大题答案
知识产权大题及答案(部分)
知识产权法学习题集第一编知识产权与知识产权法第一章知识产权法概述同步测试题与参考答案3、简答题(1)简述知识产权法的调整对象。
参考答案:智力成果、商业标志和其他信息的归属关系、利用关系和交换关系。
(2)简述知识产权法的性质。
参考答案:知识产权法是私法、国内法、强行法。
4、论述题试述知识产权法的基本原则。
参考答案:充分保护知识产权的原则;反对不正当竞争的原则;促进社会发展的原则。
第二章知识产权的概念和法律特征【同步测试题与参考答案】5、简答题(1)简述知识产权与物权的相同点和区别参考答案:相同点:二者都是民事权利;都是对世权、支配权;都具有法定性。
区别:控制权、使用权、处分权的内容不同;保护对象不同;可否分地域取得和行使不同;权能可否授予多人行使不同;有些知识产权具有法定时间性,物权无法定时间性;有些知识产权具有双重权利,物权仅是财产权。
(2)简述知识产权的权能参考答案:控制权、使用权、处分权、收益权。
(3)简述作为知识产权保护对象的信息必须具备的条件参考答案:①必须与人们的智力活动有关;②必须具有财产价值;③必须由法律加以规定。
(4)如何理解知识产权可分地域取得和行使参考答案:分地域取得指同一信息可以依照法律规定的程序,同时在不同的国家分别取得相应的知识产权。
①需经批准授权的知识产权,只在批准授权的国家或地区受保护。
②不需经批准授权的知识产权,在不同的国家,只能按该国法律受到保护。
6、论述题试述知识产权的法律特征参考答案:(1)知识产权的保护对象是信息;(2)知识产权是对世权、支配权;(3)知识产权可分地域取得和行使;(4)知识产权的权能可分别授予多人行使;(5)对法定时间性等“特点”的评析。
第三章知识产权的保护【同步测试题与参考答案】4、简答题简述侵害知识产权赔偿责任的构成要件参考答案:①行为人实施了侵害知识产权的违法行为;②权利人有财产损失;③行为人的侵权行为与权利人的损失之间有因果关系;④行为人有过错。
高中生物遗传学大题68道(WORD版含答案)
1、番茄是二倍体植物(染色体2N=24).有一种三体,其6号染色体的同源染色体有三条(比正常的番茄多了一条6号染色体).三体在减数分裂联会时,形成一个二价体和一个单价体;3条同源染色体中的任意2条随意配对联会,另1条同源染色体不能配对,减数第一次分裂的后期,组成二价体的同源染色体正常分离,组成单价体的1条染色体随机地移向细胞的任何一极,而其他如5号染色体正常配对、分离(如图所示)(1)设三体番茄的基因型为AABBb,则花粉的基因型及其比例是.则根尖分生区连续分裂两次所得到的子细胞的基因型为.(2)从变异的角度分析,三体的形成属于,形成的原因是.(3)以马铃薯叶型(dd)的二倍体番茄为父本,以正常叶型(DD或DDD)的三体番茄为母本(纯合体)进行杂交.试回答下列问题:①假设D(或d)基因不在第6号染色体上,使F1的三体植株正常叶型与二倍体马铃薯叶型杂交,杂交子代叶型的表现型及比例为②假设D(或d)基因在第6号染色体上,使F1的三体植株正常叶型与二倍体马铃薯叶型杂交,杂交子代叶型的表现型及比例为.2、某二倍体植物(2n=14)开两性花,可自花传粉。
研究者发现有雄性不育植株(即雄蕊发育异常不能产生有功能的花粉,但雌蕊发育正常能接受正常花粉而受精结实),欲选育并用于杂交育种。
请回答下列问题:(1)在杂交育种中,雄性不育植株只能作为亲本中的_____(父本/母本),其应用优势是不必进行_____操作。
(2)为在开花前即可区分雄性不育植株和可育植株,育种工作者培育出一个三体新品种,其体细胞中增加一条带有易位片段的染色体。
相应基因与染色体的关系如右下图(基因M控制可育,m控制雄性不育;基因R控制种子子叶为茶褐色,r控制黄色)。
①三体新品种的培育利用了_____原理。
②带有易位片段的染色体不能参与联会,因而该三体新品种的细胞在减数分裂时可形成_____个正常的四分体;减数分裂时两条同源染色体彼此分离,分别移向细胞两极,而带有易位片段的染色体随机移向一极。
八年级上册道法大题20道及答案
八年级上册道法大题20道及答案1、生态环境保护功在当代、利在千秋。
要像对待生命一样对待生态环境,倡导简约适度、绿色低碳的生活方式,建设美丽中国。
体现的是社会公德的()[单选题] *A、文明礼貌B、助人为乐C、爱护公物D、保护环境(正确答案)2、【单选题】我国第一部社会主义类型的宪法是( )年制定的宪法。
[单选题] *A、1949B、1950C、1952D、1954(正确答案)3、【单选题】()是指一个家庭或家族的传统风尚或作风。
[单选题] *A 、家风(正确答案)B 、家教C、家乡D、家长4、20.个性和集体融合起来,不会失去个性;相反,只有在集体中,个性才能得到高度的觉醒和完善。
对这句话理解不正确的是()[单选题] *A.个性的形成和发展离不开周围的环境B.集体生活不利于学生的个性发展(正确答案)C.集体为学生的个性发展提供了条件和可能D.在集体中学习他人的优点,有利于完善个性5、【单选题】时间之河川流不息,每一代青年都要面对和回答()的问卷。
[单选题] *A. 人生B. 时代(正确答案)C. 社会D. 历史6、要求从业人员在自己的工作岗位上兢兢业业地为社会和他人作贡献。
