几道中点题目
三角形的中位线基础题30道选择题附详细答案
9.5 三角形的中位线基础题汇编(1)...2=...7+9.5 三角形的中位线基础题汇编(1)参考答案与试题解析一.选择题(共30小题)1.(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()2.(2014•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()3.(2014•泸州)如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为()4.(2014•宜昌)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()MN=MN=AB5.(2014•牡丹江一模)如图,⊙O的半径为5,弦AB=8,点C在弦AB上,且AC=6,过点C作CD⊥AB交OB 于点D,则CD的长为()AB=4EO=1.5=47.(2013•怀化)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()AB8.(2013•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()BC EF=则新三角形的周长为AC BC EF=(∴等边三角形的中位线长是:12.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()EF=.C D.×(14.(2013•德庆县二模)已知△ABC的三边长分别为3cm,4cm,5cm,D,E,F分别为△ABC各边的中点,则△DEF15.(2013•潮安县模拟)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()DAB=4BC=216.(2013•南岗区三模)如图,在△ABC中,∠ACB=90°,AC=BC=4,M是CB中点,P、N分别在AC、AB上,若△APN的面积与△ANM的面积相等,则AP长为()DPG=ANAP=AC=17.(2012•台州)如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()18.(2012•聊城)如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()D=BC=19.(2012•佛山)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图AC EF=AC EF=AC.cm ∴相似比是21.(2012•朝阳)如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为()BC AC EF=AB BC EF=23.(2012•邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是()ABAC24.(2012•德城区三模)如图,在△ABC中,BC=6,M、N分别是AB、AC的中点,则MN等于()DMN=25.(2012•黄埔区一模)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的周长为()AD=BD=AC BCAB=2AC=2BC=226.(2012•长宁区一模)如图,若DE是△ABC的中位线,△ABC的周长为1,则△ADE的周长为()D.AD=,的周长为边长的.27.(2012•盐田区二模)如图,▱ABCD的对角线AC、BD相交于点O,E是BC边的中点,OE=1.那么AB=().29.(2011•黔南州)如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()+2BE=CE=AB=3AC=330.(2011•义乌市)如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()BC。
2023全国乙卷数学立体几何大题解析
2023全国乙卷数学立体几何大题解析立体几何作为数学中的一个重要分支,一直以来都是考试中的热点和难点之一。
2023年全国乙卷数学考试中的立体几何大题更是备受关注,本文将对这部分题目进行深度解析,帮助大家更好地理解和掌握相关知识。
1. 题目一:已知正方体ABCDEFGH的棱长为a,M为AB的中点,N 为EH的中点,连接MN并延长至P,使得MP=2MN。
求向量AP的方向余弦。
这道题目首先考察了对正方体内部点线向量的理解和运用能力。
我们可以通过建立坐标系,假设A点为原点,利用向量的加减和内积运算求解。
另外,要注意在解题过程中注意向量的方向和夹角的计算,以及结果的向量表达形式。
2. 题目二:已知正方体ABCDEFGH的棱长为a,直线l与平面ABCD 相交于点P,与线段AC、BD的中点分别为M、N,求证:直线PM、PN在平面ABCD的投影相交于ABC的中点。
这道题目考察了立体几何中的投影性质和平行线的特性。
首先需要通过建立直角坐标系,确定各个点的坐标,然后利用向量的投影性质和平面几何的性质进行推导。
要注意利用中点和投影的定义,以及平行线性质的灵活运用。
总结回顾:通过对以上两道题目的深度解析,我们可以发现在解题过程中需要灵活运用向量、坐标和平面几何的相关知识。
在解答立体几何题目时,建立合适的坐标系和几何图形模型是非常重要的。
另外,要注意在解题过程中耐心思考,多角度思考问题,尝试各种解法来提高解题效率和准确性。
个人观点:立体几何作为数学中的重要部分,不仅在考试中占有一席之地,更是对我们空间想象力的锻炼和数学思维的培养。
通过深入学习和实践,我们能更好地掌握立体几何相关知识,提升解题水平和数学素养。
结语:通过本文的深度解析,相信大家对2023年全国乙卷数学立体几何大题有了更清晰的认识。
在接下来的学习和备考中,希望大家能够多加练习,并善于总结经验,不断提高解题能力和应试水平。
祝大家在数学考试中取得优异的成绩!立体几何作为数学的一个重要分支,向来都是考试中的难点和热点。
三角形中位线专项训练(30道)(解析版)
三角形中位线专项训练(30道)(解析版)三角形中位线专项训练(30道)(解析版)1. 题目解析三角形中位线是指连接一个三角形的两个非邻边中点的线段。
在这个专项训练中,我们将解答30道关于三角形中位线的问题,并提供详细的解析,帮助你更好地理解和掌握相关概念和解题方法。
2. 题目设置2.1 第一类题目:中位线长度计算2.1.1 题目1:已知一个三角形的三边长度分别为a, b, c,求其中位线长度。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以计算出中位线长度为(c²+a²-0.5b²)/(2c)。
2.1.2 题目2:已知一个等边三角形的边长为a,求其中位线长度。
解析:等边三角形中位线长等于边长的一半,即中位线长度为a/2。
2.1.3 题目3:已知一个等腰三角形的底边长度为a,腰长为b,求其中位线长度。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以计算出中位线长度为(a²+b²)/(2a)。
2.2 第二类题目:中位线位置关系2.2.1 题目4:在一个等边三角形中,证明中位线与底边垂直且分割底边的比例为2:1。
解析:根据等边三角形的性质,中位线和底边垂直。
利用中位线定义和几何性质,可以证明中位线分割底边的比例为2:1。
2.2.2 题目5:已知在一个等腰三角形中,中位线长为x,底边长为y,求腰长。
解析:根据中位线定义,连接三角形的两个非邻边中点可以得到一个平行四边形。
利用平行四边形的性质,可以得到腰长为2x-y。
2.2.3 题目6:已知在一个一般三角形中,中位线等分了三角形的面积,证明这个三角形是等腰三角形。
解析:假设中位线等分了三角形的面积,利用三角形面积公式可以得到一个关于中位线和底边的方程。
通过求解这个方程,可以证明这个三角形是等腰三角形。
3. 题目变体上述题目只是针对三角形中位线的一部分问题进行了训练和解析。
初一线段题10道带答案
初一线段题10道带答案做题先画图,否则思路没弄明白,容易出做的。
1线段AB=3cm,在线段AB上取一点M,使AM=BM,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线上取一点D,使AD=1/2AB。
(1)求线段BC DC的长,(2)点M是哪些线段的中点?解由题意可得下图:1)因为AC=3BC又因为AM=BM所以AM=MB=BC=AB/2=1.5CM又因为AD=1/2AB所以DA=AM=MB=BC所以BC=DA+AB+BC=1.5+1.5+3=6CM2)由第一问已经求得DA=AM=MB=BC所以DA+AM=MB+BC即DM=MC所以M是AB的中点,同时也是线段DC 的中点。
