)A →G →C →D →H →G →E →F →H →B ;(3)A →G →C →D →H →F →E →G →H →B ;(4)A →G →H →B ;(5)A →G →H →D →C →G →E →F →H →B ;(6)A →G →H →F →E →G →C →D →H →B ;(7)A →G →E →F →H →B ;(8)A →G →E →F →H →G →C →D →H →B ;(9)A →G →E →F →H →D →C →G →H →B .共有9种不同的走法.另外也可根据乘法原理,G 点有3条路线通往H ,不管通过哪一条路线到H ,再从H 到B 都有三条路线,因此共有339⨯=种不同走法.拓展(学生版无,教师选讲)(难度星级★★)狮子、老虎、河马、猩猩、长颈鹿排成一队洗澡,但长颈鹿和老虎不能挨着,有________种排队方式.【答案】:144种.【分析与解答】:利用排除法可得54542144A A -⨯=种. BEF D B四、数字迷例题9. (2008年迎春杯五年级初赛第5题,难度星级★★)在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs =________.【答案】:1038tavs =.【分析与解答】:首先判断和的首位数一定是“1”,所以1t =; 和的最后一位也是t ,可知0a =;v s +得到的个位数是1,所以要进位,就得到3v =,所以8s =;所以1038tavs =.例题10. (2012年迎春杯五年级初赛第12题,难度星级★★★★)有一个66⨯的正方形,分成36个11⨯的正方形.选出其中一些11⨯的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出________条对角线.【答案】:21.【分析与解答】:如右图,标记了21个格点,画出的每条11⨯正方形的对角线都要以这21个标记格点中的某一个为顶点.而据题意,所画出的任何两条对角线都没有公共点,所以每个标记格点至多画出一条对角线,从而至多画出21条对角线.例题11. (2013年五年级初赛试题)如图竖式中,使得乘积最小的两个乘数的和是_________. 【答案】:21.【分析与解答】:第四列第3、4两行的数字均为1,所以可知第一行的三位乘数为1□3,而根据乘积的尾数1可以得知,第二个乘数为17,那么1□3也□ □ □× □ □ □ 0 □ □ □ □ 3只能是143,所以两个乘数的和是17143160+=.例题12. (2011年迎春杯五年级初赛第7题,难度星级★★)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是________.【答案】:684【分析与解答】:如右图,首先确定A 为8或9,所以D 肯定是4,则E 为1或2,若为1,则F 为1,A 为8,B 为2或3,不可能进两位不合题意,所以E 为2,则B 为1,同上,A 不能为8,所以A 为9,于是可以推出原式为45522⨯□,考虑乘积第一行,可得原式为455229⨯.例题13. (2012年迎春杯五年级初赛第6题,难度星级★★)在右图的除法竖式中,被除数是________.【答案】:20952.【分析与解答】:首先,X =1,Y =9,则Z =1; 由10ABC D ⨯=□,知D =1,A =1,B =0;由109C E ⨯=□2,知E =9,C =8;从而2972Y =□; 由2972Y =□知PQ 取值38~47,又据108F PQ ⨯=□,得F =4.所以,被除数10819420952⨯=.□ □ □ □ 1 □ □ □ 2□ □ □ □ □ □A B Z 0 □ X □ 1 □ Y □ 2P Q □□ □ □ × 2 □ □ □0 □ □ □ 1 □□ □ 0□ □ □ □ □ □D F □ × 2E □ □ 0 □ □ C 1 □A B□ □ □ □ □ □作业1. (难度星级★★★)如果a ,b 均为质数,3741a b +=,则a b +=________. 【答案】:7.【分析与解答】:由奇偶性分析可知a ,b 中必有一个为偶数,又a ,b 均为质数,因此有一个为2,检验可知,满足条件.因此.2. (难度星级★★★)把25拆成几个不同的质数的和,一共有________种方式,如果要求这些质数的乘积尽可能大,那么这个最大的乘积等于________.【答案】:5;770.【分析与解答】:有223+,3517++,5713++,23713+++,25711+++一共5种方式.其中最大乘积最大的是25711770⨯⨯⨯=.3. (难度星级★★★)四个自然数的乘积为19305,且它们构成等差数列,那么这四个数是________.【答案】:9、11、13、15.【分析与解答】:分解质因数319305351113=⨯⨯⨯,容易得到这四个数是9、11、13、15.4. (2009年迎春杯五年级初赛第3题,难度星级★★)如果两个合数互质,它们的最小公倍数是126,那么,它们的和是________.【答案】:23.【分析与解答】:2126237=⨯⨯,这两个合数互质,乘积是126,只能是9和14,和为23.5. (2009年迎春杯五年级初赛第5题,难度星级★★★)从1,2,3,4,5,6中选取若干个数,使得它们的和是3的倍数,但不是5的倍数.那么共有________种不同的选取方法.【答案】:19种.【分析与解答】:取出数的和可能为3、6、9、12、18、21.和为3的有2种;和为6的有4种;和为9的有5种;而和为12的与和为9的情况相同,有5种;和为18的与和为3的情况相同,有2种;和为21的有1种.因此一共有24515219+++++=种.第二讲 应用题例题精讲例题1. (难度星级★★)小懒虫每天早上从家出发以不变的速度步行前往学校.若7点15分出发,则开始上课时离学校还有600米,若7点20分出发,则开始上课时离学校还有975米.若小懒虫要在上课前赶到学校,那么最晚应于_______点________分从家出发.【答案】:7点7分.【分析与解答】:小懒虫步行每分钟走()975600(2015)75-÷-=米,那么600米需要走:600÷75=8分钟,所以需要比7点15分再早8分钟,则应该7点7分从家出发.例题2. (2013年五年级初赛试题)甲、乙两人从A 地步行去B 地,乙早上6:00出发,匀速步行前往;甲早上8:00才出发,速度的也是匀速步行,甲的速度是乙的速度的2.5倍,但甲每行进半小时就休息半小时,甲出发后经过______分钟才能追上乙.【答案】:330.【分析与解答】:设乙的速度为2千米/时,则甲的速度就为5千米/时.则当甲出发时,乙已经出发两个小时,距离甲有224⨯=千米,甲每一小时一个周期,一小时甲走0.55 2.5⨯=千米,一小时乙走122⨯=千米,每小时甲比乙多走0.5千米,但是当甲、乙相距()0.552 1.5⨯-=时家就能在半个小时追上,所以甲先走()4 1.50.55-÷=整周期,然后在经过半小时甲就能追上,所以需要330分钟.例题3. (2012年五年级初赛第9题,难度星级★★★☆)甲、乙两人分别从A 、B 两地同时出发,相向而行.第一次迎面相遇在距离B 地100米处,相遇后甲的速度提高到原来的2倍;甲到B 后立即调头,追上乙时,乙还有50米才到A .那么,AB 间的路程长________米.【答案】:250【分析与解答】:如图,假设甲一出发,速度就提高到原来的2倍,那么在相同的时间内,甲还差10050150+=(米)就行满3个AB ;而与此同时,乙还差50米就行满1个AB ;所以,甲提速后,速度是乙的:()()3150503AB AB -÷-=倍. 从而,甲原来的速度是乙的3÷2=1.5倍. 所以,AB 间的路程长()100 1.51250⨯+=(米) .例题4. (2010年五年级初赛第12题,难度星级★★★★)如图,C ,D 为AB 的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8点30分相遇时乙恰好到A.那么,丙出发时是8点________分.【答案】:8点16分.【分析与解答】:甲、丙相遇时,乙行了301218-=分钟,行了全程.因此从B到C乙用12分钟,即甲、乙在8点24分相遇,此时丙走到D点.甲走了24分钟,因此甲AC用24分钟,再过6分钟,甲走CD的14,与丙相遇,此时丙6分钟正好走了CD的34,所以丙走CD需要8分钟,丙出发时间是8点16分.例题5.(第16届迎春杯五年级初赛第11题,难度星级★★★)甲、乙二人从A、B两地同时出发相向而行,甲每分钟行80米,乙每分钟行60米,出发一段时间后,二人在距中点120米处相遇.如果甲出发后在途中某地停留了一会儿,二人还将在距中点120米处相遇.则甲在途中停留了________分钟.【答案】:7分钟.【分析与解答】:二人在距终点120米处相遇,则甲比乙多行240米.二人从出发到相遇经过()240806012÷-=分钟,A、B两地相距()1280601680⨯+=米.第二次相遇乙行了()168021206016÷+÷=分钟,甲行了()16802120809÷-÷=分钟,因此甲在途中停留了1697-=分钟.拓展(学生版无,教师选讲)(2010年五年级初赛第6题,难度星级★★★)甲、乙两车同时从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B城市.那么,甲车在距离B城市________千米处追上乙车.【答案】:150千米处.【分析与解答】:可用设数法,设乙车用4小时驶完全程,则甲车用2小时驶完全程,容易得到甲车在中点处追上乙车.拓展(学生版无,教师选讲)(2005年迎春杯高年级组初赛第10题,难度星级★★★★)甲、乙二人分别从A、B 两地同时出发相向而行,5小时后相遇在C点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点D距C点10千米;如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出A C D B发相向而行,则相遇点E 距C 点5千米.则甲原来的速度是每小时________千米.【答案】:11. 【分析与解答】:当乙每小时多行4千米时,如果二人相遇后继续往前走,则甲再走10千米到达C 点.而甲从A 点到C 点需要5小时,乙每小时多行4千米,因此乙此时距离C 点20千米,则相遇后乙又行了10千米.说明此时甲和乙速度相同.因此最初甲比乙每小时多行4千米.当甲每小时多行3千米时,如果二人相遇后继续往前走,则乙再走5千米到达C 点,而甲继续前进10千米(分析同上),说明此时甲的速度是乙2倍.因此最初甲的速度是乙的2倍少3.综上可知,甲原来的速度为每小时11千米.例题6. (2010年五年级初赛第2题,难度星级★★)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过________次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.【答案】:4次.【分析与解答】:原来小张手中的铅笔比小李的钢笔多180支,每次交换后,小张手中的铅笔都减少6支,小李手中的钢笔减少1支,两者之差减少5.要使两者之差是小李手中钢笔数量的10倍,必须经过偶数次交换.经过2次交换后,两者之差为18010170-=支,小李手中钢笔数量为18支,不符合条件; 经过4次交换后,两者之差为18020160-=支,小李手中钢笔数量为16支,符合条件. 因此经过4次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.例题7. (难度星级★★★★)制鞋厂生产的皮鞋按质量共分为10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.如果每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.每天生产第________档次的皮鞋所获利润最大,最大利润是________元.【答案】:第9档次;7776元.【分析与解答】:由题意,生产第n (1n =,2,…,10)档次的皮鞋,每天可生产()180191899921n n n --⨯=-=-()双,每双利润为()()241618663n n n +-⨯=+=+元.所以每天利润()()()()6392154321n n n n +⨯-=⨯+⨯-⎡⎤⎡⎤⎣⎦⎣⎦,两个数的和一定时,这两个数越接近,甲 乙两个数的乘积越大.上式中,无论n 等于几,(3)n +与(21)n -的和都是24.而当9n =时,(3)n +与(21)n -相等且都等于12,上述算式结果最大.所以当9n =,即每天生产第9档次的皮鞋所获利润最大,最大利润为54(39)(219)7776⨯+⨯-=元.例题8. (2011年五年级初赛第4题,难度星级★★)某乐团女生人数是男生人数的2倍;若调走24名女生,那么男生人数是女生人数的2倍.该乐团原有男女学生一共________人.【答案】:答案是48人.【分析与解答】:设男生人数为“1”,则原来女生人数为“2”,调走24名女生后,女生人数是男生人数的12,男生人数为1242162⎛⎫÷-= ⎪⎝⎭人,原来男女生一共有()162148⨯+=人.例题9. (2012年五年级初赛第7题,难度星级★★★)五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数ABCDE =________.【答案】:13213【分析与解答】:共赛25C =10场,每场两队得分和2或3,所以总分为210310⨯⨯.五个队的积分恰好是五个连续的自然数,而五个连续的自然数的和在210310⨯⨯有以下三种情况:26、37、48.若五个队的积分是26,则总分是20,从而所有比赛均为平局,每队都得4分,矛盾!若五个队的积分是48,则总分是30,从而无平局,每队得分都应是3的倍数,矛盾! 所以,五个队的积分只能是37.总分为25,共平5场,2510A B C D E ++++=⨯= 第一名得7分,共赛4场,只能是胜2,平1,负1,所以1A =; 第三名得5分,共赛4场,只能是胜1,平2,负1,所以2C =; 第四名得4分,若全平,则和其它每队都平,从而3B ≥,4D =,3E =, 那么1324110A B C D E ++++≥++++>,矛盾!所以第四名胜1,平1,负2,从而1D =;10101216B E A C D +=---=---=,而3B ≤,3E ≤,所以,只能3B =,3E =.综上所述,ABCDE =13213.例题10. (2008年迎春杯五年级初赛第9题,难度星级★★)甲、乙二人要从网上下载同一个100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快,下载速度是乙的5倍,但是当甲下载了一半时,由于网络故障出现断网的情况,而乙家的网络一直正常.当甲的网络恢复正常后,继续下载到99兆时(已经下载的部分无需重新下载),乙已经下载完了,则甲断网期间乙下载了________兆.【答案】:80.2兆.【分析与解答】:当甲下载一半50兆的时候,乙下载50510÷=兆.当甲重新下载后又下载995049-=兆,在这段时间里乙下载了4959.8÷=兆, 所以在甲断网的时候乙下载了100109.880.2--=兆.例题11. (2012年迎春杯五年级初赛第3题,难度星级★☆)龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有________人.【答案】:144【分析与解答】:二班人数为642367⨯=(人);三班人数为536306⨯=(人);四班人数为30 1.236⨯=(人);所以,五年级共有42363036144+++=(人) .拓展(学生版无,教师选讲)(2008年迎春杯五年级初赛第4题,难度星级★★)箱子里装有同样数量的乒乓球和羽毛球.每次取出5个乒乓球和3个羽毛球,取了几次之后,乒乓球恰好没有了,羽毛球还有6个,则一共取了 次,原来有乒乓球和羽毛球各 个.【答案】: 3次;15个.【分析与解答】:盈亏问题方法解答:取一次使羽毛球比乒乓球多两个,623÷=次. 所以乒乓球有5315⨯=个.拓展(学生版无,教师选讲)(2006年高年级组初试第4题,难度星级★★★)王老师到木器厂订做240套课桌椅,每套定价80元.王老师对厂长说:“如果1套桌椅每减价1元,我就多订10套.”厂长想了想,每套桌椅减价10%所获得的利润与不减价所获得的利润同样多,于是答应了王老师得要求.那么每套桌椅的成本是________元.【答案】:48元.【分析与解答】:减价10%就是每套减8元,王老师要多订 80 套.每套减少8元的总和就是多订的80套的利润,因此每套桌椅的利润为83208032⨯÷=元,成本是803248-=元. 也可用方程解,设每套桌椅的成本是x 元,则()()8024072320x x -⨯=-⨯, 解得48x =元.例题12. (2010年迎春杯五年级初赛第8题,难度星级★★★)请从1,2,3,……,9,10中选出若干个数,使得1,2,3,……,19,20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出________个数.【答案】:6个.【分析与解答】:10以内的偶数,只需要用两个相同的奇数相加即可得到,即选择1,3,5,7,9.但是20必须需要10才能得到,因此选择1,3,5,7,9,10这6个数字.例题13. (2011年迎春杯五年级初赛第10题,难度星级★★★)一个村庄有2011个小矮人,他们每个人不是戴红帽子,就是戴蓝帽子.戴红帽子时说真话;戴蓝帽子时说假话.他们可以改变帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.这一天他们总共最少改变了________次帽子的颜色.【答案】:答案是2009次.【分析与解答】:任何两人见面时,都分别戴着不同颜色的帽子,因此至多能有两人帽子不变色,最少要改变2009次帽子的颜色.可以将2011个小矮人顺次编号,1号戴红帽子,其他戴蓝帽子.1号首先与所有人见面,然后2号改变帽子颜色并与3~2011号见面,3号改变帽子颜色并与4~2011号见面……最后2010号改变帽子颜色并与2011号见面.例题14. (2006年第22届迎春杯初试5,6年级组第2题,难度星级★★)有两个三位数,百位上的数字分别是5和4,十位上的数字分别是6和7,个位上的数字分别是3和4.当这两个三位数分别是________和________时,它们的乘积最大.【答案】:563和474.【分析与解答】:两数之和固定,两数越接近,其乘积越大.拓展 (学生版无,教师选讲)(2008年迎春杯五年级初赛第14题,难度星级★★★★)给你一架天平和两个砝码,这两个砝码分别重50克和100克,如果再添上3个砝码,则这5个砝码能称出的重量种类最多是________种.(天平的左右两盘均可放砝码)【答案】:94种.【分析与解答】:首先注意这种题是考察三进制的问题(若砝码只可以放在一边,则是考察二进制的),我们选的时候选三个最小的:1,3,9,因为这样可以测出的重量种类是最多的:1~13.又有50克和100克的两个砝码,则可以称出5013-,5012-,……,501-,50,501+,502+,……,5013+,10013-,10012-,……,1001-,100,1001+,1002+,……,10013+,15013-,15012-,……,1501-,150,1501+,1502+,……,15013+,所以能称出313694+⨯=种重量.。

