苏科版八年级数学下册课件10.2分式的基本性质(2)

合集下载

苏科版八年级数学下册10.2分式的基本性质课件

苏科版八年级数学下册10.2分式的基本性质课件

0的整式,分式的值不变.
A

A÷M
B
B÷M
为什么所乘(或除以) 的整式不能为0呢?
(其中M是不等于0的整式)
性质应用1 下列等式的右边是怎样从左边得到的?
(1)
a ac c 0
2b 2bc
(2)
x3 x2 xy y
解: (1) 由 知
c0
a a c ac 2b 2bc 2bc
为什么给出 c ?0
谢谢
各项的系数都化为整数:
a
2 3
b
1 2
a
2b
6 a 2 b 3
6a 4b
6
1 2
a
2b
3a 12b
1 x 0.2
做一做:
3 1 x 0.3 y
10 x 6 15 x 9 y
2
把小数先 化为分数, 再确定最 小公倍数
课堂小结
⑴分式的基本性质 ⑵会运用分式的基本性质进 行简单的分式变形
⑵如果2t h行驶 2skm,则火车的速度为 km/h。
······
⑶如果nt h行驶 nskm,则火车的速度为
km/h。
s 2s ns
t
=
=
2t
nt
这些分式的值相等吗? 由此你能得到什么结论?
类比归纳
分数与分式的 基本性质的 区分是什么?
分式的分子和分母都乘 (或除以)同一个不等于
A
A×M

B
B×M
10.2 分式的基本性质
知识回顾
仔细算一算
1 3
2
6
5
15
想一想:这是在小学里学习的什么知识?
分数的基本性质:
分数的分子和分母都乘(或除以)同一个不等于0的数, 分数的值不变.

10.2分式的基本性质苏科版数学八年级下学期【03】

10.2分式的基本性质苏科版数学八年级下学期【03】

分析:看分子、分母的最高次项的系数的符号,原来正的不变, 原来负的就改变.
解:(1)
1
x x
2
x (x2
1)
x; x2 1
(2)
y y
y2 y2
(yy22yy)
y2 y2
y. y
总结:1.因为分子或分母是一个整体,所以变号就要整体变号; 2.本质还是分子、分母、分式本身3个符号的变形。
例4 不改变分式的值,把下列各式的分子、分母中各项的系数
最小公倍数是

最小公倍数是

两个分式 三个分式
两个分式 三个分式


证明:
< (从特殊到一般进行数学归纳) (从特殊到一般进行方法迁移)
评析:1.对于特殊的分数问题,采用一般的分式来表示和验证更有说服力。
2.要证明两个分式的大小关系,将两个分式通过通分转化为同分母 分式更好比较。
小结
目的:将异分母分式化为同分母分式,为分式加减运算铺垫
公倍数。
1. 下列等式从左到右成立吗?为什么?
(×)
(×)
(×)
(√ )
2 . 填空:
2b a-b
3ac 1
1.本节课我们研究了哪个重要的新知识?我们是通过什么方 法研究得到的? 分式的基本性质;通过类比的方法从特殊到一般归纳得到。 2.分式的基本性质与分数的基本性质有何异同? 一个是关于“数”,一个是关于“式”,一般的式中包含特殊的数。 3.你还有其他收获或感悟吗? 数式通性!得出的结论和研究的方法本质上是一样的。
思考:6和9的最大公约数是 3 。
根据分数的基本性质,把一个分数的分子和分母分 别除以它们的最大公约数,叫做分数的约分.
分子、分母都含有的因式——公因式

分式教案(2)

分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。

本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的运算方法,提高运算能力。

3. 学会解分式方程,提高解决问题的能力。

三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。

难点:分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。

问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。

2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。

3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。

4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。

5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。

6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。

7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。

8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。

9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。

10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。

六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。

分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。

本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。

但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算,并能灵活运用。

3.培养学生的逻辑思维和抽象思维能力。

四. 教学重难点1.分式的概念和基本性质。

2.分式的运算及其运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和板书。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。