体现的是职业道德的()[单选题] *A. 爱岗敬业B. 诚实守信C. 办事公道D. 奉献社会(正确答案)7、增强社会主人翁责任感,珍惜国家、集体财产,爱护公物,特别要保护社会公用设施,坚决同损害公共财产、破坏公物的行为作斗争。
体现的是社会公德的()[单选题] *A、文明礼貌B、助人为乐C、爱护公物(正确答案)D、保护环境8、以下不属于奴隶制法律的基本特征的是()。
[单选题] *A、具有明显的原始习惯残留痕迹B、否认奴隶的法律人格C、存在严格的等级划分D、法律面前人人平等(正确答案)9、个人能否按道德要求去做,关键在于()。
[单选题] *个人爱好个人习惯内心信念(正确答案)他人要求10、【单选题】对中国悠久历史、深厚文化的理解和接受,是培育和发展爱国主义情感的()。
三角函数10道大题(带答案解析)
三角函数1.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x ,当2()444x x πππ+=-=-时,m i n ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co242f x x π=++11sin222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A=cos C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C =,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b=or b舍去).∴∆ABC的面积为:S.。
三角函数10道大题(带答案)
三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。
Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。
2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。
Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。
3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。
1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。
4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。
Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。
5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。
1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。
6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。
测试技术试题库(带答案)大题
测试技术试题库(带答案)大题测试技术考试试题库(带答案)一,一、填空(每空1份,共20分)1. 测试技术的基本任务是2. 从时域看,系统的输出是其输入与该系统3. 信号的时域描述,以时间(t)为独立变量;而信号的频域描述,以频率f或( )为独立变量。
4. 如果一个信号的最高频率为50Hz,为了防止在时域采样过程中出现混叠现象,采样频率应该大于100 Hz。
5. 在桥式测量电路中,根据其6. 金属电阻应变片与半导体应变片的主要区别在于:前者利用引起的电阻变化,后者利用变化引起的电阻变化。
7. 压电式传感器是利用某些物质的8. 带通滤波器的上下限截止频率为fc2、fc1,其带宽B = ;若其带宽为1/3倍频程则fc2 = fc1。
9. 属于能量控制型的传感器有、10 根据载波受调制的参数不同,调制可分为、。
11 相关滤波的工作原理是。
12 测试装置的动态特性可以用函数开展数学描述。
二、选择题(把正确答案前的字母填在空格上,每题1分,共10分)1—5 D B C A B 6—10 D B D B D1. 不能用确定的数学公式表达的信号是信号。
A 复杂周期B 非周期C 瞬态D 随机2. 平稳随机过程必须A 连续B统计特征与时间无关C 各态历经D 统计特征等于时间平均3. 一阶系统的动态特性参数是。
A 固有频率B 阻尼比C 时间常数D 灵敏度4. 系统在全量程内,输入量由小到大及由大到小时,对于同一个输入量所得到的两个数值不同的输出量之间的最大差值称为。
A 回程误差B 绝对误差C 相对误差D 非线性误差5. 电阻应变片的输入为A 力B 应变C 速度D 加速度6.用于评价系统的输出信号和输入信号之间的因果性。
A 传递函数B 互相关函数C 互谱密度函数D 相干函数7. 为使电缆的长短不影响压电式传感器的灵敏度,应选用放大器。
