第五章 摩擦

合集下载

工程力学 第五章 摩擦详解

工程力学 第五章 摩擦详解
➢自锁条件
§5-3 考虑摩擦时的平衡问题
两种运动趋势与临界运动状态
滑动(slip) 推力大于摩擦力
翻 倒(tip over) 当力的作用点不合适时
两类摩擦平衡问题
第一类问题
F < F max,,物体处于静止状态,
已知主动力求约束力,与一般平衡问题 无异。 第二类问题
平衡问题—临界运动趋势 不平衡问题—滑动或翻倒
第五章 摩擦
工程中的摩擦问题
梯子的角度应该多大,才能保证人在攀爬 时不滑倒?这就是一个摩擦问题。
用克丝钳剪断钢丝,如果钳子的 角度太大的话,钢丝就会滑出去, 这也是一个摩擦问题。
挂扫把的简单装置,也是 利用摩擦。
攀崖时什么角度,用多大的力,踩在什么地 方,都是从摩擦力的角度来考虑的。
传递转动
(1)取木箱为研究对象,受力如图
X 0
Fs F cos 0
Y 0
FN P F sin 0
M A(F) 0
hF
cos
P
a 2
FN d
0


求解以方程,得
Fs 866 N FN 4500 N d 0.17m
木箱与地面间最大摩擦力
Fmax f s FN 1800 N
Fs Fmax 木箱不会滑动;又 d 0 木箱不会翻倒。 木箱保持平衡。
X 0 P sin 30 F cos30 Fs 0
Y 0 P cos30 F sin 30 FN 0 Fs 403 .6 N FN 1499 N 摩擦力方向与所设的相反
Fmax f s FN 299 .8 N
Fs Fmax 物块将向下滑动
Fd fFN 269 .8 N
例2 均质木箱重P=5KN ,其与地面间的静摩擦系 数fs=0.4 。图中h=2a=2m ,=30 。求:(1) 当D处的拉力F=1KN ,木箱是否平衡?(2)保持 木箱平衡的最大拉力。

第五章摩擦_理论力学

第五章摩擦_理论力学
第五章 摩 擦
知识点
1.
摩擦现象分为滑动摩擦和滚动摩擦两类。
2.
滑动摩擦力是两物体接触表面有相对滑动趋势或有相对滑动时出现的切向阻力。前
者称为静滑动摩擦力,后者称为动滑动摩擦力。
★ 静滑动摩擦力的方向与接触面相对滑动趋势的方向相反,它的大小、方向随主动力
改变,由平衡方程确定。当物体处于平衡的临界状态时,静摩擦力达最大值。物体平衡时,
3.
滚动摩擦为两物体有相对滚动趋势或有相对滚动时在接触部分产生的对滚动的阻
碍作用。阻碍物体滚动的力偶称为滚动摩阻力偶。
★ 物体平衡时,滚动摩阻力偶矩 随主动力的大小变化,其变化范围为
★ 滚动摩阻定律 滚动摩阻力偶矩的最大值与法向反力成正比,即
滚动摩阻系数 具有长度量纲。 本章仅限于研究固体与固体间的摩擦,即干摩擦,着重讨论有摩擦力存在时物体的平衡问题。 § 5-1 滑动摩擦 静滑动摩擦力
平推力 即为所求。由于系统在 、 两处都有摩擦,两个摩擦力之中只要有一个达到最
大值,系统即处于临界平衡状态,其推力 即为最小值。
(1)设 处的摩擦力达到最大值。当推力 为最小时,轮有沿水平面向右滚动的趋势, 轮上点 相对于杆 有向右上方滑动的趋势,作用于杆和轮的摩擦力 和 如图(b)和(c) 所示。设 处摩擦力 尚未达最大值,设其方向向左,如图(c)。
材料名称
软钢与软钢 轮胎与路面 淬火钢与淬火钢
0.05 2~10 0.01
示。当滚轮处于临界平衡状态时,
★ 滚动摩阻系数的物理意义:如图 5-9 所
有 滚动摩阻系数可看成是物体即将滚动时,法向反力偏离中心线的最大距离,亦即滚阻力偶的 最大力偶臂。由于 较小,滚阻力偶常忽略不计。 例 5-4 半径为 的滑轮 上作用有力偶,轮上绕有细绳拉住半径为 ,重为 P 的圆柱,如 图 5-10(a)所示。斜面倾角为 ,圆柱与斜面间的滚动摩阻系数为 。求圆柱平衡时,力偶 矩 的最大与最小值;并求能使圆柱匀速滚动而不滑动时静滑动摩擦系数的最小值。