请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。

2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。

同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。

3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。

教师巡回指导,解答学生遇到的问题,并给予反馈。

4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。

如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。

”教师引导学生思考和解答,巩固所学知识。

5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。

让学生举例说明,进一步拓宽视野。

最新苏科版初二数学八年级下册10.2《分式的基本性质》ppt课件

最新苏科版初二数学八年级下册10.2《分式的基本性质》ppt课件
a b
a b 4、 a b
2
a b 1
例2 不改变分式的值,使下列分式的分子和 分母都不含“-”号:
5b (1) 6a
2m x (3) (2) n 3y 5b 5b (1) 5b 解 (1) 6a 6a (1) 6a
x x (2) ( x) 3 y 3y 3y
10.2
分式的基本性质(1)
学.科.网
回顾与思考
6 1、 9

4 6
相等吗? 为什么?
分数的基本性质:
学科网
分数的分子与分母都乘以或除以同一个不等于零 的数,分数的值不变. 2、
a 2 ab
1 和 相等吗? 2b
那么分式有没有类似的性质呢?
合作探究
一辆匀速 匀速行驶的汽车, 如果th行驶skm,那么汽车的速度为 如果2th行驶2skm,那么汽车的速度为 如果3th行驶3skm,那么汽车的速度为 如果nth行驶nskm,那么汽车的速度为
zxxkw
2
4ab
学 科网
6a 12a b
2
2
如何得到分母 12a b ?
2
分母 12a b 母
2
叫做 公分
概念得出
分式通分时,通常取: 1.各分母系数的最小公倍数
学科网
2.所有字母的最高次幂
作为公分母----最简公分母
通分的关键是确定几个分式的最简公分母.
试一试
找出下列分式 的最简公分母。
2 2 2
练习巩固
不改变分式的值,使下列各式的分子与分母的 最高次项化为正数
例4 不改变分式的值,把下列各式的分子与分母中各项
的系数都化为整数。
1 m 0.5 0.5 x y (1) 3 (2) 0.2 x 4 1 0.25m 0.5 x+y 0.5 x+y 10 5 x 10 y 解: (1) 0.2 x 4 0.2 x 410 2 x 40

苏科版八年级数学下册教学课件-10.2分式的基本性质(1)

苏科版八年级数学下册教学课件-10.2分式的基本性质(1)

根 据
分式的基本性质
分式的计算
拓展提升
11 已知: 4
xy
2x 3xy 2y

的值
y 2xy x
课堂小结 本堂课你学到了什么? 你还有哪些疑惑? 请与你的伙伴说一说
谢谢
10.2 分式的基本性质
自主学习
1、把下列各组分数通分:
1,3,5 246
1,4, 7 5 9 15
2x
3y
4xy
2、分式 6x2 y2 、6x2 y2 、6x2 y2 有什么共
同点?试将它们分别化为最简分式。
1
1
2
3、分式 3xy2 、2x2 y 、3xy 分母不相同,
试将它们变形为分母相同的分式。
ax 1 bx 1
是 abx 1x 1 ;
1
(2)
,
1的最简公分母来自x2 y2 x2 2xy y2
是 x y 2 x y 。
尝试应用
例1.通分:
(1)3 与 b 2a 3ac
(2) 2x 与 3x xy x y
尝试应用 例2.通分:
(1) 1 与 1 x2 y2 x2 xy
(2) x , y , z
合作探究 活动二:
1、试找出分式— 2 , 7c 的最简公分
母.
9a2b 12ab3
归纳:分母都是单项式的分式通分时,取各 分母系数的最小公倍数与各分母所有因式的 最高次幂的积作为公分母,这样的公分母叫 做最简公分母。
合作探究 活动二:
1
练习:(1) 2x2 y ,
1
的最简公分母是
6
x
2
y
2

