中职数学教案课程

合集下载

中职数学基础模块教案

中职数学基础模块教案

中职数学基础模块教案一、教学内容本节课选自中职数学基础模块第五章《方程与不等式》的第一节《一元一次方程》。

详细内容包括一元一次方程的定义、解法及应用。

二、教学目标1. 知识与技能:掌握一元一次方程的定义,学会运用等式的性质解一元一次方程。

2. 过程与方法:通过实际问题的引入,培养学生将实际问题转化为数学问题的能力。

3. 情感态度价值观:培养学生严谨、认真的学习态度,增强学生对数学学习的兴趣。

三、教学难点与重点1. 教学难点:一元一次方程的解法。

2. 教学重点:一元一次方程的定义及解法。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:课本、练习本、铅笔。

五、教学过程1. 实践情景引入(1)提出问题:小明和小华去超市购物,小明买了3个苹果,小华买了5个苹果,两人一共花了18元。

请问,一个苹果多少钱?(2)引导学生将实际问题转化为数学问题。

2. 新课导入(1)讲解一元一次方程的定义。

(2)举例说明一元一次方程的解法。

3. 例题讲解(1)解一元一次方程:2x+3=9。

(2)解一元一次方程:53x=2。

4. 随堂练习(1)请学生解一元一次方程:4x7=11。

(2)请学生解一元一次方程:6+2x=3x+9。

(1)一元一次方程的定义。

(2)一元一次方程的解法。

6. 课堂小结本节课我们学习了一元一次方程的定义和解法,通过实际问题的引入,培养了解决实际问题的能力。

六、板书设计1. 一元一次方程的定义。

2. 一元一次方程的解法。

3. 例题及解答。

七、作业设计1. 作业题目:(1)解一元一次方程:3x+5=11。

(2)解一元一次方程:72x=3。

2. 答案:(1)x=2。

(2)x=2。

八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,使学生更容易理解一元一次方程的概念,但在解法讲解过程中,部分学生掌握不够牢固,需要在课后加强练习。

2. 拓展延伸:引导学生思考一元一次方程在实际生活中的应用,如购物、计算速度等,提高学生运用数学知识解决实际问题的能力。

中职课程教案数学模板范文

中职课程教案数学模板范文

课程名称:中等职业教育数学基础授课班级: [班级名称]授课教师: [教师姓名]授课时间: [具体日期]课时安排: [课时数]教学目标:1. 知识目标:- 掌握本节课所涉及的基本数学概念和运算规则。

- 理解并运用数学知识解决实际问题。

2. 能力目标:- 培养学生的逻辑思维能力和解决问题的能力。

- 提高学生的数学应用能力和实际操作能力。

3. 情感目标:- 培养学生对数学的兴趣和热爱。

- 增强学生的自信心和团队合作精神。

教学内容:1. 导入:- 通过实际问题引入本节课的主题,激发学生的学习兴趣。

2. 新课讲解:- 详细讲解本节课的重点内容,包括:- 基本概念:如数、式、函数、图形等。

- 运算规则:如加减乘除、指数、对数等。

- 解决问题的方法:如代数方程、几何证明等。

3. 实例分析:- 通过实际案例,让学生理解并运用所学知识。

4. 课堂练习:- 设计针对性的练习题,让学生巩固所学知识。

教学过程:1. 导入阶段:- 通过展示与数学相关的图片、视频或实际问题,引导学生进入学习状态。

2. 新课讲解阶段:- 采用讲解、演示、提问等方式,使学生对新知识有深入的理解。

3. 实例分析阶段:- 结合实际案例,让学生学会运用所学知识解决实际问题。

4. 课堂练习阶段:- 设计不同难度的练习题,让学生在练习中巩固知识。

5. 总结阶段:- 对本节课所学内容进行总结,强调重点和难点。

教学方法:- 讲授法:讲解基本概念和运算规则。

- 演示法:通过实际操作演示解题过程。

- 提问法:激发学生的思考,培养学生的逻辑思维能力。

- 练习法:通过练习巩固知识,提高学生的实际操作能力。

教学评价:- 课堂表现:观察学生在课堂上的学习态度、参与程度等。

- 作业完成情况:检查学生对所学知识的掌握程度。

- 期末考试:全面评估学生的学习成果。

教学资源:- 教材:根据中职数学教学大纲,选用合适的教材。

- 多媒体课件:制作多媒体课件,丰富教学内容。

- 实际案例:收集与数学相关的实际案例,帮助学生理解知识。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:实数与函数1.1 实数【教学目标】1. 理解实数的概念,掌握实数的分类。

2. 熟练运用实数进行运算。

【教学内容】1. 实数的概念及分类。

2. 实数的运算规则。

【教学步骤】1. 引入实数的概念,引导学生理解实数的定义。

2. 讲解实数的分类,包括有理数和无理数。

3. 举例说明实数的运算规则,如加、减、乘、除等。

4. 练习题讲解与演练。

【教学评价】1. 检查学生对实数概念的理解程度。

2. 评估学生在实数运算方面的掌握情况。

1.2 函数【教学目标】1. 理解函数的概念,掌握函数的性质。

2. 学会用函数表示实际问题中的数量关系。

【教学内容】1. 函数的概念及性质。

2. 函数的图像及特点。

【教学步骤】1. 引入函数的概念,引导学生理解函数的定义。

2. 讲解函数的性质,如单调性、奇偶性等。

3. 引导学生通过实际问题,学会用函数表示数量关系。

4. 练习题讲解与演练。

【教学评价】1. 检查学生对函数概念的理解程度。

2. 评估学生在应用函数解决实际问题方面的能力。

第二章:三角函数2.1 角与弧度制【教学目标】1. 理解角的概念,掌握弧度制的定义。

2. 学会用弧度制表示角。

【教学内容】1. 角的概念及分类。

2. 弧度制的定义及应用。

【教学步骤】1. 引入角的概念,引导学生理解角的各种分类。

2. 讲解弧度制的定义,演示弧度制的应用。

3. 练习题讲解与演练。

【教学评价】1. 检查学生对角的概念及分类的理解程度。

2. 评估学生在弧度制应用方面的掌握情况。

2.2 任意角的三角函数【教学目标】1. 理解任意角的三角函数概念,掌握三角函数的定义。

2. 学会用三角函数表示任意角的正弦、余弦、正切值。

【教学内容】1. 任意角的三角函数概念。

2. 三角函数的定义及应用。

【教学步骤】1. 引入任意角的三角函数概念,引导学生理解三角函数的定义。

2. 讲解三角函数的定义,演示三角函数的应用。

3. 练习题讲解与演练。

中职数学教案:含绝对值的不等式

中职数学教案:含绝对值的不等式
|a|的几何意义
数a的绝对值|a|,在数轴上等于对应实数a的点到原点的距离.
例如,|-5|=5,|5|=5.
学生结合数轴,理解|a|的几何意义.