2015年五年级数学花园探秘(原迎春杯)模拟题解析

2015年五年级数学花园探秘(原迎春杯)模拟题解析
二填空题每题10题填写结果即可5纯循环小数0abc写成最简分数时分子与分母之和是48那么三位数答案297分析37abcabcabc化简后的分母一定是现在的分母的约数而且小于48大于48的一半即24所以分母只可能是37或27但如果是27这个分数不是最简分数所以只能是37那么化简后的分数应该是1137那么这个循环小数是112970297379996如果一个边长为6厘米的正三角形的面积是155平方厘米那么一个边长为6厘米的正十二边形面积是平方厘米
A D O
【答案】50 【分析】根据条件,OB=4OD,推出三角形 ACD 的面积是 10,所以四边形 ABCD 的面积是 50。 3、60 的倍数中,恰有 60 个因数的最小数是 。 【答案】5040 【分析】 这道题跟例 2 有所不同, 所以满足要求的数可以有 3 或 4 个质因数, 60 22 3 5 , a 如果只有 3 个质因数,那么满足要求的数是 2 3b 5c ,其中 a 1 b 1 c 1 60 ,经尝 试得其中最小的一个是 24 33 52 10800 ;如果有 4 个质因数,那么满足要求的数是 2a 3b 5c M d ,其中 M 是大于 5 的质数,且 a 1 b 1 c 1 d 1 60 ,为了让所得 的数尽量小,那么 M 取 7,满足要求的数的最小值显然是 24 32 5 7 5040 。综上所述, 满足要求的数的最小值是 5040。 4、在小于 3000 的四位数中,能被 7 整除,并且数字和为 7 的数,一共有 个。 【答案】7 【分析】考虑到 7 的整除性是“三位一段” ,分别考虑: 前两位是“10”的:1015;前两位是“11”的:1141;前两位是“12”的:1204;前两位是 “13”的:1330;前两位是“20”的:2023;前两位是“22”的:2212;前两位是“24”的: 2401。一共有 7 个满足要求的数。 二、填空题(每题 10 分,共 4 题,填写结果即可) 5、纯循环小数 0.abc 写成最简分数时,分子与分母之和是 48,那么三位数 aபைடு நூலகம்c= 。 【答案】297 abc abc 【分析】 0.abc ,化简后的分母一定是现在的分母的约数,而且小于 48 大于 3 999 3 37 48 的一半即 24,所以分母只可能是 37 或 27,但如果是 27,这个分数不是最简分数,所以 11 297 11 0.297 . 只能是 37,那么化简后的分数应该是 ,那么这个循环小数是 37 37 999