我的摩擦学导论第五章

我的摩擦学导论第五章

常见的两种摩擦类型:
★干摩擦
干摩擦是指表面间无任何润滑剂或保护膜的纯金属
接触时的摩擦。又称库伦摩擦
★流体摩擦
工程实际中并不存在干摩擦。通常是将未经人为润 滑的摩擦状态当作干摩擦处理。干摩擦时摩擦阻力 很大,磨损严重,应避免。
是指摩擦表面被流体膜隔开,摩擦性质取决于流体 内部分子间粘性阻力的摩擦。流体摩擦时的摩擦系数 最小,且不会有磨损产生,是理想的摩擦状态。
引言
如果两个固体放到一块 即产生切向力(F)。使 它们由静止而相对运动 所需施加的切向力的大 小 称 为 静 摩 擦 力 (Fstatic或Fs )。在进 入相对运动状态前需有 几微秒的时间来克服静 摩擦力。而维持相对运 动的切向力称为动摩擦 力 ( Fkinetic或 Fk ) 。 (在一定条件下)静摩擦力 大于或等于动摩擦力, 如图5.1.2。
图5.2.9 橡胶在硬表面 间上产生粘着的机理
第5章 摩擦
粘摩擦机理
粘合摩擦系数就可以用下式来表示: (5.2.15) 其中:
a

(
Ar
2 W
) a tan
tan —阻尼系数。
假设一个光滑的半球形橡胶在一个干净的光滑的玻璃表面滑动,它们之间 就会发生间断地分离,这样就有高速地从头到尾的滑动。粘合似乎在贯穿 于这种波动中,这就使得橡胶表面会有折痕,也有可能会由切向的压力而 发生扣死。切线应力梯度是发生间断分离的驱动力。橡胶在玻璃上的运动 不是交叉面间的滑动而类似于通过地毯后留下的一段皱褶或者说是像毛毛 虫的移动。
第5章 摩擦
粘摩擦机理
塑性变形的粘合摩擦:
大部分的固体材料的剪切强度是由接触状况决定的。对 于塑料和一些非金属材料,有
(5.2.14a)

第五章摩擦_理论力学

第五章摩擦_理论力学

即自锁条件是:斜面的倾角小于或等于摩擦角。 § 5-3 考虑滑动摩擦的平衡问题 考虑滑动摩擦的平衡问题与前几章所述大致相同,但有如下特点:
1.受力分析时必需考虑接触面的摩擦力 ;
2.除平衡方程外,还必须列写补充方程,
,补充方程数等于摩擦力的个数;
3.平衡问题的解是一个范围,称为平衡范围。
例 5-1 物块重
。轮半径为 ,杆长为 ,当
时,
。求当 D 处静摩擦系数
分别为 0.3 和 0.15 时,维持系统平衡需作用于轮心 的最小水平推力。 解:本题属 求极限值问题,但有两种临界平衡状态,两处摩擦,应分别判断、讨论。由图(a)可知, 若推力 太大,轮将向左滚动;而推力太小,轮将向右滚动。后者在临界平衡状态下的水
。如圆柱向下滚动,由图(b)可知,
如图 5-8(a)所示。在滚轮中心上作用一不大的水平推力 ,则轮有滚动趋势。由于接触处
变形,作用于轮上的约束力为一分布力系。此力系向 A 点简化得一力 及矩为 M 的力偶,
Байду номын сангаас
称为滚动摩阻力偶(简称滚阻力偶),如图(b)所示。该力偶与图(c)所示的力偶( , ) 平衡,其转向与轮的滚动趋势相反,其矩称为滚阻力偶矩。
摩擦角为全反力与接触面法线间夹角的最大值有物体平衡时全反力与法线间夹角的变化范围为当主动力的合力作用线在摩擦角之内无论主动力多大物体保持平衡的现象称为摩擦动摩擦定律动摩擦力大小与接触面法向反力成正比即滚动摩擦为两物体有相对滚动趋势或有相对滚动时在接触部分产生的对滚动的阻碍作用
第五章 摩 擦
知识点
1.
0.8
0.5
木材-木材
0.4~0.6
0.1
0.2~0.5
0.07~0.15

理论力学第五章 摩擦(Y)

理论力学第五章 摩擦(Y)

0 Fs Fs,max
——平衡
0 f
f Fs Fs ,max ——临界平衡状态 摩擦角 f —— 物体处于临界平衡状态时全反力与
法线之间的夹角。
tan f
Fs ,max FN
f s FN fs FN
摩擦角的正切等于静滑动摩擦系数——几何意义。
当物体平衡时(包括平衡的临界状态)全约束反力 的作用线一定在摩擦角之内
摩擦轮传动——将左边轴的转动传给右边的轴
摩擦的分类:
摩擦


