巴蜀渝东中学初一周周练(解方程)

合集下载

重庆巴蜀中学人教版七年级上册数学期末试卷及答案-百度文库

重庆巴蜀中学人教版七年级上册数学期末试卷及答案-百度文库
A.513B.﹣511C.﹣1023D.1025
12.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )
A.不赔不赚B.赚了9元C.赚了18元D.赔了18元
二、填空题
13.如果实数a,b满足(a-3)2+|b+1|=0,那么 =__________.
26.(1)化简:3x2﹣ ;
(2)先化简,再求值:2(a2﹣ab﹣3.5)﹣(a2﹣4ab﹣9),其中a=﹣5,b= .
27.计算:﹣6÷2+ ×12+(﹣3) .
28.已知:如图,平面上有A、B、C、D、F五个点,根据下列语句画出图形:
(Ⅰ)直线BC与射线AD相交于点M;
(Ⅱ)连接AB,并反向延长线段AB至点E,使AE= BE;
16.已知a,b是正整数,且 ,则 的最大值是______.
17.请先阅读,再计算:
因为: , , ,…, ,
所以:
则 _________.
18.按照下面的程序计算:
如果输入 的值是正整数,输出结果是166,那么满足条件的 的值为___________.
19.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).
(Ⅲ)①在直线BC上求作一点P,使点P到A、F两点的距离之和最小;
②作图的依据是.
29.如图,甲、乙两个圆柱形玻璃容器各盛有一定量的液体,甲、乙容器的内底面半径分别为 和 ,现将一个半径为 的圆柱形玻璃棒(足够长)垂直触底插入甲容器,此时甲、乙两个容器的液面高均为 (如图甲),再将此玻璃棒垂直触底插入乙容器(液体损耗忽略不计),此时乙容器的液面比甲容器的液面高 (如图乙).

重庆巴蜀中学数学一元一次方程单元测试卷(含答案解析)

重庆巴蜀中学数学一元一次方程单元测试卷(含答案解析)
(2)解:∵ y=80+2x, ∴ 当 x=6 时,y=80+2×6=92, 答:弹簧的长度是 92 厘米
(3)解:∵ y=80+2x, ∴ 当 y=120 时,120=80+2x, ∴ x=20, 答:所挂物体的质量是 20 千克。
(4)解:∵ y=80+2x, ∴ 当 x=40 时,y=80+2×40=160(厘米)>150(厘米) ∴ 此弹簧不能挂质量为 40 千克的物体. 【解析】【分析】(1)由题意,物体的质量每增加 1 千克可使弹簧增长 2 厘米,于是可知 物体的质量与弹簧的长度有关系.弹簧的长度=弹簧的原长+伸长的长度;弹簧伸长的长 度=物体的质量×2 厘米;根据这个关系可求解; (2)把 x=6 代入(1)中的关系式计算即可求解; (3)把 y=120 代入(1)中的关系式计算即可求解; (4)同理可求解.
(1)正常情况下,当挂着 千克的物体时,弹簧的长度 是多少厘米? (2)正常情况下,当挂物体的质量为 6 千克时,弹簧的长度是多少厘米? (3)正常情况下,当弹簧的长度是 120 厘米时,所挂物体的质量是多少千克? (4)如果弹簧的长度超过了 150 厘米时,弹簧就失去弹性,问此弹簧能否挂质量为 40 千 克的物体?为什么? 【答案】 (1)解:由题意得:y=80+2x, 答:弹簧的长度是(80+2x)厘米
由.
【答案】 (1)解:∵ |a+6|+(b﹣12)2=0,∴ a+6=0,b﹣12=0,∴ a=﹣6,b=12 (2)解:设 x 秒后 A,B 两点相距 2 个单位长度,根据题意得:|(2x+12)﹣(3x﹣6) |=2,解得:x1=16,x2=20. 答:16 秒或 20 秒后 A,B 两点相距 2 个单位长度

2020-2021学年重庆市渝中区巴蜀中学七年级(下)开学数学试卷(附答案详解)

2020-2021学年重庆市渝中区巴蜀中学七年级(下)开学数学试卷(附答案详解)

2020-2021学年重庆市渝中区巴蜀中学七年级(下)开学数学试卷1. 下列各数中,正数的个数是( )|−5|,52,−(−1),0,−|−3|,+(−4) A. 2 B. 3C. 4D. 5 2. 在π+3,√6,√9,47,3.121231234…,√−53中,无理数的个数是( )个.A. 2B. 3C. 4D. 53. 计算|2−√3|=( ) A. 2−√3 B. √3−2 C. 2+√3 D. −2−√34. 下列用数轴表示不等式组{x >1x ≤2的解集正确的是( ) A.B.C.D.5. 若3a 2+m b 3和(n −1)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A. −4B. −2C. 2D. 46. 一个角的度数为51°14′36″,则这个角的余角为( )A. 38°45′24″B. 39°45′24″C. 38°46′24″D. 39°46′24″7. 二元一次方程x +3y =4有一组解互为相反数,则y 的值是( )A. 1B. −1C. 0D. 2 8. 多项式12x |m|−(m −3)x +7是关于x 的三次三项式,则m 的值是( )A. −3B. 3C. 3或−3D. 不能确定9. 若(k −2)x |k|−1−3=0是关于x 的一元一次方程,那么k 2−2k +1的值为( )A. 1B. 9C. 1或9D. 010. 如图,在下列给出的条件中,可以判定AB//CD 的有( )①∠1=∠2;②∠1=∠3;③∠2=∠4;④∠DAB +∠ABC =180°;⑤∠BAD +∠ADC =180°.A. ①②③B. ①②④C. ①④⑤D. ②③⑤11. 新冠疫情得到有效控制后,妈妈去药店为即将开学的李林和已经复工的爸爸购买口罩.若买50只一次性医用口罩和15只KN 95口罩,需付325元;若买60只一次性医用口罩和30只KN 95口罩,需付570元.设一只一次性医用口罩x 元,一只KN 95口罩y 元,下面所列方程组正确的是( )A. {50x +15y =57060x +30y =325B. {50y +15x =32560y +30x =570 C. {50x +15y =32560x +30y =570 D. {60x +15y =32550x +30y =570 12. 已知关于x 、y 的二元一次方程组{x −y =a +32x +y =5a的解满足x >y ,且关于x 的不等式组{2x +1<2a 2x−114≥37无解,那么所有符合条件的整数a 的个数为( )A. 6个B. 7个C. 8个D. 9个13. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是______ .14. √273的算术平方根为______ .15. 如果单项式−x a+1y 3与12y b x 2是同类项,则|a −b|+|−a −2b|的值是______ 。

七年级数学下册8二元一次方程组周周练8_18_3新版新人教版

七年级数学下册8二元一次方程组周周练8_18_3新版新人教版
解:答案不唯一,如 的解为 或 的解为 等.
18.(10分)小明在拼图时,发觉8个一样大小的长方形,如图1所示,恰好能够拼成一个大的矩形.小红看见了,说:“我来试一试,”结果小红东拼西凑,拼成如图2那样的正方形,咳!怎么中间还留下了一个洞,恰好是边长为2cm的小正方形!你能帮他们解开其中的隐秘吗?(提示:能求出小长方形的长和宽吗?)
三、解答题(共Βιβλιοθήκη 0分)15.(10分)解方程组:
(1)
解:把②代入①,得
3×(y+3)+2y=14,解得y=1.
把y=1代入②,得x=4.
∴原方程组的解是
(2)
解:①×2,得4x-10y=-42.③
②-③,得13y=65.解得y=5.
把y=5代入②,得4x+3×5=23,解得x=2.
∴原方程组的解是
周周练(8.1~8.3)
(时刻:45分钟 总分值:100分)
一、选择题(每题4分,共32分)
1.以下方程是二元一次方程的是(D)
A.x+2=1B.x2+2y=2
C. +y=4D.x+ y=0.
2.(黔东南中考)二元一次方程组 的解是(B)
A. B.
C. D.
3.(巴中中考)假设单项式2x2ya+b与- xa-by4是同类项,那么a,b的值别离为(A)
16.(8分)已知方程组 和方程组 有相同的解,求a,b的值.
解:解方程组 得
将 代入方程组
解得
17.(10分)(滨州中考)依照要求,解答以下问题.
(1)解以下方程组(直接写出方程组的解即可):
① 的解为 ;
② 的解为 ;
③ 的解为 ;
(2)以上每一个方程组的解中,x值与y值的大小关系为x=y;
(3)请你构造一个具有以上外形特点的方程组,并直接写出它的解.