2已知线段AB=100,P为AB上一点,M为AB的中点,N为AP 的中点,若MN=15,求AP的长?由题意可得下图图①图②1当P靠近B,图1因为N是AP中点,M是AB的中点所以AP=2AN=2(AM-MN)即=2(100/2-15)=702当P更靠近A 如上图2同理: AP=2AN=2(AM-MN)=70这里如果AP=70 ,那么AB>100所有P这个点在MB 之间。
(AP<100,AP的中点N只能在AM之间,否则就会出现AP >100的情况,还是有一定的挑战性的)3.已知AB:AC=1:3,AC:AD=1:4,且AB+AC+AD=40,则AB,BC,CD的长分别是多少?解:由题意可得因为AB:AC=1:3则AC=3AB又因为AC:AD=1:4所以3AB:AD=1:4则AD=12AB所以AB+AC+AD=40AB+3AB+12AB=40即AB=2.5所以AC=7.5AD=30所以BC=2AB=5CD=DA-AC=22.54.已知线段AB,延长AB到点C,使BC=3分之1AB,D为AC中点,若DC=4CM,求AB的长度?解由题意可得因为BC=1 /3 AB又因为D是AC中点所以AC=2AC=8AB=AC-BCAB=8-1 /3 AB所以AB=65 线段AB被分成2:3:4三部分,第一部分中点和第三部分中点之间的距离为4.2cm,求AB的长度解由题意可得下图因为E是AC的中心F是DB 中点因为AC:CD:DB=2:3:42EC:CD:2DF=2:3:4DC=3EC DC=3/2DF因为EF=4.2EC+CD+DF=4.2EC+3EC+2EC=4.2所有EC=0.7DF=1.4CD=2.1所AB=AC+CD+DBAB= 2EC+CD+2DF=2*0.7+2.1+1.4*2=6.3CM6 B,C是线段AD上的两点,且CD=1/2AD,AC=3厘米,BD=4厘米,求线段AB的长解:按题意得由CD=1/2ADC是AD的中点即CD=AC=3AD=2CD=6AB=AD-BD=6-4=2CM7点B,C在线段AD上,M是线段AB的中点,N是线段CD的中点,若MN=a,BC=b,则AD的长度是多少?解:由题可得MF=a,BC=bMB+CN+BC=aMB+CN=a-b所以AD=AB+BC+CD因为M是线段AB的中点,N是线段CD的中点AD=2MB+BC+2CN=2(a-b)+b所以AD=2a-b8 点C、E、F在线段AB上,一共有多少条线段?解由题意可得4+3+2+1=10简单的画图理解也可以记住n*(n-1)/2=5*4/2=10不能理解就多画基础,画着画着就理解了9 已知线段AC和BC在一条直线上,如果AC=5.6cm,BC=2.4cm。
高中奥林匹克竞赛数学平面几何100题——珍藏版
高中奥林匹克竞赛数学平面几何100题——珍藏版高中数学联赛的几何题目有100道,难度较高。
这些题目涉及到各种不同的几何概念和定理,需要考生具备扎实的数学基础和丰富的解题经验。
在这些题目中,有许多需要考生进行证明,需要考生熟练掌握各种证明方法和技巧。
同时,还有一些需要考生进行画图,需要考生具备良好的几何直观和手绘能力。
这些几何题目的难度不仅仅在于其题目本身,还在于考试的时间限制。
考生需要在有限的时间内解决尽可能多的问题,因此需要考生具备快速解题的能力和良好的时间管理能力。
为了更好地应对这些几何题目,考生需要在平时的研究中注重基础知识的掌握和解题技巧的训练。
同时,还需要多做一些类似的练题目,以提高自己的解题水平和应对能力。
总之,高中数学联赛的几何题目难度较高,需要考生具备扎实的数学基础、丰富的解题经验、良好的几何直观和手绘能力、快速解题的能力和良好的时间管理能力。
考生需要在平时的研究中注重基础知识的掌握和解题技巧的训练,并多做类似的练题目,以提高自己的解题水平和应对能力。
1.研究证明角平分在这一部分中,我们将研究如何证明一个角被平分。
这是一个非常基础的几何问题,但是它的应用非常广泛。
我们将介绍几种不同的证明方法,包括使用角平分线的定义、角度相等、相似三角形等。
2.研究证明四点共圆在这一部分中,我们将研究如何证明四个点共圆。
这个问题也是几何学中的基础问题之一。
我们将介绍几种不同的证明方法,包括使用圆的定义、圆心角、垂直等。
3.研究证明角的倍数关系在这一部分中,我们将研究如何证明角的倍数关系。
这是一个非常重要的几何问题,因为它在许多几何证明中都有应用。
我们将介绍几种不同的证明方法,包括使用角度相等、相似三角形等。
4.证明线与圆相切在这一部分中,我们将研究如何证明一条线与一个圆相切。
这是一个非常基础的几何问题,但是它的应用非常广泛。
我们将介绍几种不同的证明方法,包括使用切线的定义、圆心角等。
5.证明垂直在这一部分中,我们将研究如何证明两条线段垂直。
初一数学动点问题20题及答案
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
初一下数学几何题10题
初一下数学几何题10题
以下是10道初一下学期的数学几何题:
已知线段AB上有两点C和D,且AC=CD=DB。
若AB=12CM,求CD的长。
在三角形ABC中,AB=AC,D为BC上一点,且∠BAD=30°。
求证:∠ADC=75°。
已知∠AOB=90°,点C在∠AOB内部,且∠AOC=30°。
若OM平分∠AOC,求∠BOM的度数。
在平行四边形ABCD中,E、F分别为AB、CD上的中点,且EF与AC 相交于点G。
求证:AG=CG。
已知△ABC中,∠C=90°,AC=BC,D为AB上一点,且∠ADC=45°。
求证:AD=CD。
在矩形ABCD中,AB=6CM,BC=8CM。
若E为BC上一点,且AE=AB,求CE的长。
已知△ABC中,∠C=90°,D为AB的中点,DE⊥AB交BC于E。
求证:△BDE是等腰三角形。
在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3CM,BC=7CM。
求梯形ABCD的面积。
已知△ABC中,AB=AC,D为BC上一点,且∠BAD=∠CAD。
求证:BD=CD。
已知平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF。
求证:四边形AFCE是平行四边形。
这些题目涉及了线段、角度、三角形、平行四边形、等腰梯形等基础知识,旨在检验学生对初一下学期数学几何内容的掌握程度。
数学十道解决问题及答案
数学十道解决问题及答案题目如下:1. 一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行 75 千米,慢车每小时行 65 千米,相遇时快车比慢车多行了 40 千米,甲乙两地相距多少千米?2. 学校买来 6 张桌子和 5 把椅子共付 455 元,已知每张桌子比每把椅子贵30 元,桌子和椅子的单价各是多少元?3. 3 箱苹果重 45 千克。
一箱梨比一箱苹果多 5 千克,3 箱梨重多少千克?4. 甲乙二人从两地同时相对而行,经过 4 小时,在距离中点 4 千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?5. 李军和张强付同样多的钱买了同一种铅笔,李军要了 13 支,张强要了 7 支,李军又给张强 0.6 元钱。
每支铅笔多少钱?6. 甲乙两辆客车上午 8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午 2 点。
甲车每小时行 40 千米,乙车每小时行 45 千米,两地相距多少千米?(交换乘客的时间略去不计)7. 学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走 4.5 千米,第二小组每小时行 3.5 千米。
两组同时出发 1 小时后,第一小组停下来参观一个果园,用了 1 小时,再去追第二小组。
多长时间能追上第二小组?8. 有甲乙两个仓库,每个仓库平均储存粮食 32.5 吨。
甲仓的存粮吨数比乙仓的 4 倍少 5 吨,甲、乙两仓各储存粮食多少吨?9. 甲、乙两队共同修一条长 400 米的公路,甲队从东往西修 4 天,乙队从西往东修 5 天,正好修完,甲队比乙队每天多修 10 米。
甲、乙两队每天共修多少米?10. 已知一张桌子的价钱是一把椅子的 10 倍,又知一张桌子比一把椅子多 288 元,一张桌子和一把椅子各多少元?答案如下:1. 思考:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
三角形的中位线基础题30道解答题