二概念新知
问题1
(1)解方程|x|=5,并说明|x|=5的几何意义是什么?
(2)试叙述|x|>5,|x|<5的几何意义,你能写出其解集吗?
对于每个问题都请学生思考后回答,教师给与恰当的评价并给出正确答案.
中等专业学校2024-2025-1教案
编号:
备课组别
数学组
课程名称
基础模块(上)
所在
年级
主备
教师
授课教师
授课系部
授课班级
授课
日期
课题
2.4含绝对值的不等式
教学
目标
1.通过学习理解绝对值的几何意义;掌握简单的含有绝对值的不等式的解
法;掌握含有绝对值的不等式的等价形式.| x |≤a-a≤x≤a;| x |≥ax≤
-a或x≥a(a>0).
2.通过本次教学,体会数形结合、等价转化的数学思想方法.
重点
含有绝对值的不等式的解法
难点
理解绝对值的几何意义
教法
引导探究,讲练结合
教学设备
多媒体一体机
教学
环节
教学活动内容及组织过程
个案补充




一导入
1.提问:不等式的基本性质有哪些?
2. |a|=
教师用课件展示问题,学生回答
(1)|x|=5的几何意义是:在数轴上对应实数5的点到原点的距离等于5,这样的点有二个:对应实数5和5的点;
(2)|x|>5的几何意义是到原点的距离大于5的点,其解集是

中职数学教案:一元二次不等式(全3课时)

中职数学教案:一元二次不等式(全3课时)

中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级一年级主备教师授课教师授课系部现代服务部授课班级授课日期课题§2.3一元二次不等式(1)教学目标1.了解方程、不等式、函数的图像之间的联系;2. 掌握一元二次不等式的图像解法.重点方程、不等式、函数的图像之间的联系难点一元二次不等式的解法教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:方程260x-=的解3x=恰好是函数图像与x轴交点的横坐标;在x轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x->的解集{|3}x x>;在x轴下方的函数图像所对应的自变量x的取值范围,恰好是不等式260x-<的解集{|3}x x<.()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存在着哪些联系?中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级主备教师授课教师授课系部授课班级授课日期课题§2.3一元二次不等式(2)教学目标1.了解方程、不等式、函数的图像之间的联系2. 掌握一元二次不等式的图像解法.重点方程、不等式、函数的图像之间的联系难点一元二次不等式的解法.教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一、动脑思考探索新知解法利用一元二次函数2y ax bx c=++()0a>的图像可以解不等式20ax bx c++>或20ax bx c++<.(1)当240b ac∆=->时,方程20ax bx c++=有两个不相等的实数解1x和2x12()x x<,一元二次函数2y ax bx c=++的图像与x轴有两个交点1(,0)x,2(,0)x (如图(1)所示).此时,不等式20ax bx c++<的解集是()12,x x,不等式20a x bx c++>的解集是12(,)(,)x x-∞+∞;(1)(2)(3)0(,)x +∞24b ac ∆=-一元二次函数y ax =)所示).此时,不等式2(,)x +∞0(,)x +∞0([)2,x +∞R 0< 12,)x∅]2,x }0x224,b ac x -. 例题讲解解下列各一元二次不等式:0. 首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解+∞.(3,))29x<可化为,且方程2x()-.3,33)53x x-0.故方程22xx+的解集为300的解集为.是什么实数时,2x-有意义.0.解方程.由于二次项系数为[)1,+∞.[)-有意义.1,+∞时,20.、本节课主要学习了一元二次不等式解法;、一元二次不等式的特点及解的过程中注意事项;中等专业学校2024-2025-1教案编号:备课组别数学组课程名称基础模块(上)所在年级主备教师授课教师授课系部授课班级授课日期课题§2.3一元二次不等式(3)教学目标1. 掌握利用二次函数图象求解一元二次不等式的方法。

中职教育数学数学教案

中职教育数学数学教案

中职教育数学数学教案中职教育数学教案一、教学目标1、知识与技能目标学生能够理解并掌握集合的概念、表示方法以及集合之间的关系。

学会运用集合的运算解决实际问题。

2、过程与方法目标通过实例引入集合的概念,培养学生观察、分析和归纳的能力。

经历集合运算的探究过程,提高学生的逻辑推理和数学运算能力。

3、情感态度与价值观目标激发学生对数学的兴趣,增强学习数学的自信心。

培养学生严谨的思维习惯和合作交流的意识。

二、教学重难点1、教学重点集合的概念、表示方法以及集合之间的关系。

集合的交集、并集和补集运算。

2、教学难点理解空集的概念以及集合之间关系的判断。

运用集合运算解决实际问题。

三、教学方法讲授法、演示法、练习法、讨论法四、教学过程1、导入新课通过展示一些生活中的例子,如班级学生名单、图书馆的书籍分类等,引导学生思考如何用数学语言来描述这些对象的整体。

从而引出集合的概念。

2、讲解集合的概念定义:把一些确定的、不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

元素:构成集合的每个对象叫做集合的元素。

举例说明:例如,小于 10 的正整数构成一个集合,其中 1、2、3、4、5、6、7、8、9 就是这个集合的元素。

3、集合的表示方法列举法:把集合中的元素一一列举出来,写在大括号内。

描述法:用确定的条件表示某些对象是否属于这个集合的方法。

例如:列举法表示小于 5 的自然数集合为{0, 1, 2, 3, 4};描述法表示大于 10 的奇数集合为{x | x = 2n + 1, n ∈ N 且 n > 5}。

4、集合之间的关系子集:如果集合 A 中的任意一个元素都是集合 B 中的元素,就说集合 A 是集合 B 的子集,记作 A ⊆ B。

真子集:如果集合 A 是集合 B 的子集,且集合 B 中至少有一个元素不属于集合 A,就说集合 A 是集合 B 的真子集,记作 A ⊂ B。

相等:如果集合 A 和集合 B 的元素完全相同,就说集合 A 和集合B 相等,记作 A = B。

中职学校《数学》教案

中职学校《数学》教案

中职学校《数学》教案一、教学目标1. 知识点:本节课主要讲解中职数学的基本概念和运算规则,包括实数、整数、分数、小数等基础知识。

2. 能力点:培养学生掌握基本的数学运算能力,能够熟练运用数学知识解决实际问题。

3. 情感态度:激发学生对数学学科的兴趣,培养积极主动学习的态度。

二、教学内容1. 实数的概念和分类1.1 实数的概念1.2 实数的分类:有理数和无理数2. 整数和分数2.1 整数的概念和分类:正整数、负整数和零2.2 分数的概念和分类:正分数、负分数和零分数2.3 分数的运算:加、减、乘、除3. 小数3.1 小数的概念和分类:有限小数和无限小数3.2 小数的运算:加、减、乘、除三、教学重点与难点1. 教学重点:实数的概念和分类,整数、分数、小数的运算规则。

2. 教学难点:实数的分类,分数和小数的运算。

四、教学方法与手段1. 教学方法:采用讲授法、案例分析法、小组讨论法等。

2. 教学手段:多媒体课件、黑板、粉笔等。

五、教学过程1. 导入新课:通过生活中的实际例子,引发学生对数学知识的兴趣,导入实数的概念。

2. 知识讲解:讲解实数的分类,整数、分数、小数的定义和运算规则。

3. 案例分析:选取典型例题,进行分析讲解,让学生掌握运算方法。

4. 课堂练习:布置适量练习题,巩固所学知识。

5. 总结拓展:总结本节课的主要内容,布置课后作业,引导学生进行进一步学习。

6. 课后反思:对课堂教学进行反思,针对学生的掌握情况,调整教学策略。

六、教学评价1. 评价目标:检验学生对实数、整数、分数、小数概念和运算规则的掌握程度。

2. 评价方法:课堂练习、课后作业、阶段测试等。

3. 评价内容:实数的分类、整数、分数、小数的运算。

4. 评价时间:在学习过程中,及时进行评价和反馈。

七、教学资源1. 教材:中职数学教材。

2. 辅助材料:教案、课件、练习题、测试题等。

3. 教学设备:多媒体课件、黑板、粉笔等。

八、教学进度安排1. 课时:本节课计划2课时。

中职数学教案:向量的加法运算(全2课时)

中职数学教案:向量的加法运算(全2课时)