6xy2
1 (2) ,

苏科版八年级下《10.2分式的基本性质》同步练习含详细答案

苏科版八年级下《10.2分式的基本性质》同步练习含详细答案

10.2 分式的基本性质一.选择题1.化简的结果是()A.﹣1 B.1 C.D.2.下列分式中,最简分式是()A.B.C.D.3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍4.下列分式运算中正确的是()A.B.C.D.5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.二.填空题6.若,则=.7.化简=.8.约分=.9.分式,﹣,的最简公分母是.10.若,则的值是.11.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.12.下列4个分式:①;②;③;④,中最简分式有个.三.解答题13.约分:(1);(2);(3)•.14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?参考答案1.(2016•台州)化简的结果是()A.﹣1 B.1 C.D.【分析】根据完全平方公式把分子进行因式分解,再约分即可.【解答】解:==;故选D.【点评】此题考查了约分,用到的知识点是完全平方公式,关键是把要求的式子进行因式分解.2.(2016•滨州)下列分式中,最简分式是()A.B.C.D.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍【分析】把中的x和y都扩大到5倍,就是用5x代替x,用5y代替y,代入后看所得到的式子与原式有什么关系.【解答】解:,即分式的值不变.故选B.【点评】本题主要考查对分式的基本性质,是考试中经常出现的基础题.4.下列分式运算中正确的是()A.B.C.D.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:∵==,∴A是正确的,B、C、D是错误的.故选:A.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.【分析】分式的分子、分母中含有分数系数,不改变分式的值,使分式分子、分母的各项系数化为整数要乘以2与3的最小公倍数6.【解答】解:分式的分子和分母乘以6,原式=.故选D.【点评】易错选A选项,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意.6.若,则=.【分析】由,得a=,代入所求的式子化简即可.【解答】解:由,得a=,∴=.故答案为:.【点评】解题关键是用到了整体代入的思想.7.化简=.【分析】首先把分子分母分解因式,再约去分子分母的公因式即可.【解答】解:原式==,故答案为:.【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式.8.约分=.【分析】由系数与系数约分,同底数的幂与同底数的幂约分求解即可.【解答】解:=.故答案为:.【点评】此题考查了约分的知识.题目非常简单,解题时要注意细心.9.分式,﹣,的最简公分母是12x2y3.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,﹣,的分母分别是x、3x2y、12y3,故最简公分母是12x2y3;故答案为12x2y3.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.10.若,则的值是6.【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子化简就得到所求式子的值.【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.【点评】正确对式子进行变形,用已知式子把所求的式子表示出来,是代数式求值的基本思考方法.11.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【分析】(1)依据定义进行判断即可;(2)将原式变形为的形式,然后再进行变形即可;(3)首先将原式变形为2﹣,然后依据x+1能够被3整数列方程求解即可.【解答】解:(1)分式是真分式;(2)假分式=1﹣;(3)==2﹣.所以当x+1=3或﹣3或1或﹣1时,分式的值为整数.解得x=2或x=﹣4或x=0或x=﹣2.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4.【点评】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.12.下列4个分式:①;②;③;④,中最简分式有2个.【分析】根据确定最简分式的标准即分子,分母中不含有公因式,不能再约分,即可得出答案.【解答】解:①是最简分式;②==,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故答案为:2.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.13.约分:(1);(2);(3)•.【分析】(1)把分子与分母进行约分即可;(2)根据平方差公式和完全平方公式先把分子与分母进行因式分解,然后约分即可;(3)先把分母进行因式分解,然后通分,即可得出答案.【解答】解:(1)=﹣;(2)==;(3)•=•=.【点评】此题考查了约分与通分,用到的知识点是平方差公式和完全平方公式,注意先把分母因式分解,再进行约分和通分.14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?【分析】(1)根据分式的性质:分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案;(2)根据分式的分子、分母、分式改变其中任意两个的符号,分式的值不变,可得答案;(3)根据解分式方程,可得答案;根据解不等式,可得答案.【解答】解:(1)原式=;(2)原式=﹣。

苏教版八年级数学下册知识点总结归纳(苏科版)

苏教版八年级数学下册知识点总结归纳(苏科版)

苏教版八年级数学下册知识点总结归纳(苏科版)知识点总结第七章:数据的整理、收集、描述知识概念抽样与样本1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。

2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。

第八章:认识概率确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。

随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。

要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。

所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

概率的意义与表示方法1、概率的意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。

最新苏科版初二数学八年级下册第十章《分式》全章教案设计

最新苏科版初二数学八年级下册第十章《分式》全章教案设计

第十章分式一、单元教学目标:知识目标1、了解分式的概念。

2、会利用分式的基本性质进行约分和通分。

3、会进行简单的分式加、减、乘、除运算。

4、会解可化为一元一次方程的分式方程序正确性方程中的分式不超过两个)。

5、能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。

能力目标:1、经历通过观察、归纳、类比、猜想,获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,培养学生的推理能力与恒等变形能力.2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.。

4、能列可化为一元一次方程的分式方程解简单的应用题,能解决一些与分式、分式方程有关的实际问题,提高分析问题、解决问题的能力和应用意识情感目标:1. 进一步培养学生的自学能力、思维能力,渗透类比的思想方法.激发学生联系实际问题体验数学知识产生的过程以及热爱数学的情感.2、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.3、发展学生的个性,培养他们学习的养成教育,善于独立思考,敢于克服困难和创新精神二、单元教学重点、难点:1、重点是探索和理解有关的分式概念、分式的基本性质和分式的运算法则;解可化为一元一次方程的分式方程;2、难点是解可化为一元一次方程的分式方程及运用分式方程解简单的应用题。