9.5 三角形的中位线基础题汇编(3)BCBC=3DE=6中点重合)EF=EF=CE=,求BCD=EM=(9.5 三角形的中位线基础题汇编(3)参考答案与试题解析一.解答题(共30小题)1.如图,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点.四边形EGFH是平行四边形吗?请证明你的结论.2.请写出“如图,在△ABC中,若DE是△ABC的中位线,则DE=BC”的逆命题.判断逆命题的真假,并说明你的理由?BC3.在四边形ABCD中,BD、AC相交于点O,AC=BD,E、F分别是AB、CD的中点,连接EF,分别交AC、BD 于点M、N.判断△MON的形状,并说明理由.EG=4.如图,在△ABC中,AD⊥BC于点D,E、F、G分别是BC、AC、AB的中点,若AB=BC=3DE=6,求四边形DEFG的周长.BC=3DE=6BC=3DE=6EF=×BC=×,AB=×=GF+DG+DE+EF=+3+2+3=.5.如图,在△ABC中(AB≠AC),M为BC的中点,AD平分∠BAC交BC于D,BE⊥AD于E,CF⊥AD于F,求证:ME=MF.MF=ME=GBME=6.△ABC中,D为BC中点,E为AD中点,直线BE交AC于F,求证:AC=3AF.7.如图,已知△XYZ中,MY=NZ,A、B分别是YN、MZ的中点,延长AB、BA分别交XZ、XY于点D、C,求证:XC=XD.BE=NZ BE=MY8.如图,AB为⊙O的一条弦,CD为直径(C不与A、B及中点重合),作CE⊥AB于E,DF⊥AB于F,问CE﹣DF的值是否变化?为什么?9.△ABC中,D为CB的延长线上一点,BE是∠ABD的角平分线,AE⊥BE,F是AC的中点,试说明:EF∥BC,且EF=(AB+BC).EF=10.如图,在四边形ABCD中,E、F分别是AD、BC的中点,连接FE并延长,分别交CD的延长线于点M、N,∠BME=∠CNE,求证:AB=CD.GE=GF=CDAB GF=CD11.已知,如图,AB=AC=BE,CD为△ABC中AB边上的中线,求证:CE=2CD.12.如图,在△ABC中,∠ACB=90°,点D在AB上,AC=AD,DE⊥CD交BC于点E,AF平分∠BAC交BC于F点.(1)求证:AF∥DE;(2)当AC=6,AB=10时,求BE的长.==,,BE=13.在四边形ABCD中,AB∥CD,E、F是AD、BC中点.求证:EF=(AB+CD),EF∥CD.EF=DM=14.如图,已知△ABC中,点D是BA上一点,BD=AC,E,F分别是BC,DA的中点,EF和CA的延长线相交于点G.求证:AG=AF.15.如图,AD是△ABC的中线,E,F,G分别是AB,AD,DC的中点,求证:EG与DF互相平分.ACED=16.已知:如图,点B是AD的中点,点E是AB的中点,AB=AC 求证:CE=CD.ACBE=CDCE=17.在△ABC中,AD⊥BC于D点,BE为中线,且∠CBE=30°.求证:AD=BE.EF=EF=EF=18.如图,在△ABC中,D、E、F分别是AB、BC、AC的中点,AB=6,AC=8,DF=5,求AE的长.BC=519.已知如图,△ABC中,AD为BC的中线,E为AD的中点,延长CE交AB于点F,求的值.(用多种方法解答);或过BF=DM==20.在△ABC中,D是AB的中点,DC⊥AC且tan∠BCD=,求tanA的值.BCD=,设,即BCD==ABBE=CE=AC.21.已知在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN,求证:MN∥AC.22.已知:如图,在△ABC中,AB>AC,AD平分∠BAC,BE垂直AD延长线于E,M是BC中点.求证:EM=(AB﹣AC).CF=CF23.如图,在△ABC中,若∠B=2∠C,AD⊥BC,E为BC边中点,求证:AB=2DE.24.如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM.PM=PN=ADBC PN=AD25.如图,△ABC中,BM平分∠ABC,AM⊥BM,垂足M点,点N为AC的中点,AB=10,BC=6,求MN长度.MN=26.已知:△ABC,用刻度尺量出△ABC的各边的长度,并取各边的中点,画出△ABC的三条中线,你发现了什么?27.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为E,F是BC中点,探究BD与EF的关系.并说明理由.EF=28.如图,平行四边形ABCD的对角线AC,BD相交于点O,AE=EB.求证:OE∥BC.29.△ABC中,AD是∠BAC的平分线,G是BC的中点,过G作直线FG平行于AD,分别交AB和CA的延长线于点E和点F,求证:BE=CF=(AB+AC).BF=CE=30.如图,在△ABC中,AD=DE=EF=FB,AG=GH=HI=IC,已知BC=8,则DG+EH+FI的长是多少?BCBC BCDG+EH+FI=BC+BC=。
全等三角形经典例题与答案13道
1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE ∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4 即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:CD=1/2AB延长CD与P,使D为CP中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C作CG∥EF交AD的延长线于点G CG∥EF,可得,∠EFD=∠CGD DE=DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB∴,∠EFD=∠1 ∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG 又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC∴∠EAD=∠CAD ∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF ∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。
三角形的中位线基础题30道填空题附详细答案
9.5 三角形的中位线基础题汇编(2)AB9.5 三角形的中位线基础题汇编(2)参考答案与试题解析一.填空题(共30小题)1.(2014•鞍山)如图,H是△ABC的边BC的中点,AG平分∠BAC,点D是AC上一点,且AG⊥BD于点G.已知AB=12,BC=15,GH=5,则△ABC的周长为49.2.(2014•海门市模拟)如图,在△ABC中,∠ACB=52°,点D,E分别是AB,AC的中点.若点F在线段DE上,且∠AFC=90°,则∠FAE的度数为64°.EF=EFC=3.(2014•昆明模拟)如图,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,并分别找出AC和BC 的中点M,N,如果测得MM=20m,那么A,B两点间的距离是40m.MN=4.(2014•秦淮区一模)如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点.已知B(﹣1,0),C(9,0),则点F的坐标为(4,6).=5.(2014•兴化市二模)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C=70°.6.(2013•漳州)如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE=70度.7.(2013•澄海区模拟)如图,平地上A、B两点被池塘隔开,测量员在岸边选一点C,并分别找到AC和BC的中点M、N,经量得MN=24米,则AB=48米.MN=8.(2013•滨湖区二模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AC、AB的中点,DE=3,CE=5,则AC= 8.AC==89.(2013•丰南区二模)如图,DE是△ABC的中位线,△ADE的面积=2,则四边形BCED的面积=6.利用三角形中位线定理以及相似三角形的判定与性质得出,进而求出即可.DE BC,=10.(2012•盐城)如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A 落在三角形所在平面内的点为A1,则∠BDA1的度数为80°.11.(2012•阜新)如图,△ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成的第3个三角形,…,则第n个三角形的周长为26﹣n.×=32×,××=32)(12.(2012•德阳)如图,点D、E分别是△ABC的边AB、AC的中点,连接DE,若DE=5,则BC=10.BC13.(2012•大东区二模)如图,D、E分别是△ABC的边AB、AC的中点,若DE的长是3,则BC的长是6.14.(2012•义乌市模拟)如图,DE是△ABC的中位线,DE=2cm,则BC=4cm.×15.(2011•沙坪坝区模拟)如图,DE是△ABC的中位线,△ABC的周长为8,则△ADE的周长是4.AD=AB AE=BCBCAB AC(16.(2011•路南区一模)在△ABC中,D、E分别是边AB、AC的中点,若BC=3,则DE的长是.AB,故答案为:17.(2009•来宾)已知AB、CD分别是梯形ABCD的上、下底,且AB=8,CD=12,EF是梯形的中位线,则EF= 10.((18.