滑动摩擦
滚动摩擦

静滑动摩擦 ——仅有相对运动趋势 动滑动摩擦 ——已有相对运动 静滚动摩擦 动滚动摩擦
干摩擦 ——由于接触表面之间没有液体时产生的摩擦。 湿摩擦 ——由于物体接触面之间有液体。
摩擦
一、滑动摩擦
研究滑动摩擦规律的实验:
MB 0
l sin 30 0 M P cos 30 0 FND l cos 30 0 0 FSD 2
3 P 3l
(1 FSD
FSD f s FND
3 2 3 M M min Pl 8
(1)当M较大时,BD杆逆时针转动。 分别以OA、 BD杆为研究对象, 画受力图。 l 0 FND l cos 30 P 0 对于OA杆: M O 0 2
Y 0
Fs,max f s FN
(库仑摩擦定律)
(2)最大静摩擦力的方向:沿接触处的公切线,与相对 滑动趋势反向;
Fs,max f s FN f s ——静滑动摩擦系数——静摩擦系数
与两接触物体表面情况(粗糙度,干湿度,温度等) 和材料有关,与两物体接触面的面积无关。

第五章 考虑摩擦的平衡方程

第五章  考虑摩擦的平衡方程

NB
FSA 0
FSB f s FNB
2.两根相同的运至杆 AB 和 BC, 在端点 B 用光滑铰链连接, A, C 端放在不光滑的水平面上, 如图所示。当 ABC 成等边三角形时,系统在铅直面内处于临界平衡状态。求杆端与水平面 间的摩擦因数。
【知识要点】 平面一般力系的平衡方程,摩擦定律。 【解题分析】由对称性可知两点同时达到临界状态。 【解答】以整体为研究对象,受力如图 a 所示,设每根杆长为 L,重为 P,由平衡方程
4.当物体处于临界平衡状态时,静摩擦力 Fs 的大小( ) A.与物体的质量成正比; B.与物体的重力在支承面的法线方向的大小成正比; C.与相互接触的物体之间的正压力大小成正比; D、有力系的平衡方程来确定。 5.物块重为 P,受水平力 F 作用,已知 P=F,摩察角φ=20°,则( )。 A.物体向上滑动 B.静止 C.临界平衡状态 D.物块向下滑动
三、计算题
1.梯子 AB靠在墙上,其重为P=200N,如图所示。梯长为 L,并与水平面交角θ=60°。 已知接触面间的静摩擦因数均为 0.25.今有一重 650N的人沿梯上爬, 问人所能达到的最高点 C到A的距离s应为多少?
[知识要点] 平面一般力系的平衡方程,摩擦定律。 [解题分析] A,B两点同时达到临界状态。 [解答]以梯子AB为研究对象,受力如图,设C点为极限位置,由平衡方程
【只是要点】 考察摩擦的平衡问题 【解题分析】 分别研究 AGB 和砖,根据摩擦定律求解 b。 【解答】一整体为研究对象,见图(a)。 可知 F=P 以砖为研究对象,受力如图(b)所示。 由∑MO(F)=0:FSA·OA-FSD·OD=0 可得 FSA= FSD 由∑Fy=0:P-FSA-FSD=0 ∑Fx=0:FNA-FND=0 解得 FSA=FSD=P/2,FNA=FND 再以曲杆 AGB 为研究对象,受力如图(c)所示。 由 MG(F)=0:95F+30F/SA-bF/NA=0 解得 b=220FSA/ FNA 砖块不下落,需满足 FSA≤fs FNA 由上两式可知 b≤110mm

2019精品第五章摩擦化学

2019精品第五章摩擦化学
木箱平衡
(2)设木箱将要滑动时拉力为 F1 Fx 0 Fs F1 cos 0 Fy 0 FN P F1 sin 0
又 Fs Fmax fs FN
解得
F1

cos
fs fs sin
1876 N
设木箱有翻动趋势时拉力为 F2
M A 0
F cos h P a 0
求:拉动拖车最小牵引力 F(F 平行于斜坡).
解: 取整体
Fx 0
Fy 0
F FAs FBs P sin 0 FAN FBN P cos 0
(1) (2)
MB 0 FAN (a b) Fh P cos b P sin H
fs
全约束力和法线间的夹角的 正切等于静滑动摩擦系数.
摩擦锥(角) 0 f
2 自锁现象
3 测定摩擦系数的一种简易方法,斜面与螺纹自锁条件
tan tan f fs
斜面自锁条件 f 螺纹自锁条件 f
§5-3 考虑滑动摩擦时物体的平衡问题
仍为平衡问题,平衡方程照用,求解步骤与前面基本 相同. 几个新特点 1 画受力图时,必须考虑摩擦力; 2 严格区分物体处于临界、非临界状态; 3 因 0 Fs Fmax ,问题的解有时在一个范围内.
动滑动摩擦的特点
1 方向:沿接触处的公切线,与相对滑动趋势反向; 2 大小: Fd f d FN
f d f s (对多数材料,通常情况下)
§5-2 摩擦角和自锁现象
1 摩擦角
FRA全约束力
物体处于临界平衡状态时,
全约束力和法线间的夹角.
摩擦角
tan f
Fm ax FN