A 电压B 电荷C 微分D 积分8. 在测量位移的传感器中,符合非接触测量而且不受油污等介质影响的是A 电容式B 压电式C 电阻式D 电涡流式9. 信号分析设备可分析的频率低于磁带记录仪记录信号的频率,可将磁带,也可到达分析的目的。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
物理化学期末考试大题及答案
物理化学期末考试大题及答案三、计算1、测得300C时某蔗糖水溶液的渗透压为252KPa。
求(1)该溶液中蔗糖的质量摩尔浓度;(2)该溶液的凝固点降低值;(3)在大气压力下,该溶液的沸点升高值已知Kf=1.86Kmol–1Kg–1,Kb=0.513Kmol–1Kg–1,△vapH0m=40662Jmol–12、有理想气体反应2H2(g)+O2(g)=H2O(g),在2000K时,已知K0=1.55某1071、计算H2和O2分压各为1.00某104Pa,水蒸气分压为1.00某105Pa的混合气体中,进行上述反应的△rGm,并判断反应自发进行的方向。
2、当H2和O2分压仍然分别为1.00某104Pa时。
欲使反应不能正向自发进行,水蒸气分压最少需多大?△rGm=-1.6﹡105Jmol–1;正向自发;P(H2O)=1.24﹡107Pa。
装订线在真空的容器中放入固态的NH4HS,于250C下分解为NH3(g)与H2S(g),平衡时容器内的压力为66.6kPa(1)当放入NH4HS时容器中已有39.99kPa的H2S(g),求平衡时容器内的压力;(2)容器中已有6.666kPa的NH3(g),问需加多大压力的H2S(g),才能形成NH4HS固体。
1)77.7kPa2)P(H2S)大于166kPa。
4、已知250C时φ0(Fe3+/Fe)=-0.036V,φ0(Fe3+/Fe2+)=-0.770V求250C时电极Fe2+|Fe的标准电极电势φ0(Fe2+/Fe)。
答案:φ0(Fe2+/Fe)=-0.439V5、0.01moldm-3醋酸水溶液在250C时的摩尔电导率为1.62某10-3Sm2mol–1,无限稀释时的摩尔电导率为39.07某10-3Sm2mol–1计算(1)醋酸水溶液在250C,0.01moldm-3时的pH值。
(2)250C,0.001moldm-3醋酸水溶液的摩尔电导率和pH值。
答案:(1)pH=3.38;(2)摩尔电导率=0.520某10-3Sm2mol–1pH=2.886、溴乙烷分解反应的活化能为229.3KJmol–1,650K时的速率常数k=2.14某10-4S-1,求:(1)该反应在679K条件下完成80%所需时间。
高考物理力学大题习题20题Word版含答案及解析
高考物理力学大题习题20题1.一长木板在光滑水平地面上匀速运动,在t=0时刻将一物块无初速轻放到木板上,此后长木板运动的速度﹣时间图象如图所示.已知长木板的质量M=2kg ,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取g=10m/s 2,求:(1)物块的质量m ;(2)这一过程中长木板和物块的内能增加了多少? 【答案】(1)4kg (2)2211()24J 22Q Mv M m v =-+=共 【解析】(1)长木板和物块组成的系统动量守恒:)Mv M m v 共(=+ 将2M kg =, 6.0/v m s =, 2.0?/v m s =共,代入解得:4m kg = 。
(2)设这一过程中长木板和物块的内能增加量为Q ,根据能量守恒定律:2211()24J 22Q Mv M m v =-+=共 点睛:解决本题的关键理清物块和木板的运动规律,结合牛顿第二定律和运动学公式进行求解,知道图线的斜率表示加速度,图线与时间轴围成的面积表示位移。
2.如图所示的水平地面。
可视为质点的物体A 和B 紧靠在一起,静止于b 处,已知A 的质量为3m ,B 的质量为m 。
两物体在足够大的内力作用下突然沿水平方向左右分离。
B 碰到c 处的墙壁后等速率反弹,并追上已停在ab 段的A ,追上时B 的速率等于两物体刚分离时B 的速率的一半。
A 、B 与地面的动摩擦因数均为μ,b 与c 间的距离为d ,重力加速度为g 。
求:(1)分离瞬间A 、B 的速率之比; (2)分离瞬间A 获得的动能。
【答案】(1) (2)【解析】【详解】(1)分离瞬间对A 、B 系统应用动量守恒定律有:解得:;(2) A 、B 分离后,A 物体向左匀减速滑行,对A 应用动能定理:对B 从两物体分离后到追上A 的过程应用动能定理:两物体的路程关系是分离瞬间A 获得的动能联立解得:。
3.甲、乙两车同时同向从同一地点出发,甲车以v1=16 m/s 的初速度,a1=-2 m/s 2的加速度做匀减速直线运动,乙车以v2=4 m/s 的初速度,a2=1 m/s 2的加速度做匀加速直线运动,求两车再次相遇前两车相距最大距离和再次相遇时两车运动的时间。
发动机大题答案
1.热力学第二定律如何表述?答:1.热量不可能自发的、不付任何代价的由一个低温物体传至高温物体。
热量不可能自发地从冷物体转移到热物体。
2.不可能制成一种循环工作的热机,仅从单一的高温热源取热使之完全转变为有用功(第二类永动机),而不向低温热源(冷源)放热。
单热源热机是不存在的。
热力学第二定律的实质是一切自发的过程都是不可逆的。