迎春杯高年级复赛解析

迎春杯高年级复赛解析

2016年“数学花园探秘”科普活动小高年级组决赛试卷A一、填空题(每小题8分,共40分) 1. 算式201520161232015123201512320152016201620162016⨯++++++++ 的计算结果是 .【答案】2017 【分析】1201612017120162016n n n ==++,所以原式=201520162017201620152017⨯=⨯.2. 销售一件商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高到 %. 【答案】12【分析】设成本为“1”,则售价需要提高1.4 1.2512%1.25-=.3. 小明发现今年的年份2016是一个非常好的数,它既是6的倍数,又是8的倍数,还是9的倍数.那么下一个既是6的倍数,又是8的倍数,还是9的倍数的年份是 年. 【答案】2088【分析】[]6,8,972=,所以下一个这样的年份是2088年.4. 在电影《大圣归来》中,有一幕孙悟空大战山妖.有部分山妖被打倒,打倒的比站着的多三分之一;过了一会儿再有2个山妖被打倒,但是又站起来10个山妖,此时站着的比打倒的多四分之一.那么现在站着的山妖有 个. 【答案】35【分析】开始打倒的占总数的47,后来打倒的占总数的49,所以一共有4486379⎛⎫÷-= ⎪⎝⎭个山妖,现在站着的有4631359⎛⎫⨯-= ⎪⎝⎭个.5. 在空格内填入数字1~6,使得每行和每列的数字都不重复.图中相同符号所占的两格数字组合相同,数字顺序不确定.那么最后一行前五个数字按从左到右的顺序组成的五位数是 .【答案】46123 【分析】二、填空题(每小题10分,共50分)6. 请将0~9分别填入下面算式的方框中,每个数字恰用一次;现已将“1”、“3”、“0”填入;若等式成立,那么等式中唯一的四位被减数是 .130.2016-⨯=【答案】2196【分析】设这个算式为130.2016a bc de fg -⨯=,则2a =.后面两个数的乘积为整数,即3de fg ⨯是100的倍数,所以3de 和fg 一个是25的倍数,一个是4的倍数,则这两个数中,必有一个数以75结尾.如果75fg =,则30.75200de ⨯>,不成立.所以3375de =,如果60fg ≥,等式同样不成立,所以fg 是小于60的4的倍数,剩下的数(4、6、8、9)中,只能组成48满足要求,所以48fg =, 进而求得这个四位数为2196.7. 2016名同学排成一排,从左至右依次按照1,2,…,n 报数(2n ≥).若第2016名同学所报的数恰是n ,则给这轮中所有报n 的同学发放一件新年礼物.那么无论n 取何值,有 名同学将不可能得到新年礼物. 【答案】576【分析】由题目条件可知,2016n ,522016237=⨯⨯,所以当2n =时,所有编号为2的倍数的同学均能拿到礼物,同理可得编号为3和7的倍数的同学也能拿到礼物,因此只有编号与2016互质的同学拿不到礼物,小于2016且与2016互质的数的个数为1112016111576237⎛⎫⎛⎫⎛⎫⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭个.8. 如图,正十二边形的面积是2016平方厘米,那么图中阴影部分的面积是 平方厘米.【答案】672 【分析】如下图所示,阴影部分可以等积变形成下图形状,并设正三角形面积为a ,四边形面积为b .则整个正十二边形是由12个a 和6个b 组成,而阴影部分由4个a 和2个b 组成,所以阴影部分面积为672平方厘米.9. 四位数好事成双除以两位数成双的余数恰好是好事;如果不同的汉字表示不同的数字且好事和成双不互质,那么四位数好事成双最大是 .【答案】7281【分析】设abcd =好事成双,则99991abcd ab ab cd ababcd cd n ab n n cd cd cd -+÷=⇒==⇒-=, 设(),ab cd m =,则(),,,1ab mx cd my x y ===, 99991mx xn my y-==,所以y 为99的因数,又因为不同汉字代表不同数字,所以y 为3或9,如果9y =,ab 最大为72,此时81cd =;如果3y =,x 只能为2,这时66ab <,所以四位数最大为7281.10. 老师用0至9这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数分别给了A 、B 、C 、D 、E 这五名聪明且诚实的同学,每名同学只能看见自己的两位数,并依次发生如下对话:A 说:“我的数最小,而且是个质数.”B 说:“我的数是一个完全平方数.”C 说:“我的数第二小,恰有6个因数.”D 说:“我的数不是最大的,我已经知道ABC 三人手中的其中两个数是多少了.”E 说:“我的数是某人的数的3倍.” 那么这五个两位数之和是 . 【答案】180【分析】由A 的话可知,A 的十位是1,又因为是质数,所以A 有可能是13,17,19;C 能断定自己的数第二小,且有6个因数,所以可能是20,28,32; B 是完全平方数,但不能含有1和2,所以B 有可能是36,49,64;D 能断定自己不是最大的,说明他的数是53或54或十位数不超过4,但大于等于34;E 是某人的数的3倍,由上面信息可知,只能是A ,且推得A 为19,则E 为57.最后根据D 能知道ABC 三人手中两个数,试验可知,BCD 手中数分别为36,28,40, 综上所述,五个两位数之和是180.三、填空题(每小题12分,共60分)11. 如图,直角三角形ABC 中,AB 的长度是12厘米,AC 的长度是24厘米,D 、E 分别在AC 、BC上.那么等腰直角三角形BDE 的面积是 平方厘米.【答案】80【分析】过D 点作BE 垂线DF ,则BF FD FE ==.因为ABC FDC ∆∆ ,所以12DF AB FC AC ==, 则BF FE EC ==.所以23BE BC =,则()222244122432099BE BC ==⨯+=,80BDE S ∆=.12. 已知1000091111++++999999999S =个,那么S 的小数点后第2016位是 .【答案】6 【分析】首先,••10910.0001999n n -= 个个,即小数点后第n ,2n ,3n ,…位都是1,其它为都是0.所以当n 是2016的因数时,91999n个化成小数后,小数点后第2016位是1,其余情况小数点后第2016位是0.522016237=⨯⨯,有36个因数,在不考虑进位的情况下,这一位上有36个1相加,这一位的数字是6,下面考虑进位,因为2017是质数,所以2017位上只有2个1相加,单独不构成进位,而201810092=⨯,有4个因数,本身也不足以向第2018位进位,显然2019位即以后都不足以进位到2016为,所以第2016位是6.13. A 、B 两地间每隔5分钟有一辆班车出发,匀速对开,且所有班车的速度都相同;甲、乙两人同时从A 、B 两地出发,相向匀速而行;甲、乙出发后5分钟,两地同时开出第一辆班车;甲、乙相遇时,甲被A 地开出的第9辆班车追上,乙也恰被B 地开出的第6辆班车追上;乙到A 地时,恰被B 地开出的第8辆班车追上,而此时甲离B 地还有21千米.那么乙的速度是每小时 千米. 【答案】27【分析】设甲乙在C 点相遇,对于甲乙各自来说,每次被班车追上的时间是固定的,所以乙从B 到C的时间是从C 到A 时间的3倍,所以3v v =乙甲.则当乙走完全程时,甲走全程的13,全程为26321=32÷千米.下面考虑甲乙相遇时,班车的情况;甲恰被A 地开出的第9辆追上,乙也恰被B 地开出的第6辆班车追上,所以追上乙的那班车比追上甲的那班车早出发了15分钟,又因为两辆班车相遇在距A 点四分之一处,所以追上乙的班车比追上甲的班车多走了全程的12,即634千米.所以班车的速度为6316344÷=千米每小时.所以班车跑完全程需要12小时, 下面求乙的速度;在乙到达A 时,第8辆班车恰好追上,这辆班车出发时,乙已经走了40分钟,所以乙走全程用时217326+=小时,则乙的速度为6372726÷=千米每小时.14. 将一个固定好的正方形分割成3个等腰三角形,有如图的4种不同方式;如果将一个固定好的正方形分割成4个等腰三角形,那么共有 种不同方式.【答案】21【分析】如下图所示,除了第一个外,每个都可以旋转出4个,所以共14521+⨯=种.。

2015数学花园探秘复赛中年级组答案

2015数学花园探秘复赛中年级组答案
2015 年“数学花园探秘”科普活动小学中年级组决赛 A 卷
共15 20 12 1 287 个格甲有必胜策略.
学而思培优
电话:62164116、82618899
12. 作答要求: (1)请在答题卡第 12 题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号; 如认为本试卷第 6 题出得最好,那么请在万位填涂“0”,千位填涂“6”. (2)请在答题卡第 12 题的百位,填涂上你认为本试卷整体的难度级别; 最简单为“0”,最难为“9”,总计十个级别. (3)请在答题卡第 12 题的十位+个位,填涂上你认为本试卷中一道最难试题的题号; 如认为本试卷第 10 题最难,那么请在十位填涂“1”,个位填涂“0”.
11. 甲和乙在一张 20×15 的棋盘上玩游戏.开始时把一个皇后放在棋盘除了右上角外的某格内;从甲 开始,两个人轮流挪动皇后,每次可以按直线或者斜线走若干格,但只能往右、上或右上走;谁 把皇后挪到了右上角的格子,谁就获胜.那么在这个棋盘上,有__________个起始格是让甲有必 胜策略的.
【考点】必胜策略 【难度】☆☆☆☆ 【答案】287 【分析】从右上角开始倒推,必胜的格打√,否则打○× :
为 8 13 21 ,所以长方形的周长为 (13 21) 2 68 .
3. 小数、小学、小花、小园、探秘 5 人获得了跳远比赛的前 5 名(无并列),他们说: 小数:“我的名次比小学好”; 小学:“我的名次比小花好”; 小花:“我的名次不如小园”; 小园:“我的名次不如探秘”; 探秘:“我的名次不如小学”. 已知小数、小学、小花、小园、探秘分别获得第 A、B、C、D、E 名且他们都是从不说慌的好学生, 那么五位数 ABCDE = __________.
【考点】逻辑推理 【难度】☆☆☆ 【答案】3122 【分析】从第四行第一个 3 以及指一个数时必须为 1 入手,容易填出下面的数:

2015数学花园探秘复赛高年级(含解析)

2015数学花园探秘复赛高年级(含解析)