摩擦学第五章磨损ppt课件

摩擦学第五章磨损ppt课件
5、其他。包括侵蚀磨损或冲蚀磨损 (Erosive wear) 和微动磨损 (Fretting wear)等。
实际的磨损现象大都是多种类型磨损同时存在;或磨损状态随工 况条件的变化而转化。
摩擦学第五章磨损
9
第二节 粘着磨损
一、定义及其过程
1、定义:
(1) 在摩擦副中,相对运动的摩擦表面之间,由于粘着现象产生材料转移
此外,磨损率与滑动速度无关。
摩擦学第五章磨损
22
金属的粘着磨损的磨损系数
润滑状况 相同 无润滑 15X10-4
金属/金属
相容
部分相容和 部分不相容
不相容
金属/ 非金属
5X10-4
1X10-4 0.15X10-4 1.7X10-6
润滑不良 30X10-5 10X10-5
润滑良好 润滑极好
30X10-6 10X10-7
假定磨屑半径 ,产生磨屑的概率 ,则滑动 距离磨损体积:
摩擦学第五章磨损
21
分析
粘着磨损的体积磨损率与法向载荷N (或正压力p)成正比,而与软金属材 料的屈服强度(或布氏硬度HB值)成反比。
当正压力
时,会使磨损加剧,产生胶合或咬死。
因此,在设计时应保证正压力不超过材料的布氏硬度的三分之一。
体积磨损率随着粘着磨损的磨损系数的增大而增大,而后者主要取决于摩 擦表面的润滑状况和两滑动金属相互牢固地粘着的趋向。
相溶性好的材料 材料塑性越高,粘着磨损越严重
脆性材料的抗粘着能力比塑性材料高 脆性材料:正应力引起,最大正应力在表面,损伤浅, 磨屑也易脱落,不堆积在表面。 塑性材料:剪应力引起,最大剪应力离表面某一深度, 损伤深。
摩擦学第五章磨损
25
三、防止和减轻粘着磨损的措施

理论力学 第五章 桁架和摩擦

理论力学  第五章 桁架和摩擦

理想桁架 工程实际中计算桁架受力情况时,常 作如下简化: (1) 构成桁架的杆件都是直杆; (2) 杆件两端都用光滑铰链连接; (3) 所有外力(主动力及支座反力) 都作用在节点上; (4) 杆件自重略去不计。
这种桁架称为理想桁架。
平面桁架各杆内力
1.节点法 2.截面法
汇交力系 平面一般力系
已知平面桁架尺寸、载荷。求:各杆内力。
3 因 0 Fs Fmax ,问题的解有时在一个范围内.
考虑摩擦的平衡问题
(1)判断物体是否平衡,并求滑动摩擦力。
先假设物体处于平衡,根据平衡方程求出物体平衡时需 要的摩擦力以及相应接触面间的正压力。再根据摩擦定 律求出相应于正压力的最大静摩擦力并与之比较。若满
足F≤Fmax这一关系,说明物体接触面能提供足够的摩擦
当仅有滑动趋势时,产生的摩擦力,称为静滑动摩擦力
静滑动摩擦力性质
1)静滑动摩擦力FS 的方向与滑动趋势相反,大小由平衡
条件确定;
0≤FS ≤Fmax (物体平衡范围)
2)只有当物体处于将动未动的平衡临界状态时,静滑动摩
擦力FS 达到最大值,即 FS =Fmax=f FN
f — 静滑动摩擦系数;
FN— 法向反力(一般也由平衡条件决定)。
摩擦角和自锁现象
1 摩擦角
FRA ---全约束力
物体处于临界平衡状态时,全约束 力和法线间的夹角---摩擦角
tan f
Fmax FN

fs FN FN
fs
全约束力和法线间的夹角的正切等于静 滑动摩擦系数.
摩擦锥
0 f
2 自锁现象
摩擦自锁的实例
1.粗糙斜面。当 a<m时,
不论W多大,物块A均保持 平衡--摩擦自锁。

第五章 摩擦

第五章 摩擦
f s需通过实验测定,影响因素很复杂。 N
F
Fs
P
3.动滑动摩擦力
N F Fd P
当滑动摩擦力已经达到最大值,若再增大主动 力F,接触面之间将出现相对滑动。
接触面之间仍作用由阻碍物块滑动的阻力。
称为动摩擦力,以Fd 表示。 实验表明 Fd =f N f 为动摩擦系数 一般情况下, f < f s
§5-3
R
摩擦角与自锁现象