(2008•房山区一模)如图,在△ABC中,D、E分别是AB、AC边的中点,AB=4,AC=6,DE=2.4,则△ABC 的周长是14.8.19.(2008•安溪县校级质检)梯形的上底、下底长分别是3cm、7cm,则它的中位线长为5cm.(20.(2007•静安区二模)在⊙O中,AB是直径,弦AC的弦心距为3,那么BC的长为6.OF= 21.(2005•遵义)如图,在梯形ABCD中,AD∥BC,中位线EF=5cm,高AH=4cm,则S梯形ABCD=20cm2.22.如图,△ABC中,AB=AC,D是AB边的中点,E是AB延长线上一点,且BE=AB,则CD:CE=1:2.ABCE=23.在△ABC中,∠BAC的角平分线AN⊥BN,M是BC的中点,已知AB=10,AC=22,则MN=6.中,MN=EC=((24.如图,M、P分别为△ABC的边AB、AC上的点,且AM=BM,AP=2CP,BP与CM相交于N.已知PN=1,则PB的长为4.25.如图,四边形ABCD的对角线AC、BD相交于点O,E、F、G分别是AB、OC、OD的中点,OA=AD,OB=BC,CD=AB,则∠FEG的角度是120°.GE=FE=CD=CD=ABABFEH==26.如图,△ABC中,D、F在AB上,且AD=BF,DE∥BC交AC于E,FG∥BC交AC于G.求证:DE+FG=BC.MN=MN=MN=MN=27.(2011•南充自主招生)如图△ABC中,AC>AB,AB=4,AC=x,AD平分∠BAC,BD⊥AD于D,点E是BC 的中点,DE=y,则y关于x的函数关系式为y=x﹣2.CF=(xx28.(2011•鼓楼区校级自主招生)如图,△ABC的三边长分别为3、5、6,BD与CE都是△ABC的外角平分线,M、N是直线BC上两点,且AM⊥BD于D,AN⊥CE于E,则DE的长等于7.29.(2014•安阳校级模拟)如图,DE是△ABC的中位线,DE=2cm,AB+AC=12cm,则梯形DBCE的周长为12 cm.AB CE=ACBD+CE+DE+BC=(×30.(2011•常州校级模拟)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是3,△EDC与△ABC的面积之比为.BD=的面积之比为:.21 / 21。
高中数学优质试题50道(附经典解析)149
高中数学优质试题50道(附经典解析)优质试题11.已知P 是ABC ∆内任一点,且满足AP x AB y AC =+,x 、y R ∈,则2y x +的取值范围是 ___ .解法一:令1x y AQ AP AB AC x yx yx y==++++,由系数和1x y x yx y+=++,知点Q 在线段BC 上.从而1AP x y AQ+=<.由x 、y 满足条件0,0,1,x y x y >>⎧⎨+<⎩易知2(0,2)y x +∈. 解法二:因为题目没有特别说明ABC ∆是什么三角形,所以不妨设为等腰直角三角形,则立刻变为线性规划问题了. 2.在平面直角坐标系中,x 轴正半轴上有5个点, y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个. 答案:30个优质试题21.定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为n a ,则式子90na n+的最小值为 . 【答案】13.【解析】当[)0,1n ∈时,[]0x x ⎡⎤=⎣⎦,其间有1个整数; 当[),1n i i ∈+,1,2,,1i n =-时,[]2(1)i x x i i ⎡⎤≤<+⎣⎦,其间有i 个正整数,故(1)112(1)12n n n a n -=++++-=+,9091122na n n n +=+-,由912n n=得,当13n =或14时,取得最小值13.2. 有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍同学要站在一起,则不同的站法有 种. 答案:192种优质试题31.已知直线l ⊥平面α,垂足为O .在矩形ABCD 中,1AD =,2AB =,若点A 在l 上移动,点B 在平面α上移动,则O ,D 两点间的最大距离为 .解:设AB 的中点为E ,则E 点的轨迹是球面的一部分,1OE =,DE =所以1OD OE ED ≤+=当且仅当,,O E D 三点共线时等号成立.2. 将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有 种. 答案:30种优质试题41. 在平面直角坐标系xOy 中,设定点(),A a a ,P 是函数()10y x x=>图象上一动点.若点,P A之间的最短距离为满足条件的实数a 的所有值为 . 解:函数解析式(含参数)求最值问题()222222211112222AP x a a x a x a x a a x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-++-=+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦因为0x >,则12x x+≥,分两种情况:(1)当2a ≥时,min AP ==,则a = (2)当2a <时,min AP =1a =-2. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 种. 答案:90种优质试题51.已知,x y ∈R ,则()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为 .解: 构造函数1yx =,22y x =-,则(),x x 与2,y y ⎛⎫- ⎪⎝⎭两点分别在两个函数图象上,故所求看成两点(),x x 与2,y y⎛⎫- ⎪⎝⎭之间的距离平方,令2220802y x mx mx m m y x =+⎧⎪⇒++=⇒∆=-=⇒=⎨=-⎪⎩所以y x =+1y x =平行的22y x=-的切线,故最小距离为2d = 所以()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为42. 某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有 种. 答案:140种优质试题61.已知定圆12,O O 的半径分别为12,r r ,圆心距122O O =,动圆C 与圆12,O O 都相切,圆心C 的轨迹为如图所示的两条双曲线,两条双曲线的离心率分别为12,e e ,则1212e e e e +的值为( )A .1r 和2r 中的较大者B .1r 和2r 中的较小者C .12r r +D .12r r -解:取12,O O 为两个焦点,即1c =若C 与12,O O 同时相外切(内切),则121221CO CO R r R r r r -=--+=-若C 与12,O O 同时一个外切一个内切,则121221CO CO R r R r r r -=---=+因此形成了两条双曲线.此时21211212212111221122r r r r e e e e r r r r +-++=-+,不妨设21rr >,则12212e e r e e += 2.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有 种. 答案:6种优质试题71. 已知12,F F 是双曲线()222210,0x y a b ab-=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N,且M 、N 均在第一象限,当直线1//MF ON 时,双曲线的离心率为e ,若函数()222f x x x x=+-,则()f e = .解:()222,x y c M a b by xa ⎧+=⎪⇒⎨=⎪⎩1F M b k a c=+,所以ON bk a c =+,所以ON 的方程为b y x a c=+, 所以22221x y a b N b y x a c ⎧-=⎪⎛⎫⎪⇒⎨⎪=⎪+⎩又N 在圆222x y c +=上,所以222a a c c ⎛⎫⎛⎫++=所以322220e e e +--=,所以()2222f e e e e=+-=2.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有 个. 答案:28个优质试题81. 已知ABC ∆的三边长分别为,,a b c ,其中边c 为最长边,且191ab+=,则c 的取值范围是 .解:由题意知,,a c b c ≤≤,故1919101a b c c c =+≥+=,所以10c ≥又因为a b c +>,而()1991016b aa b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭所以16c <故综上可得1016c ≤<2. 从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 种. 