2015年“数学花园探秘”科普活动小学高年级组决赛试 A 卷(测评时间:2015 年 1 月 31 日 8:00 —9:30)一、填空题Ⅰ(每小题 8 分,共 40 分)⎛ 1 1 1 1 1 ⎫ ⎛ 1 1 1 ⎫1.算式 1 - + - + - ⎪ ÷ + + ⎪ 的计算结果是__________.⎝ 2 3 4 5 6 ⎭ ⎝ 4 5 6 ⎭2.一张边长为10厘米的正方形纸片,如图对折两次,再沿两边的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是__________平方厘米.3.A,B,C,D四个人住进编号为1 , 2 ,3, 4 的四个房间,每个房间恰住一人;那么B不住 2 号房间,并且B , C两人要求住在编号相邻房间的住法共有__________种.4.算式201519992015⨯14-20152011的计算结果是__________.5.哈利波特制作加强型魔法药剂“生死水”(这是一种效力很强的安眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型“生死水”的浓度为______ %.二、填空题Ⅱ题(每小题 10 分,共 50分)6.一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2 、1 、0道题.这时老师问:你们考的怎么样啊?他们每人说了 3 句话(如下).甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲.丁:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了 A 、B 、C、D 道题,那么四位数 ABCD =__________.7.右边算式中,不同的汉字代表不同的数字.如果二零一五=2015,且两位数数学是质数,那么四位数数学花园= _________.二零一五=数学+花园⨯探⨯秘8.右图的图案由1 个圆和 2 个大小相同的正方形组成( 2 个正方形的公共部分为正八边形).如果圆的半径为 60 厘米,那么阴影部分的面积是_________平方厘米.(π取3.14)9.如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为“均衡数”.例如25254是“均衡数”,因为5+2+2=4+5.如果相邻的两个自然数都是“均衡数”,则称这对“均衡数”为“孪生均衡数”.那么最小的一对“孪生均衡数”的和是________.10.一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3.2小时;如果第1 小时、第 2 小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时 2 千米;那么轮船往返A、B两港共行_______千米.三、填空题Ⅲ题(每小题 12 分,共 60 分)11.三位数abc除以它的各位数字和的余数是1 ,三位数cba除以它的各位数字和的余数也是1 .如果不同的字母代表不同的数字,且a>c,那么abc= _______.12.在右图的每个方格里填入数字1 ~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数 ABCDE =_______.13.某班共有30名学生去看电影,他们的学号依次为1 , 2 ,……,30;他们手中的电影票恰好为某排的1 号,2 号,……,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有________种不同的发放方式.14.图 2 的8 8表格中共含有168个如图1 的“ T ”形.现对图 2 中的每个小方格染成黑色或白色;如果一个“ T”形中黑白小方格各2个,则称这个“ T”形为“和谐”的;那么对图 2 的各种染色方案,“和谐”的“ T ”形至多有__________个.15.作答要求:(1)请在答题卡第15题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号;如认为本试卷第 6 题出得最好,那么请在万位填涂“ 0 ”,千位填涂“ 6 ”.(2)请在答题卡第15题的百位,填涂上你认为本试卷整体的难度级别;最简单为“0”,最难为“ 9”,总计十个级别.(3)请在答题卡第15题的十位+个位,填涂上你认为本试卷中一道最难试题的题号;如认为本试卷第14 题最难,那么请在十位填涂“1 ”,个位填涂“ 4 ”.2015年“数学花园探秘”科普活动小学高年级组决赛试 A 卷(测评时间:2015 年 1 月 31 日 8:00 —9:30)参考答案题号 1 2 3 4 5 6 7答案 1 75 8 503 11 1203 8369题号8 9 10 11 12 13 14答案3096 1099 102 452 41244 48 132部分解析一、填空题Ⅰ(每小题 8 分,共 40 分)⎛ 1 1 1 1 1 ⎫ ⎛ 1 1 1 ⎫1.算式 1 - + - + - ⎪ ÷ + + ⎪的计算结果是__________.⎝ 2 3 4 5 6 ⎭ ⎝ 4 5 6 ⎭【考点】分数计算【难度】☆☆【答案】1⎛ 1 1 ⎫ ⎛ 1 1 1 ⎫ ⎛ 1 1 1 1 1 ⎫ ⎛ 1 1 1 ⎫【分析】分子= 1 + + ⎪ - + + ⎪= 1 + + + + + ⎪ -  + + ⎪ ⨯ 2⎝ 3 5 ⎭ ⎝ 2 4 6 ⎭ ⎝ 2 3 4 5 6 ⎭ ⎝ 2 4 6 ⎭⎛ 1 1 1 1 1 ⎫ ⎛ 1 1 ⎫ 1 1 1= 1 + + + + + ⎪ - 1 + + ⎪ = + +⎝ 2 3 4 5 6 ⎭ ⎝ 2 3 ⎭ 4 5 6可见原式=1.2.一张边长为10厘米的正方形纸片,如图对折两次,再沿两边的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是__________平方厘米.【考点】几何【难度】☆☆【答案】 75【分析】设剪下来的四个等腰直角三角形的直角边为 a ,则正方形的面积为(4a)2÷2=100⇒a2=12.5,剪下来的部分其面积为12a2⨯4=2a2=2⨯12.5=25,则余下部分面积为 75 .3.A , B , C , D四个人住进编号为1 , 2 , 3 , 4 的四个房间,每个房间恰住一人;那么B不住 2 号房间,并且 B ,C两人要求住在编号相邻房间的住法共有__________种.【考点】计数【难度】☆☆☆【答案】 8【分析】若 B 住在1号房间,则C住在2号房间, A 、 D 住在3、4号房间,共2种住法;若 B 住在3号房间,则C住在2号或4号房间, A 、 D 住在剩下两个房间,共2 ⨯ 2 = 4种住法;若B 住在4号房间,则C住在3号房间, A 、 D 住在1、2号房间,共2种住法;综上,合计 2 + 4 + 2 = 8 种住法.4.算式201519992015⨯14-20112015的计算结果是__________.【考点】分数计算【难度】☆☆☆【答案】 503【分析】原式= 20152+ 1999- 2011 ⨯ 4 = 20152- 6045 20152- 2015 ⨯ 32015 ⨯ 4 2015 ⨯ 4 2015 ⨯ 4= 2015 ⨯ 2012 = 503 .2015 ⨯ 45.哈利波特制作加强型魔法药剂“生死水”(这是一种效力很强的安眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型“生死水”的浓度为______ %.【考点】浓度问题【难度】☆☆☆【答案】11【分析】设普通型“生死水”的浓度为x%,初始重量为100,连续两次加入的艾草浸液和⎧ x =9%⎧100 x - 9 a = 900⎪ 100 +a ⇒ x =11⎪ x + a= 23% ⎩100 x+ 54 a= 2300⎪⎩100 + 2a 综上,普通“生死水”的浓度为11%.二、填空题Ⅱ题(每小题 10 分,共 50分)时老师问:你们考的怎么样啊?他们每人说了 3 句话(如下).甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲.丁:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了 A 、B 、C、D 道题,那么四位数 ABCD =__________.【考点】逻辑推理【难度】☆☆☆☆【答案】1203【分析】全对的人不会说自己对的题少于 3 ,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的“丁对了2道”是假话相矛盾;则丁全对,则丙的后两句是假话,不可能是第二名,又由丁的“甲考得不如乙”能知道第二名是乙,故丙全错,甲只有“丙考得不如丁”是真话,排名是丁、乙、甲、丙,即 ABCD =1203.7.右边算式中,不同的汉字代表不同的数字.如果二零一五=2015,且两位数数学是质数,那么四位数数学花园= _________.二零一五=数学+花园⨯探⨯秘【考点】数字谜【难度】☆☆☆☆【答案】 8369【分析】数学中至多有 3 , 6 , 9 中的一个,则“花”、“园”、“探”、“秘”中至少有 3 , 6 , 9 中的两个,若两个都在“花园”中,则花园⨯探⨯秘=2015-47=1968是3的倍数,若有一个在“探”和“秘”中,花园⨯探⨯秘也是3的倍数,由此可见,“数学”与 2015 对 3 同余,即除以 3 余 2 ,作为质数,“数学”只能是47 , 83 和89;若数学= 37 ,则花园⨯探⨯秘=2015-47=1968 ,而1968=24⨯3⨯41,“花园”只能是 41 或82,均不符合要求;若数学= 83 ,则花园⨯探⨯秘=2015-83=1932,而1932 = 2 2⨯3 ⨯ 4 ⨯23 ,当“花综上,数学花园= 8369 .8.右图的图案由1 个圆和 2 个大小相同的正方形组成( 2 个正方形的公共部分为正八边形).如果圆的半径为 60 厘米,那么阴影部分的面积是_________平方厘米.(π取3.14)【考点】几何【难度】☆☆☆☆☆【答案】 3096【分析】如下图,设小直角三角形的斜边长为 a ,大正方形的边长为 b ,则根据勾股定理a 2+ b2=1202=14400,b2表示大正方形的面积,a2表示4个小直角三角形的面积,恰好构成下图的总面积,即总面积为14400 ,则阴影面积为14400 - 3.14 ⨯ 602= 3096 .9.如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为“均衡数”.例如25254是“均衡数”,因为5+2+2=4+5.如果相邻的两个自然数都是“均衡数”,则称这对“均衡数”为“孪生均衡数”.那么最小的一对“孪生均衡数”的和是________.【考点】数论,弃九法【难度】☆☆☆【答案】1099【分析】两位数没有符合要求的数, 99 、100亦不符合,故知至少为三位数.两个相邻数数字和都是偶数,说明必有进位,且三位数必然只进1 次位(数字和加1 再减9),即这两个数是 ab9和a(b+1)0,必有a+b=9和a=b+1,故这两个数为549和550 . 549 + 550 =1099 .10.一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3.2小时;如果第1 小时、第 2 小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时 2 千米;那么轮船往返A、B两港共行_______千米.【考点】行程,比例行程【难度】☆☆☆【答案】102【分析】第一小时若已经有逆水段,则第二小时、第三小时路程相同,不可能出现等差数列,故第一小时全顺水,同理第三小时全逆水,第二小时既有顺水又有逆水.且若路程是等差数列,第二小时必为半小时顺水半小时逆水.故顺水1.5 小时的路程恰好是逆水1.7 小时的路程,V顺:V逆=17 :15 ,且V顺- V逆=2⨯2=4千米每时,故V顺=34千米每时,往返共行34⨯1.5⨯2=102千米.三、填空题Ⅲ题(每小题 12 分,共 60 分)11.三位数abc除以它的各位数字和的余数是1 ,三位数cba除以它的各位数字和的余数也是1 .如果不同的字母代表不同的数字,且a>c,那么abc= _______.【考点】数论,位值原理,整除分析【难度】☆☆☆【答案】 452【分析】 abc - cba =99(a - c),故(a +b + c)⎡99(a - c)⎤,但(a + b + c)必定不是3的倍数,⎣⎦否则 abc 是3的倍数,abc÷(a+b+c)的余数必为3的倍数.故(a+b+c)11(a-c),11是质数,且a+b+c>a-c,故(a+b+c)必为11的倍数.若 a + b + c =11,则 a + c - b =1,b =5,又a、b 、c互不相同,a > c ,故 a =4,c =2,abc=452;若 a + b + c =22,则 a + c - b =12,b =5,又a、b 、c互不相同,a > c ,故 a =9,c =8,但此解并未满足(a+b+c)⎡11(a-c)⎤的要求,故知此种情况无解.⎣⎦综上,本题有唯一答案 452 .12.在右图的每个方格里填入数字1 ~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数 ABCDE =_______.【考点】数独【难度】☆☆【答案】 41244【分析】通过百位分析,显然 A =4,进而个位要凑出0必须1+3+6,可知第一行为423516;类似地,第二行第一个数为 2 ,个位5+6+4,215364,B=1 ;第三行第一个数为 3 ,个位 5 + 1 + 2 , 342651,C= 2 ;第四行第一个数为 5 ,个位 2 + 1 + 3 , 561432 ,D= 4 ;第五行个位 6+5+4 ,136245 ,E=4;第六行 654123 .13.某班共有30名学生去看电影,他们的学号依次为1 , 2 ,……,30;他们手中的电影票恰好为某排的1 号,2 号,……,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有________种不同的发放方式.【考点】组合,数论,计数【难度】☆☆☆☆【答案】 48【分析】1 号学生有29人是其倍数,故1 号学生只能拿1 号电影票;2 号学生有14 人是其倍数,故 2 号学生只能拿 2 号电影票;3 号学生有 9 人是其倍数,故 3 号学生只能拿 3 号电影票;4 号学生有6人是其倍数,故 4 号学生只能拿 4 号电影票;5 号学生有 5 人是其倍数,故 5 号学生只能拿 5 号电影票;6 号学生有 4 人是其倍数,故 6 号学生只能拿 6 号电影票;7 号学生有 3 人是其倍数,故 7 号学生只能拿 7 号电影票;8 号学生必须是 2 号学生( 2 )的倍数,也必须是 4 号学生( 4 )的倍数,同时有 2人是其倍数,综上, 8 号学生只能拿 8 号电影票;9号学生必须是 3 号学生( 3 )的倍数,还不能是 6 ,同时有 2 人是其倍数,综上,9 号学生只能拿 9 号电影票;2 人是其倍数,综上,10号学生只能拿10号电影票;12 号学生必须是3号学生(3)的倍数,也必须是 4 号学生( 4 )的倍数,同时有1人是其倍数,综上,12 号学生只能拿12 号电影票;同时 24 号学生只能拿 24 号电影票;14 号学生必须是 2 号学生( 2 )的倍数,也必须是7号学生(7)的倍数,同时有1 人是其倍数,综上,14 号学生只能拿14 号电影票;同时28号学生只能拿28号电影票;15 号学生必须是 3 号学生( 3 )的倍数,也必须是 5 号学生( 5 )的倍数,同时有1人是其倍数,综上,15 号学生只能拿15 号电影票;同时30号学生只能拿30号电影票;之后的数,[2,9] =18 ,18必拿18,同时是9的倍数的27号只能拿27;20 = [4,5] ,20 必拿 20 ;21 = [3,7] ,21 必拿 21 ;24=[3,8] ,24 必拿 24 ,同时是8的倍数的16号只能拿16 ;28 = [4,7] ,28必拿28;30 = [5,6] ,30必拿30,同时是 5 的倍数的25 号只能拿 25 .目前还没有确定的数有:11、 22 、13、26、17、19、23、29号.11、 22 互为一组成倍数,13 、26亦互为一组成倍数,有两种拿法:11号拿11, 22 号拿 22 ,13 号拿13 ,26号拿26;或11号拿13 ,22 号拿26,13 号拿11,26号拿22 .17、19 、23、29是大质数,没有限制,可随意拿,有 A 44= 24 种拿法.故共有 2 ⨯ 24 = 48种拿法.14.图 2 的8⨯8表格中共含有168个如图1 的“ T ”形.现对图 2 中的每个小方格染成黑色或白色;如果一个“ T”形中黑白小方格各2个,则称这个“ T”形为“和谐”的;那么对图 2 的各种染色方案,“和谐”的“ T ”形至多有__________个.【考点】组合,染色问题,构造与论证【难度】☆☆☆☆☆【答案】132【分析】考察每一个“”形,枚举可知,其中的四个“”形最多只有3个“和谐”的(举例:).在一个8⨯8的方格阵中,共有36个“”形,故知必然至少有 36 个“”形不是“和谐”的.即本题理论最大值为168 - 36 =132 .下面是一个132 的例子:15.作答要求:(1)请在答题卡第15题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号;如认为本试卷第 6 题出得最好,那么请在万位填涂“ 0 ”,千位填涂“ 6 ”.(2)请在答题卡第15题的百位,填涂上你认为本试卷整体的难度级别;最简单为“0”,最难为“ 9”,总计十个级别.(3)请在答题卡第15题的十位+个位,填涂上你认为本试卷中一道最难试题的题号;如认为本试卷第14 题最难,那么请在十位填涂“1 ”,个位填涂“ 4 ”.11 / 11。

