14导数应用

合集下载

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。

②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。

考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。

14导数的概念及运算

14导数的概念及运算
2.独立思考,合作学习,探究利用导数公式和导数的四则运算求简单函数导数的规律和方法.
3.积极参与,善于发现和提出问题,享受学习成功的快乐。
【重点难点】重点:利用导数公式和导数的运算法则求简单函数导数;难点:导数的应用。
【课前预习】
一、基础知识梳理:
1.什么是函数在点 处的导数及导函数?
2.函数在点 处导数的几何意义是什么?
A.1B.2C. D.
【答案】A
4.(2011年高考全国Ⅰ卷)曲线 在点(1,0)处的切线方程为()
(A) (B)
(C) (D)
【答案】A
5.(2011年高考全国Ⅱ理8)曲线 在点(0,2)处的切线与直线 和 围成的三角形的面积为()
(A) (B) (C) (D)1
【答案】A
6.(2011年高考山东文4)曲线 在点P(1,12)处的切线与y轴交点的纵坐标是()
对于半径为 的球,若将 看作 上的变量,请你写出类似于①的式子___________,且用自然
语言叙述为____________.
【我的疑问】
【课内探究】
一、讨论、展示、点评、质疑
探究一、求函数的导数
例1.求下列函数的导数:
⑴ ⑵
(3) (4)
拓展:
(1)求函数 在点P(3,f(3))处的导数;
(2)求 在 处的导数
A. 或 B. 或 C. 或 D. 或
二、填空题:
10.直线 垂直,且与曲线 相切的直线方程是
11.在曲线 的切线中,经过原点的切线为
12. 和 在它们交点处的两条切线与 轴所围成的三角形的面积是
三、解答题
13.(AB层探究拓展)已知曲线方程为 (1)求过 点且与曲线相切的直线方程;

14方向导数与梯度

14方向导数与梯度

方向导数与梯度第六节经常需要研究函数在某点沿某一固定方向的变化率问在实际问题中,z?),xyz?f(实际上就是点的偏导数题,例如我们所学习的函数x?x)x,yP(沿轴方向变化时函数的变化率,由此引入方向导数的概念。

一、方向导数PQ方向的变不难看出函数沿我们以二元函数为例介绍方向导数。

化率可以用如下极限表示)f(Pf(Q)?lim||PQ0|PQ|?l)f(x,yz?)(x,yP)UP(内有定义,设函数在点的某邻域为一000e),bai?bj?(ae?LP相引射线,方向与,自点向量,其单位向量为exOy),yP(xL为方向向量的直线,由解同,由于面上通过点是且以00L析几何知射线的参数方程为tax??x?0??t?0?。

?tb??yy?0ta?x?x?0)x,y(QL,则上任意取一点。

在?y?y?tb?0Qetb)?,(?)?,xx?PQ(?yytaP两点间的距,所以到由于001t?|?|t|?|PQ||t(a,b)离为yLQPxO)y?f(x,z)P(x,ye的变化率我们可以用函数则函数在点处沿方向00Q)(P(fQ)?ftP增量到点的比值与点的距离)fy(x,,f(x?tay?tb)?)(P)f(Q?f0000?tt?0?tQlP)时的极限来表示,该极限为函数当趋于点沿直线(即e)?zf(x,yP处沿方向的变化率,称为方向导数。

在点l)(xy,?zf)x,Py(的某个邻域内有定义,设函数定义是在点00)b,(?ea 为,如果极限一非零向量,其单位向量l2)y(x,(x?ta,y?tb)?ff0000limt?0?t l)yz?f(x,),Py(x的方向导在点处沿方向存在,则称此极限为函数00f?|数,记作,即)x(,y 00l?),yy?tb)?f(xtaf(x?,f?0000|lim?。

)yx,(t00?l?0t?f?),yz?f(x|就是函数由方向导数的定义可知,方向导数),y(x00l?l)Py(x,处沿方向在点的变化率。

高考数学一轮复习考点知识专题讲解14---导数的概念及其意义、导数的运算

高考数学一轮复习考点知识专题讲解14---导数的概念及其意义、导数的运算

高考数学一轮复习考点知识专题讲解 导数的概念及其意义、导数的运算考点要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或y ′|0x x =. f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx .(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln a f (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ). 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)与曲线只有一个公共点的直线一定是曲线的切线.(×)(3)f′(x0)=[f(x0)]′.(×)教材改编题1.若f(x)=1x,则f′(x)=________.答案-x 2x2解析f(x)=1x=12x-,∴f′(x)=3212x--=-x2x2.2.函数f(x)=e x+1x在x=1处的切线方程为.答案y=(e-1)x+2解析f′(x)=e x-1x2,∴f′(1)=e-1,又f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=.答案-1e解析f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.题型一 导数的运算例1(1)(2022·济南质检)下列求导运算正确的是________.(填序号) ①⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2;②(x 2e x )′=2x +e x ; ③(tan x )′=1cos 2x; ④⎝ ⎛⎭⎪⎫x -1x ′=1+1x 2.答案①③④解析⎝ ⎛⎭⎪⎫1ln x ′=-1(ln x )2·(ln x )′=-1x (ln x )2,故①正确;(x 2e x )′=(x 2+2x )e x ,故②错误;(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x ,故③正确;⎝⎛⎭⎪⎫x -1x ′=1+1x 2,故④正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝ ⎛⎭⎪⎫π3sin x ,则f ⎝ ⎛⎭⎪⎫π6=.答案π236+2π3解析f ′(x )=2x +f ′⎝ ⎛⎭⎪⎫π3cos x ,∴f ′⎝ ⎛⎭⎪⎫π3=2π3+12f ′⎝ ⎛⎭⎪⎫π3,∴f ′⎝ ⎛⎭⎪⎫π3=4π3,∴f ⎝ ⎛⎭⎪⎫π6=π236+2π3.教师备选在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)等于()A .26B .29C .212D .215 答案C解析因为在等比数列{a n }中,a 1=2,a 8=4, 所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=2×4=8. 因为函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),所以f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′, 所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.跟踪训练1(1)函数y =sin2x 的导数y ′等于()A .2B .cos2C .2cos2xD .2sin2x 答案C解析y =sin2x =2sin x ·cos x ,y ′=2cos x ·cos x +2sin x ·(-sin x ) =2cos 2x -2sin 2x =2cos2x .(2)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于() A .1 B .2 C .3 D .4 答案C解析当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3. 题型二 导数的几何意义 命题点1求切线方程例2(1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为. 答案5x -y +2=0解析y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l的方程为. 答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2求参数的值(范围)例3(1)(2022·西安模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于()A .4B .3C .2D .1 答案A解析∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵f (x )=a ln x +b ,∴f ′(x )=a x,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln1+b =2,解得b=2,故2a+b=2+2=4.(2)已知曲线f(x)=13x3-x2-ax+1存在两条斜率为3的切线,则实数a的取值范围是________.答案(-4,+∞)解析f′(x)=x2-2x-a,依题意知x2-2x-a=3有两个实数解,即a=x2-2x-3=(x-1)2-4有两个实数解,∴y=a与y=(x-1)2-4的图象有两个交点,∴a>-4.教师备选1.已知曲线f(x)=x3-x+3在点P处的切线与直线x+2y-1=0垂直,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)或(-1,3) D.(1,-3)答案C解析设切点P(x0,y0),f′(x)=3x2-1,又直线x+2y-1=0的斜率为-1 2,∴f′(x0)=3x20-1=2,∴x20=1,∴x0=±1,又切点P(x0,y0)在y=f(x)上,∴y0=x30-x0+3,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+12x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于π4的锐角,则实数a的取值范围是()A.[2,+∞) B.[4,+∞) C.(-∞,2] D.(-∞,4] 答案C解析因为y=ln x+12x2+(1-a)x,所以y′=1x+x+1-a,因为曲线在M点处的切线的倾斜角均是不小于π4的锐角,所以y′≥tan π4=1对于任意的x>0恒成立,即1x+x+1-a≥1对任意x>0恒成立,所以x+1x≥a,又x+1x≥2,当且仅当x=1 x ,即x=1时,等号成立,故a≤2,所以a的取值范围是(-∞,2].思维升华(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”.跟踪训练2(1)(2022·南平模拟)若直线y =x +m 与曲线y =e xe 2n 相切,则()A .m +n 为定值B.12m +n 为定值C .m +12n 为定值D .m +13n 为定值答案B解析设直线y =x +m 与曲线y =e x e 2n 切于点002e (,)e x n x ,因为y ′=e x e 2n ,所以02e e x n =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,即12m +n =12.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是. 答案[2,+∞)解析直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x+4x -a =2在(0,+∞)内有解,则a =4x +1x-2,x >0.又4x +1x≥24x ·1x=4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4(1)(2022·驻马店模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于() A .0B .-1C .3D .-1或3 答案D解析由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1, 因为直线l 与g (x )的图象也相切,则方程组⎩⎨⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)若函数f (x )=x 2-1与函数g (x )=a ln x -1的图象存在公切线,则正实数a 的取值范围是()A .(0,e)B .(0,e]C .(0,2e)D .(0,2e] 答案D解析f (x )=x 2-1的导函数f ′(x )=2x ,g (x )=a ln x -1的导函数为g ′(x )=a x. 设切线与f (x )相切的切点为(n ,n 2-1),与g (x )相切的切点为(m ,a ln m -1), 所以切线方程为y -(n 2-1)=2n (x -n ),y -(a ln m -1)=am(x -m ),即y =2nx -n 2-1,y =a mx -a +a ln m -1.所以⎩⎨⎧2n =a m ,n 2+1=a +1-a ln m ,所以a 24m 2=a -a ln m ,由于a >0,所以a4m 2=1-ln m , 即a4=m 2(1-ln m )有解即可. 令h (x )=x 2(1-ln x )(x >0),h ′(x )=x (1-2ln x ),所以h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,最大值为h (e)=e2,当0<x <e 时,h (x )>0, 当x >e 时,h (x )<0, 所以0<a 4≤e2,所以0<a ≤2e.所以正实数a 的取值范围是(0,2e].教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-1 答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于()A .-1B .-2C .1D .2 答案B解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1), 即y =1e x x -1e x x 1+1e x ,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得⎩⎨⎧1ex =1x 2,1ex -1e x x 1=-1+ln x 2,得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+ln11e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11ex , 所以x 2=x 1-1x 1+1, 所以x 2-1=x 1-1x 1+1-1=-2x 1+1, 所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3(1)(2022·雅安模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为() A .2 B .5 C .1 D .0 答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a-1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)不与x 轴重合的直线l 与曲线f (x )=x 3和y =x 2均相切,则l 的斜率为________. 答案6427解析设直线l 与曲线f (x )=x 3相切的切点坐标为(x 0,x 30),f ′(x )=3x 2,则f ′(x 0)=3x 20,则切线方程为y =3x 20x -2x 30,因为不与x 轴重合的直线l 与曲线y =x 3和y =x 2均相切, 则⎩⎨⎧y =3x 20x -2x 30,y =x 2,得x 2-3x 20x +2x 30=0,Δ=9x 40-8x 30=0,得x 0=0(舍去)或x 0=89,所以l 的斜率为3x 20=6427. 课时精练1.(2022·阳江模拟)下列函数的求导正确的是()A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln10)′=110D .(3x )′=3x 答案B解析(x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对;(ln10)′=0,∴C错;(3x)′=3x·ln3,∴D错.2.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()答案B解析由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率先增大后减小.3.(2022·黑龙江哈师大附中月考)曲线y=2cos x+sin x在(π,-2)处的切线方程为() A.x-y+π-2=0 B.x-y-π+2=0C.x+y+π-2=0 D.x+y-π+2=0答案D解析y′=-2sin x+cos x,当x=π时,k=-2sinπ+cosπ=-1,所以在点(π,-2)处的切线方程,由点斜式可得y+2=-1×(x-π),化简可得x+y-π+2=0.4.(2022·兴义模拟)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)等于()A .-1B .0C .2D .4 答案B解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.设曲线f (x )=a e x +b 和曲线g (x )=cos x +c 在它们的公共点M (0,2)处有相同的切线,则b +c -a 的值为() A .0B .πC.-2D .3 答案D解析∵f ′(x )=a e x ,g ′(x )=-sin x , ∴f ′(0)=a ,g ′(0)=0,∴a =0, 又M (0,2)为f (x )与g (x )的公共点, ∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.已知点A是函数f(x)=x2-ln x+2图象上的点,点B是直线y=x上的点,则|AB|的最小值为()A. 2 B.2 C.433D.163答案A解析当与直线y=x平行的直线与f(x)的图象相切时,切点到直线y=x的距离为|AB|的最小值.f′(x)=2x-1x=1,解得x=1或x=-12(舍去),又f(1)=3,所以切点C(1,3)到直线y=x的距离即为|AB|的最小值,即|AB|min=|1-3|12+12= 2.7.已知函数f(x)的图象如图,f′(x)是f(x)的导函数,设a=f(3)-f(2),则下列结论正确的是()A.f′(2)<f′(3)<aB.f′(2)<a<f′(3)C.f′(3)<a<f′(2)D.a<f′(3)<f′(2)答案C解析a=f(3)-f(2)=f(3)-f(2)3-2,∴a 表示曲线上两点A (2,f (2)),B (3,f (3))连线的斜率, 由图知,曲线切线的斜率越来越小, ∴f ′(3)<a <f ′(2).8.(2022·固原模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是() A.⎣⎢⎡⎭⎪⎫0,3π4 B.⎣⎢⎡⎭⎪⎫0,π2∪⎝⎛⎭⎪⎫3π4,π C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案B解析∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,π. 9.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)=________. 答案10解析切点坐标为(2,f (2)),∵切点在切线上,∴f (2)=3×2+1=7, 又k =f ′(2)=3,∴f (2)+f ′(2)=10.10.(2022·四川天府名校联考)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =. 答案-1解析因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x ,f ′(π)=cosπ-π·sinπ=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1. 11.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =. 答案2解析f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1,则a =2.12.已知函数f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为. 答案(-∞,-1)∪(3,+∞)解析因为f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线, 所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根, 则Δ=4a 2-12⎝ ⎛⎭⎪⎫23a +1>0,即a 2-2a -3>0,解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2023(x )等于()A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x答案A解析∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2023=4×505+3,∴f 2023(x )=f 3(x )=-sin x -cos x .14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则()A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案D解析方法一设切点(x 0,y 0),y 0>0,则切线方程为y -b =0e x (x -a ),由⎩⎨⎧ y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二(用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .15.(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,3π4上是凸函数的是________.(填序号)①f (x )=-x 3+3x +4;②f (x )=ln x +2x ;③f (x )=sin x +cos x ;④f (x )=x e x .答案①②③解析对①,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3,f ″(x )=-6x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故①为凸函数; 对②,f (x )=ln x +2x ,f ′(x )=1x+2, f ″(x )=-1x 2, 当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故②为凸函数; 对③,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故③为凸函数; 对④,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )>0,故④不是凸函数. 16.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________.答案y =e x 或y =x +1解析设直线l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -x 11e x +1e x , ①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x, ∴g ′(x 2)=1x 2, 切点为(x 2,ln x 2+2),切线斜率k =1x 2, ∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1, ②由题意知,①与②相同,∴⎩⎨⎧ 1e x =1x 2⇒x 2=1e x -,③-x 11e x +1e x =ln x 2+1,④把③代入④有-x 11e x +1e x =-x 1+1, 即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.。