中等专业学校2024-2025-1教案教学内容通情况发现成昆之间的高速公路严重拥堵,只好改变出行路线,先驾车到重庆,再从重庆到成都.小张自驾旅程中的位移情况如图所示,其中,点A 、B、C分别代表昆明、重庆和成都三地.试问,小张从点A经点B到达点C接连两次位移,AB、BC的结果,与原计划从点A直接到达点C的位移AC有什么关系?三、探索新知可以看出,这两种方式的位移结果是一样的,都是从昆明到成都.因此我们可以把位移AC看作两次位移AB与BC的和.=AB a,=BC b,得到一个新的向量AC,称向量AC为向量a与向量b的和,记作a+b .一般地,对于平面内给定的两个不平行的非零向量a、b,在平面上任取一点A,依次做=AB a,教学内容=BC b,得到一个△ABC,称向量AC为向量a与向量b的和,也称为向量a与向量b的和向量,记作a+b,如图所示. 即a+b=AC=AB+BC.求两个向量的和的运算称为向量的加法.上述把两个非零向量表示成有向线段并借助于三角形作出其和向量的方法,称为向量加法的三角形法则.当非零向量平行时,在平面上任取一点A,依次作规定:a+b=0+a=a;a+(−a)=0 . 由上面的分析可知,表示各个向量的有向线段首尾相接,由起点指向终点的有向线段表示的向量就是这些向量的和向量,这是向量加法的几何意义,如图所示 .四、典型例题例1 如图所示,在⏥ABCD中,用向量AB、AD表示向量AC.解根据向量加法的三角形法则可知,AC=AB+BC.1. 如图所示,已知向量a、b、c,则板书设计教后札记中等专业学校2024-2025-1教案编号:备课组别数学组课程名称向量的加法运算所在年级主备教师授课教师授课系部人授课班级授课日期课题 2.2.1向量的加法运算(第二课时)教学目标通过学习,理解向量的加法、减法、数乘运算及其几何意义;能按要求作出两个向量的和向量、差向量;会判定两个非零向量是否平行;逐步提升直观想象、数学运算和数学抽象等核心素养.重点向量加法的运算、减法、数乘运算及其几何意义.难点向量减法法则.教法讲授法教学设备一体机教学环节教学活动内容及组织过程个案补充教学内容前面,我们利用双曲线的标准方程获得了双曲线的几何性质,是否可以利用抛物线的标准方程研究抛物线的几何性质呢?下面以抛物线的标准方程y²=2px为例,研究抛物线的几何性质.1.范围在方程y²=2px中,由p>0,y²≥0,可知x≥0. 这表明,抛物线在y轴的右侧,如图所示. 当x的值增大时,y²的值也随着教学内容又因为⏥ABCD中,AD=BC,所以AC=AB+AD.五、探索新知一般地,给定两个非零向量AB与AD,以线段AB和AD为邻边作⏥ABCD,则向量AC就是向量AB与AD的和,这种作两个向量的和向量的方法称为向量加法的平行四边形法则.可以验证,向量的加法满足以下运算律:a+b=b+a;(交换律)a+(b+c)= a+(b+c) .(结合律)六、典型例题例2 已知向量a、b,如图(1)所示,试分别用向量加法的三角形法则和平行四边形法则作向量a+b.解(1)运用三角形法则.如图(2)所示,在平面内任取一点O,作=OA a,=AB b,则=OB a+b;(2)运用平行四边形法则.如图(3)所示,在平面内任取一点O,作=OA a,=OB b,以OA、OB为邻边作⏥ABCD,连接OC,则=OC OA OB=a+b.例3一艘渡轮要从南岸到北岸,它在静水中速度的大小为12km/h,方向正北. 若水流速度的大小为 12km/h,方向正东,求渡轮实际航行的速度.解如图所示,AC表示船在静水中的速度, AB为水流速度. 以AB、AC为邻边作⏥ABCD,由向量加法的平行四边形法则可知,AD是船的实际航行速度.在RtΔABC中,教学内容因此, 船实际航行的速度大小是13km/h,方向为北偏东22°37’.七、巩固练习练习2.2.1如图所示,分别求作下列情形下的向量a+b2. 如图所示,已知向量a、b、c,则教学内容3.化简.4.某同学从A地向东走2km到达B地,又向北走2km到达C地.试求该同学的位移AC的大小和方向.八、布置作业1.书面作业:完成课后习题和《学习指导与练习》;2.查漏补缺:根据个人情况对课堂学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容.板书设计教后札记。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。

掌握集合的表示方法,如列举法、描述法等。

教学内容:集合的定义与表示方法。

集合的性质与运算。

教学过程:1. 引入新课:通过生活中的实例引入集合的概念。

2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。

3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。

1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。

教学内容:集合之间的基本关系。

集合关系的表示方法。

教学过程:1. 引入新课:通过图形展示集合之间的关系。

2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。

3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。

第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。

掌握函数的性质,如单调性、奇偶性等。

教学内容:函数的定义与表示方法。

函数的性质。

教学过程:1. 引入新课:通过生活中的实例引入函数的概念。

2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。

3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。

2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。

学会利用函数图像分析函数的性质。

教学内容:函数图像的特点。

绘制函数图像的方法。

教学过程:1. 引入新课:通过实例展示函数图像的特点。

2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。

3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。

第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。

学会解一元一次不等式。

教学内容:不等式的定义与性质。

一元一次不等式的解法。

教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。

2. 讲解与演示:讲解不等式的定义,展示不等式的性质。

3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。

中职学校《数学》教案

中职学校《数学》教案

中职学校《数学》教案一、教学目标1. 知识点:使学生掌握基础的数学知识,包括代数、几何、三角函数等。

2. 能力目标:提高学生的数学思维能力,能够运用数学知识解决实际问题。

3. 情感目标:激发学生对数学的兴趣,培养学生的自主学习能力。

二、教学内容1. 第一章:实数与函数第一节:实数的概念与运算第二节:函数的概念与性质2. 第二章:代数式与方程第一节:代数式的运算第二节:一元一次方程的解法3. 第三章:几何图形第一节:平面几何图形的性质第二节:立体几何图形的性质4. 第四章:三角函数第一节:三角函数的概念与性质第二节:三角方程的解法5. 第五章:概率与统计第一节:概率的基本概念第二节:统计方法的基本概念三、教学方法采用讲授法、案例法、讨论法等多种教学方法,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

四、教学评价1. 平时成绩:包括课堂表现、作业完成情况等,占总评的40%。

2. 考试成绩:包括期末考试和期中考试,占总评的60%。

五、教学资源1. 教材:选用合适的中职学校数学教材。

2. 课件:制作精美的课件,辅助教学。

3. 练习题:提供丰富的练习题,巩固所学知识。

4. 教学工具:如黑板、粉笔等。

六、教学内容6. 第六章:平面解析几何第一节:直线的斜截式与一般式第二节:圆的方程与性质7. 第七章:立体解析几何第一节:空间直角坐标系第二节:球的方程与性质8. 第八章:微积分初步第一节:极限的概念第二节:导数与微分9. 第九章:线性代数初步第一节:矩阵的概念与运算第二节:行列式的概念与计算10. 第十章:数学应用第一节:数学在几何中的应用第二节:数学在科学计算中的应用七、教学方法1. 案例教学:通过具体的案例,让学生了解数学在实际中的应用。

2. 小组讨论:鼓励学生分组讨论,培养学生的团队合作能力。

3. 实践操作:让学生通过实际操作,加深对数学概念的理解。

八、教学评价1. 平时成绩:包括课堂表现、作业完成情况等,占总评的40%。

中职数学教学设计5篇

中职数学教学设计5篇

中职数学教学设计5篇光阴迅速,一眨眼就过去了,教学工作者们又将迎来新的教学目标,现在就让我们好好地规划一下吧。

很多人都十分头疼怎么写一份精彩的教学计划,那么怎么写呢?下面是小编给大家带来的中职数学教学设计5篇,以供大家参考!中职数学教学设计1【教学内容】《义务教育课程标准实验教材数学》六年级上册第2~3页。