三、单元教学课时:本章教学时间大约需10课时,具体分配如下第1节分式 1课时第2节分式的基本性质 3课时第3节分式的加减运算 1课时第4节分式的的乘除运算 2课时第5节分式方程 3课时课题:10.1 分式第1课时共1课时一、教学目标:知识目标:1、了解分式的概念,会判断一个代数式是否是分式。

2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

分式的基本性质ppt16 苏科版

分式的基本性质ppt16 苏科版

5 xy
2
5 xy
20 x y

5x 20 x
2
小明:
5xy
2
20 xy

5xy 4x 5xy

1 4x
对于分数而 言,彻底约 分后的分数 叫什么?
你对他们俩的解法有何看法?说说看! •一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
约分
(1 ) x x m
2 2 2
1
多项式形式的分母可以看作什么? 整体思想
巩固
2.通分:
1 x 1 2 x 1 2 1 x

想一想:
1 x 1

如何通分?
范例
例3.通分:
1 ( x 1)
2

2 1 x
2
多项式形式的分母怎样处理?
归纳 找最简公分母的方法: 1. (多项式)因式分解; 2.取系数的最小公倍数; 3.取所有因式的最高次幂。
x y xy 2 xy
2
2
m 2m 1 1 m
2
思维拓展题
1 1 b
2a 3ab 2b a ab b
已知,a

3
,求分式
的值。
苏科版数学教材八年级下
§10.2 分式的基本性质(3)
1、分式的基本性质内容是什么?
2、什么是分式的约分?分式的约分 有什么要求?
3、在分数运算中,什么叫分数的通分?
2
c
1.通分的关键是什么?
2.怎样找最简公分母?
归纳 找最简公分母的方法: 1.把各分母因式分解 2.取系数的最小公倍数; 3.取所有因式的最高次幂。
巩固

苏科版八年级数学下册10.2《分式的基本性质--分式的通分》课件共24张

苏科版八年级数学下册10.2《分式的基本性质--分式的通分》课件共24张

ac ab
bc 3a 2
例1 通分(2) 2a a-b
, 3b a+b
解(: 2)分母a-b、a+b的最简公分母是(a-b)(a+b)
2a a-b
2a(a b) , (a b)(a b)
3b a+b
3b(a b) (a b)(a b)
.
四、自主拓展 例2 通分:
1 (1) m 2-9 ;
(2) x ; xy-y
1
2m+6
y xy+x
分析:当分式的分母是多项式时,先将它们分解因式,
再确定最简公分母.
解:(1)分母m2-9=(m+3)(m-3),2m+6=2(m+3), 它们的最简公分母是2(m+3)(m-3)
解:(2)分母xy-y=y(x-1),xy+x=x(y+1), 它们的最简公分母是xy(x-1)(y+1),
(3)
y 2x
,
x 3y2
,
1 4 xy
;
(4)
4a 5b 2 c
,
3c 10a 2b
,
5b 2ac2
;
1
1
(5) x2 xy , xy y 2 ;
1
1
(6) x2 y 2 , x y ;
1
1
(7) x2 x , x2 x ;
1
1
(8) x2 x , x2 2x 1
五、自主评价
本节课你对自己、同学和老师有什 么建议和看法?
课堂小结:
1通分:把几个异分母的分式化成与本来的分式相 等的同分母的分式叫做分式的通分。 2.通分的关键是确定几个分式的最简公分母。 3.最简公分母的确定方法:

分式的基本性质(课件)八年级数学下册(苏科版)

分式的基本性质(课件)八年级数学下册(苏科版)

2x
x
2
5x
2
,
25
3x
x
2
2
5x
25
.
典型例题
a
b
与 2
例题6 通分: 2
2
x y
x xy
(x+y)(x-y)
x(x+y)
解:最简公分母是x(x+y)(x-y)
a
x
2
y
2
b
x
2
a
( x y)( x y)
b
xy
x( x y )
ax
x( x y)( x y)
b( x y )
x( x y)( x y )
探究新知
分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值
不变.
上述性质可以用式子表示为:
A
AC A
AC