高二数学复习典型题型与知识点专题讲解14---导数的概念及其意义+导数的运算(解析版)

高二数学复习典型题型与知识点专题讲解14---导数的概念及其意义+导数的运算(解析版)

高二数学复习典型题型与知识点专题讲解14 导数的概念及其意义+导数的运算一、典例精析拓思维(名师点拨) 知识点1 变化率与导数 知识点2 导数几何意义 知识点3 导数的四则运算 知识点4 复合函数求导 二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 变化率与导数例1.(2021·江苏·高二专题练习)函数()221y f x x ==-在区间[]1,1x +∆上的平均变化率yx∆∆等于( ).A .4B .42x +∆C .()242x +∆D .4x 【答案】B 【详解】因函数()221y f x x ==-,则()f x 在区间[]1,1x +∆上的函数增量y ∆有:()()()()()22112112142y f x f x x x ∆=+∆-+∆---=∆+∆=,于是有42yx x∆=+∆∆, 所以所求平均变化率yx∆∆等于42x +∆.故选:B练习1-1.(2021·江苏·高二专题练习)已知函数()224f x x =-的图象上一点()1,2-及邻近一点()1,2x y +∆-+∆,则yx∆=∆( ) A .4B .4x ∆C .42x +∆D .()242x +∆ 【答案】C 【详解】解:∵()()()()()22112142424y f x f x x x ∆=+∆-=+∆---=∆+∆,∴24yx x∆=∆+∆, 故选:C .名师点评:平均变化率函数()y f x =从1x 到2x 的平均变化率是2121()()f x f x y x x x -∆=∆-. 例2.(2021·全国·高二课时练习)已知函数()f x 在0x 处的导数为0()f x ',则()()000lim x f x m x f x x∆→-∆-∆等于( )A .0()mf x 'B .0()mf x '-C .0(1)f m x -'D .01()f x m' 【答案】B 【详解】因为函数()f x 在0x 处的导数为0()f x ', 所以()()0000im)l (x f x m x f f x x x m ∆→-∆-'=-∆,所以()()()()0000000liml ()imx x f x m x f x f x m x f x m xxf m x m ∆→∆→-∆--∆-=-=-∆-'∆,故选:B.练习2-1.(2021·山西·晋城市第一中学校高二阶段练习)设()f x 为可导函数,且当0x ∆→时,()()1112f f x x--∆→-∆,则曲线()y f x =在点()() 1,1f 处的切线斜率为( )A .2B .1-C .1D .2- 【答案】D 【详解】解:由导数的几何意义,点()() 1,1f 处的切线斜率为(1)f ', 因为0x ∆→时,()()1112f f x x--∆→-∆,所以()()()()11(1)liml 11222imx x f f x f f x xxf ∆→∆→--∆--∆='=-∆∆=,所以在点()() 1,1f 处的切线斜率为2-, 故选:D.名师点评:瞬时变化率函数()y f x =在0x x =处的瞬时变化率0000()()lim lim x x f x x f x yx x ∆→∆→+∆-∆=∆∆. 在实际解题时要注意00()()f x x f x +∆-中两()中的量做差得到的结果才是分母中的x ∆.如在例2()()0000lim()x f x m x f x f x x∆→-∆-'≠∆,在该式中,分子两()中的量作差后得到的()()00x m x x m x -∆-=-∆,所以()()0000lim ()x f xm x f x f x m x∆→-∆-'=-∆,所以在题目中的分母要凑配常数,即:()()()()()000000lim()lim()x x m m f x m x f x f x m x f x f x xxm ∆→∆→---∆--∆-'=∆-=∆.知识点2 导数几何意义例1.(2021·全国·高二单元测试)如图,函数()y f x =的图象在点(2,)P y 处的切线是l ,则(2)(2)f f '+=( )A .-3B .-2C .2D .1 【答案】D 【详解】解:由题图可得函数()y f x =的图象在点P 处的切线与x 轴交于点(4,0),与y 轴交于点(0,4),则切线:4l x y +=,(2)2f ∴=,(2)1f '=-,(2)(2)211f f '+=-=,故选:D.练习1-1.(2021·全国·高二单元测试)已知()y f x =的图象如图所示,则()A f x '与()B f x '的大小关系是( ) A .()()A B f x f x ''> B .()()A B f x f x ''= C .()()A B f x f x ''<D .()A f x '与()B f x '大小不能确定 【答案】A 【详解】根据题意,由图象可得f (x )在x =x A 处切线的斜率大于在x =x B 处切线的斜率, 则有()()A B f x f x ''>; 故选:A名师点评:函数()y f x =在0x x =处的导数0()f x '的几何意义是在曲线()y f x =上点00(,)P x y 处的切线的斜率(0()k f x '=).例2.(2021·陕西汉中·一模(理))已知函数3C :()ln f x x x =+,则曲线在点(1,(1))f 处的切线方程为___________. 【答案】430x y --= 【详解】解:因为21()3f x x x'=+, 所以(1)4k f '==, 又(1)1,f =故切线方程为14(1)y x -=-, 整理为430x y --=, 故答案为:430x y --=练习2-1.(2021·四川成都·一模(文))曲线()3f x x x =-在点(2,6)处的切线方程为_______.【答案】11160x y --= 【详解】因为()3f x x x =-,所以()231f x x '=-,()211f '=所以切线方程为()6112y x -=-,即11160x y --= 故答案为:11160x y --=名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时需另设切点求解.如本例2,求函数3C :()ln f x x x =+,在点(1,(1))f 处的切线方程,此时切点为(1,(1))f ,只需求出斜率(1)k f '=.例3.(2021·河南·南阳中学高三阶段练习(文))曲线()ln 3f x x =+的过点()1,1-的切线方程为________.【答案】20x y -+= 【详解】设切点坐标为()00,ln 3x x +,()1f x x'=,()001f x x '∴=,∴切线方程为()0001ln 3y x x x x --=-, 切线过点()1,1-,()00011ln 31x x x ∴--=--, 化简得:0011ln x x +=,解得:01x =, ∴切线方程为2y x =+,即20x y -+=.故答案为:20x y -+=.练习3-1.(2021·全国·高二课时练习)已知函数()32698f x x x x =-+-+,则过点()0,0可作曲线()y f x =的切线的条数为___________.【答案】2 【详解】∵点()0,0不在函数()y f x =的图象上,∴点()0,0不是切点,设切点为()320000,698P x x x x -+-+(00x ≠),由()32698f x x x x =-+-+,可得()23129'=-+-f x x x ,则切线的斜率()20003129k f x x x '==-+-,∴3220000006983129x x x x x x -+-+-+-=,解得01x =-或02x =,故切线有2条. 故答案为:2名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时无论00(,)P x y 是否在曲线上,都需另设切点求解.如本例3,求曲线()ln 3f x x =+的过点()1,1-的切线方程,此时应设切点00(,)P x y ,在利用导数0()k f x '=,求出切线方程,再利用()1,1-在切线上,求出切点00(,)P x y ,从而求出切线方程.注意和例题2做对比.知识点3 导数的四则运算例1.(2021·江苏·高二专题练习)求下列函数的导数;(1)32235y x x =-+(2)22log xy x =+(3)31sin x y x-=(4)sin sin cos x y x x =+【答案】(1)266y x x '=- (2)12ln 2ln 2x y x '=+(3)()2323sin cos 1sin x x x x y x--'=(4)11sin 2y x'=+(1)解:因为32235y x x =-+,所以266y x x '=-; (2)解:因为22log xy x =+,所以12ln 2ln 2x y x '=+; (3)解:因为31sin x y x -=,所以()()()()()3323221sin sin 13sin cos 1sin sin x x x x x x x x y x x ''-----'== (4) 解:因为sin sin cos xy x x=+,所以()()()()()()()22sin sin cos sin cos sin cos sin cos cos sin sin 11sin 2sin cos sin cos x x x x x x x x x x x x y x x x x x ''+-++--'===+++练习1-1.(2021·全国·高二课时练习)已知函数()f x 的导数为()f x ',而且()()232ln f x x xf x '=++,求()2f '. 【答案】94-【详解】()()1232f x x f x ''=++,()()124322f f ''∴=++,解得:()924f '=-.名师点评:导数的运算法则: (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[](()0)()()f x f xg x f x g x g x g x g x ''⋅-⋅'=≠ 知识点4 复合函数求导例1.(2021·全国·高二课时练习)求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-.【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2xx -⋅(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数, 由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x xy y u x u x '''=⋅=⋅=-⋅.练习1-1.(2021·全国·高二课时练习)求下列函数的导数: (1)7(35)y x =+;(2)57e x y -=;(3)ln(4)y x =-+;(4)213x y -=;(5)sin 26y x π⎛⎫=- ⎪⎝⎭;(6)34(35)y x =-.【答案】(1)621(35)y x '=+(2)57e 5x y -'=(3)14y x '=- (4)212ln 33x y -'=⨯(5)2cos 26y x π⎛⎫'=- ⎪⎝⎭(6)149(35)4x y --'= (1)667(35)(35)21(35)y x x x ''=+⨯+=+;(2)5757e e (57)5x x x y --'⨯'=-=;(3) 11(4)44y x x x ''=⨯-+=-+- (4)1212ln 3(21)2ln 333x x x y --'⨯-=⨯'=;(5)cos 2(2)2cos 2666y x x x πππ⎛⎫⎛⎫''=-⨯-=- ⎪ ⎪⎝⎭⎝⎭(6)314149(33(35)45)(35)4x y x x --'=---'=⨯.名师点评:复合函数(())y f g x =的导数和函数()y f μ=,()g x μ=的导数间的关系为x x y y μμ'''=⋅,即y 对x 的导数等于y 对μ的导数与μ对x 的导数的乘积.二、题型归类练专练一、单选题1.(2021·全国·高二课时练习)函数()2f x x =在1x =附近(即从1到1x +∆之间)的平均变化率是( )A .2x +∆B .2x -∆C .2D .22()x +∆ 【答案】C 【详解】Δy =f (1+Δx )-f (1)=2(1+Δx )-2=2Δx . 所以2 2.y x x x∆∆==∆∆ 故选:C2.(2021·全国·高一课时练习)函数2()1f x x =+,当自变量x 由1变到1.1时,函数()f x 的平均变化率为( ) A .2.1B .1.1C .2D .1 【答案】A 【详解】由题意,函数的平均变化率为:()()221.11 1.112.11.110.1f f --==-. 故选:A.3.(2021·江苏·高二专题练习)函数()12f x x=在2x =处的导数为( ) A .2B .12C .14D .18- 【答案】D 【详解】()()()()000011222222111lim lim lim lim 2428x x x x f x f x f x x x x x ∆→∆→∆→∆→-∆+∆-+∆⨯⎛⎫===-⋅=- ⎪∆∆∆+∆⎝⎭,所以函数()f x 在2x =处的导数为18-.故选:D.4.(2021·江苏·高二专题练习)设函数()f x 在0x x =附近有定义,且有()()()002f x f x x b x x a +-=+∆∆∆,其中a ,b 为常数,则( ) A .()f x a '=B .()f x b '=C .()0f x a '=D .()0f x b '=【答案】C【详解】因为()()()002f x f x x b x x a +-=+∆∆∆,所以()()00f x x f x a b x x+∆-=+∆∆,则()()()0000lim lim x x f x x f x a b x a x∆→∆→+∆-=+∆=∆,即()0f x a '=. 故选:C.5.(2021·全国·高二课时练习)已知曲线y =13x 3上一点P 82,3⎛⎫ ⎪⎝⎭,则该曲线在P 点处切线的斜率为( )A .4B .2C .-4D .8【答案】A【详解】3322200011()133lim lim lim 33()3x x x x x x y y x x x x x x x ∆→∆→∆→+∆-∆'⎡⎤===+⋅∆+∆=⎣⎦∆∆ 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在P 点处切线的斜率为4.故选:A6.(2021·河南·温县第一高级中学高三阶段练习(文))已知函数2()ln 2f x x m x x =-+的图象在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线20x y +=垂直,则m =( ) A .54B .54-C .12D .12- 【答案】C【详解】函数2()ln 2f x x m x x =-+的导数为()22m f x x x'=-+, 可得在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1322f m ⎛⎫=⎪⎭'- ⎝, 又切线与直线20x y +=垂直,所以()13212m -⋅-=-,解得12m =. 故选:C .7.(2021·四川·树德中学高三期中(文))设函数()()ln f x g x x x =++,曲线()y g x =在点1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为( )A .4y x =B .48=-y xC .22y x =+D .21y x =+【答案】A【详解】因为曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,所以(1)3(1)2g g =⎧⎨='⎩, 因为()()ln =++f x g x x x ,则1()()1f x g x x''=++,所以1(1)(1)141f g ''=++=, 且(1)(1)1ln14f g =++=,因此曲线()y f x =在点(1,(1))f 处的切线方程为()441y x -=-,即4y x =,故选:A.8.(2021·江苏·扬州中学高二阶段练习)已知()()220x f x e xf '=-,则()1f '=( )A .243e -B .2423e -C .ln 2e +D .221e - 【答案】B【详解】()()2e 20x f x xf '=-,则()()22e 20x f x f ''=-,()()0220f f ''=-,()203f '=.()242e 3x f x '=-,()2412e 3f '=-.故选:B二、填空题9.(2021·河南·高二期末(文))已知函数()2e sin x f x x m x =⋅-的图象在0x =处的切线与直线310x y ++=垂直,则实数m =___________.【答案】-1【详解】()2sin x f x x e m x =⋅-的定义域为R ,则()22cos x x f x e x e m x '=+⋅-,则函数在0x =处的切线斜率为1(0)2k f m '==-,又直线310x y ++=的斜率213k =-, 由切线和直线垂直,则121k k ,即1(2)()13m -⨯-=-, 解得1m =-.故答案为:1-10.(2021·山东·高三阶段练习)曲线2()ln(2)f x x x =+在点(1,(1))f 处的切线方程为________.【答案】3ln 22y x =+-【详解】()11()2222f x x x x x x ''=⋅+=+, (1)3k f '∴==,又(1)1ln 2f =+,∴切线方程为(1ln 2)3(1)y x -+=-,即3ln 22y x =+-故答案为:3ln 22y x =+-11.(2021·陕西蒲城·高三期中(理))已知函数()sin cos f x x x x =+,则()f π'-=_____.【答案】π【详解】由()sin cos f x x x x =+求导得:()sin cos sin cos f x x x x x x x '=+-=,于是得()cos()f ππππ'-=--=,所以()f ππ'-=.故答案为:π12.(2021·云南师大附中高三阶段练习(理))已知函数cos2()1x f x x =+,则曲线()y f x =在点(0,(0))f 处的切线方程为____________.【答案】+10x y -=【详解】解:由题,得()()()22sin 21cos 21x x x f x x -⋅+-=+',则(0)1f '=-,而(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x -=-,即10x y +-=.故答案为:+10x y -=.三、解答题13.(2021·山西·芮城中学高二阶段练习)已知曲线3S 2y x x =-:(1)求曲线S 在点(2,4)A 处的切线方程;(2)求过点(1,1)B -并与曲线S 相切的直线方程.【答案】(1)10160x y --=(2)20x y --=或5410x y +-=(1)∵32y x x =-,则232y x '=-,∴当2x =时,10y '=,∴点A 处的切线方程为:()4102y x -=-,即10160x y --=.(2)设()3000,2P x x x -为切点,则切线的斜率为()20032f x x '=-,故切线方程为:()()()320000232y x x x x x --=--, 又知切线过点()1,1-,代入上述方程()()()32000012321x x x x ---=--,解得01x =或012x =-, 故所求的切线方程为20x y --=或5410x y +-=.14.(2021·北京市第十五中学南口学校高三期中)已知函数321()33f x x x x =--,求曲线()y f x =在1x =处的切线的方程. 【答案】143y x =-+ 因为321()33f x x x x =--,所以111(1)1333f =--=-,2()23f x x x '=-- 所以(1)1234f '=--=-所以曲线()y f x =在1x =处的切线的方程为()11413y x +=--,即143y x =-+。