【教学目标】1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

会在方格纸上用“数对”确定位置。

2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

【教学重点】使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

【教学难点】在方格纸上用“数对”确定位置。

【教学过程】一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置1.谈话引入。

今天有这么多老师和我们一起上课,同学们欢迎吗?老师们都很想认识你们。

咱们先来给他们介绍一下我们班的班长,可以吗?2.合作交流,在已有经验的基础上探究新知。

(1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。

汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…哪个小组也用语言描述出了班长的位置?请班长起立,他们的描述准确吗?刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。

为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

板书:列行老师左手起第一组就是第一列…,横排就是第一行…班长的位置在第4列、第3行。

还有其他的表示方法吗?画图的方法:如果大家是站在老师这个位置看全班的座位,这张图应该怎么放?(课件)把座位图转过来,班长的位置变了吗?为什么?(没变,还是第四列第三行,因为老师和我们看到的方向正好相反,但位置没变)(2)探究新知。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。

2. 能够运用集合的概念解决实际问题。

【教学内容】1. 集合的定义及表示方法。

2. 集合的性质。

3. 集合之间的基本关系。

【教学重点】1. 集合的概念及表示方法。

2. 集合的性质。

【教学难点】1. 集合的表示方法。

2. 集合之间的基本关系。

【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。

2. 讲解集合的定义及表示方法,如列举法、描述法等。

3. 讲解集合的性质,如无序性、确定性、互异性。

4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。

5. 课堂练习:让学生运用集合的概念解决实际问题。

1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。

2. 能够运用集合之间的关系解决实际问题。

【教学内容】1. 集合之间的子集、真子集关系。

2. 集合之间的并集、交集关系。

3. 集合的补集概念。

【教学重点】1. 集合之间的基本关系。

2. 集合的补集概念。

【教学难点】1. 集合之间的基本关系。

2. 集合的补集概念。

【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。

2. 讲解集合之间的子集、真子集关系。

3. 讲解集合之间的并集、交集关系。

4. 讲解集合的补集概念。

5. 课堂练习:让学生运用集合之间的关系解决实际问题。

第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。

2. 能够运用函数的概念解决实际问题。

【教学内容】1. 函数的定义及表示方法。

2. 函数的性质。

【教学重点】1. 函数的概念及表示方法。

2. 函数的性质。

【教学难点】1. 函数的表示方法。

2. 函数的性质。

【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。

2. 讲解函数的定义及表示方法,如解析式、表格法等。

中职教育数学数学教案

中职教育数学数学教案

中职教育数学教案一、教学目标1. 知识与技能:使学生掌握基本的数学知识和技能,能够运用数学解决实际问题。

2. 过程与方法:培养学生的逻辑思维能力、分析问题和解决问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。

二、教学内容1. 第一章:实数与函数第一节:实数的概念与运算第二节:函数的概念与性质2. 第二章:三角函数第一节:角的概念与三角函数的定义第二节:三角函数的性质与图像3. 第三章:方程与不等式第一节:一元一次方程的解法第二节:不等式的性质与解法4. 第四章:平面几何第一节:点的坐标与直线的方程第二节:圆的方程与性质5. 第五章:概率与统计第一节:概率的基本概念与计算第二节:统计的方法与图表三、教学方法1. 采用问题驱动法,引导学生主动探究和解决问题。

2. 运用案例教学法,结合现实生活中的实例,让学生体验数学的应用价值。

3. 采用小组合作学习法,培养学生的团队协作能力。

4. 利用多媒体教学手段,提高教学效果。

四、教学评价1. 过程性评价:关注学生在学习过程中的表现,如参与度、思考能力等。

2. 结果性评价:通过课堂练习、作业、测试等,检验学生的学习成果。

3. 综合性评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评价学生的数学素养。

五、教学资源1. 教材:选用符合中职教育要求的数学教材。

2. 辅助教材:提供相关数学资料、案例和习题。

3. 多媒体教学设备:如投影仪、计算机等。

4. 网络资源:利用网络平台,提供丰富的数学学习资源。

5. 教具:如几何模型、计算器等。

六、教学计划与进度安排1. 第一章:实数与函数(2周)第一节:实数的概念与运算(1周)第二节:函数的概念与性质(1周)2. 第二章:三角函数(3周)第一节:角的概念与三角函数的定义(1周)第二节:三角函数的性质与图像(2周)3. 第三章:方程与不等式(4周)第一节:一元一次方程的解法(2周)第二节:不等式的性质与解法(2周)4. 第四章:平面几何(3周)第一节:点的坐标与直线的方程(1周)第二节:圆的方程与性质(2周)5. 第五章:概率与统计(2周)第一节:概率的基本概念与计算(1周)第二节:统计的方法与图表(1周)6. 第六章:代数与方程(4周)第一节:多项式的运算与因式分解(2周)第二节:一元二次方程的解法与应用(2周)7. 第七章:立体几何(4周)第一节:空间几何体的性质与计算(2周)第二节:坐标系的运用与几何体的方程(2周)8. 第八章:解析几何(3周)第一节:直线与圆的方程应用(2周)第二节:椭圆、双曲线与抛物线的性质与方程(1周)9. 第九章:初等数学方法(3周)第一节:数列的概念与计算(1周)第二节:级数的性质与应用(2周)10. 第十章:数学思想与方法(2周)第一节:逻辑推理与证明(1周)第二节:数学建模与问题解决(1周)七、教学活动设计1. 课堂讲解:系统地传授数学知识和技能,引导学生理解数学概念和原理。

2024中职教育数学数学教案

2024中职教育数学数学教案

2024中职教育数学数学教案《2024中职教育数学数学教案》一、教学目标1.知识与技能目标:a.掌握函数的概念及其表示方法;b.理解函数的定义域与值域的含义;c.能够绘制函数的图像;d.掌握函数的基本性质,如奇偶性、增减性等。

2.过程与方法目标:a.通过例题与练习,提高学生对函数的认识与应用能力;b.引导学生通过观察图像、推断规律的方式,发现函数的性质;c.引导学生进行实际问题的建模与解答,培养学生的数学建模能力。

3.情感、态度和价值观目标:a.培养学生对数学的兴趣与热爱;b.增强学生的数学思维能力与解决问题的信心;c.培养学生合作学习的习惯与意识。

二、教学重点与难点1.教学重点:a.函数的概念与表示方法;b.函数的基本性质。

2.教学难点:a.函数图像的绘制;b.函数性质的探索与总结。

三、教学过程1.教学导入(10分钟)a.引导学生回顾一元二次方程的相关知识,如解法、图像等;b.提问:一元二次方程与函数有何关系?2.新课讲解(30分钟)a.介绍函数的概念与表示方法;b.说明函数的定义域与值域的含义;c.引导学生通过例题,帮助他们理解函数的概念与表示方法。

3.练习与巩固(20分钟)a.分组练习:同学们分成小组,互相出题,进行练习;b.教师辅导,解答同学们所遇到的问题;c.布置课后作业。

4.拓展与应用(30分钟)a.引导学生通过观察一些函数的图像,推断它们的性质;b.引导学生进行函数性质的总结,并帮助他们理解性质的证明过程;c.引导学生运用数学建模的方法,解决一些实际问题。