N
R

N
Fs
Fmax
1.静滑动摩擦力
在粗糙平面上,放 置一个物块。 物块重P,法向约束 力为N,物块平衡。 在物块上作用一个 大小可变的水平拉力F
N
N F
Fs
P
物块仍保持平衡,这是因为还有一个接触面阻 碍物块向右水平运动的切向力——静摩擦力。 静摩擦力作用于平面与物块的接触处、方向与物 块的滑动趋势相反、大小由平衡条件确定,即 ∑X = 0 ,F - Fs = 0 → Fs = F 静摩擦力Fs的大小随着主动力F的增大而增大。
2.最大静滑动摩擦力
静摩擦力Fs 的大小随着主动力F 的增大而增大 这是静摩擦力和一般约束力的共同特性。 静摩擦力Fs 又与一般约束力不同,它并不随主 动力 F 的增大而无限增大,当 F 的大小达到某一数 值时,物块处于平衡的临界状态(物块将滑还未 滑),这时的Fs 达到最大值——最大静摩擦力,以 F max 表示。如果 F 再增大, Fs 不再增大,显然 0 ≤ Fs ≤ Fmax 由库仑定理 F max = f s N f s —— 静摩擦系数
α N (1) (2)
补充:
F max = fs N 式(3)代入式(1) - fs ×(2)式 ,即 F1max (cos α - fs sin α ) -P (sin α + fs cos α) = 0 sin f s cos 得:

第五章摩擦

第五章摩擦

物体作用的切向约束反力,它的方向与物体相对滑动趋势相
反,它的大小需用平衡条件确定。此时有:∑Fx=0,Fs=F。
第5章 摩擦
理论力学
由上式可知,静摩擦力的大小随水平力 F 的增大而增大。
图 5-1 所以,在平衡问题中,静摩擦力的大小和方向与作用在 物体上的主动力有关,可由平衡条件确定。这是静摩擦力与 一般约束力的共同点。
理论力学
图 5-3
第5章 摩擦
理论力学
解:解这类问题时,可先假定物体静止,求出此时物体 所受的约束反力与静摩擦力 F,把所求得的 F 与可能达到的 最大静摩擦力 Fmax 进行比较,就可确定物体的真实情况。
取梯子为研究对象。其受力图及所取坐标轴如图 5-3b 所示。此时,设梯子 A 端有向左滑动的趋势。由平衡方程:
擦驱动和制动,这些都是摩擦有利的一面;摩擦还会给物体
间的机械运动带来阻力,消耗能量,降低效率,机器因磨损
而缩短了寿命,这是其有害的一面。
第5章 摩擦
理论力学
摩擦是一种极其复杂的物理—力学现象,本章只介绍工 程中常用的近似理论,并重点研究考虑摩擦时物体的平衡问 题,认识其力学规律,从而达到兴利除弊的目的。
第5章 摩擦
理论力学
第5章 摩擦
摩擦是一种普遍存在的现象。前面各章在讨论物体或物
体系统平衡问题时,摩擦影响很小,由于其不成为主要因素,
都假定物体间的接触面是绝对光滑的,这样使问题得到简化。
事实上接触面绝对光滑是不可能的,在接触面间多少总有摩
擦存在。摩擦在实际的生活和生产中,表现为有利的和有害
的两个方面。利用摩擦进行传动、人靠摩擦行走、车辆靠摩
第5章 摩擦
理论力学
(1)只要作用于物块的全部主动力的合力作用线在摩擦锥 内,无论这个力有多大,物块必保持静止。这种现象称为摩 擦自锁现象。因为在这种情况下,主动力的合力 FR 与法线间 的夹角 θ<φ,因此,FR 和全约束反力 FRA 必能满足二力平衡 条件,且 θ=α<φ。

工程力学第五章摩擦

工程力学第五章摩擦

(1) 取研究对象时,一般总是从摩擦面将物体分开;
(2) 分析受力时必须考虑摩擦力;
(3) 在临界状态下,摩擦力达到最大值; (4) 物体未达到临界状态,摩擦力未知,如物体具有两种可能滑动
趋势时,要分别讨论;
(5) 解题的最后结果常常为不等式或用最大值和最小值表示。
11
【例】将重量为P的物块放置在斜面上,斜面倾角α 大于接触面的静
这样摩擦角可表示为 m arctanfs ,也就是说,摩擦角 m 与 材料及其表面状况有关,当物块处于平衡时,全约束反力与法向反 力的夹角
也总是小于或等于摩擦角,即
0 m
6
当F改变方向时,全约束反力的方位也随着改变,全约束反力的作
用线将画出一个以接触点A为顶点的锥面,如图所示,该锥面称为摩擦
P FN 临界状态时,最大静滑动摩擦力为Fsmax N。 P =fsF
F Fsmax P N
联立求解,可得物体不至于上滑所充许Q的最大值为
Qmax
sin fs cos P Ptan( m ) cos f ssin
sin fs cos P cos fs sin
Fd fFN
式中 ,f 为动滑动摩擦系数。一般情况下,动滑动摩擦系数略小 于静滑动摩擦系数,并与两个相接触物体的材料以及接触表面的情况
有关;同时也和两物体相对滑动速度有关。在实际应用中,动摩擦系
数要通过实验测定。
4
5.3 摩擦角和自锁现象
5.3.1 摩擦角 1.全约束反力 法向约束反力FN和切向约束反力Fs的合力称为全约束反力。全约
Ff21
v12
m 时,恒有: 当 ≤
m
Ft ≤ Ffmax

