最新审定新人教版八年级初二数学下册第十六章_二次根式全章复习_Microsoft_PowerPoint_演示文稿课件

合集下载

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细单选题1、若a =√2﹣1,则a +1a 的整数部分是( )A .0B .1C .2D .3答案:C分析:把a 的值代入,利用二次根式的混合运算法则计算得出最简结果,再估算即可求解.解:∵a =√2−1,∴a +1a =√2−1+√2−1=√2−1+√2+1=2√2,∵4<8<9, ∴2<2√2<3,∴a +1a 的整数部分是2,故选:C小提示:本题主要考查了二次根式的混合运算,无理数的估算能力,掌握二次根式的混合运算法则是解决问题的关键.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.4、当x >2时,√(2−x )2= ( )A .2−xB .x −2C .2+xD .±(x −2)答案:B分析:根据√a 2=|a |的进行计算即可.∵x >2,∴√(2−x )2=|2−x |=x −2,故B 正确.故选:B .小提示:本题考查了二次根式的性质与化简,熟练掌握√a 2=|a |是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、若式子√m+2(m−1)2有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C.m ≥﹣2D .m ≥﹣2且m ≠1答案:D分析:根据二次根式有意义的条件即可求出答案.由题意可知:{m +2≥0m −1≠0, ∴m≥﹣2且m≠1,故选D .小提示:本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.7、下列计算:(1)(√2)2=2;(2)√(−2)2=2;(3)(−2√3)2=12;(4)(√2+√3)(√2−√3)=−1,其中结果正确的个数为( )A .1B .2C .3D .4答案:D分析:根据二次根式的运算法则即可进行判断.(1)(√2)2=2,正确;(2)√(−2)2=2正确;(3)(−2√3)2=12正确;(4)(√2+√3)(√2−√3)=−1,正确,故选D.小提示:此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:(√a)2=a;√a2=|a|.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、化简2√5−√5×(2−√5)的结果是()A.5B.−5C.√5D.−√5答案:A分析:先进行二次根式乘法,再合并同类二次根式即可.解: 2√5−√5×(2−√5),=2√5−2√5+5,=5.故选择A.小提示:本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键.10、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.填空题11、实数2﹣√3的倒数是_____.答案:2+√3分析:先根据倒数的定义写出2﹣√3的倒数,再分母有理化即可.解:2−√3的倒数是2−√3=√3(2−√3)(2+√3)=2+√34−3=2+√3,所以答案是:2+√3.小提示:本题考查实数的倒数,分母有理化.掌握利用平方差公式分母有理化的方法是解题关键.12、我们知道√5是一个无理数,设它的整数部分为a,小数部分为b,则(√5+a)·b的值是_________.答案:1分析:先根据2<√5<3,确定a=2,b=√5-2,代入所求代数式,运用平方差公式计算即可.∵2<√5<3,∴a=2,b=√5-2,∴(√5+a)·b=(√5+2)(√5-2)=5-4=1,所以答案是:1.小提示:本题考查了无理数的估算,无理数整数部分的表示法,平方差公式,正确进行无理数的估算,灵活运用平方差公式是解题的关键.13、若a>√2a+1,化简|a+√2|−√(a+√2+1)2=_____.答案:1分析:先根据a>√2a+1,判断出a<−1−√2,据此可得a+√2<−1,a+√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a>√2a+1,∴(1−√2)a>1,则a<1−√2,即a<−1−√2,∴a+√2<−1,a+√2+1<0,原式=−a−√2+a+√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.14、计算√(−2)2的结果是_________.答案:2分析:根据二次根式的性质进行化简即可.解:√(−2)2=2.所以答案是:2.小提示:此题主要考查了二次根式的化简,注意:√a2=|a|={a(a>0)0(a=0)−a(a<0).15、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.解答题16、计算:(1)√32−√18−√18;(2)(7+4√3)(7−4√3)−(√3−1)2.答案:(1)34√2 (2)√3−3分析:(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算.(1)原式=4√2−3√2−√24=3√24 (2)原式=49−48−(3−2√3+1)=2√3−3小提示:本题考察了二次根式的混合运算和乘法公式.先把二次根式化为最近二次根式,然后再合并同类项,平方差公式(a −b)(a +b)=a 2−b 2,完全平方公式(a ±b)2=a 2±2ab +b 2,正确化简二次根式和使用乘法公式是解题的关键.17、计算:(1)√100+√−273−2×√14(2)−√(−3)2+√6+|√6−3|答案:(1)6(2)0分析:(1)先计算算术平方根与立方根,再合并即可;(2)先求解算术平方根与绝对值,再合并即可.(1)解:√100+√−273−2×√14=10−3−2×12=10−3−1=6;(2)−√(−3)2+√6+|√6−3|=−3+√6+3−√6=0小提示:本题考查的是化简绝对值,算术平方根与立方根的含义,二次根式的加减运算,掌握以上运算是解本题的关键.18、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)√45,(2)√13,(3)√52,(4)√0.5,(5)√145.答案:(1)不是,3√5;(2)不是,√33;(3)是;(4)不是,√22;(5)不是,3√55. 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.(1)√45=3√5,含有开得尽方的因数,因此不是最简二次根式.(2)√13=√33,被开方数中含有分母,因此它不是最简二次根式; (3)√52,被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)√0.5=√12=√22,在二次根式的被开方数中,含有小数,不是最简二次根式; (5)√145=√95=3√55,被开方数中含有分母,因此它不是最简二次根式. 小提示:本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.。