高中数学利用导数研究函数单调性基础知识梳理+常考例题汇总

高中数学利用导数研究函数单调性基础知识梳理+常考例题汇总

∴(-2)+(-1)=a,即 a=-3. 3.[变条件]本例(2)变为:若 g(x)在(-2,-1)内不单调,其他条件不变,求实数 a 的取值范围. 【解析】由 1 知 g(x)在(-2,-1)内为减函数时,实数 a 的取值范围是(-∞,- 3]. 若 g(x)在(-2,-1)内为增函数,则 a≥x+ 2 在(-2,-1)内恒成立,
2.已知函数 f(x)= x a -ln x- 3 ,其中 a∈R,且曲线 y=f(x)在点(1,f(1))处
4x
2
的切线垂直于直线 y= 1 x.
2
(1)求 a 的值;
(2)求函数 f(x)的单调区间.
【解析】(1)对 f(x)求导得 f′(x)= 1 - a - 1 ,
4 x2 x
由 f(x)在点(1,f(1))处的切线垂直于直线 y= 1 x,
【解析】f′(x)= 1 ·x+ln x-k-1=ln x-k,
x
①当 k≤0 时,因为 x>1,所以 f′(x)=ln x-k>0,
所以函数 f(x)的单调递增区间是(1,+∞),无单调递减区间.
②当 k>0 时,令 ln x-k=0,解得 x=ek,
当 1<x<ek 时,f′(x)<0;当 x>ek 时,f′(x)>0.
x
又∵y=x+ 2 在(-2,- 2 )内单调递增,在(- 2 ,-1)内单调递减,
x
∴y=x+ 2 的值域为(-3,-2 2 ),
x
∴实数 a 的取值范围是[-2 2 ,+∞), ∴函数 g(x)在(-2,-1)内单调时,a 的取值范围是(-∞,-3]∪[-2 2 ,+∞), 故 g(x)在(-2,-1)上不单调时,实数 a 的取值范围是(-3,-2 2 ). [解题技法]由函数的单调性求参数的取值范围的方法 (1)由可导函数 f(x)在 D 上单调递增(或递减)求参数范围问题,可转化为 f′(x)≥ 0(或 f′(x)≤0)对 x∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”

14.导数的概念及意义学

14.导数的概念及意义学

导数的概念及意义1.实际问题引入引例。

物体自由落体的运动方程s =s (t )=21gt 2,其中位移单位m ,时间单位s ,g =9.8 m/s 2. 求t =3这一时段的速度.变。

已知某车启动过程中的运动方程为315S t =(05)t ≤≤,求5t s =时的瞬时速度。

练。

已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求t s ∆∆. (2)当t =2,Δt =0.001时,求ts ∆∆. (3)求质点M 在t =2时的瞬时速度.瞬时速度反应的是质点运动方程中位移关于时间的变化率(位移是时间的函数),将次问题数学化即已知()y f x =表示y 是x 的函数,探求函数值y 关于自变量x 的变化率问题既是我们要研究的导数。

2.导数的概念导数的定义:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即 xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/ 3.导数的几何意义 xy ∆∆的几何意义是是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率,取极限之后表示割线即为切线,故导数0'()f x 的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率如图,设曲线c 是函数()y f x =的图象,点00(,)P x y 是曲线 c 上一点PQ 当点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 )(()(00/0x x x f x f y -=-例1.求曲线f (x )=x 3+2x +1在点(1,4)处的切线方程.例2 y =x 3在点P 处的切线斜率为3,求点P 的坐标.例3.求曲线y =x 2+1在点P (-2,5)处的切线方程.4.导函数概念1. 导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y =x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim00 函数)(x f y =在0x 处的导数0/x x y=就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数)(/x f 在0x 处的函数值,即0/x x y ==(0/x f 所以函数)(x f y =在0x 处的导数也记作)(0/x f 注意:导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值它们之间的关系是函数)(x f y =在点0x 处的导数就是导函数)(/x f 在点0x 的函数值 2. 求函数)(x f y =的导数的一般方法:(1)求函数的改变量()(x f x x f y -∆+=∆(2)求平均变化率xx y ∆=∆∆ (3)取极限,得导数/y =()f x '=x y x ∆∆→∆0lim 例1求y =x 2在点x =1处的导数.例2已知y =x ,求y ′.例3 已知y =x 3-2x +1,求y ′,y ′|x =2.5.基本初等函数的导函数公式(1). 常函数导数 0'=C (C 为常数)(2). 幂函数导数 1()'a a x ax -=(3). 对数函数导数 1(log )'ln a x x a =,特别地:1(ln )'x x= (4). 指数函数导数 ()'ln x x a a a =,特别地:()'x x e e =(5). 三角函数 (sin )'cos x x =, (cos )'sin x x =- 例1 .求 (1)(x 3)′ (2)(21x)′ (3)(x )′ 例2. (口答)求下列函数的导数:(1)y =x 5 (2)y =x 6 (3)x =sin t (4)u =cos ϕ 例3.求下列函数的导数:(1)y =31x (2)y =3x 例4.质点运动方程是51t s =, 求质点在2=t 时的速度. 例5.求曲线x y sin =在点A )21,6(π的切线方程. 课堂练习:1.质点的运动方程是s =t 3,(s 单位m ,t 单位s),求质点在t =3时的速度.2.物体自由落体的运动方程是s =s (t )=21gt 2,(s 单位m ,t 单位s ,g =9.8 m/s 2),求t =3时的速度. 3.求曲线y =x 4在点P (2,16)处的切线方程.5.导数的四则运算(函数的和、差、积、商的导数)(1) 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 '')'(v u v u ±=±(2) 两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 '')'(uv v u uv +=(3) 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即'2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭例1 求y =x 3+sin x 的导数.例2 求y =x 4-x 2-x +3的导数.例3求453223-+-=x x x y 的导数.例4求2(23)(32)y x x =+-的导数.例5 y =3x 2+x cos x ,求导数y ′.例6 y =5x 10sin x -2x cos x -9,求y ′.例1求y =xx sin 2的导数. 例2求y =332++x x 在点x =3处的导数. 例3 求y =x1·cos x 的导数. 例4求y =cot x 的导数.例5 求y =xx -+31的导数. 例6求y =xx sin 12-的导数. 例7求y =x x x cos 423-的导数.5.复合函数的导数1.复合函数: 由几个函数复合而成的函数,叫复合函数.由函数)(u f y =与)(x u ϕ=复合而成的函数一般形式是)]([x f y ϕ=,其中u 称为中间变量.2.求函数2(32)y x =-的导数的两种方法与思路:方法一:22[(32)](9124)1812x y x x x x '''=-=-+=-; 方法二:将函数2(32)y x =-看作是函数2y u =和函数32u x =-复合函数,并分别求对应变量的导数如下: 2()2u y u u ''==,(32)3x u x ''=-=两个导数相乘,得232(32)31812u x y u u x x ''==-=-, 从而有 x u x u y y '''⋅=对于一般的复合函数,结论也成立,以后我们求y ′x 时,就可以转化为求y u ′和u ′x 的乘积,关键是找中间变量,随着中间变量的不同,难易程度不同.3.复合函数的导数:设函数u =ϕ(x )在点x 处有导数u ′x =ϕ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (ϕ (x ))在点x 处也有导数,且x u x u y y '''⋅= 或f ′x (ϕ (x ))=f ′(u ) ϕ′(x ).证明:设x 有增量Δx ,则对应的u ,y 分别有增量Δu ,Δy ,因为u =φ(x )在点x 可导,所以u =ϕ (x )在点x 处连续.因此当Δx →0时,Δu →0.当Δu ≠0时,由xu u y x y ∆∆⋅∆∆=∆∆. 且x y u y u x ∆∆=∆∆→∆→∆00lim lim . ∴x u u y x u u y x u u y x y x u x x x x ∆∆⋅∆∆=∆∆⋅∆∆=∆∆⋅∆∆=∆∆→∆→∆→∆→∆→∆→∆000000lim lim lim lim lim lim 即x u x u y y '''⋅= (当Δu =0时,也成立)4.复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代.例1试说明下列函数是怎样复合而成的?⑴32)2(x y -=; ⑵2sin x y =; ⑶)4cos(x y -=π; ⑷)13sin(ln -=x y . 例2写出由下列函数复合而成的函数:⑴u y cos =,21x u +=; ⑵u y ln =,x u ln =. 例3求5)12(+=x y 的导数.例4求f (x )=sin x 2的导数.例5求y =sin 2(2x +3π)的导数. 例6求32c bx ax y ++=的导数.例7求y =51x x -的导数. 例8 求y =sin 2x 1的导数. 例9 求函数y =(2x 2-3)21x +的导数. 例1函数4)31(1x y -=的导数. 例2求51xx y -=的导数. 例4求y =(ax -b sin 2ωx )3对x 的导数.例5求y =(x 2-3x +2)2sin3x 的导数.例1求)132ln(2++=x x y 的导数.例2求21lg x y -=的导数.例3求函数y =ln(12+x -x )的导数.例4 若f (x )=ln(ln x ),那么f ′(x )|x =e = .A.eB.e 1C.1D.以上都不对 解:f ′(x )=[ln(ln x )]′=xln 1·(ln x )′x x ln f ′(x )|x =e =e e ln 1⋅e 例5 y =ln [ln(ln x )]的导数是 (C) A.)ln(ln 1x x B.)ln(ln ln 1x x C.)ln(ln ln 1x x x D.)ln(ln 1x 例6求y =ln|x |的导数. 例7求y =log a 21x +的导数.例1求x e y x3cos 2=的导数. 例2求x a y 5=的导数.例3求下列函数的导数⑴x e y sin =; ⑵)21ln(x y +=; ⑶x e y 2)2(=;⑷1ln 22+=x x e e y ; ⑸x y 2sin 10=; ⑹3ln 2+=xe y x. 例4求函数y =e -2xsin3x 的导数. 例5求y =xe x 3sin 2-的导数例6求y=32x lg(1-cos2x)的导数.。