,
(C 0)
.
B
BC B
B C
其中A,B,C是整式.
典型例题
例题1 填空:
看分母如何变化,想分子如何变化.
看分子如何变化,想分母如何变化.
3
x
()
1

D. 3
5 −2+3
−0.2−1
5.不改变分式的值,将分式
中的分子与分母的各项系数化为整数,且第一项系
−0.3+0.5
数都是最小的正整数,正确的是( A )
A.
2+1
3−5
2−10
3+5
B.
2+10
3+5
C.
D.
2+10

苏科版数学八年级下册10.1《分式》说课稿

苏科版数学八年级下册10.1《分式》说课稿

苏科版数学八年级下册10.1《分式》说课稿一. 教材分析苏科版数学八年级下册10.1《分式》是学生在学习了有理数、实数等知识后,进一步拓展数学知识的重要内容。

本节课主要介绍分式的概念、分式的基本性质以及分式的运算。

通过学习,使学生掌握分式的基本概念,了解分式的运算规则,提高学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、实数等知识,具备了一定的数学基础。

但部分学生对分式的概念和性质可能理解不深,分式的运算规则容易混淆。

因此,在教学过程中,要关注学生的学习差异,针对性地进行教学,提高学生的数学素养。

三. 说教学目标1.知识与技能:让学生掌握分式的概念,了解分式的基本性质和运算规则;2.过程与方法:通过自主学习、合作探讨,培养学生解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维和团队协作精神。

四. 说教学重难点1.教学重点:分式的概念、分式的基本性质和运算规则;2.教学难点:分式的运算规则,特别是分式的乘除法运算。

五. 说教学方法与手段1.采用问题驱动法,引导学生自主学习,培养学生的问题解决能力;2.利用多媒体教学手段,展示分式的图形,直观地理解分式的意义;3.运用合作探讨法,让学生在小组内交流分享,提高学生的团队协作能力。

六. 说教学过程1.导入新课:通过生活中的实际问题,引入分式的概念,激发学生的学习兴趣;2.自主学习:让学生自主探究分式的基本性质,培养学生独立解决问题的能力;3.合作探讨:引导学生分组讨论分式的运算规则,互相交流,提高团队协作能力;4.知识拓展:介绍分式的应用,让学生感受分式在实际问题中的重要性;5.课堂小结:总结本节课的主要内容,强化学生的记忆;6.课后作业:布置具有针对性的作业,巩固所学知识。

七. 说板书设计板书设计要简洁明了,突出重点。

主要包括以下几个部分:1.分式的概念;2.分式的基本性质;3.分式的运算规则;4.分式的应用。

八年级数学下册8.2分式的基本性质(2)教学案

八年级数学下册8.2分式的基本性质(2)教学案

初中数学八年级下册分式的基本性质1教学目标:1、 理解分式的基本性质;会运用分式的基本性质解题;2、 培养学生类比的推理能力教学重点:分式的基本性质的理解和掌握 教学难点:分式基本性质的简单运用 教学过程:一、预习展示1、分数的性质;如果分数的分子和分母都乘(或除以)一个 的数,那么分数的值 。

2、有一列匀速行使的火车,如果t h 行使s km ,那么2t h 行使2s km 、3t h 行使3s km 、…33s t n th 行使ns km ,火车的速度可以分别表示为s t km/h 、22s t km/h 、33s t km/h 、…ns nt km/h 这些分式的值相等吗?3、分式也有类似1的性质吗?(二) 合作探索:通过探索,归纳出分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于......0.的整式...,分式的值不变。