最新人教版八年级初二数学下册第十六章_二次根式全章复习_Microsoft_PowerPoint_演示文稿

最新人教版八年级初二数学下册第十六章_二次根式全章复习_Microsoft_PowerPoint_演示文稿
3 4
2
1 2 3 2 2 10 3、同类二次根式的定义:
几个二次根式化成最简二次根 式以后,如果被开方数相同,这几 个二次根式就叫做同类二次根式.
巩固练习
5、下列各式中,哪些是同类二次根式? 2 75 1 50 a 6b 2b 1 27 3
2 3 8ab 3
4、分母有理化:
去掉分母中的二次根式 的变形叫分母有理化
二次根式的乘除法法则
a b ab
a b a b
a≥0,b≥0
a 0, b 0
巩固练习:
1、计算: 3-4 -2 + 12
x 2 5 x 2、计算:3 2 x 8 x 4 501 2 1 3、计算:18 1 2 + 2 2
2
提高练习:
a (a 0, b 0) b
加 、减、乘、除
1、二次根式的定义:
形如 a (a 0) 的式子 叫做二次根式.
巩固练习 1.判断下列各式是否是二次根式.
5
( ×)
a (a 0)
( ×)
3
8
( ×)
a (a 0)
(√ )
C) 2. 下列各式一定是二次根式的是( A. 1 B. D. 2 C. 2 x 1 x 1 x x
2
巩固练习:
(2) =____;
2 2
( 2 3) = _____;
2
(m 4) _____(m 4); 9 x 6 x 1 ( 3x 1) _______
2 2
巩固练习:
8、ABC的三边满足 a b b c 0, 请你判断这个三角形的形状。
一、知识结构
四个概念