2.汽油机与车用柴油机的理想循环是什么循环?它们有哪些过程组成?答:汽油机:等容加热(奥托)循环,1-2的压缩过程—绝热压缩、2-3的燃烧过程—等容加热、3-4的膨胀过程—绝热膨胀、4-1的排气过程—等容放热。
高速柴油机:混合加热(萨巴德)循环,1-2的压缩过程—绝热压缩;2-3的燃烧过程—等容加热;3-4的燃烧过程—等压加热;4-5的膨胀过程—绝热膨胀;5-1的排气过程—等容放热。
低速柴油机:等压加热(狄赛尔)循环,1-2的压缩过程—绝热压缩、2-3的燃烧过程—等压加热、3-4的膨胀过程—绝热膨胀、4-1的排气过程—等容放热。
3.发动机机械损失由哪几部分组成?当发动机的转速、负荷、机油粘度、水温发生变化时,ηm怎样变化?答:组成:摩擦损失、驱动各种附件损失、带动机械增压器损失、泵气损失。
转速↑=>摩擦损失↑=>机械损失↑=>Pmm↑,得:n↑,ηm↓。
负荷↓=>Pmi↓,Pmm近似不变=>ηm=1-Pmm/Pmi↓。
机油粘度过大=>内部摩擦↑=>机械损失↑,Ni不变==>ηm↓;粘度过小=>机油的承载能力太低=>油膜破裂==>发生干摩擦=>烧瓦=>Pmm↑↑=>ηm↓↓。
冷却水↑=>Pmm↓=>ηm↑。
4.换气损失包括哪些?排气提前角对换气损失有何影响?答:换气损失包括:排气损失(自由排气损失、强制排气损失)、进气损失;影响:在发动机转速一定且排气提前角较小时,内燃机的膨胀损失W小,但活塞的推出功损失X 将会增加,随着排气提前角的增大,膨胀损失W增加,而推出功损失X则减小。
(完整版)导数大题练习带答案
导数解答题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围; (Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->. (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3、设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(x x x x x x x x x -+=-+=-+=,……2分在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21em ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G 'xexx -=1)(,易知eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e112->-从而可知对一切(0,)x ∈+∞, 都有exe x x 211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()a f x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得02x <<.所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值. 又9(2)2g =,1()32g =,所以922a <,94a <所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当02a x <<或2a x >时,h (x )>0,这时f '(x )>0;所以,当a >2a x =是函数f (x )的极大值点;2a x +=是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+= 由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分(Ⅱ)22'22)(x ax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, ………7分记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x'++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。
(完整版)圆锥曲线大题20道(含标准答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
高考函数专项大题(带答案)
函数高考专项1、已知二次函数cx bx ax x f ++=2)(,不等式x x f 2)(->的解集为)3,1(. (Ⅰ)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求实数a 的取值范围.2、设定义在R 上的函数f (x )=a 0x 4+a 1x 3+a 2x 2+a 3x (a i ∈R ,i =0,1,2,3 ),当x =-22时,f (x )取得极大值23,并且函数y =f ' (x )的图象关于y 轴对称。
(1)求f (x )的表达式;(2)试在函数f (x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-1,1]上;(3)求证:|f (sin x )-f (cos x ) | ≤ 223(x ∈R ).3、已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。