2016年“数学花园探秘”科普活动小学高年级组决赛试卷A

2016年“数学花园探秘”科普活动小学高年级组决赛试卷A

14.将一个固定好的正方形分割成 3 个等腰三角形,有如图的 4 种不同方式;如果将一个固 定好的正方形分割成 4 个等腰三角形,那么共有 种不同方式.
3 / 10
2016 年“数学花园探秘”科普活动
小学高年级组决赛试卷 A 参考答案
一、填空题Ⅰ(每小题 8 分,共 40 分) 1.下面算式的计算结果是_______. 2015 2016 3 2015 + + + + 1 2 3 2015 1+ 2+ 3+ 2015+ 2016 2016 2016 2016 1 2 【考点】计算繁分数运算 【难点】☆☆☆ 【答案】 2017 【解析】原式=
那么图中阴影部分的面积是 8. 如图, 正十二边形的面积是 2016 平方厘米,
平方厘米.
9.四位数 好事成双 除以两位数 成双 的余数恰好为 好事 ;如果不同的汉字表示不同的数字 且 好事 和 成双 不互质,那么四位数 好事成双 最大是 .
10.老师用 0 至 9 这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数 分别给了 A 、 B 、 C 、 D 、 E 这五名聪明且诚实的同学,每名同学只能看见自己的两 位数,并依次发生如下对话: A 说:“我的数最小,而且是个质数.” B 说:“我的数是一个完全平方数.”
C 说:“我的数第二小,恰有 6 个因数.”
D 说:“我的数不是最大的,我已经知道 A 、 B 、C 三人手中的其中两个数是多少了.” E 说:”我的数是某人的数的 3 倍.” 那么这五个两位数之和是 .
三、简答题(1、先给出答案;2、再同解答过程.每小题 15 分,共 60 分) 11.如图,直角三角形 ABC 中, AB 的长度是 12 厘米, AC 的长度是 24 厘米, D 、 E 分别 在 AC 、 BC 上,那么等腰直角三角形 BDE 的面积是 平方厘米.

2015年数学花园探秘.一、二年级

2015年数学花园探秘.一、二年级

【答案】30 个 【解析】因为每排的车位是一样多的,所以按照箭头的方向第二排 17 号的后面应该是 18、19、20,可以知 道前两排一共 20 个车位,每排 10 个车位,三排就个车位. 第十关 一起挖宝藏 在图(9)的表格中,隐藏了一些宝盒,其数量如表格边的数字所表示(每列上边的数代表这一列宝盒 的数量,每行左边的数代表这一行宝盒的数量,每个格子中最多有 1 个宝盒).此外,在一些方格中标记了 箭头,这些地方没有宝盒,而箭头所指的方向有宝盒(可能不止一个).请你用△标出所有的宝盒.
(2)如果 A 在 0 这个位置,因为 C 与 A 和 E 连接,在与 A 连接的位置里面只有 2 这个位置是和 2 个数字 连接的,所以 2 这个位置就是 C,4 和 3 所在的位置是 B 和 D;又因为 C 和 AE 连接,所以 5 所在的位置就
3
学而思网校教研中心
是 E,1 所在的位置就是 F.因此 2015 表示 C、A、F、E. 第七关 我来拼一拼 下面 A、B、C、D 四个选项中,哪个图可以和图(6)拼成一个完整的长方形?
7
【答案】见解析 【解析】如下图 1,根据花圈的数字和箭头就可以填出图 1 中的宝盒,然后根据图 2 中的画圈数字及箭头即 可填出答案,如下图 3.
5
学而思网校教研中心
第十一关 火柴棒游戏 用火柴棒可以摆出数字 0~9,如下:
按照上面的摆放要求,请你用火柴棒组成一个数,如果这个数比它所需要火柴棒的根数多 361,那么这个数 是多少? 【答案】371 【解析】首先根据根数多 361 可知,这个数要比 361 大.而 1 位数最多使用 7 根火柴棍,3 位数最多使用 21 根, 361 21 382 ,可以确定这个数的百位为 3.剩余的 2 个数最多使用 14 根火柴棍,加上 3 使用的 5 根, 这个数最大为 361 5 14 380 ,可以验证 380 是不符合题意.再根据这个数要比 361 大,加上使用的根数 后可确定这个数的十位为 7,经尝试为 371,这三个数字共用了 10 根火柴棍, 371 10 361 ,符合题意. 第十二关 神奇的数串 这是一个“连数串”游戏,在图(11)中有 16 个格,需要填写 1~16 这 16 个数(其中部分数已填好). 并且要求从 1 开始一次连接相邻的两个数,但是每个格子只能连接到它的上、下、左、右和左上、左下、 右上、右下的 8 个格子,如图(10)所示的 16 个数就是完成了“连数串”.为了能让图(11)可以成功完成 “连数串” ,请在答题纸上相应位置填出恰当的数.

2015-2017迎春杯【高年级】复赛真题试题解析版_decrypted

2015-2017迎春杯【高年级】复赛真题试题解析版_decrypted

6.算式的计算结果是__________.7.有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数,那么这个四位数是_________.8.在空格里填入数字1~6 ,使得每行、每列和每个2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F中各自数字和依次分别为a,b,c,d,e,f,且a=b,c=d,e>f. 那么第四行的前五个数字从左到右依次组成的五位数是_________.9.抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50元的5个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的5个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10的倍数。

”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包.10.如图,P是四边形ABCD内部点,AB:BC:DA=3:1:2,∠DAB=∠CBA=60°.图中所有三角形的面积都是整数,如果三角形PAD和三角形PBC的面积分别是20和17.那么四边形ABCD的面积最大是________.11.有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n个数是1、2、……、n的最小公倍数,那么这列数前100个数前100个数中共有_______个不同的数值.12.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动. 已知电子跳蚤速度相同,且每步只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3 步,途中从未相遇的跳法共有_______种.13.甲以每分钟60米的速度从A地出发去B地,与此同时乙从B地出发匀速去A地;过了9分钟,丙从A地出发骑车去B地,在途中C地追上了甲;甲、乙相遇时,丙恰好到B 地;丙到B地后立即调头,且速度下降为原来速度的一半;当丙在C地追上乙时甲恰好到B地.那么AB两地间路程为________米.14.在一个8×8的方格子中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子,规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作,那么最后在棋盘上最少剩下_____枚棋子2016年“数学花园探秘”科普活动小学高年级组决赛试卷A(测评时间:2016年1月30日8:00-9:30,满分:150分)一、填空题Ⅰ(每小题8分,共40分)1.下面算式的计算结果是________.201520161232015++++12320151+2+3+2015+20162016201620162.销售一件商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高 %.3.小明发现今年的年份2016是一个非常好的数,它既是6的倍数,又是8的倍数,还是9的倍数.那么下一个既是6的倍数,又是8的倍数,还是9的倍数的年份是 .4.在电影《大圣归来》中,有一幕孙悟空大战山妖.有部分山妖被打倒,打倒的比站着的多三分之一;过了一会儿再有2个山妖被打倒,但是又站起来了10个山妖,此时站着的比打倒的多四分之一.那么现在站着的山妖有 个.5.在空格内填入数字1~6,使得每行和每列的数字都不重复,图中相同符号所占的两格数字组成相同,数字顺序不确定.那么最后一行前五个数字按从左到右的顺序组成的五位数是 .二、填空题Ⅱ(每小题10分,共50分)6.请将0~9分别填入下面算式的方框中,每个数字恰用一次;现已将“1”、“3”、“0”填入;若等式成立,那么等式中唯一的四位被减数是.7.2016名同学排成一排,从左至右依次按照1,2,……,n报数(n2).若第2016名同学所报的数恰是n,则给这轮中所有报n的同学发放一件新年礼物,那么无论n取何值,有名同学将不可能得到新年礼物.8.如图,正十二边形的面积是2016平方厘米,那么图中阴影部分的面积是平方厘米.9.四位数好事成双除以两位数成双的余数恰好为好事;如果不同的汉字表示不同的数字且好事和成双不互质,那么四位数好事成双最大是.10.老师用0至9这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数分别给了A、B、C、D、E这五名聪明且诚实的同学,每名同学只能看见自己的两位数,并依次发生如下对话:A说:“我的数最小,而且是个质数.”B说:“我的数是一个完全平方数.”C说:“我的数第二小,恰有6个因数.”D说:“我的数不是最大的,我已经知道A、B、C三人手中的其中两个数是多少了.”E说:”我的数是某人的数的3倍.”那么这五个两位数之和是.三、简答题(1、先给出答案;2、再同解答过程.每小题15分,共60分)11.如图,直角三角形ABC 中,AB 的长度是12厘米,AC 的长度是24厘米,D 、E 分别在AC 、BC 上,那么等腰直角三角形BDE 的面积是 平方厘米.12.已知100001111999999999S =++++个9,所以S 的小数点后第2016位是 .13.A 、B 两地间每隔5分钟有一辆班车发出,匀速对开,且所有班车的速度都相同;甲、乙两人同时从A 、B 两地出发,相向匀速而行;甲、乙出发后5分钟,两地同时开出第一辆班车;甲、乙相遇时,甲被A 地开出的第9辆班车追上,乙也恰被B 地开出的第6辆班车追上;乙到A 地时,恰被B 地开出的第8辆班车追上,而此时甲离B 地还有21千米,那么乙的速度是每小时 千米.14.将一个固定好的正方形分割成3个等腰三角形,有如图的4种不同方式;如果将一个固定好的正方形分割成4个等腰三角形,那么共有 种不同方式.2015年“数学花园探秘”科普活动小学高年级组决赛试A 卷(测评时间:2015年1月31日8:00 —9:30)一、填空题Ⅰ(每小题8分,共40分)1.算式111111111++23456456⎛⎫⎛⎫---÷++ ⎪ ⎪⎝⎭⎝⎭的计算结果是__________. 2.一张边长为10厘米的正方形纸片,如图对折两次,再沿两边的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是__________平方厘米.3.A ,B ,C ,D 四个人住进编号为1,2,3,4的四个房间,每个房间恰住一人;那么B 不住2号房间,并且B ,C 两人要求住在编号相邻房间的住法共有__________种.4.算式1999120112015201542015⨯-的计算结果是__________. 5.哈利波特制作加强型魔法药剂“生死水”(这是一种效力很强的安眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型“生死水”的浓度为______%.二、填空题Ⅱ题(每小题10分,共50 分)6.一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2、1、0道题.这时老师问:你们考的怎么样啊?他们每人说了3句话(如下).甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲.丁:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了A、B、C、D道题,那么四位数ABCD=__________.7.右边算式中,不同的汉字代表不同的数字.如果2015二零一五,且两位数数学是质=数,那么四位数=数学花园_________.二零一五数学花园探秘+=⨯⨯8.右图的图案由1个圆和2个大小相同的正方形组成(2个正方形的公共部分为正八边形).如果圆的半径为60厘米,那么阴影部分的面积是_________平方厘米.(π取3.14)9.如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为++=+.如果相邻的两个自然数都“均衡数”.例如25254是“均衡数”,因为52245是“均衡数”,则称这对“均衡数”为“孪生均衡数”.那么最小的一对“孪生均衡数”的和是________.10.一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3.2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A、B两港共行_______千米.三、填空题Ⅲ题(每小题12分,共60分)11.三位数abc除以它的各位数字和的余数是1,三位数cba除以它的各位数字和的余数也是1.如果不同的字母代表不同的数字,且a c>,那么abc=_______.12.在右图的每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数ABCDE=_______.13.某班共有30名学生去看电影,他们的学号依次为1,2,……,30;他们手中的电影票恰好为某排的1号,2号,……,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有________种不同的发放方式.14.图2的88⨯表格中共含有168个如图1的“T”形.现对图2中的每个小方格染成黑色或白色;如果一个“T”形中黑白小方格各2个,则称这个“T”形为“和谐”的;那么对图2的各种染色方案,“和谐”的“T”形至多有__________个.。