用式子表示就是 A B =A ×M B ×M ,A B =A ÷M B ÷M(其中M ≠0)。

1、填空:(1)a b =ab ( ) ; (2)12 a 2+b 2(a+b) =( )2a+2b ;(3)3a a+6 =6ab ( )(b ≠0); (4)3x -2=( )3x+2 (x ≠-23 );(5)( )x 2-4y 2 =x x+2y ; (6)6a 2-2ab ( )=3a-b. 2、23---中有3个“—”分别表示什么意义?分式A B--中有2个“—”分别表示什么意义?(不改变分式的值,使下列分式的分子和分母的最高次项的系数是正数)(1)21xx - (2)22y y yy -+(3)2-x 2-1-x (4)-x 2-x+11-x 3 三、当堂盘点1.判断正误并改正:① b a b a ++-=)(b a b a +-+=1 ( ) ② 11--xz xy =11--z y ( ) ③b a a --3=b a a --3 ( ) ④22nm =n n m m ÷÷22=n m ( ) 2.填空:写出等式中未知的分子或分母:①x y 3= ()yx 23 ②)()).(().(2x xy y x x y x x +=+=+ ③y x xy 257=()7 ④ )()).(()(1b a b a b a +=-=-; 3.不改变分式的值,使分式的分子与分母都不含负号: = = ①=--y x 25 ②=---b a 3 ; 4、不改变下列分式的值,使分式的分子和分母的最高次项的系数为正数(1)222107x x x -+- (2)235231xx x ++- (3)22314a a a --- (4)mm m m +---223 5、不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数(1)42.05.0-+x y x (2)x x x x 24.03.12.001.022+- ⑶ y x y x 625131+-6、将3a a b- 中的a 、b 都变为原来的3倍,则分式的值 _______________ 7、把分式yx 中的字母x 的值变为原来的2倍,而y 缩小到原来的一半,则分式的值___________(1) 6a-(2) 3x y -。

苏科版数学八年级下册10.2第3课时分式的通分同步课件

苏科版数学八年级下册10.2第3课时分式的通分同步课件

3 + = 3 • − + • −
= 3 − + −
例2 通分:
1 2
1 2
(1) − 9
,+6


(2)

+

∵ 1 2 − 9 = 1 + 3 − 3 , 1 2 + 6
解:(1)
= 1 2( + 3)
122

1 3 2
62 2
第一步:它们的最简公分母为___________.
第二步:异分母化为同分母,只需:
最简公分母与其分母的商
分子与分母同乘___________________________________.
1 2 2 = 1 • 3 2 2 • 3
= 3 6 2 2
(1)
(2)
12 2
12 2
12 2 2
12 2 2
12 2 2
获取新知
分式的通分
与分数的通分一样,根据分式的基本性质,把几个异
分母的分式变形成同分母的分式,叫做分式的通分,变形
后的分母叫做这几个分式的公分母.
交流:试找出分式

的公分母.
8
6 2 2 6、 4 4 6、
= ( + 1)
∴ 分母 − 1 , + 1 的最简公分母为 − 1 + 1 .
∴ − = • + 1 − 1 • + 1
= 2 + 1 − 1 + 1 ,
+ = • − 1 + 1 • − 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.2 分式的基本性质(2)
10.2 分式的基本性质(2)
填空,并说出下列等式的右边是怎样从左边 得到的,依据是什么.
(1) 2b =( b ) ; 2a a
(2) ac = c ; a2 ( a )
(3) x = 1 . 6 x2 y2 (6xy2)
10.2 分式的基本性质(2)
分式的约分:
10.2 分式的基本性质(2)
练习:
1.约分:
3a 2b
2a(a-1)
18(b-a)2
(1) 6ab ;(2) 8ab2 (1-a) ;(3) 24(a-b) .
2.约分:
(1) a2-4ab+4b2 ;
a 2-4b 2
(2)
a 4-1 a 2+2a+1

(3) ( x+y)2-10( x+y)+25 . ( x+y)2-25
10.2 分式的基本性质(2)
解:(1)
ma+mb-mc a+b-c

m(a b c) a+b-c

m;
(2)a
2-2a+1 1-a 2


a 2-2 1)(a
1)


a a

1 1
.
通过约分,可以把分式化简.
分子和分母没有公因式的分式叫做最简分 式(simplest fraction).约分通常要把分式化 成最简分式或整式.
;
(2)(a+(ab+)(ba)-3 b)

(a b)(a b)2 (a b)(a b)

(a b)2 (a b)
.
10.2 分式的基本性质(2)
例5 约分:
(1)maa++mb- b-cmc
;(2)a2-2a+1 . 1-a 2
分析:当分式的分子、分母为多项式时,先将分式的分 子、分母分解因式,然后找出它们的公因式,再约分.
与分数的约分一样,根据分式的基本性质,把一 个分式的分子和分母分别除以它们的公因式,叫做分 式的约分.
10.2 分式的基本性质(2)
例4 约分:
(1)36ab3c ;(2) (a+b)3 .
6abc 2
(a+b)(a-b)
解:(1)366aabbc32c
= 6ab 6b2 6ab c

6b2 c
相关文档
最新文档