5.小结与反思(10分钟)a.对本节课所学的知识点进行小结;b.学生展示一些解决实际问题的方法与思路。

四、教学辅助材料1.教科书:《中职数学教材》;2.练习册:《数学练习册》;3.多媒体设备:电脑和投影仪。

五、教学评价与反馈1.课堂练习与问题解答;2.作业批改与讲解;3.学生小组练习的答案互评;4.学生小结与展示。

中职教育数学数学教案

中职教育数学数学教案

中职教育数学教案一、教学目标1. 知识与技能:使学生掌握基础的数学知识,如代数、几何、三角函数等,并能运用这些知识解决实际问题。

2. 过程与方法:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。

二、教学内容1. 第一章:实数与函数1.1 实数的概念与运算1.2 函数的概念与性质2. 第二章:代数2.1 多项式的运算2.2 一元二次方程的解法2.3 分式与不等式的运算3. 第三章:几何3.1 平面几何的基本概念3.2 三角形的性质与判定3.3 圆的性质与方程4. 第四章:三角函数4.1 三角函数的概念与性质4.2 三角恒等变换4.3 三角函数在实际问题中的应用5. 第五章:概率与统计5.1 概率的基本概念5.2 统计方法与数据分析三、教学方法1. 采用启发式教学,引导学生主动探究、积极思考。

2. 利用多媒体课件、实物模型等辅助教学,提高学生的学习兴趣。

3. 创设情境,让学生在实际问题中运用数学知识,培养解决问题的能力。

4. 组织小组讨论、竞赛等活动,激发学生的学习积极性。

四、教学评价1. 定期进行课堂测试,了解学生对知识的掌握情况。

2. 关注学生在小组合作、讨论中的表现,评价他们的团队协作能力和解决问题的能力。

3. 鼓励学生参加各类数学竞赛,提高他们的学习兴趣。

4. 定期与学生交流,了解他们的学习需求,调整教学方法。

五、教学资源1. 教材:选用符合中职教育要求的数学教材。

2. 多媒体课件:制作与教学内容相关的多媒体课件。

3. 实物模型:准备与几何、三角函数等章节相关的实物模型。

4. 练习题库:整理各类练习题,供学生课堂练习和课后巩固。

5. 网络资源:利用网络资源,拓宽学生的知识视野。

1. 第六章:初等函数6.1 指数函数与对数函数6.2 幂函数与三角函数6.3 反函数与复合函数2. 第七章:极限与连续7.1 极限的概念与性质7.2 连续函数的性质7.3 导数与微分3. 第八章:导数与微分8.1 导数的定义与计算8.2 微分法则与应用8.3 高阶导数与隐函数求导4. 第九章:积分与面积9.1 不定积分的概念与计算9.2 定积分的性质与计算9.3 积分的应用与极限面积5. 第十章:概率论与数理统计10.1 随机事件与概率10.2 离散型随机变量的分布10.3 连续型随机变量的分布10.4 数理统计的基本方法1. 结合第六章至第十章的教学内容,采用案例教学法,让学生在实际问题中运用数学知识。

两条直线平行教案中职数学

两条直线平行教案中职数学

两条直线平行教案中职数学《两条直线平行》教学设计
一、课程标准要求
理解并掌握两条直线平行的判定条件和性质,能运用这些知识解决简单的几何问题。

二、主要内容
1. 两条直线平行的定义。

2. 两条直线平行的判定方法,如同位角相等、内错角相等、同旁内角互补等。

3. 两条直线平行的性质。

三、重难点
重点:两条直线平行的判定方法及应用。

难点:灵活运用判定方法证明两条直线平行。

四、教材分析
本节课是中职数学中几何部分的重要内容,对于学生理解空间直线的位置关系以及后续学习平面几何和立体几何都具有基础作用。

通过对两条直线平行的深入探究,培养学生的空间想象能力和逻辑推理能力。

五、教学设计
1. 导入:通过展示一些生活中平行的例子,如铁轨、双杠等,引导学生思考什么是两条直线平行。

2. 探究式学习活动:
- 小组讨论:给出一些图形,让学生讨论如何判断两条直线是否平行。

- 实验探究:利用直尺和三角板等工具,让学生通过测量角度等方法探究两条直线平行的条件。

3. 知识讲解:结合学生的探究结果,系统讲解两条直线平行的判定方法和性质。

4. 练习巩固:安排一些练习题,让学生运用所学知识判断两条直线是否平行。

5. 设计一个探究活动:让学生自己设计一个图形,使得其中有两条平行的直线,并说明判断依据。

6. 总结归纳:回顾本节课的重点内容。

六、课后作业
设计一个开放性的作业,让学生观察周围环境中哪些物体的边是平行的,并说明理由。

要求学生以小组为单位进行合作探究,最后形成报告进行展示。

中职数学基础模块教案

中职数学基础模块教案

中职数学基础模块教案第一章:数学基础概念1.1 实数1.1.1 有理数1.1.2 实数1.1.3 数的运算1.2 代数式1.2.1 代数式的概念1.2.2 代数式的运算1.2.3 代数式的简化1.3 方程与不等式1.3.1 方程的解法1.3.2 不等式的解法1.3.3 方程与不等式的应用第二章:函数与图形2.1 函数的概念2.1.1 函数的定义2.1.2 函数的表示方法2.1.3 函数的性质2.2 常见函数2.2.1 正比例函数2.2.2 反比例函数2.2.3 二次函数2.3 函数的图像2.3.1 图像的绘制方法2.3.2 图像的特点与分析2.3.3 图像的应用第三章:几何基础3.1 点、线、面的基本概念3.1.1 点的概念3.1.2 线段的概念3.1.3 三角形、四边形、圆的概念3.2 平面几何图形的性质与判定3.2.1 平行线的性质3.2.2 垂直线的性质3.2.3 圆的性质3.3 几何图形的计算与应用3.3.1 面积的计算3.3.2 周长的计算3.3.3 几何图形的应用第四章:三角函数4.1 三角函数的概念4.1.1 角度的概念4.1.2 三角函数的定义4.1.3 三角函数的性质4.2 三角函数的图像与性质4.2.1 正弦函数的图像与性质4.2.2 余弦函数的图像与性质4.2.3 正切函数的图像与性质4.3 三角函数的应用4.3.1 三角函数在测量中的应用4.3.2 三角函数在工程中的应用4.3.3 三角函数在科学计算中的应用第五章:概率与统计5.1 概率的基本概念5.1.1 随机事件的概念5.1.2 概率的计算方法5.1.3 概率的性质5.2 统计的基本概念5.2.1 统计量的概念5.2.2 数据的收集与整理5.2.3 描述统计的方法5.3 概率与统计的应用5.3.1 概率在实际问题中的应用5.3.2 统计在实际问题中的应用5.3.3 概率与统计的综合应用第六章:初等代数6.1 代数式的运算6.1.1 整式的运算6.1.2 分式的运算6.1.3 指数与对数的运算6.2 一元二次方程6.2.1 一元二次方程的定义6.2.2 一元二次方程的解法6.2.3 一元二次方程的应用6.3 不等式与不等式组6.3.1 不等式的性质6.3.2 一元一次不等式的解法6.3.3 不等式组的解法与应用第七章:函数的进一步研究7.1 函数的性质7.1.1 单调性7.1.2 奇偶性7.1.3 周期性7.2 函数图像的变换7.2.1 图像的平移7.2.2 图像的伸缩7.2.3 图像的翻折7.3 函数的应用7.3.1 函数在实际问题中的应用7.3.2 函数在数学问题中的应用7.3.3 函数与其他数学知识的综合应用第八章:几何进阶8.1 解析几何8.1.1 坐标系的概念8.1.2 点、直线、圆的方程8.1.3 解析几何的应用8.2 空间几何8.2.1 空间点的坐标8.2.2 空间直线与平面的方程8.2.3 空间几何体的性质与计算8.3 几何图形的变换8.3.1 旋转8.3.2 翻折8.3.3 缩放第九章:微积分基础9.1 极限的概念9.1.1 极限的定义9.1.2 极限的计算9.1.3 极限的应用9.2 导数的概念与计算9.2.1 导数的定义9.2.2 基本导数公式9.2.3 导数的应用9.3 积分的基础9.3.1 积分的定义9.3.2 基本积分公式9.3.3 积分的应用第十章:数学应用与实践10.1 数学在科学中的应用10.1.1 数学在物理中的应用10.1.2 数学在化学中的应用10.1.3 数学在生物学中的应用10.2 数学在工程技术中的应用10.2.1 数学在电子技术中的应用10.2.2 数学在机械工程中的应用10.2.3 数学在建筑中的应用10.3 数学在日常生活中的应用10.3.1 数学在财务管理中的应用10.3.2 数学在市场营销中的应用10.3.3 数学在生活中的其他应用第十一章:线性代数基础11.1 向量及其运算11.1.1 向量的定义11.1.2 向量的运算11.1.3 向量的应用11.2 矩阵及其运算11.2.1 矩阵的定义11.2.2 矩阵的运算11.2.3 矩阵的应用11.3 行列式及其应用11.3.1 行列式的定义11.3.2 行列式的计算11.3.3 行列式的应用第十二章:概率论与数理统计12.1 随机事件及其概率12.1.1 随机事件的概念12.1.2 概率的计算12.1.3 条件概率与独立性12.2 随机变量及其分布12.2.1 随机变量的概念12.2.2 离散型随机变量的分布12.2.3 连续型随机变量的分布12.3 数理统计的基本方法12.3.1 描述统计方法12.3.2 推断统计方法12.3.3 统计应用案例分析第十三章:离散数学初步13.1 集合及其运算13.1.1 集合的概念13.1.2 集合的运算13.1.3 集合的应用13.2 图论基础13.2.1 图的概念13.2.2 图的运算13.2.3 图的应用13.3 逻辑与布尔代数13.3.1 逻辑的基本概念13.3.2 布尔代数的基本运算13.3.3 布尔代数的应用第十四章:数学建模与解决问题14.1 数学建模的基本方法14.1.1 数学建模的概念14.1.2 数学建模的步骤14.1.3 数学建模的方法与应用14.2 数学在解决问题中的应用14.2.1 问题的定义与分析14.2.2 数学模型的建立14.2.3 数学模型的求解与分析14.3 数学建模案例分析14.3.1 经济管理领域的应用14.3.2 工程技术领域的应用14.3.3 社会生活领域的应用第十五章:数学思维与创新15.1 数学思维的基本方法15.1.1 合情推理与演绎推理15.1.2 抽象思维与形象思维15.1.3 批判性思维与创造性思维15.2 数学思维在解决问题中的应用15.2.1 问题的定义与分析15.2.2 数学思维方法的运用15.2.3 解决问题的策略与技巧15.3 数学创新与数学探究15.3.1 数学创新的概念与意义15.3.2 数学探究的基本方法15.3.3 数学创新与探究的案例分析重点和难点解析本文档为您提供了一份中职数学基础模块的教案,共包含十五个章节。