考向14 导数的概念及应用(重点)-备战2022年高考数学一轮复习考点微专题(新高考地区专用)

考向14 导数的概念及应用(重点)-备战2022年高考数学一轮复习考点微专题(新高考地区专用)

考向14 导数的概念及应用1.(2021·全国高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果; 解法二:画出曲线xy e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e xy '=,所以,曲线xy e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减, 所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线xy e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法. 2.(2021·北京高考真题)已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=; (2)因为()232xf x x a -=+,则()()()()()()222222223223x a x x x x a f x xa xa -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:()f x增 极大值 减 极小值 增所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <.所以,()()max 11f x f =-=,()()min 144f x f ==-.1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.导数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f x 0+Δx -f x 0Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f x 0+Δx -f x 0Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.简称导数,记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率, 相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,α≠0)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0); [cf (x )]′=cf ′(x ). 【知识拓展】复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.(2021·河南南阳市·高二其他模拟(理))已知函数2()62f x x x =-+,且()02f x '=,则0x =( ) A .2B .22C .32D .422.(2021·千阳县中学高三二模(理))已知21()(21)x f x x x e =++,21()[()]f x f x '=,32()[()]f x f x '=,…,1()[()]n n f x f x +'=,*n N ∈.设2()()x n n n n f x a x b x c e =++,则100c =( )A .9903B .9902C .9901D .99003.(2021·全国高三其他模拟(文))曲线()1f x x b x=++在点()(),a f a 处的切线经过坐标原点,则ab =___________.4.(2021·新沂市第一中学高三其他模拟)已知函数2()ln f x a x bx =+的图象在点(1,1)P 处的切线与直线10x y -+=垂直,则a 的值为___________1.(2021·河南新乡市·高三三模(文))已知函数()4f x x ax =+,若()()2lim =12x f x f x x→--△△△△,则a =( )A .36B .12C .4D .22.(2021·千阳县中学高三其他模拟(理))已知函数()f x 的定义域为()0,∞+,且满足:(1)()0f x >,(2)()()()23f x xf x f x ''<<,则(1)(2)f f 的取值范围是( ) A .()10,e-B .3(,)e -+∞C .31,()e e --D .3(,)e e -3.(2021·全国高三月考(文))拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若()f x 在[],a b 上满足以下条件:①在[],a b 上图象连续,②在(),a b 内导数存在,则在(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-(()f x '为()f x 的导函数).则函数()1e x f x x -=在[]0,1上这样的c 点的个数为( ) A .1B .2C .3D .44.(2021·云南红河哈尼族彝族自治州·高三三模(文))丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.定义:函数()f x 在(),a b 上的导函数为()f x ',()f x '在(),a b 上的导函数为()f x '',若在(),a b 上()0f x ''<恒成立,则称函数()f x 在(),a b 上的“严格凸函数”,称区间(),a b 为函数()f x 的“严格凸区间”.则下列正确命题的序号为______.①函数()3232x x f x -++=在()1,+∞上为“严格凸函数”;②函数()ln x f x x =的“严格凸区间”为320,e ⎛⎫ ⎪⎝⎭;③函数()22xm f x e x =-在()1,4为“严格凸函数”,则m 的取值范围为[),e +∞. 5.(2021·江苏高二专题练习)设函数()e x f x x a -=,若()21e2f '=,则a =______. 6.(2021·合肥市第六中学高三其他模拟(理))已知()f x 为奇函数,当0x <时,()1xf x e -=+,则曲线()y f x =在点()()1,1f 处的切线方程是___________.7.(2021·河北饶阳中学高三其他模拟)曲线()31()e x f x x mx -=-在点(1(1))f ,处的切线与直线410x y --=垂直,则该切线的方程为__________.8.(2021·吉林松原市·高三月考)已知,0x y ∈≠R ,则()221()2x x y y++-最小值为___________. 9.(2021·广东佛山市·高三其他模拟)已知函数21()ln 2f x x x x =++,则()f x 所有的切线中斜率最小的切线方程为_________.10.(2021·全国高三其他模拟)函数()xf x e x =+在(0,(0))f 处的切线与坐标轴围成的图形面积为___________.11.(2021·全国高三其他模拟(文))已知函数()()2,xf x ae x b a b R =-+∈在1x =处的切线方程为()210e x y --+=,则()ln 2f '=___.12.(2021·四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.1.(2013·全国高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-2.(2020·全国高考真题(理))若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +123.(2019·全国高考真题(理))已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-4.(2016·四川高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)5.(2021·全国高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.6.(2021·全国高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 7.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____.8.(2019·江苏高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.9.(2017·天津高考真题(文))已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为________ .10.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.1.【答案】B 【分析】依题意求出函数的导函数,再解方程即可; 【详解】解:由题意可得()622f x x '=-+,因为()006222f x x '=-+=,所以022x = 故选:B 2.【答案】C【分析】求出前几项的导数,计算数列{}n c ,找到规律,代入数值计算. 【详解】解:因为21()(21)xf x x x e =++,()221()[()]43x f x f x x x e '∴==++, ()232()[()]67x f x f x x x e '==++, ()243()[()]813x f x f x x x e '==++,数列{}n c 为1,3,7,13,,每一项为上一项的常数与上一项的一次项的系数之和,即12n n c c n -=+,且11c =,所以()2124211n c n n n =++++-=-+,则1009901c =. 故选:C. 【点睛】思路点睛:本题考查数列的应用:计算前几项的导数,发现每一项的常数都为上一项的常数与上一项中一次项的系数的和,写出递推关系式,然后求得通项公式,代入计算. 3.【答案】2- 【分析】利用导数的几何意义即可求解. 【详解】由()1f x x b x =++,则()211f x x '=-, 所以()211f a a'=-,所以()()()22011110f a f a b f a a a a a a-'=-===++-, 化简整理可得2ab =-. 故答案为:2-4.【答案】3- 【分析】根据点P在函数的图象上,求得b的值,得到2()ln f x a x x =+,利用导数的几何意义和直线垂直的条件求得3a =-. 【详解】由已知可得(1,1)P 在函数()f x 的图象上,所以(1)1f =,即2ln111a b +⨯=,解得1b =,所以2()ln f x a x x =+,故()2af x x x'=+.则函数()f x 的图象在点(1,1)P 处的切线的斜率(1)2k f a '==+,因为切线与直线10x y -+=垂直,所以21a +=-, 即3a =-. 故答案为:3-.1.【答案】C 【分析】根据函数()f x 在0x 处的导数的定义将()()2limx f x f x x→--△△△△变形为()()()023lim303x f x f x f x→--'=△△△△即可求解.【详解】解:根据题意,()4f x x ax =+,则()34f x x a '=+,则()0f a '=,若()()2lim=12x f x f x x→--△△△△,则()()()()()022lim=3lim30123x x f x f x f x f x f xx→→----'==△△△△△△△△,则有312a =,即4a =,故选:C . 2.【答案】C 【分析】根据题意构造函数2()()x f x g x e=与213()()x f x h x e=,利用二者的单调性即可得到结果.【详解】222222()()2()()2()()()0()x xxx xf x f x e xf x e f x xf xg x g x e e e '''--=⇒==<,∴()g x 在()0,∞+上单调递减,34(1)(2)(1)(1)(2)(2)f f fg g e e e f ->⇒>⇒>, ()()()()()()()222221133121133322330x x x x x f x e xf x e f x xf x f x h x h x e e e --=⇒==>⎛'⎪'⎫ ⎝⎭' ∴()h x 在(0,)+∞上单调递增,11433(1)(2)(1)(1)(2)(2)f f f h h e f ee-<⇒<⇒<. 故选:C 【点睛】方法点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,一般:(1)条件含有()()f x f x '+,就构造()()xg x e f x =,(2)若()()f x f x -',就构造()()x f x g x e=,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e=,等便于给出导数时联想构造函数. 3.【答案】A 【分析】用已知定义得到存在点[0c ∈,1],使得(1)(0)()110f f f c -'==-,转化为研究函数数1c y e -=和11y c=+图象的交点个数,作出函数图象即可得到答案. 【详解】函数1()x f x xe-=,则1()(1)x f x x e-'=+,由题意可知,存在点[0c ∈,1],使得(1)(0)()110f f f c -'==-,即1(1)1c c e -+=,所以111c ec-=+,[0c ∈,1], 作出函数1c y e -=和11y c=+的图象,如图所示,由图象可知,函数1c y e -=和11y c=+的图象只有一个交点, 所以111c ec-=+,[0c ∈,1]只有一个解,即函数1()x f x xe -=在[0,1]上c 点的个数为1个. 故选:A 4.【答案】①② 【分析】根据题干中给出的定义逐项检验后可得正确的选项. 【详解】()3232x x f x -++=的导函数()236f x x x '=-+,()66f x x ''=-+,故()0f x ''<在()1,+∞上恒成立, 所以函数()3232x x f x -++=在()1,+∞上为“严格凸函数”,所以①正确;()ln x f x x =的导函数()21ln x f x x -'=,()32ln 3x f x x-''=, 由()0f x ''<可得2ln 30x -<,解得320,x e ⎛⎫∈ ⎪⎝⎭,所以函数()ln xf x x =的“严格凸区间”为320,e ⎛⎫ ⎪⎝⎭,所以②正确;()22x m f x e x =-的导函数()x f x e mx '=-,()x f x e m ''=-, 因为()f x 为()1,4上的“严格凸函数”,故()0f x ''<在()1,4上恒成立, 所以0x e m -<在()1,4上恒成立,即x m e >在()1,4上恒成立, 故4m e ≥,所以③不正确. 所以正确命题为:①②. 故答案为:①②. 5.【答案】2 【分析】 先对()ex f x x a-=求导,将2x =代入()f x '即可求解. 【详解】 由()e x f x x a -=可得,()e 1x a f x x -+'=,所以()22e 211ea f '-+==,解得2a =. 故答案为:2. 【点睛】本题主要考查导数的运算,属于基础题. 6.【答案】10ex y ++= 【分析】由条件求得当0x >时的函数解析式,求导,通过导数几何意义求得在点()()1,1f 处的切线方程. 【详解】由题知,当0x >时,()1()xf x e f x -=+=-,即()1xf x e =--则()xf x e '=-,()1f e '=-,又()11f e =--则在点()()1,1f 的切线方程为:(1)(1)y e e x ---=--, 即10ex y ++= 故答案为:10ex y ++=7.【答案】410x y +-= 【分析】根据导数的几何意义,先求切线斜率142k m =-,而直线410x y --=的斜率214k =,根据两条直线垂直则121k k =-,代入即可得解. 【详解】由题意得()321()3e x f x x x mx m ---'=+,则(1)42f m '=-,所以切线的斜率142k m =-.直线410x y --=的斜率214k =. 因为两直线相互垂直,所以121(42)14k k m =-=-,解得4m =,则1(1)4k f '==-.所以()31()4e x f x x x -=-,则(1)3f =-,故该切线的方程为34(1)y x +=--,即410x y +-=. 故答案为:410x y +-= 8.【答案】4 【分析】 将()221()2x x y y ++-看作两点(,)A x x ,1(,2)B y y-之间距离的平方,然后根据几何意义进行求解即可. 【详解】()221()2x x y y ++-看作两点(,)A x x ,1(,2)B y y-之间距离的平方,点A 在直线y x =上,点B 在曲线2,0y x x=-≠上,222()y x x ''=-=,令221x =,解得x =(B ,所以||2AB ≥=,2||4AB ∴≥,即()221()2x x y y ++-最小值为4. 故答案为:4.9.【答案】332y x =- 【分析】求得函数导数,由基本不等关系求得导数的最小值,即函数()f x 所有切线中斜率最小值,进而求得切线方程. 【详解】 由1()1f x x x'=++,0x >,则1()113f x x x '=++≥+=,1x =时等号成立, 则函数()f x 所有切线中斜率最小为3,且过点3(1,)2, 则切线方程为332y x =- 故答案为:332y x =- 10.【答案】14【分析】根据导数的几何意义可求得切线方程,进而确定与坐标轴的交点坐标,从而求得面积. 【详解】切点(0,1),()e 1,2xf x k =+=', 切线:12y x -=,即21y x =+, 与y 轴交点(0,1),与x 轴交点1,02⎛⎫-⎪⎝⎭, 故1111224S =⨯⨯=, 故答案为:14. 11.【答案】0 【分析】根据导数的几何意义可知()12f e '=-,又()()1,1f 在切线上,可解得,a b 的值,进而可求()ln 2f '的值.【详解】由()2xf x ae x b =-+,得()2xf x ae '=-,()12f ae '∴=-,()12f ae b =-+,又切线方程为:()210e x y --+=,即()21y e x =-+,故22221ae e ae b e -=-⎧⎨-+=-+⎩,解得1a b ==,故()21xf x e x =-+,()2xf x e '=-,即()ln2ln 220f e '=-=,故答案为:0.12.【答案】(1)2a =;(2)证明见解析. 【分析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0x f x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e -=-+,()ln xh x x=,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x ee-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号).又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.1.【答案】D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题. 2.【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 3.【答案】D 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b .【详解】详解:ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 4.【答案】A 【详解】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围. 5.【答案】0,1 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1xA x e -和点()22,1xB x e -,12,x xAM BN k e k e =-=,所以12121,0xx e ex x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e NAM B ===∈=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 6.【答案】520x y -+= 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=. 7.【答案】(e, 1). 【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e . 【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 8.【答案】4. 【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离 【详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小. 由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4. 【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 9.【答案】1 【详解】函数f (x )=ax −ln x ,可得()1'f x a x=-,切线的斜率为:()'11k f a ==-, 切点坐标(1,a ),切线方程l 为:y −a =(a −1)(x −1),l 在y 轴上的截距为:a +(a −1)(−1)=1.故答案为1.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.10.【答案】(1)2p =;(2) 【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.。