重庆巴蜀中学数学一元一次方程单元测试卷(含答案解析)

重庆巴蜀中学数学一元一次方程单元测试卷(含答案解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

重庆巴蜀中学初一新生分班(摸底)数学模拟考试(含答案)(2)

重庆巴蜀中学初一新生分班(摸底)数学模拟考试(含答案)(2)

重庆巴蜀中学初一新生分班(摸底)数学模拟考试(含答案)(2)初一新生(分班)摸底考试试卷数学班级____________ 姓名_____________ 得分:______________、填空题(每题2 分,共24 分)1. 地球与太阳之间的距离约是149450000 千米,这个数读作:();用四舍五入法省略“亿”后面的尾数,约是().12. 一批货物安2:3:5 分配给甲、乙、丙三个商店,()商店分得这批货物的1,2 乙商店分得这批货物的()%.3. 某公司推出了一种商务车,经试验该车行驶13千米用汽油1升,这辆汽车平均每48行驶100 千米耗油()升.4. 2.15 时=()时()分;2 吨80 千克=()吨.5. 某单位开会时出勤35 人,出勤率是87.5%,后来又有1 人请假离去,这时出勤率为().6. 一个长方体,长和宽的比是2:1,宽和高的比是3:2,长和高的比是().7. 在a? b 8L L 7中,把a、b同时扩大3 倍,商是(),余数是().8. 一本故事书有300 页,小明第一天看了这本书的20%,第二天看了余下的20% ,那么小明第三天要从第()页开始看.9. A=2×5× C ,B=5×3× C ,若A和B的最小公倍数是210,则C=().10. 把5米长的木头平均截成6 段,每段占全长的();如果每截一段要5分钟,那么截完这根木头要()分钟.11. 线段比例尺千米,改写成数字比例尺是();在这幅图上量得北京到上海距离是4.2 厘米,北京到上海的实际距离是()千米。

12. 一次数学竞赛共有20 道题,每做对一道题就得5 分,做错或不做扣1 分,小李得了70 分,他共做对了()道题.、判断题(每题1 分,共8 分)13. 王师傅生产110 个零件,其中100 个是合格产品,合格率是100%.14. 一个圆柱体的铁块重60 克,从这个圆柱体上截下一个最大的圆锥体,剩下部分铁平均身高为 1.51 米 .少要( )平方分米铁皮 .一支队伍从排头开始按 1 至 6 报数,最后一个报 3,那么这支队伍的人数一定是).剩下物体表面积和原来的表面相比较,表面积(某超市为了统计各个季度的营业额的多少和增减变化的情况,应绘制四、计算题(共 25 分)15. 16. 17. 18. 块的质量是 20 克 .在含盐 30%的盐水中,加入 3 克盐和 7 克水,质量分数不变 . 工作时间一定,制造每个零件的时间和零件个数成正比例一件商品,先涨价 20%,然后又降价 20%,结果现价与原价相等 . 一班学生的平均身高是 1.5 米,二班学生的平均身高为1.52 米,则这两个班学生的19. 在一个数的末尾添上 2 个零,则这个数就扩大到原数的 100 倍 .20. 顶角是 50°的等腰三角形一定是锐角三角形三、选择题(把正确答案的序号填在括号内)每题 1 分,共 8 分)21. 小明有若干张 10 元、5 元的纸币,这两种纸币的张数相同, 那么小明可能有 (元.A. 50B. 75C. 10022. 20 千克比()千克少 20%.23. A. 25B. 24C. 18做一个底面直径为 2 分米, 高为10 分米的圆柱形铁皮通风管接头处不计) ,则至24.A. 65.94B. 62.8C. 69.08列字母作为图形看,是轴对称图形的是().A. SB. FC. T25. 26. A. 2 的倍数 B. 3 的倍数 C. 5 的倍数 有一个棱长是 4厘米的正方体, 从它的一个顶点处挖去一个棱长1 厘米的正方体后,A. 变大了B. 变小了C. 不变27. 28. A. 条形统计图B. 拆线统计图C. 扇形统计图若 a 是质数, b 是合数,那么一定是合数的是().A. (a+2)× bB. a+( b+2)C. a+2) ÷ b329. 直接写出得数(每题 0.5 分,共 4 分)25×24=11 ( 1 -1)×45( 0.21+0.7 )13 39÷ =1011.75-( 1 +5) 420=0.81+15.3= 7-4÷ 4 =7÷ 7 = 59× 15÷ 59×15=30. 计算下列各题(每题 2 分,共 8分)4 5 31) 56×( 4+ 5-3)7 8 4152) 6.75-11+3.25- 256653)( 5-3 )÷( 1+1)6 44614) 2014 1 ÷2013201231. 求未知数 x (每题 2分,共 4 分)2(1)6÷ -3.5x =6332. 列式计算(每题 3 分,共 9 分)1)比某数的 20%少 0.4 的数是 7.2,这个数是多少?(用方程解)2)最小的合数与最大的一位数的比等于最小质数的倒数与 X 的比,求 x .3)24的 2除 4个 4的和,商是多少?352)3:2=x :643五、解决问题(共35 分)33. 如右图,三角形ABC 是等腰三角形,点D 为边BC 的中点,AB =8 厘米,求阴影部分的面积(3 分)(一)只列式不计算(每题2 分,共8 分)34. 某四人小组中,甲的身高是152 厘米,乙、丙、丁三人的身高都是148 厘米,那么这四人的平均身高是多少厘米?35. 长江机床厂五月份生产机床650 台,比四月份多生产机床150台,五月份增产百分之几?36. 一条小虫由幼虫长到成虫,每天长大 1 倍,10天长到20厘米,第8 天时,幼虫长到几厘米?37. 一辆汽车从甲城开往乙城,3 小时行驶了108千米,用同样的速度再行驶2.4 小时到达乙城,甲、乙两城相距多少千米?(二)列式解答(每题4分,共24 分)38. 一项工程,甲队独做15天完成,乙队独做25天完成,丙队独做20天完成. (1)如甲、乙两队合做,几天完成这项工程?(2)如乙、丙两队合做,几天可完成这项工程的3?539. 一辆汽车以每秒20 米的速度行驶,为了测前方的峭壁位置,司机按了一下喇叭,经过3 秒听到回声(已知声音的传播速度是340 米/秒),求汽车听到回声时离峭壁多远?40. 用边长0.3 米的方砖给一间教室铺地,要600块,如改用边长0.6 米的方砖来铺,需要多少块?41. 把14.13 立方米的黄沙堆成一圆锥形,量得沙堆底面周长是18.84 米,这个沙堆高多少米?(π 取3.14)42. 施工方修建一条步行街,第一个月建了全长的35%,第二个月建了250 米,这时3 建了总长度的3还多40 米,这条步行街长多少米?443. 雄风超市在迎大运会期间,将一批大运会的吉祥物降价出售,如按标价的九折出售,可盈利 215 元, 如按标价的八折出售, 则亏损 125 元,那么这批吉祥物的购入价是多少元? 1. 一亿四千九百四十五万1 亿 2. 两 30 解析 一共有 2+3+5=10 (份),甲占 3. 507 1 7 1 1 解析 = (升 / 千米), 100 =8 4 14 144. 29 2.08 解析 0.15 时 =9 分。