人教版八年级下册第16章二次根式全章复习和巩固(基础)知识讲解

人教版八年级下册第16章二次根式全章复习和巩固(基础)知识讲解

《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式(0)a a ≥13,,0.02,02等式子,都叫做二次根式. 要点诠释:a 0a ≥,即只有被开方数0a ≥时,a a 才有意义. 2.二次根式的性质(1);(2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2=(0a ≥),如22212;;3x===(0x≥).(2)a的取值范围可以是任意实数,即不论a.(3a,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a必须取非负数;a,2=a(0a≥).相同点:被开方数都是非负数,当a2.3.最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式.要点二、二次根式的运算1.乘除法(1)乘除法法则:类型法则逆用法则二次根式的乘法0,0)a b=≥≥积的算术平方根化简公式:0,0)a b=≥≥二次根式的除法0,0)a b≥>商的算术平方根化简公式:0,0)a b=≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如=(2)被开方数a、b一定是非负数(在分母上时只能为正数).≠2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.(13=+-=【典型例题】类型一、二次根式的概念与性质1. 当________时,在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥. 举一反三2x =-成立的条件是 .=成立的条件是 .【答案】① x ≤0;(22x x x ==-∴Q≤0.)② 2≤3x <.(20,30,x x -->∴Q ≥2≤3x <)2.当0≤x <11x +-的结果是__________. 【答案】 1.【解析】因为x ≥0x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,1x -=x +1-x =1.【总结升华】a ,同时联系绝对值的意义正确解答. 举一反三【变式】已知0a < ).A.-- D.【答案】A.3.下列二次根式中属于最简二次根式的是().【答案】A.【解析】选项B=C:有分母;选项D= A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数.类型二、二次根式的运算4.下列计算错误的是().A.=B.=C.=D.3=【答案】D.【解析】选项A:===故正确;选项B====故正确;选项C==选项D:=故错误.【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题.举一反三【变式】计算:+【答案】 5.化简20102011⋅.【答案与解析】2010201020101⋅⋅⎡⎤=⋅⋅⎣⎦=⋅=原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6已知1,x =.【答案与解析】1,0,11=x xxxx=∴->∴=-==Q原式当时,原式【总结升华】化简求值时要注意x的取值范围,如果未确定要注意分类讨论.举一反三【变式】已知a b+=-3, ab=1,求abba+的值.【答案】∵a b+=-3,ab=1,∴<0a,<0b11+==-(+)=-=3--a bb a b a ab∴+原式.《二次根式》全章复习与巩固--巩固练习(基础)一.选择题1.下列式子一定是二次根式的是( ).A.B.C.D.2.若1,=-则a应是().aA. 负数B. 正数C. 非零实数D. 有理数).4.下列说法正确的是( ).A.若,则a<0 B.C .D .5的平方根是5.50,x x y -+=-若则的值是( ). A .-7 B .-5 C .3 D .7 6.下列各式中,最简二次根式是( ).7.0a -≥ ).=≥>><>=8.把()a b a b -<化成最简二次根式,正确结果是( ).二. 填空题9. 计算--=___________. 10. 若的整数部分是a ,小数部分是b ,则___________.11.比较大小:.12. 已知最简二次根式是同类二次根式,则a b +的值为___________.13.已知0,_______a b a b <<-=.14 ___________.15.已知数,,a b c 在数轴上的位置如图所示:22()a a c c b b +--=__________. 16.在实数范围内因式分解: (1)44a a + =___________________.(2)=___________________.三. 综合题 17. 计算:(1) (2)23232327264b ab a a a18.已知:,求的值.19.先化简代数式(11a ÷-,然后当4a =时,求代数式的值.20. 若x,y是实数,且,求的值.【答案与解析】一.选择题1.【答案】C.【解析】满足二次根式必须被开方数大于等于0,因为x没有取值范围,所以只有中无论x 取何值22x +≥0,即选C.2.【答案】 A.【解析】 a =Q ,所以1a a a==-,即a a =-,又因为a 0≠,所以a 是负数.3.【答案】C .【解析】判断是否是同类二次根式,一定要先化为最简二次根式,再判断.因为=====,所以选C. 4.【答案】C . 5.【答案】D .【解析】50,x -+=若则50,20x y -=+=,即5,2x y ==-. 6.【答案】C .【解析】只有选项C 满足被开方数是整数或是整式;且被开方数中不含能开方的因式或因数. 7.【答案】A .【解析】因为0a ≥,,a a a ===-,=≥8.【答案】D.【解析】((a b a b -=-=a b <,所以原式== 二.填空题9. 10.【答案】1. 【解析】)1,111a b b∴==-== Q1,小数部分. 11.【答案】<.12.【答案】2.124326ba b a b+=⎧⎨+=-+⎩, 解方程组得11ab=⎧⎨=⎩.13.【答案】b-.a b a a b-=--,又因为0a b<<,所以原式=()a b a a b a b---=--+=-.14.【答案】0.【解析】因为2a-≥0,即2a≤0,即0a=,所以原式=0.15.【答案】0.【解析】由图像知:0,0,0,0,0a cb ac c b<<>+<-<,所以原式=a a c c b b-++--=a a c c b b-++-+-=0.16.【答案】(1)22);(2)三、解答题17.【解析】 (1) 原式=(2) 原式18.【解析】∴原式.19.【解析】原式11a ÷==-. 20.【解析】∵x-1≥0, 1-x ≥0,∴x=1,∴y <.∴= .。