2015-2017迎春杯【高年级】复赛真题试题解析版_decrypted

2015-2017迎春杯【高年级】复赛真题试题解析版_decrypted

6.算式的计算结果是__________.7.有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数,那么这个四位数是_________.8.在空格里填入数字1~6 ,使得每行、每列和每个2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F中各自数字和依次分别为a,b,c,d,e,f,且a=b,c=d,e>f. 那么第四行的前五个数字从左到右依次组成的五位数是_________.9.抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50元的5个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的5个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10的倍数。

”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包.10.如图,P是四边形ABCD内部点,AB:BC:DA=3:1:2,∠DAB=∠CBA=60°.图中所有三角形的面积都是整数,如果三角形PAD和三角形PBC的面积分别是20和17.那么四边形ABCD的面积最大是________.11.有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n个数是1、2、……、n的最小公倍数,那么这列数前100个数前100个数中共有_______个不同的数值.12.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动. 已知电子跳蚤速度相同,且每步只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3 步,途中从未相遇的跳法共有_______种.13.甲以每分钟60米的速度从A地出发去B地,与此同时乙从B地出发匀速去A地;过了9分钟,丙从A地出发骑车去B地,在途中C地追上了甲;甲、乙相遇时,丙恰好到B 地;丙到B地后立即调头,且速度下降为原来速度的一半;当丙在C地追上乙时甲恰好到B地.那么AB两地间路程为________米.14.在一个8×8的方格子中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子,规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作,那么最后在棋盘上最少剩下_____枚棋子2016年“数学花园探秘”科普活动小学高年级组决赛试卷A(测评时间:2016年1月30日8:00-9:30,满分:150分)一、填空题Ⅰ(每小题8分,共40分)1.下面算式的计算结果是________.201520161232015++++12320151+2+3+2015+20162016201620162.销售一件商品,利润率为25%,如果想把利润率提高到40%,那么售价应该提高 %.3.小明发现今年的年份2016是一个非常好的数,它既是6的倍数,又是8的倍数,还是9的倍数.那么下一个既是6的倍数,又是8的倍数,还是9的倍数的年份是 .4.在电影《大圣归来》中,有一幕孙悟空大战山妖.有部分山妖被打倒,打倒的比站着的多三分之一;过了一会儿再有2个山妖被打倒,但是又站起来了10个山妖,此时站着的比打倒的多四分之一.那么现在站着的山妖有 个.5.在空格内填入数字1~6,使得每行和每列的数字都不重复,图中相同符号所占的两格数字组成相同,数字顺序不确定.那么最后一行前五个数字按从左到右的顺序组成的五位数是 .二、填空题Ⅱ(每小题10分,共50分)6.请将0~9分别填入下面算式的方框中,每个数字恰用一次;现已将“1”、“3”、“0”填入;若等式成立,那么等式中唯一的四位被减数是.7.2016名同学排成一排,从左至右依次按照1,2,……,n报数(n2).若第2016名同学所报的数恰是n,则给这轮中所有报n的同学发放一件新年礼物,那么无论n取何值,有名同学将不可能得到新年礼物.8.如图,正十二边形的面积是2016平方厘米,那么图中阴影部分的面积是平方厘米.9.四位数好事成双除以两位数成双的余数恰好为好事;如果不同的汉字表示不同的数字且好事和成双不互质,那么四位数好事成双最大是.10.老师用0至9这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数分别给了A、B、C、D、E这五名聪明且诚实的同学,每名同学只能看见自己的两位数,并依次发生如下对话:A说:“我的数最小,而且是个质数.”B说:“我的数是一个完全平方数.”C说:“我的数第二小,恰有6个因数.”D说:“我的数不是最大的,我已经知道A、B、C三人手中的其中两个数是多少了.”E说:”我的数是某人的数的3倍.”那么这五个两位数之和是.三、简答题(1、先给出答案;2、再同解答过程.每小题15分,共60分)11.如图,直角三角形ABC 中,AB 的长度是12厘米,AC 的长度是24厘米,D 、E 分别在AC 、BC 上,那么等腰直角三角形BDE 的面积是 平方厘米.12.已知100001111999999999S =++++个9,所以S 的小数点后第2016位是 .13.A 、B 两地间每隔5分钟有一辆班车发出,匀速对开,且所有班车的速度都相同;甲、乙两人同时从A 、B 两地出发,相向匀速而行;甲、乙出发后5分钟,两地同时开出第一辆班车;甲、乙相遇时,甲被A 地开出的第9辆班车追上,乙也恰被B 地开出的第6辆班车追上;乙到A 地时,恰被B 地开出的第8辆班车追上,而此时甲离B 地还有21千米,那么乙的速度是每小时 千米.14.将一个固定好的正方形分割成3个等腰三角形,有如图的4种不同方式;如果将一个固定好的正方形分割成4个等腰三角形,那么共有 种不同方式.2015年“数学花园探秘”科普活动小学高年级组决赛试A 卷(测评时间:2015年1月31日8:00 —9:30)一、填空题Ⅰ(每小题8分,共40分)1.算式111111111++23456456⎛⎫⎛⎫---÷++ ⎪ ⎪⎝⎭⎝⎭的计算结果是__________. 2.一张边长为10厘米的正方形纸片,如图对折两次,再沿两边的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是__________平方厘米.3.A ,B ,C ,D 四个人住进编号为1,2,3,4的四个房间,每个房间恰住一人;那么B 不住2号房间,并且B ,C 两人要求住在编号相邻房间的住法共有__________种.4.算式1999120112015201542015⨯-的计算结果是__________. 5.哈利波特制作加强型魔法药剂“生死水”(这是一种效力很强的安眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型“生死水”的浓度为______%.二、填空题Ⅱ题(每小题10分,共50 分)6.一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2、1、0道题.这时老师问:你们考的怎么样啊?他们每人说了3句话(如下).甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲.丁:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了A、B、C、D道题,那么四位数ABCD=__________.7.右边算式中,不同的汉字代表不同的数字.如果2015二零一五,且两位数数学是质=数,那么四位数=数学花园_________.二零一五数学花园探秘+=⨯⨯8.右图的图案由1个圆和2个大小相同的正方形组成(2个正方形的公共部分为正八边形).如果圆的半径为60厘米,那么阴影部分的面积是_________平方厘米.(π取3.14)9.如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为++=+.如果相邻的两个自然数都“均衡数”.例如25254是“均衡数”,因为52245是“均衡数”,则称这对“均衡数”为“孪生均衡数”.那么最小的一对“孪生均衡数”的和是________.10.一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3.2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A、B两港共行_______千米.三、填空题Ⅲ题(每小题12分,共60分)11.三位数abc除以它的各位数字和的余数是1,三位数cba除以它的各位数字和的余数也是1.如果不同的字母代表不同的数字,且a c>,那么abc=_______.12.在右图的每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数ABCDE=_______.13.某班共有30名学生去看电影,他们的学号依次为1,2,……,30;他们手中的电影票恰好为某排的1号,2号,……,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有________种不同的发放方式.14.图2的88⨯表格中共含有168个如图1的“T”形.现对图2中的每个小方格染成黑色或白色;如果一个“T”形中黑白小方格各2个,则称这个“T”形为“和谐”的;那么对图2的各种染色方案,“和谐”的“T”形至多有__________个.。

2020年“春笋杯”数学花园探秘科普活动试卷(小高组决赛a卷)

2020年“春笋杯”数学花园探秘科普活动试卷(小高组决赛a卷)

根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首
先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为 9%;如果再
加入同等量的水仙根粉末,这时“生死水”的浓度变为 23%;那么普通型“生死水”的
浓度为
%.
二、填空题Ⅱ(每题 10 分,共 50 分)
6.(10 分)一次考试有 3 道题,四个好朋友考完后核对答案,发现四人分别对了 3、2、1、
乙:我全对了,丙全错了,甲考的不如丁.
丙:我对了一道,丁对了两道,乙考的不如甲.
丁:我全对了,丙考的不如我,甲考的不如乙.
如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了 A、B、C、D 道
题,那么四位数 = 1203 . 【解答】解:根据分析,全队的人不会说自己对的题少于 3,所以只有乙、丁可能全对. 若乙全对,则排名是乙、丁、甲、丙,与丙所说的:“丁对了两道”是假话矛盾;
题,那么四位数 =

7.(10 分)如图算式中,不同的汉字代表不同的数字.如果
=2015,且 是
第 1页(共 12页)
质数,那么


8.(10 分)如图的图案由 1 个圆和 2 个大小相同的正方形组成(2 个正方形的公共部分为正
八边形).如果圆的半径为 60 厘米,那么阴影部分的面积是
平方厘米.(π取 3.14)
2015 年“迎春杯”数学花园探秘科普活动试卷(小高组决赛 A
卷)
一、填空题Ⅰ(每题 6 分,共 30 分)
1.(6 分)算式(1﹣ + ﹣ + ﹣ )÷( + + )的计算结果是