2020年巴蜀中学新人教版七年级上学期第一次月考数学试卷含答案解析

2020年巴蜀中学新人教版七年级上学期第一次月考数学试卷含答案解析

2020学年重庆市巴蜀中学七年级(上)第一次月考数学试卷一、选择题(每小题4分,共48分)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.在﹣,﹣|﹣4|,﹣(﹣4),﹣22,(﹣2)2,﹣10%,0中,负数的个数有()A.2个B.3个C.4个D.5个3.下列运算正确的是()A.﹣(﹣1)=﹣1 B.|﹣3|=﹣3 C.﹣22=4 D.(﹣3)÷(﹣)=94.比较,﹣,﹣的大小结果正确的是()A.>﹣>﹣B.>﹣>﹣ C.﹣>>﹣ D.﹣>﹣5.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为() A.950×1010km B.95×1012km C.9.5×1012km D.0.95×1013km6.绝对值大于2且不大于5的整数有()个.A.3 B.4 C.6 D.87.下列式子中,正确的是()A.若|a|=|b|,则a=b B.若a=b,则|a|=|b| C.若a>b,则|a|>|b| D.若|a|>|b|,则a>b8.已知|x|=2,则下列四个式子中一定正确的是()A.x=2 B.x=﹣2 C.x2=4 D.x3=89.若(a﹣2)2+|b+3|=0,则(a+b)2020的值是()A.0 B.1 C.﹣1 D.202010.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A.()5m B.[1﹣()5]m C.()5m D.[1﹣()5]m11.如果有理数a和它的倒数及相反数比较,其大小关系为﹣a<<a,那么有()A.a<﹣1 B.﹣1<a<0 C.0<a<1 D.a>112.如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab>0;②a﹣b>0;③a+b>0;④|a|﹣|b|>0中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)13.如果上升3米记作+3米,那么下降2米记作米.14.|﹣|=.15.计算:(﹣2)2×()3=.16.一架飞机进行飞行表演,先上升3.2千米,又下降2.4千米,最后又上升1.2千米,此时,飞机比最初点高了千米.17.数轴上到原点的距离为7的点所表示的数是.18.若﹣ab2>0,则a0.19.a,b互为相反数,c,d互为倒数,|m|=4,求2a﹣(cd)2020+2b﹣3m的值是.2020a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么2a+3b+4c=.21.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.22.观察下面一列数,,﹣,,﹣,…按照这个规律,第十个数应该是.三、计算题(1-6题5分,7-8题6分,共42分)23.计算题(1)(+26)+(﹣14)+(﹣16)+(+8);(2)﹣|﹣|﹣3﹣(﹣+);(3)(﹣8)×(﹣6)×(﹣1.25)×;(4)(﹣)×(+)÷(﹣)×(﹣);(5)(﹣9)×42;(6)30﹣()×(﹣36);(7)(﹣1)100﹣(1﹣0.5)÷×[1÷(﹣2)];(8)0.25×(﹣2)3﹣[4÷(﹣)2+1].四、解答题(24题8分,25题10分,26题12分,共30分)24.若|a|=2,b=3,且ab<0,求a﹣b的值?25.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)用一个单位长度表示1千米,以东为正方向,小明家为原点,画出数轴并在数轴上标明小明家A,小彬家B,小红家C,中心广场D的位置.(2)小彬家距离中心广场多远?(3)小明一共跑了多少千米?26.在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a﹣b﹣c|+a+b+c)÷2.如:(﹣1)#2#3=[(﹣1﹣2﹣3)]+(﹣1)+2+3=5.请回答;(1)计算:3#(﹣2)#(﹣3)=(2)计算:1#(﹣2)#()=(3)在﹣,﹣,﹣,…,﹣,0,,,…,这15个数中,任取三个数作为a、b、c的值,进行“a#b#c”运算,求在所有计算结果中最大值.2020学年重庆市巴蜀中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.﹣5的相反数是()A.5 B.﹣5 C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.在﹣,﹣|﹣4|,﹣(﹣4),﹣22,(﹣2)2,﹣10%,0中,负数的个数有()A.2个B.3个C.4个D.5个【考点】正数和负数.【专题】探究型.【分析】根据题目中给出的这组数,可以判断哪些数是负数,从而可以解答本题.【解答】解:在﹣,﹣|﹣4|,﹣(﹣4),﹣22,(﹣2)2,﹣10%,0中,是负数的是:﹣,﹣|﹣4|,﹣22,﹣10%.故负数的个数是4个.故选C.【点评】本题考查正数和负数,解题的关键是明确什么数是负数.3.下列运算正确的是()A.﹣(﹣1)=﹣1 B.|﹣3|=﹣3 C.﹣22=4 D.(﹣3)÷(﹣)=9【考点】有理数的除法;相反数;绝对值;有理数的乘方.【分析】根据相反数的意义判断A;根据绝对值的意义判断B;根据有理数乘方的意义判断C;根据有理数除法法则判断D.【解答】解:A、﹣(﹣1)=1,故本选项错误;B、|﹣3|=3,故本选项错误;C、﹣22=﹣4,故本选项错误;D、(﹣3)÷(﹣)=9,故本选项正确.故选D.【点评】本题考查了相反数,绝对值,有理数的乘方,有理数的除法,熟练掌握定义与法则是解题的关键.4.比较,﹣,﹣的大小结果正确的是()A.>﹣>﹣B.>﹣>﹣ C.﹣>>﹣ D.﹣>﹣【考点】有理数大小比较.【分析】先根据正数大于一切负数可得出最大,再由负数比较大小的法则进行比较即可.【解答】解:∵>0,﹣<0,﹣<0,∴最大.∵|﹣|==,|﹣|=,>,∴﹣<﹣,∴﹣<﹣<.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.5.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为() A.950×1010km B.95×1012km C.9.5×1012km D.0.95×1013km【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9500000000000km用科学记数法表示为9.5×1012.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.绝对值大于2且不大于5的整数有()个.A.3 B.4 C.6 D.8【考点】绝对值.【分析】由题意求绝对值大于2且不大于5的整数,设此数为x,则有2<|x|≤5,从而求解.【解答】解:设此数为x,则有2<|x|≤5,∴x=3,4,5,﹣3,﹣4,﹣5,∴绝对值大于2且不大于5的整数有6个.故选C.【点评】此题主要考查绝对值的性质,比较简单.7.下列式子中,正确的是()A.若|a|=|b|,则a=b B.若a=b,则|a|=|b| C.若a>b,则|a|>|b| D.若|a|>|b|,则a>b【考点】绝对值.【分析】根据绝对值的性质:正数绝对值等于本身,0的绝对值等于0,负数的绝对值等于它的相反数,进行选择即可.【解答】解:A、若|2|=|﹣2|,则2≠﹣2,故本选项错误;B、若a=b,则|a|=|b|,故本选项正确;C、若a=1,b=﹣2,则|a|<|b|,故本选项错误;D、若a=﹣2,b=1,则a<b,故本选项错误.故选B.【点评】本题考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.已知|x|=2,则下列四个式子中一定正确的是()A.x=2 B.x=﹣2 C.x2=4 D.x3=8【考点】实数的性质.【专题】计算题.【分析】因为绝对值等于2的数有两个是±2,所以x2=4,由此即可确定选择项.【解答】解:∵|x|=2,∴x=±2,∴x2=4,x3=±8.故选C.【点评】此题主要考查了绝对值的意义.此题要注意绝对值等于2的数有两个是±2.9.若(a﹣2)2+|b+3|=0,则(a+b)2020的值是()A.0 B.1 C.﹣1 D.2020【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,(a+b)2020=(2﹣3)2020=﹣1.故选C.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.10.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A.()5m B.[1﹣()5]m C.()5m D.[1﹣()5]m【考点】有理数的乘方.【专题】计算题.【分析】根据乘方的意义和题意可知:第2次截去后剩下的木棒长()2米,以此类推第n次截去后剩下的木棒长()n米.【解答】解:将n=5代入即可,第5次截去后剩下的木棒长()5米.故选C.【点评】本题考查了乘方的意义.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;解题还要掌握乘方的运算法则.11.如果有理数a和它的倒数及相反数比较,其大小关系为﹣a<<a,那么有()A.a<﹣1 B.﹣1<a<0 C.0<a<1 D.a>1【考点】有理数大小比较.【分析】先根据﹣a<a得出a>0,再由<a可得出a2>1,故可得出结论.