中职数学教案

中职数学教案

中职数学教案教学目标:1.掌握基本的数学计算方法,如四则运算、分数运算、百分数运算等。

2.理解和应用数学知识解决实际问题。

3.培养学生的数学思维能力和数学推理能力。

4.培养学生的合作学习能力和解决问题的能力。

教学内容:1.数的认识与运算:整数、有理数(分数、小数)、实数。

2.代数:代数字母、代数式、等式、方程。

3.几何:图形的认识与性质、平面几何、空间几何。

4.数据处理:统计与概率、函数与统计图。

教学方法:1.教师讲授结合学生实例讲解,引导学生主动思考与互动。

2.任务型教学,让学生通过完成任务来巩固所学知识。

3.实践探究,由教师给出实际问题,引导学生运用数学知识来解决问题。

4.合作学习,鼓励学生进行小组讨论,培养学生合作解决问题的能力。

教学过程:第一课时:数的认识与运算1.教师介绍数的概念,引导学生回忆和总结数的分类和运算法则。

2.学生小组讨论,列举生活中的实例,运用数学概念进行分类和运算。

3.教师带领学生进行整数运算的练习,激发学生兴趣。

4.学生自主完成练习,并批改对错。

第二课时:代数1.教师介绍代数的概念和基本符号表示。

2.学生小组活动,找出生活中代数的应用实例,了解代数在解决实际问题中的重要性。

3.教师带领学生进行代数式的计算练习,培养学生的抽象化思维能力。

4.学生自主完成练习,并批改对错。

第三课时:几何1.教师介绍几何的基本概念和性质。

2.学生小组合作,观察不同图形的特点,并总结出各图形的性质。

3.教师带领学生进行图形的分类和判断,加深学生对图形属性的理解。

4.学生自主完成练习,并批改对错。

第四课时:数据处理1.教师介绍统计与概率的基本概念和应用场景。

2.学生小组活动,通过调查、整理数据,学习如何进行统计和利用概率进行预测。

3.教师带领学生学习函数和统计图的绘制,了解统计图的应用。

4.学生合作完成实际统计问题,利用统计图进行分析和解决。

教学评价:1.教师观察学生在课堂上的活动表现,包括积极参与、合作学习和问题解决能力等。

中职教育数学数学教案

中职教育数学数学教案

中职教育数学教案一、教学目标1. 知识与技能:使学生掌握基础的数学知识,提高学生的运算能力,培养学生解决实际问题的能力。

2. 过程与方法:通过自主学习、合作探讨等方式,培养学生分析问题、解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和自信心,使学生感受到数学在生活中的重要性。

二、教学内容1. 第一章:实数与函数第一节:实数的概念与运算第二节:函数的概念与性质2. 第二章:几何第一节:平面几何基本概念第二节:三角形与四边形的性质3. 第三章:代数第一节:一元一次方程与不等式第二节:多项式与因式分解4. 第四章:概率与统计第一节:概率的基本概念第二节:统计方法初步5. 第五章:生活中的数学第一节:线性方程的应用第二节:比例与百分数的应用三、教学方法1. 采用启发式教学,引导学生主动探究,培养学生的独立思考能力。