2.(6 分)一张边长为 10 厘米的正方形纸片,如图对折两次,再沿两遍的中点连线剪掉一

广州-1-2018年“数学花园探秘”科普活动小学高年组决赛试卷A卷

广州-1-2018年“数学花园探秘”科普活动小学高年组决赛试卷A卷

6、一个五位数 9 的倍数,且
由五个互不相同的非零数字组成, 、 、 、 依次是 6、7、8、
能被 6、7、8、9 中的两个整除,那么
的值是_______。
7、右面的等式中,不同的字母表示不同的数字,且 A、D、G 均不是偶数,那么 A×(B+C) +D×(E+F)+G×(H+I)D 的值是_______。
四、解答题 13、如图,菱形 ABCD 的边长是 18。如果撒教学 CDE 是等腰三角形,求四边形 ABEF 的面积。
14、桌上有一堆糖果共 13 颗,小明和小刚罗六区糖果,小明先取,每次取的糖果数不超过 3 颗,不能不取,取完为止。当糖果被取完时,取得糖果总数为偶数的人获胜。问:谁有必 胜的策略?请说明理由。
2018 年“数学花园探秘”科普活动小学高年组决赛试卷 A 卷
一、填空题Ⅰ
20 18
20 18
1、算式(20÷18)×( + )÷( - )的计算结果是_______。
18 20
18 20
王老师班上有一些学生。如果男生的人数增加 30 人,那么男生人数比女生人数多 50%; 2、
1
如果女生减少_______人,才能使女生人数比男生人数少
3
3、老师在黑板上画了两个相同大小的等腰直角三角形;小红在一个三角形内画了一个最大
1
1
的 的圆,小权在另一个三角形内画了一个最大的半圆(如图所示)。已知小红画出的 圆
4
4
的面积为 60,那么小权画出的半圆面积为_______。
4、中国传说有蓬莱、方丈两座仙山。两座仙山上有生存着一些狐狸,有一条尾巴的普通狐 狸,和九条尾巴的九尾狐。每个月都会有新的狐狸出生。某月,蓬莱岛上有 90 只狐狸,共 250 条尾巴,每月新生 2 只普通狐狸,1 只九尾狐,方丈岛上有 110 只狐狸,共 250 条尾巴, 每月有 4 只新生普通狐狸,1 只九尾狐;假如无狐狸死亡,则_______个月后,蓬莱岛上两 种狐狸数量的比例与方丈岛上两种狐狸的数量比例相同。

2017年数学花园探秘高年级复赛(解析)

2017年数学花园探秘高年级复赛(解析)