人教版八年级下数学第16章二次根式整章复习

人教版八年级下数学第16章二次根式整章复习

第16章二次根式整章复习知识点1平方根与算术平方根1.计算:16=.2.-52的平方根是.3.9的平方根是,9的算术平方根是..计算:-22-|-1|=.4知识点2二次根式存心义1.要使二次根式x-2存心义,x一定知足() A.x≤2B.x≥2C.x>2D.x<22.以下的式子必定是二次根式的是()A.-x-2B.x2+2D.x2-2.若代数式x存心义,则实数x的取值范围是3x-1.4.若20n是整数,则正整数n的最小值为.知识点3二次根式的性质1.以下计算正确的选项是()A.12=23B.3=322 C.-x3=x-x D.x2=x.若x -32=3-x,则x的取值范围是.23.在数轴上表示实数a的点如图,化简-52+|a-2|的结果a为..计算:2-1-22=.+4知识点4二次根式的化简与计算.计算:1+27×3.132.计算:212×3÷52. 43.计算:5 3+27-48.4.计算:(-2)×6+|3-2|-1-1. 25.计算:222115. 3÷-5×5a2+2a+1a6.先化简,再求值:a 2-1-a-1,此中a=3+1.知识点5二次根式的应用1.一个正方形的面积与一个长方形的面积相等,长方形的长为502cm,宽为402cm,求正方形的边长.2.一个直角三角形向来角边长为3cm,斜边长30cm,求这个三角形的面积.3.如图,已知矩形ABCD的面积为106,求图中暗影部分的面积.4.如图,在一个边长为( 3+5)cm的正方形内部挖去一个边长为(5-3)cm的正方形,求节余部分的面积.第十六章二次根式◆知识点1平方根与算术平方根1.42.±√53.±33◆知识点2二次根式存心义◆知识点3二次根式的性质54.2◆知识点4二次根式的化简与计算1.解:原式=√1×√3+√27×√3=1+9=10.3√3√23√22.解:原式=4√3×4÷5√2=3×10=10.3.解:原式=5√3+3√3-4√3=4√3.4.解:原式=-√12+2-√3-2=-2√3-√3=-3√3.5.解:原式=-2√2×√51√15 32×51252=-2×5×√3×2×15=-5×5=-2.6.解:原式=(??+1)2-??=??+1-??=1,(??+1)(??-1)??-1??-1??-1??-1 13当a=√3+1时,原式=√3=√3.◆知识点5二次根式的应用1.解:长方形的面积=50√2×40√2=4000cm2,故正方形的边长=√4000=20√10cm.2.解:设该直角三角形的另一条直角边长为xcm.∵直角三角形向来角边长为√3,斜边长√30,∴由勾股定理得x2=(√30)2-(√3)2=30-3,∴x=3√3,∴这个三角形的面积=12×3√3×√3=4.5(cm2).3.解:BC=10√6÷√6=10,暗影部分的面积=√6×[10-(√6-√2)]+(√6-√2)(√6-√2)=10√6-6+2√3+8-4√3=10√6-2√3+2.4.解:节余部分的面积为(√3+√5)2-(√5-√3)2 =(√3+√5+√5-√3)(√3+√5-√5+√3)=2√5×2√3=4√15(cm2).。

最新新人教版八年级数学第十六章二次根式知识点+测试题知识讲解

最新新人教版八年级数学第十六章二次根式知识点+测试题知识讲解

第十六章 二次根式基本知识点1.二次根式的有关概念:(1)形如 的 式子叫做二次根式.(即一个 的算术平方根)二次根式有意义的条件: .(2)满足下列两个条件的二次根式,叫做最简二次根式:① ;② .(3)同类二次根式:几个二次根式化成最简二次根式后,如果 相同,那么这几个二次根式叫做同类二次根式。

2.二次根式的性质:(1) 非负性3.二次根式的运算:二次根式乘法法则二次根式除法法则二次根式的加减:(一化,二找,三合并 ) 0()a≥0 2(2)(0)a = ≥ =(0,0)a b = ≥ ≥(00)a b = ≥>(0,0)a b = ≥≥ (0,0)a b = ≥>(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。