【解答】解:∵﹣a<a,∴a>0.∵<a,∴a2>1,∴a>1.故选D.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.12.如图,数轴上A、B两点分别对应有理数a、b,则下列结论:①ab>0;②a﹣b>0;③a+b>0;④|a|﹣|b|>0中正确的有()A.1个B.2个C.3个D.4个【考点】数轴.【专题】几何图形问题.【分析】根据数轴可知a<﹣1,0<b<1,从而可以判断题目中的结论哪些是正确的,哪些是错误的,从而解答本题.【解答】解:∵由数轴可知,a<﹣1,0<b<1,∴ab<0,a﹣b<0,a+b<0,|a|﹣|b|>0,故①②③错误,④正确.故选A.【点评】本题考查数轴,解题的关键是根据数轴可以明确a、b的符号和与原点的距离.二、填空题(每题3分,共30分)13.如果上升3米记作+3米,那么下降2米记作﹣2米.【考点】正数和负数.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,如果上升3米记作+3米,那么下降2米记作﹣2米.故为﹣2米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.|﹣|=.【考点】绝对值.【专题】计算题.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.【点评】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.计算:(﹣2)2×()3=.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:原式=4×=.故答案为:.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.16.一架飞机进行飞行表演,先上升3.2千米,又下降2.4千米,最后又上升1.2千米,此时,飞机比最初点高了2千米.【考点】有理数的加减混合运算.【专题】计算题.【分析】阅读题意,利用正负数来表示两种相反意义的量,规定飞机上升为正,下降为负,根据题意列出算式,求出即可.【解答】解:规定飞机上升为正,下降为负,根据题意得:(+3.2)+(﹣2.4)+(+1.2)=2千米.故答案为:2.【点评】本题考查了有理数的加减的应用,关键是能根据题意列出算式.17.数轴上到原点的距离为7的点所表示的数是±7.【考点】数轴.【专题】常规题型.【分析】此题要全面考虑,原点两侧各有一个点到原点的距离为7,即表示7和﹣7的点.【解答】解:根据题意知:到数轴原点的距离是7的点表示的数,即绝对值是7的数,应是±7.故答案为:±7.【点评】本题考查了数轴的知识,利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.18.若﹣ab2>0,则a<0.【考点】有理数的乘法.【专题】计算题.【分析】根据配方得结果为非负数,以及有理数乘法法则判断即可得到结果.【解答】解:∵﹣ab2>0,b2>0,∴a<0.故答案为:<.【点评】此题考查了有理数的乘法,熟练掌握法则是解本题的关键.19.a,b互为相反数,c,d互为倒数,|m|=4,求2a﹣(cd)2020+2b﹣3m的值是﹣13或11.【考点】代数式求值;相反数;绝对值;倒数.【专题】计算题;实数.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=4或﹣4,当m=4时,原式=2(a+b)﹣(cd)2020﹣3m=﹣1﹣12=﹣13;当m=﹣4时,原式=2(a+b)﹣(cd)2020﹣3m=﹣1+12=11,故答案为:﹣13或11【点评】此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握运算法则是解本题的关键.2020a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么2a+3b+4c=﹣1.【考点】代数式求值;有理数;绝对值.【专题】计算题;实数.【分析】找出最小的正整数,最大的负整数,绝对值最小的有理数,确定出a,b,c的值,即可确定出原式的值.【解答】解:根据题意得:a=1,b=﹣1,c=0,则原式=2﹣3+0=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.21.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.22.观察下面一列数,,﹣,,﹣,…按照这个规律,第十个数应该是﹣.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数列,分数的分子是一个以1为首项,2为公差的等差数列,根据数列规律应为2×项数﹣1,分数的分母为两个连续整数的乘积,为项数×(项数+1),在考虑数列的奇数项为正,偶数项为负,即可得出答案.【解答】解:由数列分析如下:=,=,=,=并且数列的奇数项为正,偶数项为负,∴第十个数应该是﹣=﹣.故答案为:﹣.【点评】题目考察数字的规律性,如何找到每一项中的数字和项数的关系是解决此类问题的关键.题目难易程度适中,对于培养学生观察问题、解决问题的能力有很大帮助.三、计算题(1-6题5分,7-8题6分,共42分)23.计算题(1)(+26)+(﹣14)+(﹣16)+(+8);(2)﹣|﹣|﹣3﹣(﹣+);(3)(﹣8)×(﹣6)×(﹣1.25)×;(4)(﹣)×(+)÷(﹣)×(﹣);(5)(﹣9)×42;(6)30﹣()×(﹣36);(7)(﹣1)100﹣(1﹣0.5)÷×[1÷(﹣2)];(8)0.25×(﹣2)3﹣[4÷(﹣)2+1].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式利用乘法法则计算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式变形后,利用乘法分配律计算即可得到结果;(6)原式第二项利用乘法分配律计算即可得到结果;(7)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(8)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=26﹣16﹣14+8=4;(2)原式=﹣﹣+﹣3=3;(3)原式=﹣8×6××=﹣2020(4)原式=﹣×××=﹣;(5)原式=(﹣10+)×42=﹣42020=﹣418;(6)原式=30+28+20203=45;(7)原式=1+×3×=1;(8)原式=0.25×(﹣8)﹣4×﹣1=﹣2﹣9﹣1=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(24题8分,25题10分,26题12分,共30分)24.若|a|=2,b=3,且ab<0,求a﹣b的值?【考点】有理数的乘法;绝对值;有理数的减法.【分析】根据已知条件和绝对值的性质,得a=±2,b=3,且ab<0,确定a,b的符号,求出a﹣b的值.【解答】解:∵|a|=2,∴a=±2,∵ab<0,∴ab异号.∴a=﹣2,∴a﹣b=﹣2+3=1.【点评】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b的值,然后分两种情况解题.25.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)用一个单位长度表示1千米,以东为正方向,小明家为原点,画出数轴并在数轴上标明小明家A,小彬家B,小红家C,中心广场D的位置.(2)小彬家距离中心广场多远?(3)小明一共跑了多少千米?【考点】数轴.【专题】作图题.【分析】(1)根据题意可以画出相应的数轴;(2)根据第一问的数轴可以得到小彬家距离中心广场的距离是多少;(3)根据题意可以得到小明一共跑的路程.【解答】解:(1)根据题意可得,所求的数轴如下图所示:(2)由第(1)问中的数轴可知:小彬家距离中心广场的距离为:2﹣(﹣1)=3(千米)即小彬家距离中心广场的距离为3千米;(3)2+1.5+|﹣4.5|=8(千米)即小明一共跑了8千米.【点评】本题考查数轴,解题的关键是能根据题意画出相应的数轴.26.在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a﹣b﹣c|+a+b+c)÷2.如:(﹣1)#2#3=[(﹣1﹣2﹣3)]+(﹣1)+2+3=5.请回答;(1)计算:3#(﹣2)#(﹣3)=3(2)计算:1#(﹣2)#()=(3)在﹣,﹣,﹣,…,﹣,0,,,…,这15个数中,任取三个数作为a、b、c的值,进行“a#b#c”运算,求在所有计算结果中最大值.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】(1)根据题意可求得问题的答案;(2)根据题意可求得问题的答案;(3)根据题意可以利用试探法求出结算结果中的最大值,从而可以解答本题.【解答】解:(1)根据题中的新定义得:3#(﹣2)#(﹣3)=(|3+2+3|+3﹣2﹣3)=3.故答案为:3;(2)根据题中的新定义得:1#(﹣2)#()=(|1+2﹣|+1﹣2+)=.故答案为:;(3)当a、b、c都大于0时,可知当a=时取得最大值,最大值是:,当a、b、c都小于0时,可知“a#b#c”运算,结果为负数,当a、b、c不全为正数时,小于全为正数的情况,由上可得,在﹣,﹣,﹣,…,﹣,0,,,…,这15个数中,任取三个数作为a、b、c 的值,进行“a#b#c”运算,求在所有计算结果中最大值是.【点评】本题考查有理数的混合运算,解题的关键是明确新定义,利用新定义进行计算.。