2. 利用多媒体教学手段,直观展示数学概念和运算过程,提高学生的学习兴趣。

3. 创设生活情境,让学生在实际问题中运用数学知识,提高学生的应用能力。

4. 注重个体差异,因材施教,使每个学生都能在数学学习中取得进步。

四、教学评价1. 定期进行课堂测试,了解学生对知识的掌握情况。

2. 鼓励学生参加数学竞赛,提高学生的学习积极性。

3. 注重过程评价,关注学生在学习过程中的表现,给予及时的鼓励和指导。

4. 定期与家长沟通,了解学生的学习状况,共同促进学生的成长。

五、教学资源1. 教材:根据中职教育数学课程标准,选用合适的学生教材。

2. 教辅资料:提供适量的练习题,帮助学生巩固知识。

3. 教学多媒体:制作课件、动画等,提高教学效果。

4. 网络资源:利用网络平台,提供丰富的学习资源,拓宽学生的知识视野。

5. 实践基地:与实际工作场景相结合,为学生提供实践操作的机会。

六、教学环境2. 教学设备:配置投影仪、计算机、黑板等教学设备,便于开展教学活动。

3. 网络环境:确保校园网畅通,便于查阅资料和进行在线学习。

中职数学教学思政教案模板

中职数学教学思政教案模板

---课程名称:中职数学教学目标:1. 知识目标:使学生掌握本节课的数学知识,如公式、定理、方法等。

2. 能力目标:培养学生运用数学知识解决实际问题的能力。

3. 情感目标:通过思政元素的融入,培养学生爱国主义情怀、责任感、团队协作精神等。

教学内容:(根据具体课程内容调整)教学过程:一、导入1. 引入与数学相关的思政元素,如数学家故事、数学成就等,激发学生的学习兴趣。

2. 简要介绍本节课的教学目标和内容。

二、新课讲解1. 按照教学大纲,讲解本节课的数学知识。

2. 在讲解过程中,适时融入思政元素,如:- 引导学生认识到数学在科学技术、国家发展中的作用,培养学生的爱国主义情怀。

- 强调数学严谨、求实的科学精神,培养学生的责任感。

- 通过数学问题解决案例,培养学生的团队协作精神。

三、课堂练习1. 布置与思政元素相关的练习题,让学生在解题过程中巩固所学知识。

2. 引导学生在解题过程中思考与思政元素相关的问题,如:- 数学知识在生活中的应用。

- 如何运用数学知识解决实际问题。

- 如何在团队合作中发挥个人优势。

四、课堂总结1. 回顾本节课所学知识,强调思政元素的重要性。

2. 鼓励学生在日常生活中运用所学知识,关注国家发展,培养良好的品德。

教学反思:1. 教学过程中,如何更好地融入思政元素?2. 学生对思政元素的接受程度如何?3. 如何提高学生对数学知识的兴趣和运用能力?---这份模板可以根据实际教学情况进行调整,以确保教学效果。

在教学中,教师应注重引导学生关注思政元素,培养学生的综合素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:集合-集合的概念(1)教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合课时安排:5课时教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)4.“物以类聚”,“人以群分”;5.教材中例子二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+,{}Λ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R,{}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作Aa∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 3练习A2、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b 是非零实数,那么b ba a可能取的值组成集合的元素是_-2,0,2__ 四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:教材P 3练习B课 题:集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法 教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合课时安排:4课时教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)自然数集:全体非负整数的集合记作N,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+,{}Λ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q(5)实数集:全体实数的集合记作R,{}数数轴上所有点所对应的=R3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作Aa∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……(2)“∈”的开口方向,不能把a∈A颠倒过来写二、讲解新课:(一)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合 例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1 如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(二) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x三、练习题:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集2.集合的表示方法:列举法、描述法、文氏图五、练习与作业:P 5-6练习A 、B课 题:集合之间的关系(3)教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集(,)的概念;教学重点:子集、真子集的概念教学难点:弄清元素与子集、属于与包含的关系课时安排:4课时教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}(3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且(4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5} 问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一)子集1 定义:(1)子集:一般地,对于两个集合A与B,如果集合A的任何..一个元素都是集合B的元素,那么集合A就叫做集合B的子集。