解: 48种优质试题91.在平面直角坐标系xoy中,已知点A是半圆()224024x y x x +-=≤≤上的一个动点,点C 在线段OA 的延长线上.当20OA OC =时,则点C的纵坐标的取值范围是 .解:设()22cos ,2sin A θθ+,()22cos ,2sin C λλθλθ+,1λ>,,22ππθ⎡⎤∈-⎢⎥⎣⎦由20OA OC =得:522cos λθ=+所以()()[]5sin 055sin 2sin 5,522cos 1cos cos 1C y θθθθθθ-=⋅⋅==∈-++-- 2. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是 种. 答案:20种优质试题101.点D 是直角ABC ∆斜边AB 上一动点,3,2AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC ∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是 .解:过点'B 作'B E CD ⊥于E ,连结,BE AE , 设'BCD B CD α∠=∠=,则有'2sin ,2cos ,2B E CE ACE πααα==∠=- 在AEC ∆中由余弦定理得22294cos 12cos cos 94cos 12sin cos 2AE παααααα⎛⎫=+--=+- ⎪⎝⎭在'RT AEB ∆中由勾股定理得22222''94cos 12sin cos 4sin 136sin 2AB AE B E ααααα=+=+-+=-所以当4πα=时,'AB取得最小值为2.从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有 种. 答案:45种优质试题111.已知函数()421421x x x x k f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 . 解:()421111421212x x x x x x k k f x +⋅+-==+++++ 令()110,13212x x g x ⎛⎤=∈ ⎥⎝⎦++当1k ≥时,()213k f x +<≤,其中当且仅当0x =时取得等号所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需223k +≥,所以14k ≤≤当1k <时,()213k f x +≤<,其中当且仅当0x =时取得等号所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需2213k +⋅≥,所以112k -≤< 综上可得,142k -≤≤ 2.在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 种. 答案:55种优质试题121.已知函数()2221f x x ax a =-+-,若关于x 的不等式()()0f f x <的解集为空集,则实数a 的取值范围是 . 解:()()()222111f x x ax a x a x a =-+-=---+⎡⎤⎡⎤⎣⎦⎣⎦ 所以()0f x <的解集为()1,1a a -+所以若使()()0f f x <的解集为空集就是1()1a f x a -<<+的解集为空,即min ()1f x a ≥+ 所以11a -≥+,即2a ≤-2.某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有 种. 答案:31116322C C C C 种优质试题131. 已知定义在R 上的函数()f x 满足①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]1,01,0,1x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数()122,0log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图象在区间[]3,3-上的交点个数为 .2. 若5(1)ax -的展开式中3x的系数是80,则实数a 的值是 . 答案:2优质试题141.()f x 是定义在正整数集上的函数,且满足()12015f =,()()()()212f f f n n f n +++=,则()2015f = .解:()()()()212f f f n n f n +++=,()()()()()212111f f f n n f n +++-=--两式相减得()()()()2211f n n f n n f n =---所以()()111f nn f n n -=-+所以()()()()()()()()201520142201420132012121201512015201420131201620152014320161008f f f f f f f f =⋅⋅=⋅⋅⋅==2. 某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:节目单上不同的排序方式 有 种. 答案:144种优质试题151. 若,a b 是两个非零向量,且a b a b λ==+,λ⎤∈⎥⎣⎦,则b 与a b -的夹角的取值范围是.解:令1a b ==,则1a b λ+=设,a b θ=,则由余弦定理得()22221111cos 1cos 22λπθθλ+--==-=-又λ⎤∈⎥⎣⎦,所以11cos ,22θ⎡⎤∈-⎢⎥⎣⎦所以2,33ππθ⎡⎤∈⎢⎥⎣⎦,所以由菱形性质得25,,36b a b ππ⎡⎤-∈⎢⎥⎣⎦2. 若(nx 的展开式中第三项系数等于6,则n = . 答案:12优质试题161.函数()22fx xx=+,集合()()(){},|2A xy f x f y =+≤,()()(){},|B x y f x f y =≤,则由A B的元素构成的图形的面积是 .解:()()(){}()()(){}22,|2,|114A x y f x f y x y x y =+≤=+++≤()()(){}()()(){},|,|22B x y f x f y x y x y x y =≤=-++≤画出可行域,正好拼成一个半圆,2S π=2. 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 种. 答案:1680种优质试题171. 在棱长为1的正方体1111A B C D A B C D -中,112A E AB =,在面ABCD 中取一个点F ,使1EF FC +最小,则这个最小值为 . 解:将正方体1111ABCD A B C D -补全成长方体,点1C 关于面ABCD 的对称点为2C ,连接2EC 交平面ABCD于一点,即为所求点F ,使1E F F C +最小.其最小值就是2EC .连接212,AC B C ,计算可得2121,,AC B C AB =,所以12AB C ∆为直角三角形,所以2EC =2. 若()62601261mx a a x a x a x +=++++ 且123663a a a a ++++=,则实数m的值为 . 答案:1或-3优质试题181. 已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线分别交双曲线的两条渐近线于点,P Q .若点P是线段1FQ 的中点,且12QF QF ⊥,则此双曲线的离心率等于 .解法一:由题意1F P b =,从而有2,a ab P c c⎛⎫- ⎪⎝⎭, 又点P 为1FQ 的中点,()1,0F c -,所以222,a ab Q c cc ⎛⎫-+ ⎪⎝⎭所以222ab b a c c a c ⎛⎫=-+ ⎪⎝⎭,整理得224ac =,所以2e =解法二:由图可知,OP 是线段1F P 的垂直平分线,又OQ 是12Rt F QF ∆斜边中线, 所以1260FOP POQ QOF ∠=∠=∠=,所以2e = 解法三:设(),,0Q am bm m >,则()1,Q F c a m b m =---,()2,QF c am bm =-- 由()()12,,0QF QF c am bm c am bm ⊥⇒-----=,解得1m =所以(),Q a b ,,22a c b P -⎛⎫⎪⎝⎭所以22b b ac a-=-⋅,即2c a =,所以2e =2. 现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 . 答案:18优质试题191. 已知O 为坐标原点,平面向量,,OA OB OC 满足:24OA OB ==,0OA OB =,()()20OC OAOC OB --=,则对任意[]0,2θπ∈和任意满足条件的向量OC ,cos 2sin OC OA OB θθ-⋅-⋅的最大值为 . 