Ps:类似于合并同类项,关键是把同类二次根号外的因数合并。

二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律、公式)仍然适用二次根式提高测试题一、选择题1.要使式子x -1有意义,则x 的取值范围是( )A.x ≤1B.x ≥1C.x >0D.x >﹣12.下列式子成立的是( ) A .331= B .2332=- C .332=-)( D.(3)2=6 3.化简8的结果是( )A .2B .4C .22D .±224.下列二次根式中,属于最简二次根式的是( )A.2x B.8 C.2x D.12+x 5.如图,数轴上A ,B 两点表示的数分别是1和,点A 关于点B 的对称点是点C ,则点C 所表示的数是( )A 2 1B .2.2 2 D .2 16.化简2723-的结果是( ) A .32- B .32- C .36- D .2- 7.若代数式有意义,则x 的取值范围是( ) A.x ≥﹣2且x ≠﹣1 B.x >﹣2且x ≠﹣1C.x ≤2且x ≠﹣1D.x <2且x ≠﹣18.已知是整数,则实数n 的最大值是( ).A .12B .11C .8D .3二、填空题9.(3+7)(3﹣7)= .10.已知a 、b 为两个连续的整数,且28b <,则a+b=________.11()2310m n -+=,则m ﹣n 的值为 . 1221x +在实数范围内有意义,则x 的取值范围为 .13.已知x=3+1,y=3﹣1,则代数式yx x y +的值是 . 14.若x ,y 为实数,且0)31(32=-+-y x ,则xy= . 15. 若246m -234m -m 的值为 . 16. 若0,0a b <>3a b -化简得 .三、计算题17.计算:272833.)1(-+-;22)2664.()2(÷-;227614.)3(⨯÷;)7581()3125.0.()4(---.18.计算:10)41(2)31(-+-+-四、解答题19.已知某正数的两个平方根分别是a+3和2a-15,b 的立方根是-2,求3a+b 的算术平方根.20.先化简,再求值:(1).2222()a b a b a b a b--÷+,其中a =b =(2).()22a 2a 1b ab a a 1+++÷+,其中a 1b 1==,.学习《弟子规》验收试题一、默写(10分)1、亲有过,_____________,____________,____________。

八年级数学下册第十六章二次根式必考知识点归纳(带答案)

八年级数学下册第十六章二次根式必考知识点归纳(带答案)