14导数的定义及导数的计算

14导数的定义及导数的计算

第11节 导数的定义及导数的计算 (14)一.知识要点:1.导数的定义:割线1l 的斜率=00()()f x x f x y x x +∆-∆=∆∆,当x ∆ 趋于0时得到()f x 在0x 处切线的斜率:0000()()limlim l x x f x x f x yk x x∆→∆→+∆-∆==∆∆也称()f x 在0x 处的导数。

2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为()f x ',则0()()()limx f x x f x f x x∆→+∆-'=∆,称()f x '为()f x 的导函数。

3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。

即:0()l k f x '=.4.常见导数公式:0C '= 1()x xααα-'=(sin )cos x x '= (cos )sin x x '=-()ln x x a a a '=()x xe e '= 1(log )ln a x x a '=1(ln )x x'= 5.导数运算法则:(1).[]()()()()f x g x f x g x '''±=±(2)[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅(3)2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦6.复合函数求导:(理)(()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=⋅二.考点评析例1.利用导数定义求函数的导数(1)2348y x x =-+ (2)1y x x=+y xl 1l f(x 0)f(x 0+x)yxx 0x 0+xOyxLf(x)P(x 0,f(x 0))o x 0例2.利用公式求导13(1)ln ;x y x =+ 131(2);x y e x x =-+(3)ln y x x =(4)sin ;y x x = 2(5);x y x e =- 1(6);1x y x -=+(7)xe y x= 2(8)(23)(32)y x x =+- (9)()sin(1)y x =-+理21(10)()x y e -+=理例3.(利用导数求切线方程)3(1)-112f x 1600xy x x x =-+=+-求曲线在点(,)处的切线方程.(2)求函数()过点(,)的切线方程.三.学生练习1.如果质点A 按规律32s t =运动。

14 导数的概念及运算(解析版)

14 导数的概念及运算(解析版)

导数的概念及运算1.(2020春•咸阳期末)已知()f x 是可导函数,且000()()lim 2x f x x f x x→+-=,则0()(f x '= )A .2B .1-C .1D .2-【分析】根据导数的定义即可得出0()2f x '=,从而得出正确的选项. 【解答】解:0000()()()lim2x f x x f x f x x→+-'==.故选:A .2.(2020春•重庆期末)已知函数()sin f x a x b =+的导函数为()f x ',若()13f π'=,则(a = )A .4B .2C .1D .12【分析】可以求出导函数()cos f x a x '=,从而得出()132af π'==,然后求出a 的值即可.【解答】解:()cos f x a x '=,∴()132af π'==, 2a ∴=.故选:B .3.(2019秋•南岸区期末)函数2()(1)f x ln x =+的图象在点(1,f (1))处的切线的倾斜角为( ) A .0B .2πC .3π D .4π 【分析】先求出函数在切点出的导数值,即为切线在此处的斜率,从而求得切线在此处的倾斜角. 【解答】解:函数2()(1)f x ln x =+的图象在点(1,f (1))处的切线的斜率为121(2)|11x x x ==+, 设函数2()(1)f x ln x =+的图象在点(1,f (1))处的切线的倾斜角为θ, 则tan 1θ=,4πθ∴=,故选:D .4.(2020春•钦州期末)已知曲线()af x lnx x=+在点(1,f (1))处的切线与直线1y x =+垂直,则a 的值为( ) A .2-B .0C .1D .2【分析】求出函数的导数,计算f '(1),利用直线的斜率,列出关系式,即可求出a 的值.【解答】解:曲线()a f x lnx x =+,可得21()a f x x x'=-, 所以f '(1)1a =-,曲线()af x lnx x=+在点(1,f (1))处的切线与直线1y x =+垂直, 所以11a -=-,解得2a =, 故选:D .5.(2020春•赤峰期末)若曲线(1)1x my e x x =+<-+上存在两条垂直于y 轴的切线,则m 的取值范围是( ) A .34(e ,1) B .34(,)e -∞ C .34(0,)e D .34(1,)e - 【分析】先求出原函数的导函数,令0y '=,得到2(1)x m x e =+,然后将问题转化为2(1)x m x e =+在(,1)-∞-上有两个不同的解,再构造函数2()(1)(1)x f x x e x =+<-,求出()f x 的取值范围,即可得到m 的取值范围. 【解答】解:由(1)1x my e x x =+<-+,得2(1)x m y e x '=-+, 令0y '=,则2(1)x m x e =+, 曲线(1)1x my e x x =+<-+存在两条垂直于y 轴的切线, 2(1)x m x e ∴=+在(,1)-∞-上有两个不同的解.令2()(1)x f x x e =+,则22()2(1)(1)(43)x x x f x x e x e x x e '=+++=++.∴当3x <-时,()0f x '>,当31x -<<-时,()0f x '<,()f x ∴在(,3)-∞-上单调递增,在(3,1)--上单调递减,∴34()(3)max f x f e =-=, 又当3x <-时,()0f x >,(1)0f -=. m ∴的取值范围为34(0,)e . 故选:C .6.(2020•河南模拟)已知:过点(,0)M m 可作函数2()2f x x x t =-+图象的两条切线1l ,2l ,且12l l ⊥,则(t =) A .1B .54C .32D .2【分析】先设切点为2(,2)n n n t -+,然后利用导数求出切线方程,再将(,0)m 代入切线方程,得到关于n 的一元二次方程,设1n ,2n 为两切线1l ,2l 切点的横坐标,由韦达定理得到12n n +,12n n ,根据12l l ⊥得12()()0f n f n '=,将韦达定理代入,即可解出t 的值.【解答】解:设切点为2(,2)n n n t -+,()22f x x '=-,故切线斜率为22n -.所以切线方程:2(2)(22)()y n n t n x n --+=--, 将(,0)m 代入整理得:2220n mn m t -+-=,设1l ,2l 的切点横坐标分别为1n ,2n ,则:122n n m +=,122n n m t =-. 因为12l l ⊥,所以12121212()()(22)(22)44()41f n f n n n n n n n ''=--=-++=-①. 结合韦达定理得4(2)4241m t m ⨯--⨯+=-,解得54t =. 故选:B .7.(2020•合肥模拟)若函数()f x lnx =与函数2()2(0)g x x x lna x =++<有公切线,则实数a 的取值范围是()A .(0,1)B .1(0,)2eC .(1,)+∞D .1(,)2e+∞ 【分析】分别设出切点,求出切线,然后根据切线相等,得到()g x 的切点横坐标与a 的关系式,转化为函数的值域问题.【解答】解:设()f x 的切点为1(x ,1)lnx ,因为1()f x x'=, 所以切线为:1111()y lnx x x x -=-,即1111y x lnx x =+-,1(0)x >. 设()g x 的切点为2(x ,2222)x x lna ++,因为()22g x x '=+, 故切线为:22222(2)(22)()y x x lna x x x -++=+-. 即222(22)y x x x lna =+-+.2(0)x <. 因为是公切线,所以212121221x x lnx x lna ⎧=+⎪⎨⎪-=-+⎩,消去1x 得,222112(1)lna x ln x =-++,令21()12(1)h x x lnx =+-+,(1,0)x ∈-.21221()211x x h x x x x +-'=-=++,2221y x x =+-开口向上,且10||10x x y y =-===-<,10x +>.所以()0h x '<,故()h x 在(1,0)-上单调递减,故11()(0)122h x h ln ln e>=-=,即12lna lne >,故12a e>. 故选:D .8.(多选)(2020春•菏泽期末)下列各式正确的是( ) A .(sin )cos 33ππ'= B .(cos )sin x x '=C .(sin )cos x x '=D .56()5x x --'=-【分析】根据常函数,三角函数和幂函数的导数运算,逐一排除即可. 【解答】解:对于A ,(sin )03π'=,选项错误;对于B ,(cos )sin x x '=-,选项错误; 对于C ,(sin )cos x x '=,选项正确; 对于D ,56()5x x --'=-,选项正确; 故选:CD .9.(2020春•沙坪坝区校级期末)若函数()f x xlnx =,则()f x 在点(1,f (1))处的切线方程为 . 【分析】求出原函数的导函数,得到函数在1x =处的导数,再求出f (1),利用直线方程的点斜式得答案. 【解答】解:()f x xlnx =,()1f x lnx ∴'=+,则f '(1)1=,又f (1)0=,()f x ∴在点(1,f (1))处的切线方程为1(1)y x =⨯-,即10x y --=.故答案为:10x y --=.10.(2020春•凉山州期末)过原点作曲线y lnx =的切线,则切点为 .【分析】先另设切点,利用导数求出切线方程,将(0,0)代入,求出切点坐标,进而得到切线方程. 【解答】解:设切点为0(x ,0)lnx ,因为1y x'=. 故切线方程为:0001()y lnx x x x -=-, 将(0,0)代入得:0001()lnx x x -=-, 解得0x e =,所以01lnx =, 故切点为(,1)e . 故答案为:(,1)e .11.(2020•新课标Ⅰ)曲线1y lnx x =++的一条切线的斜率为2,则该切线的方程为 . 【分析】求得函数1y lnx x =++的导数,设切点为(,)m n ,可得切线的斜率,解方程可得切点,进而得到所求切线的方程.【解答】解:1y lnx x =++的导数为11y x'=+, 设切点为(,)m n ,可得112k m=+=, 解得1m =,即有切点(1,2),则切线的方程为22(1)y x -=-,即2y x =, 故答案为:2y x =.12.(2020春•信阳期末)已知1()x f x e+=与22()(21)4e g x x x =++有相同的公切线:l y kx b =+,设直线l 与x轴交于点0(P x ,0),则0x 的值为 .【分析】分别求得()f x ,()g x 的导数,可得切线的斜率,求得切线的方程,由直线方程相同可得关于1x ,2x 的方程组,解方程可得所求值.【解答】解:1()x f x e+'=,2()(1)2e g x x '=+,设1()x f x e +=与的切点为1(x ,_11)x e +, 可得切线的方程为_11_111()x x y e e x x ++-=-, 即为_11_111(1)x x y e x e x ++=--,设22()(21)4e g x x x =++的切点为2(B x ,2222(21))4e x x ++,可得切线的方程为2222222(21)(1)()42e e y x x x x x -++=+-,即22222(1)(1)24e e y x x x =++-, 两函数有公切线,即令上述两切线的方程相同, 则有1121221212(1)2(1)(1)4x x e e x e e x x ++⎧=+⎪⎪⎨⎪-=-⎪⎩,可得121x x ==, 所以切线的方程为2y e x =,直线l 与x 轴交于点0(P x ,0),则00x =. 故答案为:0.13.(2020春•西城区校级期中)已知:直线1y kx =+与抛物线2(y ax a =为常数)交于两点1(A x ,1)y ,2(B x ,2)y ,且抛物线在点A ,B 处的切线互相垂直.(1)求a 的值;(2)求两条切线交点的横坐标(用k 表示).【分析】(1)先联立直线、抛物线方程,消去y 得到关于x 的一元二次方程,利用韦达定理结合A 、B 两点处的导数积为1-,即可求出a 的值;(2)先表示出A 、B 两点处的切线方程,然后解出交点的横坐标即可. 【解答】解:(1)由21y kx y ax=+⎧⎨=⎩,消去y 得:210ax kx --=,显然0a ≠. 又直线与抛物线交于两点1(A x ,1)y ,2(B x ,2)y ,所以12121,k x x x x a a -+==.对2y ax =求导得2y ax '=,所以两条切线的斜率分别为112k ax =,222k ax =. 因为两条切线互相垂直,所以21212441k k a x x a ==-=-, 所以14a =. (2)由题意知切点分别为:2111(,)4A x x ,2221(,)4B x x ,所以两条切线的方程分别为22111111111()2424y x x x x x x x =-+=-⋯⋯①;和2221124y x x x =-⋯⋯②. 联立①②解方程组得:交点的横坐标为:12222x x kx k a+===.。