解:建立直角坐标系,设()()(),,4,0,0,2C x y A B 则由()()20OC OA OC OB --=,得22220x y x y +--=(cos 2sin OC OA OB x θθ-⋅-⋅=等价于圆()()22112x y -+-=上一点与圆2216x y +=上一点连线段的最大值即为42. 已知数列{na }的通项公式为121n n a -=+,则01na C +12na C +33na C ++1n n na C += . 答案:23n n+优质试题201. 已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是 .解:因为实数,,a b c 成等差数列,所以2b a c =+,方程0ax by c ++=变形为2()20ax a c y c +++=,整理为()2(2)0a x y c y +++=所以2020x y y +=⎧⎨+=⎩,即12x y =⎧⎨=-⎩,因此直线0ax by c ++=过定点()1,2Q -画出图象可得90PMQ ∠=,PQ = 点M 在以PQ 为直径的圆上运动,线段MN的长度满足FN MN FN ≤即55MN ≤2. 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是 个. 答案:48优质试题211. 已知函数是定义在R上的偶函数,当x ≥时,()()()2502161122x x x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩.若关于x 的方程()()20,,f x af x b a b ++=∈⎡⎤⎣⎦R ,有且仅有6个不同实数根,则实数a的取值范围是 .解:设()t f x =,问题等价于()2g t t a t b =++=有两个实根12,t t ,12501,14t t <≤<<或1255,144t t =<< 所以()()0091014504g g h a g ⎧⎪>⎪⎪≤⇒-<<-⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩或()5124591024504a g h a g ⎧<-<⎪⎪⎪>⇒-<<-⎨⎪⎛⎫⎪= ⎪⎪⎝⎭⎩ 综上, 5924a -<<-或914a -<<- 2.在24的展开式中,x 的幂的指数是整数的项共有项. 答案:5优质试题221. 已知椭圆221:132x y C +=的左、右焦点为12,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()()()11221,2,,,,A B x y C x y 是2C上不同的点,且AB BC ⊥,则2y 的取值范围是 .解:由题意22:4Cy x=设:(2)1ABlx m y =-+代入22:4C y x =,得()24840y my m -+-= 所以142y m =-,()()2144121x m m m =-+=-设()21:(42)21BC l x y m m m=--++-代入22:4C y x=,得()2248164210y y m m m ⎡⎤+++--=⎢⎥⎣⎦所以122442y y m y m+=-+=-所以(][)2442,610,ym m=--+∈-∞-+∞2. 5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答) 答案:72优质试题231. 数列{}na 是公比为23-的等比数列,{}nb 是首项为12的等差数列.现已知99ab >且1010ab >,则以下结论中一定成立的是 .(请填上所有正确选项的序号) ①9100a a<;②100b >;③910b b >;④910a a >解:因为数列{}na 是公比为23-的等比数列,所以该数列的奇数项与偶数项异号,即: 当10a>时,2120,0k k a a -><;当10a <时,2120,0k k a a -<>;所以9100a a <是正确的;当10a>时,100a <,又1010a b >,所以100b <结合数列{}nb 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的.故知:910b b >当10a<时,90a <,又99a b >,所以90b <结合数列{}nb 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的.故知:910bb >综上可知,①③一定是成立的. 2. 设5nx (的展开式的各项系数之和为M , 二项式系数之和为N ,若M -N =240, 则展开式中x 3的系数为 . 答案:150优质试题241. 已知集合(){}2,|21A x y y x bx ==++,()(){},|2B x y y a x b ==+,其中0,0a b <<,且A B 是单元素集合,则集合()()(){}22,|1x y x a y b -+-≤对应的图形的面积为 . 解:()()()2221221202y x bx x b a x ab y a x b ⎧=++⎪⇒+-+-=⎨=+⎪⎩()()2222241201b a ab a b ∆=---=⇒+=所以由2210,0a b a b ⎧+=⎪⎨<<⎪⎩得知,圆心(),a b 对应的是四分之一单位圆弧MPN(红色).此时()()(){}22,|1x y x a y b -+-≤所对应的图形是以这四分之一圆弧MPN上的点为圆心,以1为半径的圆面.从上到下运动的结果如图所示:是两个半圆(ABO 与ODE )加上一个四分之一圆(AOEF ),即图中被绿实线包裹的部分。
中考数学10道经典题型分析
中考数学10道经典题型分析跟大家分享一下近期初三数学总复习的一些好的题目,相信总有一款题目你会感兴趣。
第1题、第2题:阿氏圆的经典题目。
这是最值经常见的题目,确定动点的运动轨迹,构造母子相似三角形解决线段的系数,三点共线时距离最短。
具体技巧请参加题目解答与分析。
经典题目1:阿氏圆经典题目。
经典题目2:阿氏圆问题。
第3题:费马点问题。
费马点问题也是最值问题最常见的题型,三线线段之和最短,通过旋转构造全等三角形,实现线段的转换(移到同一直线上),四点共圆时,线段之和最短。
经典题目3:胡不归问题。
第4题:胡不归问题。
胡不归问题同样的线段最值常见问题,AB+kCD的最值问题,首先要解决其中一条线段的K值,阿氏圆通常采用构造母子相似三角形来解决这个问题,而胡不归通常采用三角函数来解决这个问题。
这道综合题还是很不错的,值得练一练。
经典题目4:胡不归问题。
第5,6题:二次函数中的a,b,c问题。
在选择题中,这也算是比较有点难度的问题了,而且考试的频率往往非常高,需要熟练掌握。
基本的技巧我已经在下面列出了。
经典题目5:二次函数多结论问题。
经典题目7:二次函数多结论问题。
第7题:相似三角形综合题目。
这是一次模拟测验的倒数第2题,三角形综合题。
这道题比较好,是因为它不只一种解法,尤其是在第3问中,有不同的作辅助线的方法,有点意思。
经典题目7:三角形综合题。
第8题:中考压轴题模拟题。
这是深圳南山区联考模拟卷的压轴题,最后一问其实并不难,根据题意不难理解,动点的运动轨迹是某个圆的一段弧,在同一个圆中,同弧(弦)所对的圆周角相等,从而可以确定动点的运动轨迹,三点共线时,由距离最短。
具本思路和过程可参照下面答案。
经典题目8:中考压轴题目。
第9题:平行四边形的存在性问题。
这道题目真的很不错,弄懂这道题目,平行四边形的存在性问题就基本弄懂了。
我在参考答案中列举了三种常见的方法,其中包括点的坐标平移法,中点坐标(平行四边形对角顶点坐标之间的关系要熟练掌握)等。
最难小学奥数题100道及答案(完整版)
最难小学奥数题100道及答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?解题方法:将60 分解质因数,60 = 2×2×3×5 = 3×4×5答案:3、4、5题目2:在一个减法算式里,被减数、减数与差的和是180,减数比差大10。
差是多少?解题方法:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 180,被减数= 90。
又因为减数-差= 10,减数+ 差= 90,所以差= (90 - 10)÷2 = 40答案:40题目3:甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次相遇在离 B 地55 千米处。
A、B 两地相距多少千米?解题方法:第一次相遇时,甲走了75 千米,两人共走了一个全程。
从开始到第二次相遇,两人共走了三个全程,所以甲走了75×3 = 225 千米。
此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米答案:170 千米题目4:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?解题方法:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208答案:208题目5:有一堆苹果,平均分给5 个人多4 个,平均分给6 个人多5 个,平均分给7 个人多6 个。