记作:A⊆或读作:A包含于B或B包含AA⊇BB当集合A不是集合B的子集时,记作: A⊆/B或B⊇/A注:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何..一个元素都是集合B的元素,同时集合B的任何..一个元素都是集合A 的元素,我们就说集合A等于集合B,记作A=B(3)真子集:对于两个集合A与B,如果BA⊆,并且BA≠,我们就说集合A是集合B的真子集,记作:A B或B A, 读作A真包含于B或B真包含A(4)子集与真子集符号的方向(5)空集是任何集合的子集⊆A空集是任何非空集合的真子集Φ A 若A≠Φ,则Φ A任何一个集合是它本身的子集AA⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,∉N⊆∈Φ⊆R,{1}⊆{1,2,3}N-,1N,1R②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合R QZN{0}如Φ⊆{0}不能写成Φ={0},Φ∈三、讲解范例:例1(1)写出N,Z,Q,R的包含关系,并用文氏图表示(2)判断下列写法是否正确①Φ⊆A ②Φ A ③AA⊆④A A解(1):N⊂Z⊂Q⊂R(2)①正确;②错误,因为A可能是空集③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q,Φ___{0} (2)若A={x∈R|x2-3x-4=0},B={x∈Z||x|<10},则A⊆B正确吗?(3)是否对任意一个集合A,都有A⊆A,为什么?(4)集合{a,b}的子集有那些?(5)06电脑(1)班同学组成的集合A,06级同学组成的集合B,则A、B的关系为 .解:(1)N⊂Z, N⊂Q, R⊃Z, R⊃Q,Φ{0}(2)∵A={x∈R|x2-3x-4=0}={-1,4},B={x∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A⊆B正确(3)对任意一个集合A,都有A⊆A,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A、B的关系为BA⊆.例3 解不等式x+3<2,并把结果用集合表示出来.解:{x∈R|x+3<2}={x∈R|x<-1}.四、练习与作业:1.课本P8练习(A)2.课本P8练习(B)2、写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}五、子集的个数:由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(1624=)(2)集合{}n aa,a,Λ的所有子集的个数是多少?12(n2)结论:含n个元素的集合{}n a,Λ的所有子集的个数是a,a21nn2,所有真子集的个数是n2-1,非空真子集数为2-六、小结:本节课学习了以下内容:1.概念:子集、集合相等、真子集2.性质:(1)空集是任何集合的子集Φ⊆A(2)空集是任何非空集合的真子集Φ A (A ≠Φ) (3)任何一个集合是它本身的子集A A ⊆(4)含n 个元素的集合的子集数为n 2;非空子集数为12-n ;真子集数为12-n ;非空真子集数为2-n课 题:集合之间的关系(4)教学目的:(1)结合集合的图形表示,理解交集与并集的概念;(2)掌握交集和并集的表示法,会求两个集合的交集和并集; 教学重点:交集和并集的概念 教学难点:交集和并集的概念、符号之间的区别与联系 课时安排:4课时教学过程:一、复习引入:1.复习 :(1)子集:(2)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A (3)子集与真子集符号的方向 (4)空集是任何集合的子集⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆(5)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}(6)含n 个元素的集合{}n a a a ,,21Λ的所有子集的个数是n 2,所有真子集的个数是n 2-1,非空真子集数为2-n2.已知6的正约数的集合为A={1,2,3,6},10的正约数为B={1,2,5,10},那么6与10的正公约数的集合为C= .(答:C={1,2})3.观察下面两个图的阴影部分,它们同集合A 、集合B有什么关系?图1图2如上图,集合A 和B 的公共部分叫做集合A 和集合B 的交(图1的阴影部分),集合A 和B 合并在一起得到的集合叫做集合A 和集合B 的并(图2的阴影部分).观察问题3中A 、B 、C 三个集合的元素关系易知,集合C={1,2}是由所有属于集合A 且属于集合B 的元素所组成的,即集合C 的元素是集合A 、B 的公共元素,此时,我们就把集合C 叫做集合A 与B 的交集,这是今天我们要学习的一个重要概念.问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5} (2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B二、讲解新课:1.交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A I B(读作‘A交B’),即A I B={x|x∈A,且x∈B}.如:{1,2,3,6}I{1,2,5,10}={1,2}.又如:A={a,b,c,d,e},B={c,d,e,f}.则A I B={c,d,e}.2.并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集.记作:A Y B(读作‘A并B’),即A Y B ={x|x∈A,或x∈B}).如:{1,2,3,6}Y{1,2,5,10}={1,2,3,5,6,10}.三、讲解范例:例1 设A={x|x>-2},B={x|x<3},求A I B.解:A I B={x|x>-2}I{x|x<3}={x|-2<x<3}.例2 设A={x|x是等腰三角形},B={x|x是直角三角形},求A I B.解:A I B={x|x是等腰三角形}I{x|x是直角三角形}={x|x是等腰直角三角形}.例3 A={4,5,6,8},B={3,5,7,8},求A Y B.解:A Y B={3,4,5,6,7,8}.例4设A={x|x是锐角三角形},B={x|x是钝角三角形},求A Y B.解:A Y B={x|x是锐角三角形}Y{x|x是钝角三角形}={x|x是斜三角形}.例5设A={x|-1<x<2},B={x|1<x<3},求A∪B.解:A Y B={x|-1<x<2}Y{x|1<x<3}={x|-1<x<3}.说明:求两个集合的交集、并集时,往往先将集合化简,两个数集的交集、并集,可通过数轴直观显示;利用韦恩图表示两个集合的交集,有助于解题例6(课本第12页)设A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},求A I B. 解:A I B={(x,y)|y=-4x+6}I {(x,y)|y=5x-3}={(x,y)|⎩⎨⎧-=+-=3564x y x y }={(1,2)} 注:本题中,(x,y)可以看作是直线上的的坐标,也可以看作二元一次方程的一个解.形如2n (n ∈Z )的整数叫做偶数,形如2n+1(n ∈Z )的数叫做奇数,全体奇数的集合叫做奇数集全体偶数的集合叫做偶数集.四、练习与作业1.课本P11练习(A)2.课本P11练习(B)五、小结:本节课学习了以下内容:A ∩B={x|x ∈A,且x ∈B}――是同时属于A,B的两个集合的所有元素组成的集合.A ∪B={x|x ∈A 或x ∈B}――是属于A 或者属于B 的元素所组成的集合.课 题:1.3集合之间的关系(5)教学目的:(1)进一步理解交集与并集的概念;(2)熟练掌握交集和并集的表示法,会求两个集合的交集和并集;(3)掌握集合的交、并的性质;(4)掌握有关集合的术语和符号,并会用它们表示一些简单的集合教学重点:集合的交、并的性质 教学难点:集合的交、并的性质课时安排:4课时教学过程:一、复习引入:1.交集的定义一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集. 记作A I B (读作‘A 交B ’),即A I B={x|x ∈A ,且x ∈B }.2.并集的定义一般地,由所有属于A 或属于B 的元素所组成的集合,叫做A,B 的并集. 记作:A Y B (读作‘A 并B ’),即A Y B ={x|x ∈A ,或x ∈B}).二、讲解新课:交集、并集的性质 用文图表示(1)若A ⊇B,则A Y B=B, A Y B=B(2)若A ⊆B 则A I B=A A IB=A (3)若A=B, 则A I A=A A YA=A(4)若A,B 相交,有公共元素,但不包含则A I B A,A I B BA YB A, A Y B B (5) )若A,B 无公共元素,则A I B=Φ(学生思考、讨论、分析:从图中你能看出那些结论?):从图中观察分析、思考、讨论,完全归纳以下性质,并用集合语言证明:B A(B)A BA1.交集的性质(1)A I A=A A I Φ=Φ,A I B=B I A (2)A I B ⊆A, A I B ⊆B .2.并集的性质(1)A Y A=A (2)A Y Φ=A (3)A Y B=B Y A (4)A Y B ⊇A,A Y B ⊇B联系交集的性质有结论:Φ⊆A I B ⊆A ⊆A Y B .三、讲解范例:例1(课本第12页)设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求C u A, C u B, (C u A) I (C u B), (C u A) Y (C u B), C u (A Y B) , C u (A I B).解:C u A={1,2,6,7,8} C u B={1,2,3,5,6}(C u A) I (C u B)= C u (A Y B)={1,2,6}(C u A) Y (C u B)= C u (A I B)={1,2,3,5,6,7,8}四、课内练习及课外作业1.课本P12练习(A)2.课本P13 练习(B) 4.不等式|x-1|>-3的解集是 ®五、小结: (略)课 题:集合之间的关系(6) 教学目的:(1)使学生理解补集的概念;(2)使学生了解全集的意义教学重点:补集的概念教学难点:弄清全集的意义课时安排:4课时教学过程:一、复习引入:上节所学知识点复习:二、讲解新课:全集与补集1 补集:一般地,设S是一个集合,A是S的一个子集(即SA⊆),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作ACS,即CS A=},|{AxSxx∉∈且2、性质:CS (CSA)=A ,CSS=φ,CSφ=S3、全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U表示三讲解范例:例1(1)若S={1,2,3,4,5,6},A={1,3,5},求CSA(2)若A={0},求证:CNA=N*(3)求证:CRQ是无理数集解(1)∵S={1,2,3,4,5,6},A={1,3,5},∴由补集的定义得CSA={2,4,6}证明(2)∵A={0},N={0,1,2,3,4,…},N*={1,2,3,4,…}∴由补集的定义得CNA=N*证明(3)∵Q是有理数集合,R是实数集合∴由补集的定义得CRQ是无理数集合例2已知全集U=R,集合A={x|1≤2x+1<9},求CU A解:∵A={x|1≤2x+1<9}={x|0≤X<4},U=R0 4 x∴CUA={x|x<0,或x≥4}例3 已知S={x|-1≤x+2<8},A={x|-2<1-x≤1},B={x|5<2x-1<11},讨论A与CSB的关系解:∵S={x|-3≤x<6},A={x|0≤x<3}, B={x|3≤x<6}∴CSB={x|-3≤x<3}∴A⊆CSB四、练习:1、已知全集U={x|-1<x<9},A={x|1<x<a},若A≠φ,则a的取值范围是(D)(A)a<9 (B)a≤9 (C)a≥9 (D)1<a≤92、已知全集U={2,4,1-a},A={2,a2-a+2}如果CUA={-1},那么a的值为 23、已知全集U,A是U的子集,φ是空集,B=CU A,求CUB,CUφ,C U U(CU B= CU(CUA,CUφ=U,C U U=φ)4、设U={梯形},A={等腰梯形},求CUA.解:CUA={不等腰梯形}.5、P12练习B五、小结:本节课学习了以下内容:补集、全集及性质CS (CSA)=A课题:充要条件(7)一、教学目的(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;(2)理解逻辑联结词“或”“且”“非”的含义;(3)能用逻辑联结词和简单命题构成不同形式的复合命题;(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;(5)会用真值表判断相应的复合命题的真假;(6)在知识学习的基础上,培养学生简单推理的技能.二、教学重点难点:重点是判断复合命题真假的方法;难点是对“或”的含义的理解.三、课时安排:5课时四、教学过程1.新课导入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)学生举例:平行四边形的对角线互相平. (1)两直线平行,同位角相等. (2)教师提问:“......相等的角是对顶角”是不是命题? (3)(同学议论结果,答案是肯定的.)教师提问:什么是命题?(学生进行回忆、思考.)概念总结:对一件事情作出了判断的语句叫做命题.(教师肯定了同学的回答,并作板书.)由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.(教师利用投影片,和学生讨论以下问题.)例1 判断以下各语句是不是命题,若是,判断其真假:命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.2.讲授新课大家看课本从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)(1)什么叫做命题?可以判断真假的语句叫做命题.判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).(2)介绍逻辑联结词“或”、“且”、“非”.“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.命题可分为简单命题和复合命题.不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.(4)命题的表示:用,,,,……来表示.(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.复合命题一般有“或”、“且”、“非”、“若则”等形式.给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.对于给出“若则”形式的复合命题,应能找到条件和结论.在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.3.巩固新课例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.(1);(2)0.5非整数;(3)内错角相等,两直线平行;(4)菱形的对角线互相垂直且平分;(5)平行线不相交;(6)若ab=0,则a=0(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)例3 写出下表中各给定语的否定语若给定语为等于大于是都是至多有一个至少有一个至多有个其否定语分别为分析:“等于”的否定语是“不等于”;“大于”的否定语是“小于或者等于”;“是”的否定语是“不是”;“都是”的否定语是“不都是”;“至多有一个”的否定语是“至少有两个”;“至少有一个”的否定语是“一个都没有”;“至多有n个”的否定语是“至少有n+1个”.(如果时间宽裕,可让学生讨论后得出结论.)置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)4.课堂练习:第16页练习A,B.5.课外作业:第19页练习A、B复习考试:共6节。

相关文档
最新文档