2021渝高中学数学七年级上册周末试卷(含答案)下载

2021渝高中学数学七年级上册周末试卷(含答案)下载

2021渝高中学数学七年级上册周末试卷(含答案)下载第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.12-的相反数是()(A) 12(B)12- (C)2 (D) 2-2.下列运算正确的是()A.x2+x2=x4B.3x3y2﹣2x3y2=1C.4x2y3+5x3y2=9x5y5D.5x2y4﹣3x2y4=2x2y43.下列方程是一元一次方程的是()A.B.C.D.4.地球的表面积约为510 000 000 km2,用科学计数法表示为()km2 A.51×108B.5.1×108C.51×107D.5.1×1075.① x-2=y;② 0.3x =1;③x2-4x=3;④ 5x= 5x -1;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.56.-2+5的值等于()A.3 B.2 C.-2 D.47.如图,数轴上每相邻两点之间相距1个单位长度,点A对应的数为a,B对应的数为b,且b -2a=7,那么数轴上原点的位置在…………………………………………()A.点A B .点B C.点C D.点D8.一个长方形的周长为20,其中它的长为a,那么该长方形的面积是…………()A.20a B.a(20-a) C.10a D.a(10-a)9.下列表示方法正确的是( )A .①②B .②④C .③④D .①④10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.我国现采用国际通用的公历纪年法,如果我们把公元2013年记作+2013年,那么,处于公元前500年的春秋战国时期可表示为__________.12. 光的传播速度大约是300 000 000米/秒,用科学记数法可表示为 米/秒.13.比较大小:3_______-4 (用“>”、“=”或“<”表示) .14.一个黑暗的房间里有3盏关着的电灯,每次都按下其中的2个开关,最后_______将3盏电灯都开亮. (填“能”或“不能”)15.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作贴字及时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如右图所示,根据这个规定,则当会议名称的字数为18时,字宽等于 m .三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算(1) 22+(-4)-(-2)+4; (2) (12-13)÷(-16)-22×(-14).17.解方程:(每小题4分,共8分)(1) 8x=12(x-2);(2)2x+13-5x-16=118.已知(x-1)5=ax5+bx4+cx3+dx2+ex+f.求:(1)a+b+c+d+e+f的值;(2)a+c+e的值.19.如图,某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000 名学生中,随机抽取了若干名学生进行调查,了解学生最喜欢的一种球类运动,每人只能在这五种球类运动中选择一种.调查结果统计如下:球类名称乒乓球排球羽毛球足球篮球人数 a 12 36 18 b解答下列问题:(1)本次调查中的样本容量是;a= ,b= ;(3)试估计上述1000 名学生中最喜欢羽毛球运动的人数.20.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?31.已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为t s.(1)当t=2s时,AB=12cm.此时,①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是________cm/s;点B运动的速度是________cm/s.②若点P为直线l上一点,且PA—PB=OP, 求的值;(2) 在(1)的条件下,若A、B同时按原速向左....运动,再经过几秒,OA=2OB.A B·22.如图,射线OM 上有三点A 、B 、C ,满足OA=60cm ,AB=60cm ,BC=10cm (如图所示),点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动. (1)当点P 运动到AB 的中点时,所用的时间为__________秒.(2)若另有一动点Q 同时从点C 出发在线段CO 上向点O 匀速运动,速度为3cm/秒,求经过多长时间P 、Q 两点相距30cm ?OllO23. 仔细观察下面的日历,回答下列问题:⑴在日历中,用正方形框圈出四个日期(如图)。

重庆巴蜀中学人教版初中七年级数学上册第二章《整式的加减》模拟测试题(包含答案解析)

重庆巴蜀中学人教版初中七年级数学上册第二章《整式的加减》模拟测试题(包含答案解析)

一、选择题1.(0分)[ID :68031]下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差D .1除以a 与b 的差2.(0分)[ID :68030]下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114x 2y 3.(0分)[ID :68055]把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1C .5D .114.(0分)[ID :68049]已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣15.(0分)[ID :68047]如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .226.(0分)[ID :68023]下列各代数式中,不是单项式的是( ) A .2m -B .23xy -C .0D .2t7.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n8.(0分)[ID :68009]已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .329.(0分)[ID :68007]已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣110.(0分)[ID :67996]把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +11.(0分)[ID :67995]若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .012.(0分)[ID :67994]下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2 D .﹣y 3x 2+2x 2y 3=x 2y 313.(0分)[ID :67988]已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .mB .nC .m n +D .m ,n 中较大者14.(0分)[ID :67981]下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是215.(0分)[ID :67959]如果m ,n 都是正整数,那么多项式的次数是( ) A .B .mC .D .m ,n 中的较大数二、填空题16.(0分)[ID :68152]在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.17.(0分)[ID :68146]已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =________.18.(0分)[ID :68137]化简:226334xx x x_________.19.(0分)[ID :68134]如图,阴影部分的面积用整式表示为_________.20.(0分)[ID :68129]某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.21.(0分)[ID :68104]在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.22.(0分)[ID :68103]观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.23.(0分)[ID :68101]下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………24.(0分)[ID :68084]已知5a b -=,3c d +=,则()()b c a d +--的值等于______.25.(0分)[ID :68078]“a 的3倍与b 的34的和”用代数式表示为______. 26.(0分)[ID :68077]如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米.27.(0分)[ID :68072]观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.三、解答题28.(0分)[ID :67850]观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.29.(0分)[ID :67811]试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.30.(0分)[ID :67759]已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.A 3.A 4.A 5.D 6.D7.A8.A9.D10.D11.B12.D13.D14.D15.D二、填空题16.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a117.【解析】试题18.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键19.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值解决这类问题20.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式21.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当22.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于23.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解24.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键25.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a +b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列26.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查27.【分析】观察各式的特点找出关于n的式子用2n+1和2n-1表示奇数用2n表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D、114x2y=54x2y,故书写错误,不合题意;故选:A.【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.4.A解析:A【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.【详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.5.D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.D解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】A选项,2m-是单项式,不合题意;B选项,23xy-是单项式,不合题意;C选项,0是单项式,不合题意;D选项,2t不是单项式,符合题意.故选D.【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.7.A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.8.A解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.10.D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.11.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.12.D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误;B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误;C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误;D 、系数相加字母及指数不变,故D 正确;故选:D .【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.13.D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m nx x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 14.D解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.15.D解析:D【解析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.二、填空题16.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.17.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.18.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 19.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.20.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.21.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.22.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n个式子为2n-1a n,∴第8个式子为:27a8=128a8,故答案为:128a8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.23.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解解析:83n-【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.24.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d+--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键.25.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b+【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】 本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.26.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。