这堆苹果最少有多少个?解题方法:如果这堆苹果再多1 个,就能正好平均分给5 个人、6 个人、7 个人。
5、6、7 的最小公倍数是210,所以这堆苹果最少有210 - 1 = 209 个答案:209 个题目6:一个长方体,如果高增加2 厘米,就变成一个正方体。
这时表面积比原来增加56 平方厘米。
原来长方体的体积是多少立方厘米?解题方法:增加的表面积是 4 个相同的长方形的面积,长方形的宽是2 厘米,长就是正方体的棱长,正方体棱长= 56÷4÷2 = 7 厘米,原长方体高= 7 - 2 = 5 厘米,体积= 7×7×5 = 245 立方厘米答案:245 立方厘米题目7:甲、乙、丙、丁四人拿出同样多的钱,合伙订购同样规格的若干件货物。
四年级直线,线段,射线的题
四年级直线,线段,射线的题以下是关于直线、线段和射线的20道题目:1.画出一个直线AB。
2.用两个不同的点P、Q来表示一条线段。
3.用一个起点O和一个通过点P的箭头来表示一条射线OP。
4.画出两个平行的直线CD和EF。
5.比较线段AB和线段CD的长度,哪个更长?6.如果点P在线段AB的中点,那么线段AP和线段PB的长度相等吗?7.点M在线段NP的中点上,如果点N到点M的距离是5厘米,那么点M到点P 的距离是多少?8.射线OA上有一个点B,如果OB的长度是8厘米,那么OA的长度是多少?9.线段XY的长度是12厘米,如果它被分成三等份,每一份的长度是多少?10.点C在射线AD上,如果AC的长度是4厘米,CD的长度是6厘米,那么AD 的长度是多少?11.直线GH和直线IJ相交于点K,如果角GKI的度数是90度,那么角HKL的度数是多少?12.点E在线段DF的延长线上,如果DE的长度是7厘米,EF的长度是9厘米,那么DF的长度是多少?13.直线LM和直线NO平行,如果角LKP的度数是70度,那么角OKP的度数是多少?14.线段RS的长度是15厘米,如果它被分成五等份,每一份的长度是多少?15.射线UV上有一个点W,如果UW的长度是10厘米,VW的长度是6厘米,那么UV的长度是多少?16.点X在线段YZ的中点上,如果点Z到点X的距离是8厘米,那么点X到点Y的距离是多少?17.线段AB和线段CD的长度相等,如果线段AB的长度是9厘米,那么线段CD 的长度是多少?18.直线EF和直线GH相交于点I,如果角FIJ的度数是120度,那么角GIH的度数是多少?19.点K在线段IJ的延长线上,如果IK的长度是12厘米,JK的长度是5厘米,那么IJ的长度是多少?20.画出一个射线MN,并用字母O表示它的起点。
希望这些题目能够帮助你巩固对直线、线段和射线的理解和应用!。
数学题目100道
C、①④
D、②③⑤
17、已知菱形 ABCD,∠A=72°,将它分割成如图(2)所示的四个等
腰三角形,则∠1,∠2,∠3,的度数分别是( )
A、36°,54°,36° B、18°,54°,54°
C、18°,36°,36° D、54°,18°,72°
18、我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图
A. 2 2 2 B. 2 5 C. 2 6
D. 6
y
2.如图,有一圆形展厅,在其圆形边缘上的点 A 处安装了一台监视器,它的监控角度是 65 .为了监控
整个展厅,最少需在 圆形边缘上共.安.装.这样的监视器( )
A.5 台
B.4 台
C.3 台
D.2 台
3.已知二次函数 y1=x2-x-2 和一次函数 y2=x+1 的两个交点分别
则 y 的最大值为(
)
A.4
B.5
C.6
D.7
13. 美术课上,老师要求同学们将右图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成 一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是( )
A
B
1.以下五家银行行标中,既是中心对称图形又是轴对称图形的有 ( )
x a
11、已知不等式组
x
1
(其中
a>1),则这个不等式组的解集是
。
12、(本题每一空格 1 分)
(1)比较下列算式结果的大小:
42+32
2×4×3,
(-2)2+12
2×(-2)×1,
242+ ( 1 ) 2 24
1
2×24× ,
八年级数学几何最值问题(人教版)(专题)(含答案)
几何最值问题(人教版)(专题)一、单选题(共10道,每道10分)1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,则PB+PE的最小值是( )A. B.C. D.答案:C解题思路:1.思路分析2.解题过程根据正方形的性质,点B和点D关于AC对称,此时连接DE,与AC的交点即为点P,线段DE的长即为所求.∵正方形ABCD的边长为2,E为AB的中点,∴AE=1,AD=2,∴,故选C试题难度:三颗星知识点:略2.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A.3B.C. D.答案:C解题思路:定点:D,E动点:P(在定线段AC上运动)要使PD+PE最小,需要通过对称把PD,PE转移到直线AC异侧.如图,由正方形的性质知,D,B关于AC所在直线对称,所以PD=PB,故所求可转化为“PB+PE的最小值”.根据“两点之间线段最短”,当B,P,E共线时,PB+PE最小,最小值为BE的长度.∵正方形ABCD的面积为12,∴,∴,故选C.试题难度:三颗星知识点:略3.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为边BC,CD,BD上的动点,则PK+QK的最小值为( )A.1B.C.2D.答案:B解题思路:如图,作点Q关于BD的对称点,根据菱形的对称性,点落在AD边上,则题目转化为求的最小值,根据两点之间线段最短,的最小值为线段的长度,当⊥AD时,最小.如图,过点C作CE⊥AD,则.∵四边形ABCD为菱形,∴∠CDE=180°-∠A=60°,CD=AB=2,∴,故选B.试题难度:三颗星知识点:略4.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为( )A. B.C. D.答案:B解题思路:1.思路分析2.解题过程通过题意可知,EF和CD的长固定,所以若要四边形CDEF的周长最小,则DE+CF最小即可.如图,CF向左平移两个单位到,此时就转化为要求即可.作出点D关于x轴的对称点,此时连接,与x轴的交点即为点E.根据题意可得,点的坐标为(1,4),点的坐标为(0,-2),∴的直线解析式为:,∴点E的坐标为,∴点F的坐标为.故选B试题难度:三颗星知识点:略5.如图,正方形ABCD的边长为2,顶点A,D分别在x轴、y轴上.当点A在x轴上运动时,点D随之在y轴上运动,则在运动过程中,点B到原点O的最大距离为( )A. B.C. D.答案:B解题思路:如图,取AD的中点M,连接OM,MB.∵OM为Rt△AOD斜边上的中线,∴,在Rt△AMB中,由勾股定理,得,在△OBM中,根据三角形的三边关系定理,得OM+BM OB,即,当O,M,B三点共线时,OM+BM=OB,此时OB最大,最大值为.故选B.试题难度:三颗星知识点:略6.如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为( )A.24B.25C. D.26答案:B解题思路:取BC的中点M,连接OM,MD.∵OM为Rt△BOC斜边上的中线,∴,在Rt△DMC中,由勾股定理,得,在△ODM中,根据三角形的三边关系定理,得OM+DM OD,即,当O,M,B三点共线时,OM+DM=OD,此时OD最大,最大值为.故选B.试题难度:三颗星知识点:略7.动手操作:在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC 边上的处,折痕为PQ,当点在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点在BC边上可移动的最大距离为( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:略8.如图,折叠矩形纸片ABCD,使点B落在AD上的点E处,折痕的两端点分别在AB,BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是( )A. B.C. D.答案:D解题思路:当点M与点A重合时,AE最大,如图,此时AE=6;当点N与点C重合时,AE最小,如图,此时AE=2.∴,故选D.试题难度:三颗星知识点:略9.如图,在矩形ABCD中,AB=5,BC=12,E是BC边上一动点,则以BD为对角线的所有平行四边形BEDF中,EF的最小值是( )A. B.5C.6D.12答案:B解题思路:在平行四边形BEDF中,EF=2OE,由“直线外一点到直线上所有点的连线中,垂线段最短”可知,当OE⊥BC时,OE最短,如图,此时,,∴EF的最小值为5.试题难度:三颗星知识点:略10.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△,连接,则的最小值是( )A. B.C. D.4答案:A解题思路:如图,连接ED,由题意,,在Rt△AED中,AE=2,AD=6,∴,由翻折得BE=B′E=2,由三角形三边关系得:B′D-B′E,∴当,B′,D三点共线时,B′D-B′E,B′D取最小值,当,B′,D三点共线时,如图,∴B′D=DE-B′E=,∴B′D 的最小值是.试题难度:三颗星知识点:略第11页共11页。