专题14 导数的概念与运算(学生版)高中数学53个题型归纳与方法技巧总结篇

专题14 导数的概念与运算(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】高中数学53个题型归纳与方法技巧总结篇专题14导数的概念与运算知识点一:导数的概念和几何性质1.概念函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近;③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.2.几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算1.求导的基本公式基本初等函数导函数()f x c =(c 为常数)()0f x '=()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠,()ln x f x a a'=()log (01)a f x x a a =>≠,1()ln f x x a'=()xf x e =()xf x e '=()ln f x x =1()f x x'=()sin f x x =()cos f x x '=()cos f x x=()sin f x x'=-2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±;(2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+;(3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=.3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:【方法技巧与总结】1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】题型一:导数的定义题型二:求函数的导数题型三:导数的几何意义1.在点P 处切线2.过点P 的切线3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是()A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x ∆→-∆-=∆,则()0f x '=()A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,lim y f x y yy f x y ∆→+-∆∆,则称()()00000,,limy f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是()A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为()A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为()A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =()A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=()A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出.题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数:(1)ln(32)y x =-;(2)e xxy =;(3)()2cos f x x x=+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数:(1)22ln cos y x x x =++;(2)3e x y x =(3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数:(1)5y x =;(2)22sin y x x =+;(3)ln xy x=;(4)()211ln 22x y ex -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题.题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为()A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为()A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭()A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为()A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为()A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为()A .33y x =+B .31y x C .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为()A .4x -y +8=0B .4x +y +8=0C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为()A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为()A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是()A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为()A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为()A .25e e m -<<B .250e m -<<C .1em -<<D .em <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是()A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是()A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为()A .(]0,2e B .(]0,e C .[)2,e +∞D .(],2e e 例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为()A .12B .1C .eD .2e 例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()lnf x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为()A .2B .2eC .2e D 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =()A .0B .1C .eD .e-例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是()A .(]0,2e B .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ()A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是()A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则()A .e a =,2b =-B .e a =,2b =C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =()A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则()A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+D .32a =,1ln 4b =+例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =()A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则()A .ln a b<B .ln b a<C .ln b a<D .ln a b<例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是()A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有()A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为()A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是()A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则()A .0b <B .30b a <<C .3b a >D .()3b b a-=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=()A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为()A .B .CD 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为()A .12B .1C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论:①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是()A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是()A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为()A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为()ABCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为()ABC .1D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是()A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是()ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为()ABCD例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为()A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为()A B C D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y 的切线,则222k b b +-的最小值为()A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =()A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是()A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为()A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为()A .21010ln 510x y -+-=B .21010ln 510x y ++-=C .1212ln 5150x y -+-=D .1212ln 5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为()A .5米/秒B .8米/秒C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点 1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ()A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m ≥对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是()A .1,2⎛⎤-∞ ⎥⎝⎦B .⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为()A .e 1-B .0C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则()A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有()A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是()A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是()A .1P 、2P 两点的横坐标之积为定值B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2y x 和2249x y +=都相切,则l 的斜率为______.15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________.四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数(1)42356y x x x --=+;(2)2sin cos 22xx x y =+;(3)2log y x x =-;(4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若()f x '是()f x 的导函数,()f x ''是()f x '的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小;(2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈.(1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值;(2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+,直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21x x -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。

考点14 导数与函数的极值、最值

考点14 导数与函数的极值、最值

考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值.变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.① 在(-∞,0)上为减函数 ② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23. 7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20),∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。

导数的基本公式14个例题

导数的基本公式14个例题

导数的基本公式14个例题一、导数的基本公式。

1. 常数函数的导数:若y = C(C为常数),则y^′=0。

- 例如:y = 5,求y^′。

- 解析:根据常数函数导数公式,y^′ = 0。

2. 幂函数的导数:若y=x^n,则y^′ = nx^n - 1。

- 例如:y=x^3,求y^′。

- 解析:根据幂函数导数公式,n = 3,所以y^′=3x^2。

- 例如:y = x^(1)/(2),求y^′。

- 解析:n=(1)/(2),根据公式y^′=(1)/(2)x^(1)/(2)-1=(1)/(2)x^-(1)/(2)=(1)/(2√(x))。

3. 正弦函数的导数:若y = sin x,则y^′=cos x。

- 例如:y=sin x,求y^′。

- 解析:根据正弦函数导数公式,y^′=cos x。

4. 余弦函数的导数:若y=cos x,则y^′ =-sin x。

- 例如:y = cos x,求y^′。

- 解析:根据余弦函数导数公式,y^′=-sin x。

5. 指数函数y = a^x的导数(a>0,a≠1):y^′=a^xln a。

- 例如:y = 2^x,求y^′。

- 解析:根据指数函数导数公式,a = 2,所以y^′=2^xln2。

6. 对数函数y=log_ax的导数(a>0,a≠1,x>0):y^′=(1)/(xln a)。

- 例如:y=log_2x,求y^′。

- 解析:根据对数函数导数公式,a = 2,所以y^′=(1)/(xln2)。

- 特别地,当a = e时,y=ln x,y^′=(1)/(x)。

- 例如:y=ln x,求y^′。

- 解析:根据自然对数函数导数公式,y^′=(1)/(x)。

7. 正切函数的导数:若y=tan x=(sin x)/(cos x),则y^′=sec^2x=(1)/(cos^2)x。

- 例如:y = tan x,求y^′。

- 解析:根据正切函数导数公式,y^′=sec^2x=(1)/(cos^2)x。

14个导数公式

14个导数公式

14个导数公式导数是微积分的基本概念之一,用于描述函数在某一点处的变化率。

在微积分中,导数有许多重要的公式和性质。

本文将介绍14个常用的导数公式,帮助读者更好地理解和应用导数。

一、常数的导数公式对于常数函数f(x) = C,其中C为常数,则其导数恒为0。

这是因为常数函数在任意一点的变化率为0,即斜率为0。

二、幂函数的导数公式对于幂函数f(x) = x^n,其中n为实数,则其导数为f'(x) = nx^(n-1)。

这个公式可以用来求解多项式函数的导数。

三、指数函数的导数公式对于指数函数f(x) = a^x,其中a为正实数且不等于1,则其导数为f'(x) = a^x * ln(a)。

这个公式是指数函数求导的基本规律。

四、对数函数的导数公式对于对数函数f(x) = log_a(x),其中a为正实数且不等于1,则其导数为f'(x) = 1 / (x * ln(a))。

这个公式是对数函数求导的基本规律。

五、三角函数的导数公式对于三角函数f(x) = sin(x),其导数为f'(x) = cos(x)。

对于f(x) = cos(x),其导数为f'(x) = -sin(x)。

这是三角函数求导的基本规律。

六、反三角函数的导数公式对于反三角函数f(x) = arcsin(x),其导数为f'(x) = 1 / √(1 - x^2)。

对于f(x) = arccos(x),其导数为f'(x) = -1 / √(1 - x^2)。

这些公式是反三角函数求导的基本规律。

七、双曲函数的导数公式对于双曲函数f(x) = sinh(x),其导数为f'(x) = cosh(x)。

对于f(x) = cosh(x),其导数为f'(x) = sinh(x)。

这是双曲函数求导的基本规律。

八、反双曲函数的导数公式对于反双曲函数f(x) = arcsinh(x),其导数为f'(x) = 1 / √(x^2 + 1)。

2022数学课时规范练14导数的概念及运算文含解析

2022数学课时规范练14导数的概念及运算文含解析

课时规范练14 导数的概念及运算基础巩固组1。

已知函数f (x )在x=x 0处的导数为f'(x 0),则lim Δx →0f (x 0-mΔx )-f (x 0)Δx等于( ) A 。

mf’(x 0) B.—mf'(x 0) C 。

-1mf’(x 0)D.1mf’(x 0)2。

函数f (x )=(2e x )2+sin x 的导数是( ) A.f'(x )=4e x+cos xB 。

f'(x )=4e x-cos xC 。

f'(x )=8e 2x+cos x D.f'(x )=8e 2x-cos x 3。

若f’(x 0)=—3,则lim h →0f (x 0+ℎ)-f (x 0-ℎ)ℎ=( )A.—3 B 。

-6C.-9D.-124。

设函数f (x )=ax 3+1。

若f'(1)=3,则a 的值为( ) A 。

0 B.1 C 。

2D.45。

(2020陕西西安中学八模,理5)已知函数f (x )=x 2ln x+1-f'(1)x ,则函数f (x )的图像在点(1,f (1))处的切线斜率为( ) A 。

12B.—12C 。

12—3e D.3e —126.设函数f (x )在R 上可导,f (x )=x 2f’(1)-2x+1,则f (a 2—a+2)与f (1)的大小关系是( ) A 。

f (a 2—a+2)〉f (1) B.f (a 2—a+2)=f (1) C 。

f (a 2—a+2)〈f (1)D.不确定7。

(2019全国3,文7,理6)已知曲线y=a e x +x ln x 在点(1,a e )处的切线方程为y=2x+b ,则( ) A.a=e ,b=—1 B.a=e,b=1 C 。

a=e -1,b=1D.a=e —1,b=—18.(2020北京二中月考,5)直线y=kx —1与曲线y=ln x 相切,则实数k=( ) A.—1 B.1 C 。

高考数学导数专题专讲 专题14 两个经典不等式的应用(含答案)

高考数学导数专题专讲 专题14 两个经典不等式的应用(含答案)