工程力学第五章 摩擦(H)

工程力学第五章 摩擦(H)

Q
30°
FBA=2Q
(2) 取物块A为研究对象 ① 处于滑动的临界平衡状态时
Fx 0, FBA cos30 Fmax 0 Fy 0, FN P FBA sin 30 0 Fmax f s FN
B
FBC Q
FBA
FBA ′
FN
A
fs Q1max P 429.03N 3 fs
第 5 章
※ 滑动摩擦


※ 考虑摩擦时物体的平衡 ※ 摩擦角与自锁现象
※ 滚动摩阻
※ 结论与讨论
第五章 摩擦

摩擦的分类

按两物体的 相对运动形式 分,有滑动摩擦和滚动摩阻。
按两物体间 是否有良好的润滑,滑动摩擦又可分为干摩擦和 湿摩擦。
摩擦的机理
1. 接触表面的粗糙性 2. 分子间的引力
摩擦的利弊
P
Fmin 100N
F12 Ffs1 , F 100N
第五章 摩擦
(3)取书2为研究对象
F12 ′
2
Fy 0, F12 F23 P 0 F23 0N
FN1 ′
P
F23 FN2
思考题
1
有人想水平地执持一迭书,他用手在这迭书的两端加一压力225N。
如每本书的质量为0.95kg,手与书间的摩擦系数为0.45,书与书
Qmax
f
FR
f -


P FR
FR
f+
P
FR
f
P
P
Qmax
Qmin
Qmax P tan( f )
Qmin P tan( f )

机械原理005第五章摩擦

机械原理005第五章摩擦

第五章运动副中的摩擦和机械效率5.1 概述1. 摩擦的产生:摩擦存在于一切作相对运动或者具有相对运动趋势的两个直接接触的物体表面之间。

机构中的运动副是构件之间的活动联接,同时又是机构传递动力的媒介。

因此,运动副中将产生阻止其相对运动的摩擦力。

2. 摩擦的两重性:有益和有害。

3. 摩擦、效率、自锁的关系:摩擦大,效率低,低到一定程度,产生自锁。

5.2 移动副中的摩擦5.2.1. 水平面滑块的摩擦如图5-1(a)所示,滑块A 在驱动力F 的作用下,沿水平面B 向左作匀速运动。

设F 与接触面法线成α角,则F 的切向分力和法向分力分别为:sin ,cos x y F F F F αα==。

平面B 对滑块A 产后法向反力n R和磨擦反力,它们的合力R 称为总反力。

tan fn F f R ϕ==,其中为磨擦系数,称为摩擦角。

如图5-1(b)所示,以R 的作用线绕接触面法线而形成的一个以为锥顶角的圆锥称为摩擦锥。

cos ,cos tan sin ,sin cos tan sin tan tan n y f n x x x f f x R F F F fR F F F F F F F F F ααϕαααϕαϕα======∴==当力F 的作用线在该锥以内或正在该锥上时,即αϕ≤,则有x f F F ≤,所以不论F 有多大,滑块都不会运动,此时滑块发生自锁现象。