奇中点偶中段解法解答题过程
奇中点偶中段解法解答题过程今天我们聊聊奇中点偶中段的解法,这名字听起来有点拗口,不过别担心,听我给你讲讲就明白了。
你知道吗,有时候遇到数学题,感觉就像在打怪兽,明明只是一道题,结果却像是跑去跟外星人搏斗一样,让人头大。
掌握了一些小技巧,做题就像喝水一样简单。
咱们先来讲讲什么是奇中点偶中段。
想象一下,一个简单的数列。
咱们要从中找出中间的点,这里就有点讲究了。
奇数的话,中间的点就是直接给你了,特别简单。
比如说,数列1、2、3、4、5,这一看就知道3是中间的点,不费吹灰之力。
可是,一旦碰上偶数,那就麻烦了,得分两段,得算算平均值。
就像两个人分享一块蛋糕,没法直接分,要把它切成两半,大家各自来一块,才能公平。
听起来简单吧?可是,偶数的平均值就像是把两个人的心情都考虑在内,大家都得舒服,才算完美。
这就让我想起小时候跟小伙伴玩游戏,总是要公平,谁也不能少了,大家心里都得有数,别让谁觉得委屈。
你看,这解法其实跟生活中不少事儿都挺像的,不是吗?咱们再细聊一下解法的过程。
要是你遇到的题目是数列的求和,那就更简单了。
直接找到奇数的中点,再去算偶数的中段,像是从一个家跳到另一个家,两个步骤走完了,心里也就明白了。
这种感觉,就像跟好朋友聊心事,聊着聊着就把问题解决了,真是顺理成章。
做数学题也一样,找到那种顺畅感,就能像水流一样自然而然。
说到这里,我想起以前上学时,老师常说,解题要有策略,就像打游戏一样,得有自己的招数。
遇到难题时,咱们得冷静,先别急,找出关键点。
再把复杂的事情拆分成简单的小块,就像做拼图,把每一块都放到正确的位置。
等到所有的拼图都拼好了,整个画面就清晰了。
所以说,这个奇中点偶中段的解法,其实就是给你一把钥匙,让你轻松打开数学的大门。
很多时候,很多题目看起来复杂,但只要找到窍门,就像打破坚冰,水面瞬间开朗。
每一步都带着节奏,仿佛在跳舞,轻松愉快。
这让我想到了生活中的一些小智慧。
你知道吗?生活就像这道题,有时候要学会找到中间的那个点。
北师大版七年级数学上册_典中点《利用一元一次方程解图表信息问题的八种常见题型》素养练
《5.3~5.6 利用一元一次方程解图表信息问题的八种常见题型》素养练题型1 一元一次方程在解销售表格问题中的应用1.【2020·安徽】某超市有线上和线下两种销售方式,与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%. (1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含,a x的式子表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.题型2 一元一次方程在解积分表格问题中的应用2.一次数学竞赛共出了20道题,现抽出了4份试卷进行分析,如下表:(1)问答对一道题得多少分,不答或答错一道题扣多少分?(2)一名同学说他得了65分,请问可能吗?请说明理由.题型3 一元一次方程在解月历表格问题中的应用3.你对生活中常见的月历了解吗?月历中存在许多数字奥秘,你想知道吗?(下表是2021年12月的月历)(1)它的横行、竖列上相邻的两数之间有什么关系?(2)如果告诉你一竖列上连续三个数的和为72,你能知道是哪几天吗?(3)如果用一个正方形圈出四个数,且这四个数的和为56,这里圈出的四天你知道分别是几号吗?题型4 一元一次方程在解出租车计费表格问题中的应用4.电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15千米以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15千米以内),结果发现正常情况下乘坐纯电动出租车比普通燃油出租车平均每千米节省0.8元,求老张家到单位的路程是多少千米.题型5 一元一次方程在解租车表格问题中的应用5.为拓宽学生的视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每名老师带17名学生,还剩12名学生没人带;若每名老师带18名学生,就有一名老师少带4名学生.现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少有2名老师,可知租用客车总数为________辆.题型6 一元一次方程在解分段费用表格问题中的应用6.某市已经全面实行了居民新型合作医疗保险制度,享受医保的居民可在规定的医院就医,并按规定标准报销部分医疗费用,下表是医疗费用报销的标准:若家住幸福社区的王爷爷在一次住院中个人自付了住院医疗费5000元(自付医疗费=实际医疗费-按标准报销的金额),则他在这一次住院中的实际医疗费用为多少元?题型7 一元一次方程在解游戏表格问题中的应用7.【2020·盐城】把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图①),是世界上最早的“幻方”,图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6题型8 一元一次方程在解情境图问题中的应用8.“五一”期间,小明、小亮等学生随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话.试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?请说明理由.参考答案1. 解析:(1)1.04()a x -(2)依题意,得:1.1 1.43 1.04()a x a x =+-, 解得2.13x a = 所以21.431.430.22130.21.1 1.1 1.1a x a aa a ⨯===. 答:2020年4月份线上销售额与当月销售总额的比值为0.2.2. 解析:(1)由试卷D 可知,每答对一道题与不答或答错一道题共得4分, 设答对一道题得x 分,则不答或答错一道题得(4-x )分,由试卷A 得分为94分,可列方程为19(4)94x x +-=.解得x =5,所以41x -=-.答:答对一道题得5分,不答或答错一道题扣1分.(2)不可能.设该名同学答对了y 道题,可列方程为5(20)(1)65y y +-⨯-=. 解得1146y =. 因为题目的数量应该为整数,所以这名同学不可能得65分.3. 解析:(1)月历中,横行上相邻两数之差为1,竖列上相邻两数之差为7.(2)设一竖列上连续三个数的中间的一个数为x ,则上面的一个数为x -7,下面的一个数为x +7.根据题意,得(7)(7)x x x -+++=72.解这个方程,得x =24.所以724717,724731x x -=-=+=+=.答:这三天分别是17号、24号、31号.(3)设圈出的四个数中,最小数为y ,则另三个数分别为y +1,y +7,y +8. 根据题意,得(1)(7)(8)56y y y y ++++++=.解这个方程,得y=10.所以110111,710717,810818+=+=+=+=+=+=.y y y答:这四天分别是10号、11号、17号、18号.点拨:这是生活中常见的月历问题,把它进行数学建模,则可将其转化为数字问题:它的横行上相邻两数之差为1,竖列上相邻两数之差为7.4.解析:设老张家到单位的路程是x千米.依题意,得13(3) 2.3[8(3)2]0.8x x x+-⨯-+-⨯=,解这个方程得x=8.2.答:老张家到单位的路程是8.2千米.5.解析:(1)设老师有x人,则学生有(17x+12)人.依题意,得1712184+=-,x x解得x=16,则17x+12=284.答:老师有16人,学生有284人.(2)86.解:设他在这一次住院中的实际医疗费用为x元.因为5000×(1-70%)+(10000-5000)×(1-80%)=1500+1000=2500(元),且2500<5000,所以他在这一次住院中的实际医疗费用必超过10000元,则2500+(x-10000)×(1-90%)=5000.解得x=35000.答:他在这一次住院中的实际医疗费用为35000元.7.答案:A8.解析:(1)设成人去了x个,则学生去了(12-x)个,由题意得35350.5(12)+⨯⨯-=350,x x解得x=8,则12-x=12-8=4,答:小明他们一共去了8个成人,4个学生.(2)如果买团体票,按16人计算,共需费用35×0.6×16=336(元).因为336<350,所以按团体票一次性购买16张门票更省钱.。