2017年“数学花园探秘”科普活动小高年级组决赛试卷A一、填空题Ⅰ(每小题8分,共40分)1. 算式116316363⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的计算结果是________. 【答案】64【解析】原式2(631)(631)=-÷-(631)(631)(631)=-⨯+÷-64=2. 一个边长为100厘米的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是________厘米(π取3.14)【答案】2384【解析】图形周长等于5段弧长加1个半径分别计算再求和: 周长111112100220023002400250050055555πππππ=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+ 215005005π=⨯+ 2384=3. 在2016年里约奥运会女排决赛中,中国队战胜了塞尔维亚队获得冠军.统计4局比赛中中国队的得分,发现前2局的得分之和比后2局的得分之和少12%,前3局的得分之和比后3局的得分之和少8%.已知中国队在第2局和第3局中各得了25分,那么中国队在这4局中的得分总和为________分.【答案】94【解析】设第一局中国队得a 分,第四局中国队得b 分,根据题意有: 12%(25)8%(50)b a b b -=⨯+=⨯+,解得25b =,19a =.所以,四局得分总和1925252594+++=分. 学而思培优4. 右面三个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“李白杜甫”=________.【答案】9285【解析】因为=-李白杜甫诗,所以有101ìï+=+ïíï=+ïïî白甫诗李杜,有因为=+李白杜甫背诗诗,所以有+=白甫诗或10+=+白甫诗(舍).由10ìï+=+ïíï+=ïïî白甫诗白甫诗可以解得:5=甫.经尝试可知:当2=白,9=李,8=杜时,两个竖式成立.所以四位数=9285李白杜甫.5. n 个数排成一列,其中任意连续三个数之和都小于30,任意连续四个数之和都大于40,则n 的最大值为________.【答案】5【解析】分析任意连续4个数a ,b ,c ,d ,前三个数的和要小于等于29,即29a b c ++≤,这四个数的和要大于等于41,即41a b c d +++≥;所以第四个数要大于等12,即12d ≥.同理,29b c d ++≥,41a b c d +++≤;所以12a ≥.综上所述,如果有连续的四个数,这四个数两边都要大于12.如果这一列有6个数1a ,2a ,3a ,4a ,5a ,6a :观察前4个,那么112a ≥,412a ≥;观察中间4个,那么212a ≥,512a ≥;观察后4个,那么312a ≥,612a ≥.所以12336a a a ++≥,与三个数之和小于30矛盾.所以这列数的个数不可能大于5.下面构造5个数组成的数列:12,12,5,12,12.所以,n 的最大值是5.二、填空题Ⅱ(每小题10分,共50分)6. 2222220172017201720172017214161201412016120162016201620162016201620161248163264+++++------------ 的计算结果是________. 【答案】32 【解析】原式1111120171335572013201520152017111111120161248163264⎛⎫⨯+++++ ⎪⨯⨯⨯⨯⨯⎝⎭=⎛⎫⨯------ ⎪⎝⎭学而思培优11120172120171201664⎛⎫⨯⨯- ⎪⎝⎭=⨯ 20172016220171201664⨯=⨯ 2016220166432==7. 有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数;那么这个四位数是________.【答案】7776【解析】把这个四位数N 分解质因数,设1123a b n N p =⨯⨯⨯这个数乘以6的积是个完全立方数,所以1111623a b n N p ++=⨯⨯⨯ ,所以3|1a +且3|1b +;这个数除以6的商是个完全平方数,所以1111236a b n N p --=⨯⨯⨯ ,所以3|1a -且3|1b -. 那么,a ,b 最小值为5,N 最小为55237776⨯=,N 第二小为552357776538880⨯⨯=⨯=不是四位数.所以,7776N =.8. 在空格里填入数字1~6,使得每行、每列和每个23⨯的宫(粗线框)内数字不重复.若虚线框A ,B ,C ,D ,E ,F 中各自数字和依次分别为a ,b ,c ,d ,e ,f ,且a b =,c d =,e f >.那么第四行的前五个数字从左到右依次组成的五位数是________. 【答案】31462【解析】第一步:由c d =易知C 里面的数是6,D 里面的数是1,2,3.学而思培优由e f >易知,E 里面的数是5,6,F 里面的数是1,2,3,4.第二步:宫内排除.第三步:观察A 最小是123410+++=,而B 中剩下两个数只能填1,4,5,要凑出大于等于10的数只能是345++,所以B 中剩下两个数是4,5.然后简单的宫内排除和区域和就可以.具体过程如下:9. 抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50 元的5 个红包,被孙、成、饶、赵、乔五个老师抢到. 陈老师发现抢到红包的5 个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10 的倍数.”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3 倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包. 【答案】16【解析】如破口:分析饶老师和乔老师两人说的话,两人的话不可能同时成立,所以两人中必有一人没说真话,所以其余三人说的话都是真话;观察孙老师说的话:他只能是10,20,30,40之一;根据成老师说的话,孙老师钱的一半也得是偶数,所以孙老师只能学而思培优是20,40;如果孙老师的钱是40,根据成老师说的话,成老师和赵老师加起来应该为20,这样总数已经超过50,不可能.所以孙老师抢到了20,成老师和赵老师加起来为10;赵老师说其他人抢到的都是他的倍数,所以成老师也是赵的倍数:将10拆成两个偶数,一个是另一个的倍数,只能是2+8.所以成老师抢到了8元,赵老师抢到了2元.下面只剩饶老师和乔老师,他们的和应该是50201020--=;再分析他们说的话:如果乔老师说的是真话,那么饶老师应该抢到15元,乔老师抢到5元,与每人都是偶数矛盾,所以乔老师没说真话,饶老师说的是真话;如果饶老师抢到的大于等于6元,那么乔老师抢到的为14元,小于除了孙老师以外其他所有老师抢到的总和,所以饶老师抢到的只能是4元(注意每人抢到的金额都不一样,所以不能是2元),这样说谎话的乔老师抢到的是16元.10. 如图,P 为四边形ABCD 内部的点,AB :BC :DA =3:1:2,60DAB CBA ∠=∠=︒.图中所有三角形的面积都是整数.如果三角形P AD 和三角形PBC 的面积分别为20和17,那么四边形ABCD 的面积最大是________.【答案】147【解析】如图所示延长ABBC 交于M ,连结MP .易知三角形ABM 为正三角形,:1:2DM DA =,:2:1CM CB =,所以三角形DMP 和三角形CMP 的面积分别为10,34,即四边形DPCM 的面积为44.再观察三角形MDC ,由于DPB 的面积为整数,所以它的面积也是整数,并且三角形MDC 是三角形MAB 的29;所以ABCD 面积为三角形MAB 的79,为使ABCD 面积尽量大,三角形MAB 的面积要尽量大,那么三角形MDC 的面积应尽量大;MDC 面积最大为44242-=,这时四边形ABCD 的面积为7421472⨯=.三、填空题Ⅲ(每小题12分,共60分)11. 有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n 个数是1、2……、n 的最小公倍数.那么这列数的前100个数中共有________个不同的值.【答案】36【解析】观察数列的第n 项与第1n +项,[1,2,,]n a n = ,1[1,2,,,1]n a n n +=+ :当1|n n a +学而思培优时,1n n a a +=;当1|n n a +时,1n n a a +>.即,如果质因数的最高次幂在之前都已经出现过,得到的新数等于原来的数;当某个质因数的最高次幂第一次出现时,得到的新数大于原来的数.所以新出现的数发生在如下几个数:1,21,22,23,24,25,26,31,32,33,34,51,52,71,7211,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97共36个.12. 如图,有一个固定好的正方体框架,A 、B 两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3歩,途中从未相遇的跳法共有________种.【答案】343【解析】对正方体每个顶点黑白间隔染色,同一种颜色中不同的两点,都可以视作正方体某一面上对角线的两点,所以同一种颜色中不同的两点间相对位置固定不变.一开始A 、B 都在黑点上,如果第一步A 向右,那么B 可以向左或向下有2种走法,如果第一步A 向后,那么B 可以向前或向下有两种走法,如果第一步A 向下,那么B 可以向前或向左或向下有3中走法,所以第一步共有7种走法;第一步后A 、B 从都在黑点上跳到了都在白点上,但两点间相对位置不会发生改变,所以第二步同样有7种走法;同理,第三步也有7种走法.根据乘法原理,共有37343=种走法.13. 甲以每分钟60米的速度从A 地出发去B 地,与此同时乙从B 地出发匀速去A 地;过了9分钟,丙从A 地出发骑车去B 地,在途中C 地追上了甲;甲、乙相遇时,丙恰好到B 地;丙到B 地后立即调头,且速度下降为原来速度的一半;当丙在C 地追上乙时,甲恰好到B 地.那么AB 两地间的路程为________米.【答案】1620【解析】根据题意画出下面的线段图,(1)表示在丙出发前甲乙二人走过的路程;(2)表示丙追上甲的过程;(3)表示到甲乙相遇时的过程;(4)表示丙追上乙的过程. 学而思培优观察(4)甲乙丙三人走过的路程,不难发现在相同时间内丙走过的路程等于甲乙二人走过的路程和,所以(4)中丙的速度是甲乙二人的速度和,所以在(2)、(3)中丙的速度是甲乙二人的速度和的2倍,所以把(2)(3)两个阶段合起来,丙走的路程是甲乙二人走过路程的2倍.即2AB DG =,即DG 为全程的一半,所以AD BG DG +=,所以(1)的时间和(2)(3)的时间加起来也相等,所以甲乙分别在(1)内跑的路程与(2)(3)内跑的路程和相等,即AD DE =,BG GE =.再观察丙一人走过的(3),(4):走相同的路程,速度减少了50%,速度比是2:1,所以这两段时间比是1:2.即(3),(4)两个阶段的时间比是1:2,那么甲乙二人在这两个阶段的路程比也是1:2.即2EB CE =,2CE EF =.综合AD DE =,BG GE =,2EB CE =,2CE EF =,设EF a =,那么2CE a =,那么4EB a =.又因为EG GB =,所以2EG GB a ==,所以FG a =.这样,乙(1)(2)(3)(4)四个阶段走过的路程分别为2a ,a ,a ,2a ,所以四段的路程比为2:1:1:2,时间比也为2:1:1:2,所以甲在这四段的路程比也是2:1:1:2,即:::2:1:1:2AD DC CE EB =.易知609540AD =⨯=米,所以5402(212)1620AB =÷⨯+++=米.14. 在一个8×8的方格棋盘中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子.规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作.那么最后在棋盘上最少剩下________枚棋子.学而思培优【答案】2【解析】如图所示,一组“三连棋子(中间一排)”可以通过一个“催化棋子(右下角的一个)”全部消掉,最后只剩下这个催化棋子:这些66 的棋子分成如下11组“三连棋子”这11组都可以消掉(只需按照下图由上到下由左到右的顺序,这样每组都有“催化棋子”).剩下3个棋子无法全部消掉,至多消掉1个,所以最后至少剩下2个棋子.学而思培优。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年“数学花园探秘”科普活动小学高年级组决赛试A卷(测评时间:2015年1月31日8:00 —9:30)一、填空题Ⅰ(每小题8分,共40分)的计算结果是__________.1⎭2.如图对折两次,再沿两边的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是__________平方厘米.3.A,B,C,D四个人住进编号为1,2,3,4的四个房间,每个房间恰住一人;那么B两人要求住在编号相邻房间的住法共有__________种.4.算式__________.5.哈利波特制作加强型魔法药剂“生死水”(这是一种效力很强的安眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型“生死水”的浓度为______%.二、填空题Ⅱ题(每小题10分,共50 分)6.一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2、1、0道题.这时老师问:你们考的怎么样啊?他们每人说了3句话(如下).甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲.丁:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了A、B、C、D道题,那么四位数ABCD=__________.7是质8)910小11.三位数abc除以它的各位数字和的余数是1是1.如果不同的字母代表不同的数字,且12.在右图的每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、后的一位数这三个数之和.那么五位数ABCDE=_______.13.某班共有30名学生去看电影,他们的学号依次为1,2,……,30;他们手中的电影票恰好为某排的1号,2号,……,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有________种不同的发放方式.14.图2的88表格中共含有168个如图1的“T”形.现对图2中的每个小方格染成黑色或白色;如果一个“T”形中黑白小方格各2个,则称这个“T”形为“和谐”的;那么对图2的各种染色方案,“和谐”的“T”形至多有__________个.15.作答要求:(1)请在答题卡第15题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号;如认为本试卷第6题出得最好,那么请在万位填涂“0”,千位填涂“6”.(2)请在答题卡第15题的百位,填涂上你认为本试卷整体的难度级别;最简单为“0”,最难为“9”,总计十个级别.(3)请在答题卡第15题的十位+个位,填涂上你认为本试卷中一道最难试题的题号;如认为本试卷第14题最难,那么请在十位填涂“1”,个位填涂“4”.__________平方厘米.【考点】几何 【难度】☆☆ 【答案】75【分析】设剪下来的四个等腰直角三角形的直角边为a ,则正方形的面积为()242100a ÷=212.5a ⇒=,剪下来的部分其面积为22142212.5252a a ⨯==⨯=,则余下部分面积为75.3.A ,2号45等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型“生死水”的浓度为______%. 【考点】浓度问题 【难度】☆☆☆ 【答案】11【分析】设普通型“生死水”的浓度为,初始重量为100,连续两次加入的艾草浸液和9%23%=1009900100542300x a x a -=⎧⇒⎨+=⎩11x ⇒=综上,普通“生死水”的浓度为11%.二、填空题Ⅱ题(每小题10分,共 50 分)6.一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2、1、0道题.这D 道甲、7是质【答案】8369【分析】中“数学”只能是47,83和89; 471968-=,而419682341=⨯⨯,“花园”只能是41或82,均不符合要求;若83=数学,则2015831932⨯⨯=-=花园探秘,而2193223423=⨯⨯⨯,当“花园”为69时,“探”和“秘”分别是4和7,符合要求,即2015836947=+⨯⨯;综上,8369=数学花园.8.右图的图案由1个圆和2个大小相同的正方形组成(2个正方形的公共部分为正八边形).如果圆的半径为60厘米,那么阴影部分的面积是_________平方厘米.(π取3.14)【考点】几何 【难度】☆☆☆☆☆ 【答案】3096【分析】如下图,设小直角三角形的斜边长为a ,大正方形的边长为b ,则根据勾股定理22212014400a b +==,2b 表示大正方形的面积,2a 表示4个小直角三角形的面积,恰好构成下图的总面积,即总面积为14400,则阴影面积为214400 3.14603096-⨯=.9.如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为“均衡数”.例如25254是“均衡数”,因为52245++=+.如果相邻的两个自然数都是“均衡数”,则称这对“均衡数”为“孪生均衡数”.那么最小的一对“孪生均衡数”的和是________. 【考点】数论,弃九法 【难度】☆☆☆ 【答案】1099【分析】两位数没有符合要求的数,99、100亦不符合,故知至少为三位数.两个相邻数数字和都是偶数,说明必有进位,且三位数必然只进1次位(数字和加1再减9),即这两个数是9ab 和()10a b +,必有9a b +=和1a b =+,故这两个数为549和550.5495501099+=.10.一艘轮船从A 港出发顺流而下到同一条河上的B 港,再逆流而上返回A 港,共用3.2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A 、B 两港共行_______千米. 【考点】行程,比例行程 【难度】☆☆☆ 【答案】102【分析】第一小时若已经有逆水段,则第二小时、第三小时路程相同,不可能出现等差数列,故第一小时全顺水,同理第三小时全逆水,第二小时既有顺水又有逆水.且若路程是等差数列,第二小时必为半小时顺水半小时逆水.故顺水1.5小时的路程恰好是逆水1.7=224V V -⨯=顺逆千米每时,故V 顺千米.三、填空题Ⅲ题(每小题12分,共60分)11除以它的各位数字和的余数是是【考点】数论,位值原理,整除分析c +b c ++的余数必为3的倍数.故()11a b c a c ++-,,故()a b c ++必为11的倍数.若11a b c ++=,则1a c b +-=,5b =,又a 、b 、c 互不相同,a c >,故4a =,c =若5=,又a 、b 、c 互不相同,a c >,故9a =,c =)c ⎤⎦的要求,故知此种情况无解.12.在右图的每个方格里填入数字1~6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数ABCDE =_______.【考点】数独【难度】☆☆【答案】41244【分析】通过百位分析,显然4A=,进而个位要凑出0必须136++,可知第一行为423516;类似地,第二行第一个数为2,个位5+6+4,215364,1B=;第三行第一个数为3,个位512C=;++,342651,2第四行第一个数为5,个位213D=;++,561432,4第五行个位6+5+4,136245,4E=;第六行654123.13.某班共有30名学生去看电影,他们的学号依次为1,2,……,30;他们手中的电影票恰好为某排的1号,2号,……,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有________种不同的发放方式.【考点】组合,数论,计数【难度】☆☆☆☆【答案】48【分析】1号学生有29人是其倍数,故1号学生只能拿1号电影票;2号学生有14人是其倍数,故2号学生只能拿2号电影票;3号学生有9人是其倍数,故3号学生只能拿3号电影票;4号学生有6人是其倍数,故4号学生只能拿4号电影票;5号学生有5人是其倍数,故5号学生只能拿5号电影票;6号学生有4人是其倍数,故6号学生只能拿6号电影票;7号学生有3人是其倍数,故7号学生只能拿7号电影票;8号学生必须是2号学生(2)的倍数,也必须是4号学生(4)的倍数,同时有2人是其倍数,综上,8号学生只能拿8号电影票;9号学生必须是3号学生(3)的倍数,还不能是6,同时有2人是其倍数,综上,9号学生只能拿9号电影票;10号学生必须是2号学生(2)的倍数,也必须是5号学生(5)的倍数,同时有2人是其倍数,综上,10号学生只能拿10号电影票;12号学生必须是3号学生(3)的倍数,也必须是4号学生(4)的倍数,同时有1人是其倍数,综上,12号学生只能拿12号电影票;同时24号学生只能拿24号电影票;14号学生必须是2号学生(2)的倍数,也必须是7号学生(7)的倍数,同时有1人是其倍数,综上,14号学生只能拿14号电影票;同时28号学生只能拿28号电影票;15号学生必须是3号学生(3)的倍数,也必须是5号学生(5)的倍数,同时有1人是其倍数,综上,15号学生只能拿15号电影票;同时30号学生只能拿30号电影票;之后的数,[2,9]18=,18必拿18,同时是9的倍数的27号只能拿27;20[4,5]=,20必拿20;21[3,7]=,21必拿21;24=[3,8],24必拿24,同时是8的倍数的16号只能拿16;28[4,7]=,28必拿28;30[5,6]=,30必拿30,同时是5的倍数的25号只能拿25.目前还没有确定的数有:11、22、13、26、17、19、23、29号.11、22互为一组成倍数,13、26亦互为一组成倍数,有两种拿法:11号拿11,22号拿22,13号拿13,26号拿26;或11号拿13,22号拿26,13号拿11,26号拿 22.17、19、23、29是大质数,没有限制,可随意拿,有44A 24=种拿法.故共有22448⨯=种拿法.14.图2的88⨯表格中共含有168个如图1的“T ”形.现对图2中的每个小方格染成黑色或白色;如果一个“T ”形中黑白小方格各2个,则称这个“T ”形为“和谐”的;那么对图2的各种染色方案,“和谐”的“T ”形至多有__________个.【考点】组合,染色问题,构造与论证 【难度】☆☆☆☆☆ 【答案】132【分析】考察每一个“”形,枚举可知,其中的四个“”形最多只有3个11 / 11 “和谐”的(举例:).在一个88⨯的方格阵中,共有36个“”形,故知必然至少有36个“”形不是“和谐”的.即本题理论最大值为16836132-=. 下面是一个132的例子:15.作答要求:(1)请在答题卡第15题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号;如认为本试卷第6题出得最好,那么请在万位填涂“0”,千位填涂“6”.(2)请在答题卡第15题的百位,填涂上你认为本试卷整体的难度级别;最简单为“0”,最难为“9”,总计十个级别.(3)请在答题卡第15题的十位+个位,填涂上你认为本试卷中一道最难试题的题号; 如认为本试卷第14题最难,那么请在十位填涂“1”,个位填涂“4”.。

相关文档
最新文档