(Ⅰ)、求数列{}n a 的通项公式; (Ⅱ)、设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m 。
4、已知函数()21log 0,2a f x x a a ⎛⎫=>≠⎪⎝⎭, (1)若()()()()2221220081220088,f x x x f x f x f x =+++ 求的值.(2)当()()()1,010,x x f x ∈-=+>时,g 求a 的取值范围.(3)若()()1,g x f x =+当动点(),p x y 在()y g x =的图象上运动时,点,32x y M ⎛⎫⎪⎝⎭在函数()y H x =的图象上运动,求()y H x =的解析式.5、已知函数.21)1()())((=-+∈=x f x f R x x f y 满足 (Ⅰ)求*))(1()1()21(N n nn f nf f ∈-+和的值; (Ⅱ)若数列)1()1()2()1()0(}{f nn f n f n f f a a n n +-++++= 满足,求列数}{n a 的通项公式;(Ⅲ)若数列{b n }满足1433221,41+++++==n n n n n b b b b b b b b S b a ,则实数k 为何值时,不等式n n b kS <2恒成立.6、已知()()2,ln 23+-+==x ax x x g x x x f(Ⅰ)求函数()x f 的单调区间;(Ⅱ)求函数()x f 在[]()02,>+t t t 上的最小值; (Ⅲ)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围.7、已知函数2() 1 f x ax bx =++(,a b 为实数),x R ∈, () (0)() () (0)f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0,f -=且函数()f x 的值域为[0, )+∞,求)(x f 的表达式;(2)在(1)的条件下,当[2, 2]x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值 范围;(3)设0m n ⋅<,0,m n +>0a >且()f x 为偶函数,判断()F m +()F n 能否大于零.8、已知二次函数221(),:8直线f x ax bx c l y t t =++=-+,其中(02≤≤,t t 为常数); 2: 2.l x =若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (Ⅰ)根据图象求a 、b 、c 的值;(Ⅱ)求阴影面积S 关于t 的函数S(t )的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m , 使得y =f (x )的图象与y =g (x )的图象有且只有两个不同的交点? 若存在,求出m 的值; 若不存在,说明理由.9、若定义在R 上的函数()f x 对任意的R x x ∈21,,都有1)()()(2121-+=+x f x f x x f 成立,且当0>x 时,1)(>x f 。
其他权益工具投资 大题 解答
1、A公司2019年4月15日以每股14.3元的价格(其中包含已宣告但尚未发放的现金股利0.3元),从证券市场购入B公司发行在外的股票20万股,占B公司有表决权股份的5%。
A公司没有在B公司董事会中派出代表,A公司将其划分为其他权益工具投资。
其他资料如下:①2019年4月20日,A公司收到B公司原宣告的现金股利6万元。
②2019年6月30日,B公司股票的市价为每股12元;2019年12月31日,B公司股票的市价为每股15元。
③2020年4月10日,B公司宣告发放2019年度的现金股利每股0.4元,A公司于2020年4月20日收到上述股利。
④2020年5月1日,A公司将所持有的B公司股票以每股16.5元的价格全部售出,取得价款330万元。
假定不考虑其他因素。
(答案以万元为单位)要求:编制上述各业务的会计分录。
购入借:其他权益工具投资—成本 280应收股利 6【0.3*20】贷:银行存款286【14.3*20】收到股利借:银行存款 6贷:应收股利 6股票的市价为每股12元借:其他综合收益40【280-12*20】贷:其他权益工具投资—公允价值变动40股票的市价为每股15元借:其他权益工具投资—公允价值变动60【15*20-12*20】贷:其他综合收益 60宣告发放现金股利借:应收股利 8【0. 4*20】贷:投资收益8收到股利借:银行存款 8贷:应收股利 8出售借:银行存款 330贷:其他权益工具投资—成本 280其他权益工具投资—公允价值变动 20盈余公积 3【(330-20-280)*10%】利润分配-未分配利润 27同时:借:其他综合收益 20贷:盈余公积 2【20*10%】利润分配-未分配利润 18。
高中数学函数大题(含详细解答)