自锁条件为αϕ≤(1) 摩擦角ϕ的大小由摩擦系数f 的大小决定,与驱动力F 的大小及方向无关;(2) 总反力R 与滑块运动方向总是成90ϕ+ 角。

5.2.2 斜面平滑块的摩擦一、滑块等速上升如图5-2(a)所示,平滑块置于倾斜角为的斜面上,为作用在滑块上的铅垂载荷(包括滑块自重),为摩擦角。

滑块在水平驱动力作用下沿斜面等速上升,斜面对滑块的总反力为 ,根据平衡条件,可作如图5-2(b)所示的力三角形,从图可得,分析该式可知:等速上升的自锁条件为2πθϕ≥- 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仅有相对滑动趋势 尚未滑动时产生的摩擦力 滑动趋势而 一 静滑动摩擦 仅有相对滑动趋势而尚未滑动时产生的摩擦力 G F
变力
P
P
, 物G静止 静止
FN 1 静滑动摩擦力 F 大小:随主动力而变化,可由平衡条件确定; 大小:随主动力而变化,可由平衡条件确定; 方向:与滑动趋势相反,具有约束反力的性质。 方向:与滑动趋势相反,具有约束反力的性质。
Fmax tgα = = f s = tgφm FN
该两种材料间静摩 该两种材料间静摩擦系数
10
二、动滑动摩擦 1 定义 定义:接触物体有相对滑动时,接触面产生阻阻碍 物体运动的力。 2 特征 方向:与物体运动方向相反 大小: F ' = f FN 定律
f ≈ fs
只与材料和表面情况有关 增大摩擦力的途径为:①加大正压力; ②加大摩擦系数f
11
§5-3 具有滑动摩擦的平衡问题
考虑摩擦时的平衡问题,一般是研究临界状态,这时可增加补充 方程 Fmax = f ⋅ FN ,其它方法与平面任意力系相同。
三类问题: )临界平衡问题; 三类问题: 1)临界平衡问题; 2)平衡范围问题; )平衡范围问题; 3)检验物体是否平衡问题; )
12
§5-3 具有滑动摩擦的平衡问题
FN
FR
0 ≤ M ≤ M
max
W FT F
三 滚动摩擦定律 当主动力P不足够大时 圆轮仍 当主动力P不足够大时,圆轮仍 处于静止,当 逐渐增达到一定 处于静止 当P逐渐增达到一定 值时,轮子将处于将动未动的临 值时 轮子将处于将动未动的临 界状态,此时 界状态 此时, 力偶矩达到最大 此时 值Mmax且有 且有: FN
4)分析轮,受力如图: )分析轮,受力如图:
d ∑ M O = 0, M − 2 Fmax ⋅ 2 = 0 f s Flad ∴M = cb
FN Fmax
FN Fmax
*§5-4 滚动摩擦
一 滚动摩擦 一物体沿另一物体表面作相对滚动或有滚动趋势时出现的摩 擦,它是由接触面发生变形而引起的。 W
FT
Fmax tgφm = = fs FN
2)静摩擦锥 ) 临界平衡时, 临界平衡时,全反力的作用线可形成一 个以接触点顶点, 个以接触点顶点,以全反力为母线的锥 这个锥面就是摩擦锥。 面,这个锥面就是摩擦锥。
7
7 自锁现象 1)定义:主动力合力作用线在摩擦角内,不论值多大,物 )定义:主动力合力作用线在摩擦角内,不论值多大, 体总是处于平衡状态 平衡状态。 体总是处于平衡状态。
FNB
∑ Fy =0 FNA ⋅+ FB -P = 0 补充: 补充:FA = fS · FNA FB = f S· FNB
FB = fS · FA = f S2· FNA
FNA
2
FNA =
P 1 + f s2
, FNB
fP fs P = , FB = 2 2 1+ fs 1+ fs
l ∑ M A = 0, P ⋅ 2 ⋅ cos α min − FB l cos α min − FNB ⋅ l sin α min = 0 2 fs P fs P l P ⋅ cos α min − ( )l cos α min − ( )l sin α min = 0 2 2 2 1&# α + f s co s α tan α + f s 解得 : Q ≤ G =G co s α − f s sin α 1 − f s tan α
tan α + tan ϕ m =G = G ⋅ tan( α + ϕ m ) 1 − ta n ϕ m ta n α
(2)有下滑趋势时 y x F FN ∑ Fx =0 Q⋅ cosα - G⋅ sinα + F = 0 F = -Q cosα + G⋅ sinα ∑ Fy=0 FN - G⋅ cosα - Q ⋅ sinα = 0 FN = G⋅ cosα + Q ⋅ sinα
sin α − f s cos α ∴Q ≥ G = G tan(α − φ m ) cos α + f s sin α
几何法: 二 几何法:y x F FN
Q
补充方程:F ≤ f s·F N
应 用 三 角 公 式: tg α + tg ϕ m tg (α + ϕ m ) = 1 − tg ϕ m tg α
2 极限静摩擦力 F范围: 范围: 范围
0 ≤ F ≤ F
Fmax
F
max
G P
F
N
3 库仑静摩擦定律 F max = f s F N
P
, 物将滑未滑临界状态
静滑动摩擦系数 与材料和表面情况有关
6
全约束力: 4 全约束力:法向约束力和切向静摩擦力的合力 5 静摩擦角 静止角 1)临界平衡状态时,全反力与支承面 )临界平衡状态时, 法向反力间的夹角
α
接触面的不光滑和接触面间的分子吸引力。 接触面的不光滑和接触面间的分子吸引力。
3
一 工程中的摩擦现象 有利: 有利:摩擦传动、制动、调速、夹卡等 不利: 不利:机器发热、摩损、降底效率、影响精度等。
二 摩擦的分类 静滑动摩擦 摩擦 按物体间的 运动状态分 滑动摩擦 动滑动摩擦 滚动摩擦
§5-2 滑动摩擦
G FCy F FCx H x l FT F α FR FDx FDy FT
l 解:1)分析杆 )分析杆CH,受力如图: ,受力如图:
∑M