专题14两个经典不等式的应用逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决问题,降低了思考问题的难度,优化了推理和运算过程.1.对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.2.指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链:e x >x +1>x >1+ln x (x >0,且x ≠1).注意:选填题可直接使用,解答题必须先证明后再使用.考点一两个经典不等式的应用1.对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.证明由题意知x >0,令f (x )=x -1-ln x ,所以f ′(x )=1-1x =x -1x,所以当f ′(x )>0时,x >1;当f ′(x )<0时,0<x <1,故f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )有最小值f (1)=0,故有f (x )=x -1-ln x ≥f (1)=0,即ln x ≤x -1成立.2.指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.证明设f (x )=e x -x -1,则f ′(x )=e x -1,由f ′(x )=0,得x =0,所以当x <0时,f ′(x )<0;当x >0时,f ′(x )>0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f (x )≥f (0)=0,即e x -x -1≥0,所以e x ≥x +1.【例题选讲】[例1](1)已知对任意x ,都有x e 2x -ax -x ≥1+ln x ,则实数a 的取值范围是________.答案(-∞,1]解析根据题意可知,x >0,由x ·e 2x -ax -x ≥1+ln x ,可得a ≤e 2x -ln x +1x-1(x >0)恒成立,令f (x )=e 2x -ln x +1x -1,则a ≤f (x )min ,现证明e x ≥x +1恒成立,设g (x )=e x -x -1,g ′(x )=e x -1,当g ′(x )=0时,解得x =0,当x <0时,g ′(x )<0,g (x )单调递减,当x >0时,g ′(x )>0,g (x )单调递增,故当x =0时,函数g (x )取得最小值,g (0)=0,所以g (x )≥g (0)=0,即e x -x -1≥0⇔e x ≥x +1恒成立,f (x )=e 2x -ln x +1x-1=x ·e 2x -ln x -1x-1=e ln x+2x-ln x -1x -1≥ln x +2x +1-ln x -1x-1=1,所以f (x )min =1,即a ≤1.所以实数a 的取值范围是(-∞,1].(2)已知函数f (x )=e x -ax -1,g (x )=ln x -ax -1,其中0<a <1,e 为自然对数的底数,若∃x 0∈(0,+∞),使f (x 0)g (x 0)>0,则实数a 的取值范围是________.答案解析令M (x )=e x -x -1,x ∈(0,+∞),则M ′(x )=e x -1,当x ∈(0,+∞)时,M ′(x )>0,所以M (x )在(0,+∞)上单调递增,所以M (x )>M (0)=0,所以e x >x +1.由于0<a <1,所以当x ∈(0,+∞)时,f (x )=e x -ax -1>0,故若∃x 0∈(0,+∞),使f (x 0)g (x 0)>0,转化为∃x 0∈(0,+∞),g (x 0)>0,则g (x 0)=ln x 0-ax 0-1>0,即a <ln x 0x 0-1x 0.令h (x )=ln x x -1x ,h ′(x )=2-ln x x 2.当x ∈(0,e 2)时,h ′(x )>0,当x ∈(e 2,+∞)时,h ′(x )<0,所以函数h (x )在(0,e 2)上单调递增,在(e 2,+∞)上单调递减.所以h (x )≤h (e 2)=ln e 2e 2-1e 2=1e2.所以0<a <1e2,即a [例2]函数f (x )=ln(x +1)-ax ,g (x )=1-e x .(1)讨论函数f (x )的单调性;(2)若f (x )≥g (x )在x ∈[0,+∞)上恒成立,求实数a 的取值范围.解析(1)函数f (x )的定义域为x ∈(-1,+∞),f ′(x )=1x +1-a =-ax +1-a x +1.(ⅰ)当a =0时,f ′(x )>0,f (x )在(-1,+∞)上单调递增;(ⅱ)当a ≠0时,令f ′(x )=0得x =1-a a=1a -1,若a <0,则1a -1<-1,若a >0,则1a -1>-1.①当a <0时,f ′(x )=1x +1-a >0,函数f (x )在(-1,+∞)上单调递增;当a >0时,f ′(x )x 1f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减,综上可得,当a ≤0时,f (x )在(-1,+∞)上单调递增;当a >0时,f (x )1(2)设函数h (x )=f (x )-g (x )=ln(x +1)+e x -ax -1,x ≥0,则h ′(x )=1x +1+e x -a ,当a ≤2时,由e x ≥x +1得h ′(x )=1x +1+e x -a ≥1x +1+x +1-a ≥0,于是,h (x )在[0,+∞)上单调递增,所以h (x )≥h (0)=0恒成立,符合题意;当a >2时,由于x ≥0,h (0)=0,令函数m (x )=h ′(x ),则m ′(x )=-1(x +1)2+e x (x ≥0).所以m ′(x )≥0,故h ′(x )在[0,+∞)上单调递增,而h ′(0)=2-a <0.则存在一个x 0>0,使得h ′(x 0)=0,所以当x ∈[0,x 0)时,h (x )单调递减,故h (x 0)<h (0)=0,不符合题意.综上,实数a 的取值范围为(-∞,2].[例3]已知函数f (x )=e x -a .(1)若函数f (x )的图象与直线l :y =x -1相切,求a 的值;(2)若f (x )-ln x >0恒成立,求整数a 的最大值.解析(1)f ′(x )=e x ,因为函数f (x )的图象与直线y =x -1相切,所以令f ′(x )=1,即e x =1,得x =0,∴切点坐标为(0,-1),则f (0)=1-a =-1,∴a =2.(2)先证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,令F ′(x )=0,则x =0,当x ∈(0,+∞)时,F ′(x )>0;当x ∈(-∞,0)时,F ′(x )<0.所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立.∴e x ≥x +1,从而e x -2≥x -1(x =0时取等号).以ln x 代换x 得ln x ≤x -1(当x =1时,等号成立),所以e x -2>ln x .当a ≤2时,ln x <e x -2≤e x -a ,则当a ≤2时,f (x )-ln x >0恒成立.当a ≥3时,存在x ,使e x -a <ln x ,即e x -a >ln x 不恒成立.综上,整数a 的最大值为2.[例4]已知函数f (x )=x 2-(a -2)x -a ln x (a ∈R ).(1)求函数y =f (x )的单调区间;(2)当a =1时,证明:对任意的x >0,f (x )+e x >x 2+x +2.解析(1)函数f (x )的定义域是(0,+∞),f ′(x )=2x -(a -2)-a x =(x +1)(2x -a )x,当a ≤0时,f ′(x )>0对任意x ∈(0,+∞)恒成立,∴函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0得x >a 2,由f ′(x )<0,得0<x <a2,∴函数f (x )(2)当a =1时,f (x )=x 2+x -ln x ,要证明f (x )+e x >x 2+x +2,只需证明e x -ln x -2>0,先证明当x >0时,e x >x +1,令g (x )=e x -x -1(x >0),则g ′(x )=e x -1,当x >0时,g ′(x )>0,g (x )单调递增,∴当x >0时,g (x )>g (0)=0即e x >x +1,∴e x -ln x -2>x +1-ln x -2=x -ln x -1.∴只要证明x -ln x -1≥0(x >0),令h (x )=x -ln x -1(x >0),则h ′(x )=1-1x =x -1x (x >0),易知h (x )在(0,1]上单调递减,在[1,+∞)上单调递增,∴h (x )≥h (1)=0即x -ln x -1≥0成立,∴f (x )+e x >x 2+x +2成立.[例5]已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)证明:对于任意正整数n .解析(1)f (x )的定义域为(0,+∞),①若a ≤0,因为=-12+a ln2<0,所以不满足题意;②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0;所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增,故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )≥0,故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n ,得ln <12n .从而lnln …+ln <12+122+…+12n 1-12n <1..【对点训练】1.已知函数f (x )=e x ,x ∈R .证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点.1.解析令g (x )=f (x )2+x +e x -12x 2-x -1,x ∈R ,则g ′(x )=e x -x -1,由经典不等式e x ≥x +1恒成立可知,g ′(x )≥0恒成立,所以g (x )在R 上为单调递增函数,且g (0)=0.所以函数g (x )有唯一零点,即两曲线有唯一公共点.2.(2018·全国Ⅰ改编)已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a 的值并求f (x )的单调区间;(2)求证:当a =1e 时,f (x )≥0.2.解析(1)f (x )的定义域为(0,+∞),f ′(x )=a ·e x -1x ,由题设知,f ′(2)=a ·e 2-12=0,所以a =12e2,从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x(x >0).因为f ′(x )=12e 2x -1x在(0,+∞)上是增函数,且f ′(2)=0,所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a =1e 时,f (x )=e x e -ln x -1,所以只要证明e xe-ln x -1≥0即可.设g (x )=e x -e x (x >0),则g ′(x )=e x -e(x >0),可知g (x )在(0,1]上是减函数,在[1,+∞)上是增函数,所以g (x )≥g (1)=0,即e x ≥e x ⇒e xe ≥x .又由e x ≥e x (x >0)⇒x ≥1+ln x (x >0),所以e x e -ln x -1≥x -ln x -1≥0,所以e xe -ln x -1≥0得证,所以当a =1e时,f (x )≥0.3.(2020·山东)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.3.解析f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.(1)当a =e 时,f (x )=e x -ln x +1,f ′(1)=e -1,曲线y =f (x )在点(1,f (1))处的切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.直线y =(e -1)x +2在x 轴、y 轴上的截距分别为-2e -1,2.因此所求三角形的面积为2e -1.(2)当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=e x -1-ln x ,f ′(x )=e x -1-1x .当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a e x -1-ln x +ln a >e x -1-ln x ≥1.综上,a 的取值范围是[1,+∞).4.已知函数f (x )=a e x +2x -1(其中常数e =2.71828…是自然对数的底数).(1)讨论函数f (x )的单调性;(2)证明:对任意的a ≥1,当x >0时,f (x )≥(x +a e)x .4.解析(1)由f (x )=a e x +2x -1,得f ′(x )=a e x +2.①当a ≥0时,f ′(x )>0,函数f (x )在R 上单调递增;②当a <0时,由f ′(x )>0,解得x f ′(x )<0,解得x故f (x )∞,综上所述,当a ≥0时,函数f (x )在R 上单调递增;当a <0时,f (x )∞,(2)对任意a ≥1,当x >0时,f (x )≥(x +a e)x ⇔e x x -x a -1ax +2a -e≥0.令g (x )=e x x -x a -1ax +2a -e ,则g ′(x )=(x -1)(a e x -x -1)ax 2.当a ≥1时,a e x -x -1≥e x -x -1.令h (x )=e x -x -1,则当x >0时,h ′(x )=e x -1>0.∴当x >0时,h (x )单调递增,h (x )>h (0)=0.∴a e x -x -1>0.∴当0<x <1时,g ′(x )<0;当x =1时,g ′(x )=0;当x >1时,g ′(x )>0.∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴g (x )≥g (1)=0,即e x x -x a -1ax +2a -e≥0,故f (x )≥(x +a e)x .5.已知函数f (x )=a ln x +1(a ∈R ).(1)若g (x )=x -f (x ),讨论函数g (x )的单调性;(2)若t (x )=12x 2+x ,h (x )=e x -1(其中e 是自然对数的底数),且a =1,x ∈(0,+∞),求证:h (x )>t (x )>f (x ).5.解析(1)由题意得,g (x )=x -f (x )=x -a ln x -1,其定义域为(0,+∞),g ′(x )=1-a x =x -ax,当a ≤0时,g ′(x )>0在(0,+∞)上恒成立,则函数g (x )在(0,+∞)上单调递增;当a >0时,易得函数g (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)设u (x )=h (x )-t (x )=e x -1-12x 2-x ,则u ′(x )=e x -x -1,设m (x )=u ′(x )=e x -x -1,则m ′(x )=e x -1,当x >0时,m ′(x )>0恒成立,则m (x )在(0,+∞)上单调递增,∴m (x )>m (0)=0,则u (x )在(0,+∞)上单调递增,∴u (x )>u (0)=0,∴h (x )-t (x )>0在(0,+∞)上恒成立,即h (x )>t (x ).当a =1时,设v (x )=t (x )-x =12x 2,∵当x >0时,v (x )>0,即t (x )>x .设s (x )=x -ln x -1,则s ′(x )=1-1x =x -1x .易得s (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴s (x )≥s (1)=0,∴x ≥ln x +1=f (x )∴t (x )>x ≥f (x ),即t (x )>f (x ),综上所述,h (x )>t (x )>f (x ).6.已知函数f (x )=kx -ln x -1(k >0).(1)若函数f (x )有且只有一个零点,求实数k 的值;(2)证明:当n ∈N *时,1+12+13+…+1n>ln(n +1).6.解析(1)法一:f (x )=kx -ln x -1,f ′(x )=k -1x =kx -1x(x >0,k >0),当0<x <1k 时,f ′(x )<0;当x >1k 时,f ′(x )>0.∴f (x )在(0,1k )上单调递减,在(1k ,+∞)上单调递增.∴f (x )min =fln k ,∵f (x )有且只有一个零点,∴ln k =0,∴k =1.法二:由题意知方程kx -ln x -1=0仅有一个实根,由kx -ln x -1=0,得k =ln x +1x (x >0),令g (x )=ln x +1x (x >0),g ′(x )=-ln xx2,当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )max =g (1)=1,当x →+∞时,g (x )→0,∴要使f (x )仅有一个零点,则k =1.法三:函数f (x )有且只有一个零点,即直线y =kx 与曲线y =ln x +1相切,设切点为(x 0,y 0),由y =ln x +1,得y ′=1x,=1x 00=kx 0,0=ln x 0+1,∴k =x 0=y 0=1,∴实数k 的值为1.(2)由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x =1时取等号,∵n ∈N *,令x =n +1n ,得1n >ln n +1n ,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n=ln(n +1),故1+12+13+…+1n >ln(n +1).考点二经典不等式的变形不等式的应用【例题选讲】[例1]证明下列不等式(1)e x -1≥x ;(2)ln(x +1)≤x ;(3)x1+x<ln(1+x )(x >0);(4)e x -ln(x +2)>0.解析(1)方法一令f (x )=e x -1-x ,则f ′(x )=e x -1-1.若x <1,则f ′(x )<0,f (x )在(-∞,1)上单调递减;若x >1,则f ′(x )>0,f (x)在(1,+∞)上单调递增.∴f(x)min=f(1)=0,∴f(x)≥0,∴e x-1≥x.方法二令t=x-1,则x=t+1.由e t≥t+1,得e x-1≥x.(2)由题意知x>-1,令f(x)=ln(x+1)-x,所以f′(x)=1x+1-1=-xx+1,所以当f′(x)>0时,-1<x<0;当f′(x)<0时,x>0,故f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,所以f(x)有最大值f(0)=0,故有f(x)=ln(x+1)-x≤f(0)=0,即ln(x+1)≤x成立.(3)方法一构造函数f(x)=ln(1+x)-x1+x,则g(0)=0.当x>0时,f′(x)=11+x-11+x-x(1+x)2=x(1+x)2>0.即当x>0时,函数f(x)单调递增.即f(x)>f(0)=0.故f(x)=ln(1+x)-x1+x >0,即x1+x<ln(1+x).方法二∵ln x≤x-1,且当x=1时等号成立.∴ln1x+1<1x+1-1(x>0),即ln1x+1<-xx+1,∴xx+1<ln(x+1).(4)令f(x)=e x-x-1,则f′(x)=e x-1,令f′(x)=0,得x=0,当x<0时,f′(x)<0,f(x)单调递减,当x>0时,f′(x)>0,f(x)单调递增,∴f(x)≥f(0)=0,即e x-x-1≥0,∴e x≥x+1(当且仅当x=0时,等号成立).①令g(x)=x+1-ln(x+2),则g′(x)=1-1x+2=x+1x+2(x>-2),易知g(x)在(-2,-1)上单调递减,在(-1,+∞)上单调递增,∴g(x)≥g(-1)=0,即x+1-ln(x+2)≥0,即x+1≥ln(x+2)(当且仅当x=-1时,等号成立).②∵①和②中的等号不能同时成立,∴由①和②得e x>ln(x+2),即e x-ln(x+2)>0.[例2](1)已知函数f(x)=1ln(x+1)-x,则y=f(x)的图象大致为()(1)答案B解析因为f(x)的定义域为{x|x>-1,且x≠0},所以排除选项D.当x>0时,由经典不等式x>1+ln x(x>0),以x+1代替x,得x>ln(x+1)(x>-1,且x≠0),所以ln(x+1)-x<0(x>-1,且x≠0),即x >0或-1<x <0时均有f (x )<0,排除A 、C ,易知B 正确.(2)函数f (x )=e x -1-12ax 2+(a -1)x +a 2在(-∞,+∞)上单调递增,则实数a 的取值范围是()A .{1}B .{-1,1}C .{0,1}D .{-1,0}答案A解析f ′(x )=e x -1-ax +(a -1)≥0恒成立,即e x -1≥ax -(a -1)恒成立,由于:e x ≥x +1,即e x-1≥x ,∴只需要x ≥ax -(a -1),即(a -1)(x -1)≤0恒成立,所以a =1.[例3]设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x .解析(1)由题意知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减.(2)由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .[例4]已知函数f (x )=ln(1+x ).(1)求证:当x ∈(0,+∞)时,x1+x<f (x )<x ;(2)已知e 为自然对数的底数,证明:∀n ∈N *,e<.解析(1)令g (x )=f (x )-x x +1=ln(1+x )-x x +1(x >0),则g ′(x )=1x +1-1(x +1)2=x(x +1)2>0(x >0).∴g (x )在(0,+∞)上单调递增,∴当x ∈(0,+∞)时,g (x )>g (0)=0,即f (x )>xx +1成立.令h (x )=f (x )-x =ln(1+x )-x (x >0),则h ′(x )=1x +1-1=-x x +1<0(x >0),∴h (x )在(0,+∞)上单调递减,∴当x ∈(0,+∞)时,h (x )<h (0)=0,即f (x )<x 成立.综上所述,当x ∈(0,+∞)时,x1+x<f (x )<x 成立.(2)由(1)可知,ln(1+x )<x 对x ∈(0,+∞)都成立.∴…+<1n 2+2n 2+…+n n 2,即<1+2+…+n n 2=n +12n .∵n ∈N *,∴n +12n=12+12n ≤12+12×1=1.∴..又由(1)可知,ln(1+x)>xx+1对x∈(0,+∞)都成立,∴>kn21+kn2=kn2+k(k=1,2,…,n).∴ln=ln+ln+…+ln>1n2+1+2n2+2+…+nn2+n≥1n2+n+2n2+n+…+nn2+n=1+2+…+nn2+n=12.∴>12.>e.∴e<.【对点训练】1.已知函数f(x)=ln x+ax,a∈R.(1)讨论函数f(x)的单调性;(2)当a>0时,证明:f(x)≥2a-1a.1.解析(1)f′(x)=1x-ax2=x-ax2(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;若0<x<a,则f′(x)<0,函数f(x)在(0,a)上单调递减.(2)由(1)知,当a>0时,f(x)min=f(a)=ln a+1.要证f(x)≥2a-1a,只需证ln a+1≥2a-1a,即证ln a+1a-1≥0.令函数g(a)=ln a+1a-1,则g′(a)=1a-1a2=a-1a2(a>0),当0<a<1时,g′(a)<0,当a>1时,g′(a)>0,所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(a)min=g(1)=0.所以ln a+1a-1≥0恒成立,所以f(x)≥2a-1a.2.已知函数f(x)=x ln x,g(x)=x-1.(1)求F(x)=g(x)-f(x)的单调区间和最值;(2)证明:对大于1的任意自然数n,都有12+13+14+…+1n<ln n.2.解析(1)由F(x)=x-1-x ln x,x>0,则F′(x)=-ln x,所以当x>1时,F′(x)=-ln x<0,当0<x<1时,F′(x)=-ln x>0,所以当x=1时,F(x)取最大值F(1)=0.即当x≠1时,F(x)<0,当x=1时,F(x)=0,所以F(x)在(0,1)上是单调增函数,在(1,+∞)上是单调减函数,当x=1时,F(x)取最大值F(1)=0,无最小值.(2)由(1)可知,x ln x>x-1对任意x>0且x≠1恒成立.故1-1x<ln x,取x=nn-1(n>1且n∈N)得,1-n-1n<lnnn-1⇒1n<ln n-ln(n-1),所以错误!1i<错误!ln i-ln(i-1)],即12+13+14+…+1n<ln n,综上,对大于1的任意自然数n,都有12+13+14+…+1n<ln n成立.。