高中函数大题专练2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21x h x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。
高一数学大题试题及答案
高一数学大题试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是()A. \( y = x^2 \)B. \( y = |x| \)C. \( y = x^3 \)D. \( y = \frac{1}{x} \)答案:C2. 已知函数 \( f(x) = 2x + 3 \),那么 \( f(-1) \) 的值为()A. -1B. 1C. 5D. -5答案:A3. 若 \( a \) 和 \( b \) 是方程 \( x^2 - 5x + 6 = 0 \) 的两个根,则 \( a + b \) 的值为()A. 1B. 2C. 3D. 4答案:C4. 函数 \( y = \log_2 (x - 1) \) 的定义域是()A. \( x > 1 \)B. \( x < 1 \)C. \( x \geq 1 \)D. \( x \leq 1 \)答案:A二、填空题(每题5分,共20分)5. 已知 \( \sin \theta = \frac{3}{5} \),且 \( \theta \) 为锐角,则 \( \cos \theta \) 的值为 _______。
答案:\( \frac{4}{5} \)6. 计算 \( \int (3x^2 - 2x + 1) dx \) 的结果为 _______。
答案:\( x^3 - x^2 + x + C \)7. 若 \( \log_2 8 = 3 \),则 \( 2^3 \) 的值为 _______。
答案:88. 函数 \( y = \frac{1}{x} \) 在点 \( (1, 1) \) 处的切线斜率为 _______。
答案:-1三、解答题(每题10分,共60分)9. 已知 \( a \) 和 \( b \) 是方程 \( x^2 - 6x + 8 = 0 \) 的两个根,求 \( a^2 + b^2 \) 的值。
答案:首先,根据韦达定理,\( a + b = 6 \) 和 \( ab = 8 \)。
解析几何大题精选四套(答案)
解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-27、药物的化学命名能否把英文化学名直译过来?为什么?
答:不行,因为英文基团的排列次序是按字母顺序排列的,而中文化学名母核前的基团次序应按立体化学中的次序规则进行命名,小的原子或基团在先,大的在后。
1-30、简述药物的分类。
答:药物可以分为天然药物、半合成药物、合成药物及基因工程药物四大类其中,天然药物又可以分为植物药、抗生素和生化药物。
2-46、巴比妥类药物的一般合成方法中,用卤烃取代丙二酸二乙酯的 氢时,当两个取代基大小不同时,一般应先引入大基团,还是小基团?为什么?
答:当引入的两个烃基不同时,一般先引入较大的烃基到次甲基上,经分馏纯化后,再引入小基团。
这是因为,当引入一个大基团后,因空间位阻较大,不易在接连上第二个基团,成为反映的副产物。
同时当引入一个大基团后,原料、一取代产物和二取代副产物的理化性质差异较大,也便于分离纯化。
2-47、巴比妥药物具有哪些共同的化学性质?、
答:呈弱酸性,巴比妥类药物因能形成内酰亚胺醇-内酰亚胺互变异构,故呈弱酸性;水解性,巴比妥类药物因汗环酰脲结构,其钠盐水溶液,不够稳定,甚至在吸湿情况下,也能水解;与银盐的放映,这类药物的碳酸钠的碱性溶液中中与硝酸银溶液作用,先生成可溶性的一银盐,继而则生成不溶性的二银盐白色沉淀;与铜吡啶试液的反应,这类药物分子中含有-CONHCONHCO-的结构,能与重金属形成不溶性的络合物,可供鉴别。
2-49、如何用化学方法区别吗啡和可待因?
答:利用两者还原性的差别可区别。
区别方法是将样品分别溶于稀硫酸,加入碘化钾溶液,由于吗啡的还原性,析出游离碘呈棕色,再加氨水,则颜色转深,几乎呈黑色,可待因无此反应。
2-52、试说明异戊巴比妥的化学命名。
答:异戊巴比妥的化学命名采用芳杂环嘧啶做母体。
按照命名规则,应把最能表明结构性质的官能团酮基放在母体上。
为了表示酮基的结构,在环上碳2,4,6均应有连接两个键的位置,故采用添加氢的表示方法。
所谓添加氢,实际上是在原母核上增加一对氢(即减少一个双键),表示方法是在结构特征位置的邻位用带()的H表示。
本例的结构特征为酮基,因有三个,即表示为2,4,6-(1H,2H,3H)嘧啶三酮。
2,4,6是三个酮基的位置,1,3,5时酮基的邻位。
该环的编号依杂环的编号,使杂原子最小,则第5位为两个取代基的位置,取代基从小排到大,故命名为5-乙基-5(3-甲基丁基)-2,4,6)(1H,2H,3H)嘧啶三酮。
2-53、试说明地西泮的化学命名。
答:含稠环的化合物,在命名时应选具有最多累积双键的环系作为母体,再把最能表明结构性质的官能团放在母体上。
地西泮的母体为苯并二氮杂
3-71、合成M受体激动剂和拮抗剂的化学结构有哪些异同点?