重庆市巴蜀中学2020-2021学年初2023级七年级上第三次月考数学试题

重庆市巴蜀中学2020-2021学年初2023级七年级上第三次月考数学试题

初中数学*精品文档*如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯巴蜀中学初2023级初一上第三次月考数学试题本试卷共6页,32题;全卷满分150分,考试时间时间120分钟一、选择题(本大题12小题,每小题3分,共36分)1、21-的相反数是( ) A .21 B . 2 C .-2 D .21-2、由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )A .B .C .D .3、单项式3241y x π-的次数是( ) A .41- B .π41- C .5 D .64、下列几何体中可以由平面图形绕某条直线旋转一周得到的是( )A .B .C .D . 5、如图,OC 是∠AOB 的平分线,若∠AOC =65°,则∠AOB 的度数是( )A .115°B .120°C .125°D .130°6、下面式子运算正确的是( )A .xy y x 844=+B .16722=-a a C .y x yx y x 2223231=+ D .532532b b b =+ 7、下列等式变形不成立的是( )A .如果22y x =,那么2233ay ax -=- B .如果aya x =,那么y x = C .如果bc ac =,那么b a = D .如果b a =,那么22b a = 8、下列说法中,正确的是( )A .连接两点之间的线段叫做两点间的距离B .两点之间,直线最短C .若AP =PB ,则P 是AB 的中点D .经过两点有且只有一条直线9、小金从家里骑自行车到学校,每小时骑15km ,可早到15分钟;每小时骑12km 就会迟到7分钟.问他家到学校的路程是多少千米?设他家到学校的路程是xkm ,则可列方程是( )A .60712601515-=+x x B .60712601515+=-x x C .60712601515-=-x x D .7121515-=+x x 10、如图所示,点D 把线段AB 从左至右依次分成1︰2两部分,点C 是AB 的中点,若DC =4,则线段AB 的长是( )A .16B .20C .24D .32 11、下面有一数值转换器,原理如图所示,若开始输入的x 的值是22,则第1次输出的结果是11,第⒉次输出的结果是16,依次继续下去,则第2020次输出的结果是( ) A .8 B .4 C .1 D .6 12、若关于x 的一元一次方程x x m 2135)21(-=-+的解是整数,则所有满足条件的整数m 取值之和是( )A .-16B .-12C .-10D .-8 二、填空题 (本大题12个小题,每小题3分,共36分)13、11月15日,2020重庆国际马拉松赛在重庆市南滨路举行.因为疫情防控需求,主办方将参与人数控制在了约4 900人.其中数字4 900用科学记数法可以表示为____________ 14、若02)3(2||=---a xa 是关于x 的一元一次方程,则a =___________15、如图所示是正方体的平面展开图,且相对面上两个数之和为6,则=-y x 2_________16、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个初中数学*精品文档*17、从重庆开往武汉的特快列车,途中要停靠四个站点,如果任意两站间的票价都不同,那么不同的票价共有_____________种18、己知0322=+-b a ,则5242++-b a 的值为_____________ 19、已知有理数a 、b 、c 在数轴上的对应点如图,那么代数式c a c b +--2的化简结果是_______20、定义新运算22b a b a -=⊕,例如:5323222-=-=⊕,那么[])1()2(3-⊕-⊕的值为___________21、如图OC 、OD 是∠AOB 内部两条射线,OM 平分∠AOC ,ON 平分∠DOB ,若∠AOB =110°,∠MON = 70°,则∠COD =___________度22、时钟显示时间为12点15分,此时时针和分针所成夹角是__________度23、A 、B 、C 是直线l 上的三个点,AC =6cm ,CB =4cm ,点M 、N 分别是 AC 、BC 的中点,则线段MN =___________cm24、某超市销售果篮,将A 、B 、C 三种水果搭配成甲、乙、丙三种礼盒方式销售,每个礼盒的成本分别为礼盒中A 、B 、C 水果的成本之和,礼盒成本忽略不计.甲种礼盒每盒分别装有A 、B 、C 三种水果5kg 、2kg 、1kg ,乙种礼盒每盒分别装有A 、B 、C 三种水果1kg 、4kg 、2kg ,每盒甲的成本是每千克A 成本的8倍,每盒甲的销售利润率为25%,每盒甲的售价比每盒乙的售价低61,丙每盒在成本上提高30%标价后打八折销售获利为每千克A 成本的0.5倍,当销售甲、乙、丙三种礼盒的数量之比为4︰1︰2时,销售的总利润率为_____________(用百分数表示) 三、解答题 (本大题7个小题,共78分) 25、计算(每小题5分,共10分)(1))12()8()9()21(---+--- (2)⎥⎦⎤⎢⎣⎡--÷--⨯--1)32(4)2(25.0123426、化简(每小题5分,共10分)(1)156722+-++x x x x (2))13(2)21(45+---+-a a a27、解下列一元一次方程(每小题5分,共10分) (1)7)12(5)34(2=---x x (2)x xx --=--534312328、先化简再求值(8分)已知12322--+=x xy x A ,32212++-=xy x B ,求)23(4B A A --的值,其中x 、y 满足021)4(2=-++y x29、(10分)如图,直线AB 、CD 交于点O ,∠AOM =90° (1)如图1,若OC 平分∠AOM ,求∠AOD 的度数;(2)如图2,若∠BOC =4∠NOB ,且OM 平分∠NOC ,求∠MON 的度数初中数学*精品文档*30、(10分)一个三位自然数m ,.将它任意两个数位上的数字对调后得一个首位不为0的新三位自 然数'm ('m 可以与m 相同).记abc m =',在'm 所有的可能情况中,当c b a +-最小时,我们称此时的'm 是m 的“美好排列”,并规定222)(c b a m S +-=.例如:123按上述方法可得新数有:213、132、321;因为4312=+-,0231=+-,2123=+-,420<<.所以132是123的“美好排列”,4231)123(222-=+-=S (1)计算)134(S(2)设三位自然数y x n ++=10100 (91≤≤x ,91≤≤y ,x 、y 为自然数),且y x <,交换其个位与十位上的数字得到新数'n ,且4086'819=+n n ,求所有满足条件的自然数n 中)(n S 的最大值31、(10分)某平台销售A 、B 两种型号扫地机器人,A 型号扫地机器人的销售价为每台1000元,B 型号扫地机器人的销售价为每台1500元.双十二活动期间,为提高扫地机器人销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员基本工资2000元,月销售额定为10000元.若超过销售定额,则超过的部分按下表所示的相应比例作为奖励工资(1)已知销售员甲12月的销售额为16875元,请问销售员甲12月的工资总额为多少元? (2)若销售员乙12月共销售A 、B 两种型号的扫地机器人共30台,得到工资4200元,问销售员乙12)销售额奖励比例 超过0元但不超过0.5万元部分5%超过0.5万元但不超过1万元部分 8% 超过1万元部分10%32、(10分)如图,数轴上有A 、B 、C 三个点,分别表示数-18、-10、20,有两条动线段PQ 和MN (点P 总在点Q 的左边,点M 总在点N 的左边),PQ =2,MN =5,线段MN 以每秒1个单位的速度从点B 开始一直向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点P 运动到点A 时,线段PQ 、MN 立即同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变)(1)当线段PQ 开始运动后,t =_______秒时,点Q 和点C 重合;当线段PQ 开始返回后,t =______秒时,点P 和点A 重合(2)在整个运动过程中,点Q 和点N 能否重合?若能,请求出此时点Р表示的数;若不能,请说明理由(3)在整个运动过程中,线段PQ 和MN 重合部分长度能否为1,若能,请直接写出此时点P 表示的数;若不能,请说明理由一天,毕达哥拉斯应邀到朋友家做客。