14导数运算与几何意义

14导数运算与几何意义

(1)求曲线在点 P(2,4)处的切线方程; (2)求曲线过点 P(2,4)的切线方程; (3)求斜率为 1 的曲线的切线方程. 1 4
3
x0,1x3+4, (2)设曲线 y= x + 与过点 P(2,4)的切线相切于点 A 2 3 0 3 3 3 则切线的斜率为:y′|x=x0=x0. 则切线的斜率为:y′|x=x =
题 型二
导数的几何意义
1 3 4 【例 2】已知曲线 y= x + . 3 3 (1)求曲线在点 P(2,4)处的切线方程; (2)求曲线过点 P(2,4)的切线方程; (3)求斜率为 1 的曲线的切线方程.
1 4 1 33 44 2 1 x 3 4 解:(1)∵P(2,4)在曲线y= x1+ 上,且 y′=x2,2 y= 3 + 上,且 解:(1)∵P(2,4)在曲线 , 3 3 解:(1)∵P(2,4)在曲线 y=y=+ + 上,且 y′=x , x x3 上,且 y′=x2, 解:(1)∵P(2,4)在曲线 33 3 3 3
3 3
故所求的切线方程为 4x-y-4=0 或 x-y+2=0. 故所求的切线方程为 4x-y-4=0 或 x-y+2=0. 故所求的切线方程为 4x-y-4=0 或 x-y+2=0. 1. (3)设切点为(x0,y0),则切线的斜率为:x2=1,x0=± ,y ),则切线的斜率为:x2=1,x =± 0 (3)设切点为(x0 0 1. 20 0 (3)设切点为(x0,y0),则切线的斜率为:x02 =1,x0=± 1. 5
变式训练 2
求下列各函数的导数:
x 2 x (1)y=(x+1)(x+2)(x+3);(2)y=-sin 1-2cos 4; 2 1 1 cos 2x (3)y= + ;(4)y= . sin x+cos x 1- x 1+ x

14个求导公式

14个求导公式

14个求导公式导数是微积分中的重要概念,它描述了函数在某一点的变化率。

在求导过程中,我们遵循一些公式和规则,以便更方便地计算导数。

本文将介绍14个常见的求导公式,并解释其应用。

1. 常数函数的导数公式对于常数函数f(x) = c,其中c是一个实数常数,其导数为f'(x) = 0。

这是因为常数函数在任何点上的变化率都为0。

2. 幂函数的导数公式对于幂函数f(x) = x^n,其中n是一个实数常数,其导数为f'(x) = nx^(n-1)。

这个公式可以用来求解各种幂函数的导数。

3. 指数函数的导数公式对于指数函数f(x) = a^x,其中a是一个正实数且不等于1,其导数为f'(x) = a^x * ln(a)。

这个公式可以用来求解各种指数函数的导数。

4. 对数函数的导数公式对于对数函数f(x) = log_a(x),其中a是一个正实数且不等于1,其导数为f'(x) = 1 / (x * ln(a))。

这个公式可以用来求解各种对数函数的导数。

5. 三角函数的导数公式对于正弦函数f(x) = sin(x),其导数为f'(x) = cos(x)。

对于余弦函数f(x) = cos(x),其导数为f'(x) = -sin(x)。

对于正切函数f(x) = tan(x),其导数为f'(x) = sec^2(x)。

6. 反三角函数的导数公式对于反正弦函数f(x) = arcsin(x),其导数为f'(x) = 1 / sqrt(1 - x^2)。

对于反余弦函数f(x) = arccos(x),其导数为f'(x) = -1 / sqrt(1 - x^2)。

对于反正切函数f(x) = arctan(x),其导数为f'(x) = 1 / (1 + x^2)。

7. 双曲函数的导数公式对于双曲正弦函数f(x) = sinh(x),其导数为f'(x) = cosh(x)。

高等数学导数的应用

高等数学导数的应用

高等数学导数的应用高等数学中的导数是一个非常重要的概念,它不仅仅是一个数值上的表示,更是一种函数变化率的度量。

在实际生活和工程中,导数的应用非常广泛,以下将介绍一些高等数学导数的应用。

1. 切线和法线在曲线的某一点上,通过该点的曲线的切线是指与曲线在该点的切点相切的直线。

切线的斜率等于在该点处的导数。

因此,我们可以使用导数来确定曲线在任意点上的切线。

法线是与曲线在某一点相切且垂直于切线的直线。

法线的斜率等于切线的斜率的负倒数,即导数的倒数。

因此,导数还可以用于确定曲线在任意点上的法线。

应用导数来计算曲线上各点的切线和法线可以在物理学、工程学中的很多领域得到应用,比如建筑设计中的曲线道路的设计和医学中的曲线血管的研究等。

2. 极值问题在数学中,极值是函数在给定范围内取得的最大值或最小值。

通过导数可以确定函数的极值点。

具体来说,一个函数在极值点处的导数为零。

通过求导可以找到函数的每个极点,并通过对导数的符号进行分析,判断这些极点是极大值还是极小值。

极值问题在实际生活中的应用非常广泛,例如在经济学中,极值问题可以用于确定某个经济模型的最大利润或最小成本。

3. 凹凸性和拐点通过导数的二阶导数可以判断函数的凹凸性和拐点。

具体来说,如果一个函数在某一区间上的二阶导数大于零,则该函数是凸的;如果二阶导数小于零,则该函数是凹的。

在工程学和物理学中,例如在材料力学中,通过判断曲线的凹凸性,可以确定材料的变形状态,以及判断结构的强度和稳定性。

拐点是指函数曲线由凸向凹(或由凹向凸)转变的位置。

通过导数的二阶导数和零点可以确定曲线的拐点。

拐点在物理学、经济学和工程学等领域中广泛应用,如经济学中的边际效益递减和工程学中的挠曲分析等。

4. 泰勒级数展开泰勒级数展开是利用函数的导数来逼近函数的方法。

通过泰勒级数展开,我们可以将一个复杂的函数表示成若干个简单函数之和,从而方便计算和分析。

泰勒级数展开在近似计算和数值计算中非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导 数 的 应 用
学习目标:
1、利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间。

2、掌握函数的极值、最值与导数的关系;会求不超过三次的多项式函数的极值,以及在指定区间上不超过三次的多项式函数的最值。

学习重点:
利用导数研究函数单调性,会求不超过三次的多项式函数的单调区间。

学习难点:
函数在某点取得极值的必要条件和充分条件。

(一) 考点分布:(利用导数研究函数的单调性、极值和最值,生活中的最值问题) (二) 再现型题组:
1、函数()4
2
25f x x x =-+的单调减区间是( )
A .(],1-∞-及[]0,1
B .[]1,0-及[)1,+∞
C .[]1,1-
D .(],1-∞-及[)1,+∞ 2、函数f(x)=x 2-4x+1在[1,5]的最大值和最小值分别为( )
A 、f(1),f(5)
B 、f(2),f(5)
C 、f(1),f(2)
D 、f(5),f(2) 3、函数f (x )=x 3
-3bx +3b 在(0,1)内有极小值,则 ( ) A. 0<b <1 B. b <1 C. b >0 D. b <
2
1
(三)巩固性题
考点一:. 求函数的单调区间
例1、已知函数3
2
()3(0)f x x ax bx c b =+++≠,且g ( x )=f ( x )-2是奇函数。

(1)求a ,c 的值;(2)、求函数f ( x )的单调区间。

考点二:函数的极值
例2、已知函数()cx bx ax x f ++=23,在1±=x 时,()x f 取得极值,且()11-=f ,求()x f 的表达
式.
考点三:函数的最值
例3、已知32()412f x x x a =-+在[]2,2-上的最大值为3,求()f x 的最小值。

变式、若[]32
()6,1,2f x ax ax b x =-+∈-的最大值为3,最小值为29-,求,a b
例4、若函数32()= 5f x ax x x -+-在(,)-∞+∞上单调递增,求a 的取值范围
(四)提高型题组:
1、已知点P 在曲线3-5y x x =+上移动,设点P 处的切线倾斜角为α,则α的取值范围( ) A.0,2π⎡⎤⎢
⎥⎣

B . 0,2π
⎡⎫⎪⎢

⎭3,4ππ⎡⎫⎪⎢⎣⎭
C. 3,4π
π⎡⎫
⎪⎢⎣⎭
D.3,
2
4ππ⎛

⎥⎝⎦
2、设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f '(x)可能为( ).
A
B
C
D
3、三次函数当1=x 时有极大值4,当3=x 时有极小值0,且函数过原点,则此函数是( )
A 、x x x y 9623++=
B 、x x x y 9623+-=
C 、x x x y 9623--=
D x x x y 9623-+=
4、已知函数1)6()(23++++=x m mx x x f 既存在极大值又存在最小值,则实数m 的取值范围是
( ). A
)2,1- B.),6()3,(∞+--∞ C.()6,3- D. ),2()1,(∞+--∞
5、.设函数133
1)(2
3
+--=
x x x x f
(1)求)(x f 的单调区间和极值;(2)讨论方程a x f =)(的实根的个数。

(五)高考体验:
(2010辽宁文数)已知点P 在曲线41
x
y e =
+上,α为曲线在点P 处的切线的倾斜角,则α的取值范
围是 (A)[0,
4
π
) (B)[
,)42
ππ
(C ) 3(
,]24
ππ
(D) 3[,)4
ππ
(2010全国卷2文数)(7)若曲线2
y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则
(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=-
(福建卷11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )
的图象可能是( )
(海南卷4)设()ln f x x x =,若0'()2f x =,则0x =( B ) A. 2e B. e C.
ln 22
D. ln 2
(辽宁卷6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡

⎢⎥⎣
⎦,,则点P 横坐标的取值范围为( )
A .112⎡⎤
--⎢⎥⎣
⎦,
B .[]10-,
C .[]01,
D .112
⎡⎤
⎢⎥⎣⎦

(全国一21).(本小题满分12分) 已知函数32()1f x x ax x =+++,a ∈R .
(Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ)设函数()f x 在区间213
3⎛⎫
-- ⎪⎝

,内是减函数,求a 的取值范围.
(全国二21).(本小题满分12分) 设a ∈R ,函数233)(x ax x f -=.
(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;
(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.。

相关文档
最新文档