C
2)分析DEG受力图: )分析 受力图: 受力图
Fl = 0 , FT ⋅ x − F ⋅ l = 0 ∴ FT = x
M
D
= 0 , F R cos α ⋅ c − F T ⋅ x = 0
13
仍为平衡问题,平衡方程照用,求解步骤与前面基本相同. 几个新特点: 1 画受力图时,必须考虑摩擦力; 2 严格区分物体处于临界、非临界状态; 3 因 0 ≤ Fs ≤ Fmax ,问题的解有时在一个范围内。
[例1] 已知: 物块重为 ,放在倾角为α的斜面上,它与斜面 例 已知: 物块重为G 放在倾角为α的斜面上, 间的摩擦系数为f 物体平衡时,试求水平力Q的大小 的大小。 间的摩擦系数为 s ,当物体平衡时,试求水平力 的大小。 y x F FN 太大, 解:分析知 Q太大,物块会上滑 太大 Q太小,物块会下滑。 太小, 太小 物块会下滑。 (1)有上滑趋势时 ∑ Fx =0 Q⋅ cosα - G⋅ sinα - F = 0 F = Q⋅ cos α - G⋅ sinα ∑ Fy=0 补充方程: 补充方程: F ≤ f s·F N FN - G⋅cosα - Q ⋅ sinα = 0 FN = G⋅ cosα + Q ⋅ sinα
29
二、内容 1、列平衡方程时要将摩擦力考虑在内; 2、解题方法:①解析法 ② 几何法 3、除平衡方程外,增加补充方程 Fmax = f ⋅ N (一般在临界平衡状态计算) 4、解题步骤同前。 三、解题中注意的问题 1、摩擦力的方向不能假设,要根据物体运动趋势来判断。 (只有在摩擦力是待求未知数时,可以假设其方向) 2、由于摩擦情况下,常常有一个平衡范围,所以解也常常 是力、尺寸或角度的一个平衡范围。 (原因是 F ≤ f ⋅ N 和 ϕ ≤ϕ m )
考虑摩擦时的平衡问题,一般是研究临界状态,这时可增加补充 方程 Fmax = f ⋅ FN ,其它方法与平面任意力系相同。 第一类问题: 第一类问题:F < F max,,物体处于静止状态,已知 主动力求约束力,与一般平衡问题无异。 第二类问题:平衡问题—临界运动趋势; 不平衡问题—滑动或翻倒,F = F max 1、确定平衡位置; 2、确定各主动力之间的关系。
①滚阻力偶M随主动力偶(Q , F)的增大而增大; ② 0 ≤ M ≤ M max 有个平衡范围; 滚动摩擦 ③ M max 与滚子半径无关; ④滚动摩擦定律: M max = δ ⋅ N δ 为滚动摩擦系数。 ,
28
第五章
《摩擦》习题课 摩擦》
本章小结
一、概念 1、摩擦力 、摩擦力----切向约束反力,方向总是物体运动趋势方向相反。
2)自锁条件: )自锁条件:
α <ϕm
Q α
与力的大小无关的平衡条件
8
思考: 物块重P,受力为P, 思考 物块重 ,受力为 , 摩擦角=200 此时为 0,问物块 此时为30 摩擦角 是否静止? 是否静止? 30º P
P 合力作用线 15º FR 为15º<20º, 故静止
③自锁应用
摩擦系数测定:OA绕O 轴转动使物块刚开始下滑时测出α角 摩擦系数测定
1 − fs 1 − 0.5 得:αmin = arctan = arctan = 36087' 2 fs 2 × 0.5
2 2
注意: 注意:由于α不可能大于 900 , 所以梯子平衡倾角α 应满足
FNB
3 6 08 7 ' ≤ α ≤ 9 0 0
FNA
[例3]制动器构造及尺寸如图,已知制动块与轮表面的摩擦因数 例 制动器构造及尺寸如图 制动器构造及尺寸如图, 求制动轮逆钟向转动时所需的力F 的最小值。 为fS,求制动轮逆钟向转动时所需的力 1的最小值。 FO1y FO1x O c A b W a R O1 r F1 B FOy FOx W F‘N Fmax Fmax FN F1
∑ X = 0 FT-F=0 FN-W=0 ∑Y = 0 ∑ mA = 0 M-FT r=0
F A FN M
由于静摩擦力F阻止了滑动,F与FT构成了使轮转动的力偶, 而轮处于静止,必有约束力偶M,即滚动摩擦力偶。
二 滚动摩擦的原因及变化范围
W FT M
W FT F
相互接触的物体发生变形而引起 滚动摩擦
相关文档
最新文档