答:相同点:1、合成M胆碱受体激动剂与大部分合成M胆碱受体拮抗剂都具有与乙酰胆碱相似的氨基部分和酯基部分;2、这两部分相隔2个碳的长度为最好。
不同点:1、在这个乙基桥上,激动剂可有甲基取代,拮抗剂通常无取代;2、酯基的酰基部分,激动剂应为较小的乙酰基或氨甲酰基,拮抗剂则为较大的碳环、芳环或杂环;3、氨基部分,激动剂为季铵离子,拮抗剂可为季铵离子或叔胺;4、大部分合成M胆碱受体拮抗剂的酯基的酰基α碳上带有羟基,激动剂没有;5、一部分合成M胆碱受体拮抗剂的酯键可被-O-代替
或去掉,激动剂不行。
宗旨,合成M胆碱受体激动剂的结构专属性要大大高于拮抗剂。
4-42.简述钙通道阻滞剂的概念及其分类。
答:钙通道阻滞剂是一类能在通道水平上选择性地阻滞钙离子经细胞膜上钙离子通道进入细胞内,减少细胞内钙离子浓度,使心肌收缩力减弱、心率减慢、血管平滑肌松弛的药物根据WTO对钙通道阻滞剂的划分,钙通道阻滞剂可分为两大类:一、选择性钙通道阻滞剂,包括1.苯烷胺类2.二氢吡啶类3.苯并硫氮卓类,二、非选择性钙通道阻滞剂,包括4.氟桂利嗪类5.普尼拉明类
4-47.Lovartatin为何称为前药?说明其代谢物的结构特点.
Lovastatin为羟甲戊二酰辅酶A还原酶抑制剂,在体外无活性,需在体内讲结构中内酯环水解为开环的β-羟基酸衍生物才具有活性,故Lovastatin为一前药,此开环的β-羟基酸的结构整好与羟甲戊二酰结构相似,由于没的识别错误,与其结合而失去催化活性,使内源性胆固醇合成受阻,结果能有效地降低血浆中的内源性胆固醇水平,临床可用于治疗原发性高胆固醇血症和冠心病。
Lovastatin的代谢主要发生在内酯环和萘环的3位上,内酯环水解成开环的β-羟基酸衍生物,而萘环3位则可发生羟化或3位甲基氧化,脱氢成亚甲基,羟甲基、羧基等,3-羟基衍生物、3-亚甲基衍生物,3-羟基甲基衍生物的活性均比Lovastatin 略低,3-羟基衍生物进一步重排为6-羟基衍生物,则失去了活性。
5-43、为什么质子泵抑制剂抑制胃酸分泌的作用强,选择性好?
答:胃酸分泌的过程有三步。
第一步,组胺、乙酰胆碱或胃泌素刺激壁细胞底-边膜上相应的受体,引起第二信使cAMP或钙离子的增加;第二步,经第二信使或钙离子的介导,刺激由细胞内向细胞顶端传递;第三步,在刺激下细胞内的管状泡与顶端膜内陷形成的分泌性微管融合,原位于管状泡处的胃质子泵——H/K-ATP酶移至分泌性胃管,将氢离子从胞浆泵向胃腔,与从胃腔进入胞浆的钾离子交换,氢离子与顶膜转运至胃腔的氯离子形成盐酸分泌。
质子泵抑制剂是胃酸分泌必经的最后一步,可完全阻断各种刺激引起的胃酸分泌,且因质子泵抑制剂是以共价键的方式与酶结合,故抑制胃酸分泌的作用很强,而且质子泵仅存在于胃壁细胞表面,质子泵抑制剂在口服后,经十二指肠吸收,可选择性地浓缩在胃壁细胞的酸性环境中,在壁细胞中可存留24小时,因而其作用持久,即使血药浓度水平低到不能被检出,仍能发挥作用。
故质子泵抑制剂的作用专一,选择性高,副作用小。
5-44、请简述镇吐药的分类和作用机制。
答:止吐药物可阻断呕吐神经反射环的传导,达到止吐的临床治疗效果,该反射环受多种神经递质的影响,如组胺、乙酰胆碱、多巴胺和5-羟色胺。
止吐药,现以其作用靶点和作用机制分为抗组胺受体止吐药、抗乙酰胆碱受体止吐药、抗多巴胺受体止吐药和抗5-羟色胺受体的5-HT3受体拮抗剂。
6-40、为什么临床上使用的布洛芬为消旋体?