重庆巴蜀中学七年级数学上册第二单元《整式加减》-解答题专项经典题(专题培优)

重庆巴蜀中学七年级数学上册第二单元《整式加减》-解答题专项经典题(专题培优)

一、解答题1.已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x2+4xy﹣3y2+x2+kxy+5y2,=3x2+(4+k)xy+2y2,因为它与多项式3x2+6xy+2y2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条x,分别回答下列的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求P的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)解析:(1) x<5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x.解答:解:(1)由折纸过程可知0<5x<26,∴0<x<5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 4.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.5.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.6.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

重庆巴蜀中学七年级数学上册第三单元《一元一次方程》-填空题专项经典题(专题培优)

重庆巴蜀中学七年级数学上册第三单元《一元一次方程》-填空题专项经典题(专题培优)

一、填空题1.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键.2.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.3.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.【解析】【分析】设第一天织布x尺则第二天织布2x尺第三天织布4x尺第四天织布8x尺第五天织布16x尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x尺则第二天织布2x尺第三天织布4x尺第四天织解析:5 31【解析】【分析】设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据5日共织布5尺列方程求解即可.【详解】设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据题意可得:x+2x+4x+8x+16x=5,解得:5x31 ,即该女子第一天织布531尺,故答案为5 31.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4.有一位工人师傅要锻造底面直径为40cm的“矮胖”形圆柱,可他手上只有底面直径是10cm、高为80cm的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.5cm【分析】设矮胖形圆柱的高是xcm根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm由题意得π×80=πx解得:x=5故答案为5cm【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.5.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x 人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x 人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x 人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.6.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.632【解析】【分析】设甲队胜了x 场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x 场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点 解析:6, 3, 2【解析】【分析】设甲队胜了x 场,则平了12x 场,负了112x 场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】设甲队胜了x 场,则平了12x 场,负了112x -场, 根据题意可得: 1131102122x x x ⎛⎫+⨯+-⨯= ⎪⎝⎭, 解得:x =6, 所以132x =,1122x -=, 故答案为:6,3,2.【点睛】 本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.7.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.8.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.完成下列的解题过程: 用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________.去括号,得_________________.移项、合并同类项,得________________.系数化为1,得_____________.(2)解法二:去括号,得______________.去分母,得________________.移项、合并同类项,得____________. 系数化为1,得_______________.【解析】【分析】解一元一次方程的一般步骤是:去分母去括号移项合并同类项系数化1但步骤也并不是固定不变的要灵活掌握【详解】两种方法解方程:解法1:去分母得去括号得9x -3=12-4x -12移项合并同类解析:3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--, 9312412x x -=--, 133x =, 313x =【解析】【分析】解一元一次方程的一般步骤是:去分母,去括号,移项合并同类项,系数化1,但步骤也并不是固定不变的,要灵活掌握.【详解】 两种方法解方程:11(31)1(3)43x x -=-+ 解法1:去分母,得3(31)124(3)x x -=-+. 去括号,得9x -3=12-4x -12移项、合并同类项,得13x=3.系数化为1,得313x =. 解法2:去括号,得31111443x x -=-- 去分母,得9312412x x -=--移项、合并同类项,得13x=3系数化为1,得313x =故答案为:(1) 3(31)124(3)x x -=-+(2) 9312412x x -=--(3) 133x = (4) 313x =(5) 31111443x x -=-- (6) 9312412x x -=-- (7) 133x = (8) 313x =. 【点睛】 本题考查解方程,熟练掌握解方程的步骤及计算法则是解题关键.10.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。

最新重庆巴蜀中学数学七年级上册模拟试卷及答案分析

最新重庆巴蜀中学数学七年级上册模拟试卷及答案分析

最新重庆巴蜀中学数学七年级上册模拟试卷及答案分析第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、在1/2,0,-2,2,中,负数的个数有()A.0个B.1个C.2个D.3个2.下列选项中,正确的是A.方程变形为B.方程变形为C.方程变形为D.方程变形为3. 下列说法中正确的是()、任何数的平方根有两个;、只有正数才有平方根;、一个正数的平方根的平方仍是这个数;、的平方根是;4.冬季的一天,室内温度是8℃,室外温度是﹣2℃,则室内外温度相差()A.4℃B.6℃C.10℃ D.16℃5.手电筒发射出来的光线,给我们的感觉是()A.线段B.射线C.直线D.折线6.-2+5的值等于()A.3 B.2 C.-2 D.47.如图,数轴上有O,A,B,C,D五点,根据图中各点所表示的数,表示数的点会落在()A.点O和A之间B.点A和B之间C.点B和C之间D.点C和D之间8.下列合并同类项中,正确的是()A.2a+3b=5ab B.5b2﹣2b2=3 C.3ab﹣3ba=0 D.7a+a=7a29.丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁.A.2 B.b﹣a C.a﹣b D.b﹣a+210.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为( )A.135 B.170 C.209 D.252第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11、温度由-100℃上升9℃,达到的温度是______ .12.绝对值最小的数是______;倒数等于它本身的数是______.13.2013年12月底我国自行研制的“嫦娥3号”月球车将降落月球。

在月球上她可要抵御巨大的温差,夜晚温度最低时达到零下180℃,白天温度最高时达150℃。

这个最大温差是℃;14.若代数式-2x a y b+2与3x5y2-b是同类项,则代数式3a-b=____________.15.将连续的正整数按以下规律排列,则位于第6行、第六列的数是______.第一列第二列第三列第四列第五列第六列…第1行-1 +2 -4 +7 -11 +16第2行+3 -5 +8 -12 +17 …(第7题图)-1 0 1 2 3 4 5A CB DO第3行-6 +9 -13 +18 …第4行+10 -14 +19 …第5行-15 +20 …第6行+21 ……………三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)100÷(﹣2)2﹣(﹣2).17.(10分)化简:①2(2a2+9b)+(-5a2-4b) ②4x2-[6x-(3x-7)-2x2]③先化简,再求值:3m2n-[ 2mn2-2(mn-32m2n)+mn)]+3mn2,其中m=3,n=-13.18.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);…………(2)过点A画直线BC的垂线,并注明垂足..为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小..关系为AG AH.(填写下列符号>,<,之一)19.小强买了张50元的乘车IC卡,如果他乘车的次数用m表示,则记录他每次乘车后的余额n(元)如下表:次数 m 余额 n(元)1 50﹣0.82 50﹣1.63 50﹣2.44 50﹣3.2……(1)写出乘车的次数m表示余额n的关系式.(2)利用上述关系式计算小强乘了13次车还剩下多少元?(3)小强最多能乘几次车?20、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?直接写出猜想结论,不需说明理由.21.学校会议室采用大小相同的长方形木块镶嵌地面,第一次铺2块,如图1,第二次把第一次铺的部分完全围起来,如图2,第三次把第二次铺的部分完全围起来,如图3……依次类推.如果把从开始到第n次铺完后总共用的木块数记作a n,把第n次镶嵌时用来围铺前一次木块所用的木块(即周围一圈的木块)数记作b n.则(1) a3 = ___________;b3 =____________;(2) b n = ________________________(用含n的代数式表示)(3) a99 + b100 = _______________.图1 图2 图322.图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数-4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?23.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=6 0°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为__________;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.。