答:布洛芬S(+)为活性体,但R(-)在体内可代谢转化为S(+)构型,所以布洛芬使用外消旋体。
7-48试说明顺铂的注射剂中加入氯化钠的作用。
答:顺铂为金属配合物抗肿瘤药物,顺式有效,反式无效,通常以静脉注射给药。
其水溶液不稳定,能逐渐水解和转化为反式,生成水合物,进一步水解生成无抗肿瘤活性且有剧毒的低聚物,而低聚物在0.9%氯化钠溶液中不稳定,可迅速完全转化为顺铂,因此在顺铂的注射剂中加入氯化钠,临床上不会导致中毒危险。
8-46.天然青霉素G有哪些缺点?试述半合成青霉素的结构改造方法。
答:天然青霉素G的缺点为对酸不稳定,不能口服,只能注射给药;抗菌谱比较窄,仅对格兰阳性菌效果
好,细菌易对其产生耐药性,有严重的过敏性反应。
在青霉素的侧链上引入吸电子基团,阻止侧链羰基电子向β-内酰胺环的转移,增加了对酸的稳定性,得到一系列耐酸性青霉素。
在青霉素的侧链上引入较大体积的基团,阻止了化合物与酶的活性中心的结合。
又由于空间阻碍限制酰胺侧链R与羰基间的单键旋转,从而降低了青霉素分子与酶活性中心作用的适应性,因此药物对酶的稳定性增加。
在青霉素的侧链上引入亲水基团(如氨基,羧基或磺酸基等)扩大了抗菌谱,不仅对格兰阳性菌有效,对多数格兰阴性菌也有效。
8-49.为什么青霉素G不能口服?为什么其钠盐或钾盐必须做成粉针剂型?
答:由于青霉素在酸性条件下不稳定,易发生重排失活,因此不能口服。
通常将其做成钠盐或钾盐注射使用,但其钠盐或钾盐水溶液的碱性较强,β-内酰胺环会开环,生成青霉酸,失去抗菌活性。
因此青霉素的钠盐或钾盐必须做成粉针剂,使用前新鲜配制。
8-50.氯霉素的结构中有两个手性碳原子,临床使用的是哪一种光学异构体?在全合成过程中如何得到该光学异构体?
答:氯霉素的结构中含有两个手性碳原子,有四个旋光异构体。
其中以苏阿糖性有抗菌活性,为临床使用的氯霉素。
在氯霉素的全合成过程中,还原一步选择立体选择性还原剂异丙醇铝得到(+-)苏阿糖型对硝基苯基2氨基丙二醇,再采用诱导结晶法进行拆分,得到D(-)-苏阿糖型氨基物,最后得到的氯霉素的构型为1R2R (-)即D(-)-苏阿糖型。
8-52.为什么四环素类抗生素不能和牛奶等富含金属离子的食物一起使用?
答:四环素类药物分子中含有许多羟基、稀醇羟基及羰基,在近中性条件下能与多种金属离子形成不溶性螯合物,如与钙或镁离子形成不溶性的钙盐或镁盐,与铁离子形成红色络合物,与铝离子形成黄色络合物等。
因此,四环素类抗生素不能和牛奶等富含金属离子的食物一起使用。
10-48.根据磺酰脲类口服降糖药的结构特点,设计简便方法对tolbutamide(mp.126℃~130℃)和chlorpropamide(mp.126℃~129℃)进行鉴别
答:将样品与无水碳酸钠强火加热后,chlorpropamide可生成氯化钠,显氯化物反应。
10-50.写出以间氯苯胺为原料合成氢氯噻嗪的合成路线10-50.写出以间氯苯胺为原料合成氢氯噻嗪的合成路线
答:间氯苯胺与过量的氯磺酸进行氯磺化反应,生成4-氯-6-氨基-间苯二磺酰氯,然后在氯化铵水溶液中,通入氨气,至PH8~9左右,制得4-氯-5-氨基-间苯二磺酰胺,再与等克分子的甲醛缩合,即制备得到Hudrochlorothiazide。