重庆巴蜀中学七年级上册压轴题数学模拟试卷及答案(1)

重庆巴蜀中学七年级上册压轴题数学模拟试卷及答案(1)

重庆巴蜀中学七年级上册压轴题数学模拟试卷及答案(1)一、压轴题1.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.2.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?3.阅读下列材料,并解决有关问题: 我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.4.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值5.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.6.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm /s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.7.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).8.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.9.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n 的式子列式,并计算第n 个图的钢管总数.10.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t 时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.11.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.12.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数13.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.14.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.15.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?16.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.17.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.18.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和-.b(b a>),则线段AB的长(点A到点B的距离)可表示为AB=b a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?19.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?20.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <, 如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.2.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.3.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩,【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.4.(1)存在满足条件的点P ,对应的数为﹣92和72;(2)正确的结论是:PM ﹣34BN 的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB 的长,然后求得方程的解,得到C 表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.5.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.6.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相遇;(4)35191cm.224t PQ=当为,,时,【解析】【分析】(1)由于AB=12cm,点C是线段AB上的一点,BC=2AC,则AC+BC=3AC=AB=12cm,依此即可求解;(2)分别表示出AP、PQ,然后根据等量关系AP=PQ列出方程求解即可;(3)当P与Q第一次相遇时由AP AC CQ=+得到关于t的方程,求解即可;(4)分相遇前、相遇后以及到达B点返回后相距1cm四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.7.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB ,从而可得到问题的答案;(2)先求得∠AOC 的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON ,∠AOM=90°-∠AON ,然后求得∠AOM 与∠NOC 的差即可;(3)可分为当OM 为∠BOC 的平分线和当OM 的反向延长为∠BOC 的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB =90°.故答案为:90°(2)∠AOM ﹣∠NOC =30°.理由:∵∠AOC :∠BOC =1:2,∠AOC +∠BOC =180°,∴∠AOC =60°.∴∠NOC =60°﹣∠AON .∵∠NOM =90°,∴∠AOM =90°﹣∠AON ,∴∠AOM ﹣∠NOC =(90°﹣∠AON )﹣(60°﹣∠AON )=30°.(3)如图1所示:当OM 为∠BOC 的平分线时,∵OM 为∠BOC 的平分线,∴∠BOM =∠BOC =60°,∴t =60°÷5°=12秒.如图2所示:当OM 的反向延长为∠BOC 的平分线时,∵ON 为为∠BOC 的平分线,∴∠BON =60°.∴旋转的角度=60°+180°=240°.∴t =240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.8.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点, ∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM 平分∠AOC,ON 平分∠BOC, ∴∠NOC=12 ∠BOC,∠COM=12∠COA. ∵∠CON+∠COM=∠MON, ∴∠MON=12(∠BOC+∠AOC)=12α; ②当OC 在∠AOB 外部时,如图所示:∵OM 平分∠AOC,ON 平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC. ∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC -∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α. 【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.9.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.10.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2,解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.11.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.12.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC ,∴5(x ﹣24)+3x =90,解得x =1054, 此时P 点在数轴上对应的数是:30﹣3×1054=﹣4834. 综上,相遇时P 点在数轴上对应的数为﹣15或﹣4834. 【点睛】 本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.13.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.14.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.15.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.16.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】。

重庆巴蜀中学七年级上册压轴题数学模拟试卷及答案

重庆巴蜀中学七年级上册压轴题数学模拟试卷及答案

重庆巴蜀中学七年级上册压轴题数学模拟试卷及答案一、压轴题1.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数2.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.3.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.4.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).5.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.6.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.7.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?8.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.9.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.10.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.11.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.12.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.13.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.14.已知120AOB ∠︒=(本题中的角均大于0︒且小于180︒) (1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.15.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.16.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.17.阅读理解:如图①,若线段AB在数轴上,A、B两点表示的数分别为a和b(b a-.>),则线段AB的长(点A到点B的距离)可表示为AB=b a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?18.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?19.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.20.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵A P=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.2.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.3.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.4.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.5.(1)20;(2)t=15s或17s (3)43 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.6.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.7.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.8.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a 或1-a ;(2)①12或52;②1≤b≤7. 【点睛】本题考查了数轴上两点之间的距离和动点问题.9.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.10.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得 231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.11.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.13.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a +=1,则a =0或−4,不合题意;当92a -+=1,则a =11或7;当a =7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意; 当972a-++=1,则a =4或10.∴a =11或4或10. 【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键. 14.(1)40º;(2)84º;(3)7.5或15或45 【解析】 【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可. 【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD 又∵∠AOD+∠BOC=160°且∠AOB=120° ∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴蜀渝东中学初一周周练(解方程)
班级_________学号_________ 姓名__________
一、 选择题(每小题3分,共36分) 1.在方程23=-y x ,021=-+x
x ,2
12
1=x ,0322
=--x x
中一元一
次方程的个数为( )
A .1个
B .2个
C .3个
D .4个
2.解方程3
112
-=-x x 时,去分母正确的是( )
A .
2
233-=-x x B .
2
263-=-x x C .1263-=-x x
D .1233-=-x x
3.方程x x -=-22的解是( ) A .1=x B .1-=x C .2=x D .0=x
4.下列解方程过程中,变形正确的是 ( )
A.由2x-1=3得2x=3-1 B.由1
3
554
2-=-x x 得12056-=-x x C.由-75x=76得x=-76
75
D.由3
x -2
x =1得2x-3x=6
5.若代数式34
a b x 2与0.2b
1
3-x 4a 能合并成一项,则x 的值
是 ( )
A.2
1 B.1 C.3
1 D.0
6.用同样长的三根铁丝分别围成长方形、正方形、圆,其中面积最大的图形是 ( )
A.长方形
B.正方形
C.圆
D.由于不知道铁丝的长度而无法确定
7.x 增加2倍的值比x 扩大5倍少3,列方程得( )
A .352+=x x
B .
3
52-=x x C .353-=x x
D .353-=x x
8.某种产,商品的标价为120元,若以九折降价出售,
相对于进货价仍获利20%,该商品的进货价为
( )。

A .80元
B .85元
C .90元
D.95元
二、填空题
1.代数式1
2+
a与a2
1+互为相反数,则=a。

2.已知0
2
3=
+
x,则=
-3
4x。

3.已知梯形的下底为cm
6,高为cm
5,面积为2
25cm,则上底的长等于。

4.要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x厘米,可得方
程为。

5.一个数的3倍比它的2倍多10,若设这个数为x,可得到方程________________。

6.三个连续奇数的和是75,这三个数分别是
__________________。

7.某商店将彩电按成本价提高50%,然后在广告上写
“大酬宾,八折优惠”,结果每台彩电仍获利270
元,那么每台彩电成本价是___________。

三、解方程
1.x
x-
=
+2
1
2(写出检验过程)
2.2
)
3
1
(3
5=
-
-y
3.1
4
2
3
1
2
-
+
=
-y
y
4.1
7.0
3.0
2
7.1
-
=
-x
x
四、解答题
1.设1
5
1
1
+
=x
y,41
2
2
+
=
x
y,当x为何值时,1y、2y互为相反数?
2.在某月的日历上,用一个2⨯3的长方形圈出六个数,
使它们的和是69,求这6天分别是几号?
3、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?。

相关文档
最新文档