八年级数学下册第十六章二次根式必考知识点归纳单选题1、下列各式是二次根式的是( )A .√3B .√−1C .√53D .√π−4答案:A分析:根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.解:A 、符合二次根式有意义条件,符合题意;B 、-1<0,所以√−1无意义,故B 选项不符合题意;C 、是三次根式,所以C 选项不符合题意;D 、π-4<0,所以√π−4无意义,故D 选项不符合题意.故选:A .小提示:本题考查二次根式的定义及有意义的条件:√a 是二次根式,必须有a≥0.2、估计(2√30−√24)⋅√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间答案:B分析:先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. (2√30−√24)⋅√16=2√30×√16−√24×√16,=2√5−2,而2√5=√4×5=√20,4<√20<5,所以2<2√5−2<3,所以估计(2√30−√24)⋅√16的值应在2和3之间,故选B.小提示:本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.3、下列等式正确的是()A.(√3)2=3B.√(−3)2=﹣3C.√33=3D.(﹣√3)2=﹣3答案:A分析:根据二次根式的性质把各个二次根式化简,判断即可.解:(√3)2=3,A正确,符合题意;√(−3)2=3,B错误,不符合题意;√33=√27=3√3,C错误,不符合题意;(-√3)2=3,D错误,不符合题意;故选A.小提示:本题考查的是二次根式的化简,掌握二次根式的性质:√a2=|a|是解题的关键.4、下列计算正确的是()A.√5+√2=√7B.√a2−b2=a−bC.a√x−b√x=(a−b)√x D.√6+√10=√3+√52答案:C分析:根据二次根式的加减法法则、二次根式的化简逐项判断即可得.解:A、√5与√2不是同类二次根式,不能合并,则此项错误,不符合题意;B、√a2−b2=√(a+b)(a−b)≠a−b,则此项错误,不符合题意;C、a√x−b√x=(a−b)√x,则此项正确,符合题意;≠√3+√5,则此项错误,不符合题意;D、因为2√3+2√5=√12+√20,所以√6+√102故选:C.小提示:本题考查了二次根式的加减法、二次根式的化简,熟练掌握运算法则是解题关键.5、计算:(√5+12−1)⋅√5+12=()A.0B.1C.2D.√5−12答案:B分析:先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.解:(√5+12−1)⋅√5+12=√5−12⋅√5+12=5−14=1.故选:B.小提示:此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.6、已知a=√2022−√2021,b=√2021−√2020,c=√2020−√2019,那么a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.b<c<a答案:A分析:先把a,b,c化为√2022+√2021,√2021+√2020,√2020+√2019,√2022+√2021>√2021+√2020>√2020+√2019,从而可得答案.解:∵a=√2022−√2021=√2022+√2021,,b=√2021−√2020=√2021+√2020,c=√2020−√2019=√2020+√2019,,而√2022+√2021>√2021+√2020>√2020+√2019,∴a<b<c.故选A.小提示:本题考查的是二次根式的大小比较,二次根式的混合运算,掌握“二次根式的大小比较的方法”是解本题的关键.7、估计(2√3+3√2)×√13的值应在 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间答案:A分析:根据二次根式的混合运算法则进行计算,再估算无理数的大小. (2√3+3√2)×√13=2√3×√13+3√2×√13 =2+√6,∵4<6<9,∵2<√6<3,∴4<2+√6<5,故选:A.小提示:此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.8、已知(4+√3)⋅a =b ,若b 是整数,则a 的值可能是( )A .√3B .4+√3C .4−√3D .2−√3答案:C分析:找出括号中式子的有理化因式即可.解:(4+√3)×(4−√3)=16-3=13,则a 的值可能是4−√3,故选C .小提示:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9、下列计算正确的是( )A .√3+√3=√6B .2−√2=√2C .√3×√3=√6D .2÷√2=√2答案:D分析:利用二次根式的运算法则计算.A .应是合并同类二次根式,计算错误;B .这两个数不是同类二次根式不能加减;C .√3×√3=(√3)2计算错误;D .先把分母有理化再计算.解:A 、合并同类二次根式应是√3+√3=2√3,故选项错误,不符合题意;;B 、不是同类二次根式,不能合并,故选项错误,不符合题意;;C 、要注意根式与根式相乘,应等于3,故选项错误,不符合题意;;D 、2÷√2=√2√2×√2=2√22=√2,故选项正确,符合题意;; 故选:D .小提示:本题考查了二次根式的运算:解题的关键是先把各二次根式化简为最简二次根式,然后进行二次根式的运算,再合并即可.10、下列哪一个选项中的等式不成立?( )A .√38=34B .√(−5)6=(−5)6C .√34×510=32×55D .√(−3)4×(−5)8=(−3)2×(−5)4答案:B分析:根据二次根式化简的方法计算,即可.A .√38=√(34)2=34,正确,不符合题意;B .√(−5)6=√56=√(53)2=53,故此选项错误,符合题意;C .√34×510=√(32×55)2=32×55,正确,不符合题意;D .√(−3)4×(−5)8=(−3)2×(−5)4,正确,不符合题意.故答案选:B . 小提示:本题考查了二次根式的化简,熟练掌握二次根式的概念以及化简方法,是解决本题的关键. 填空题11、已知最简二次根式√2a +1a−b−1和√a +3是同类二次根式,则a b =______.答案:12分析:根据同类二次根式定义:两个被开方数相同的最简二次根式是同类二次根,列出方程组{a −b −1=22a +1=a +3求解,得出a 、b 值,再代入计算即可. 银,根据题意,得{a −b −1=22a +1=a +3,解得:{a =2b =−1, ∴ab =2-1=12, 所以答案是:12.小提示:本题考查同类二次根式概念,代数式求值,负整理指数幂的运算,解二元一次方程组,熟练掌握同类二次根式概念是解题的关键.12、计算:√3×√5=_____.答案:√15分析:根据二次根式乘法运算法则进行运算即可得出答案.解: √3×√5=√3×5=√15,所以答案是:√15.小提示:本次考查二次根式乘法运算,熟练二次根式乘法运算法则即可.13、若式子x +√x +1在实数范围内有意义,则x 的取值范围是______.答案:x ≥-1分析:由题意根据二次根式的被开方数是非负数,进行分析计算可得答案.解:由题意得x +1≥0,解得x ≥-1.所以答案是:x ≥-1.小提示:本题考查二次根式有意义的条件,熟练掌握并利用被开方数是非负数得出不等式是解题的关键.14、若|x-2y|+√y +2=0,则xy 的值为_______.答案:8试题解析:根据题意可得:{x −2y =0y +2=0, 解得:{x =−4y =−2.∴xy =8.故答案为8.15、若式子√1−x |x|−2有意义,则实数x 的取值范围是 _____.答案:x ≤1且x ≠-2分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,1−x ≥0且|x |-2≠0,解得x ≤1且x ≠-2.所以答案是:x ≤1且x ≠-2.小提示:本题考查了代数式有意义:分母不为0;二次根式的被开方数是非负数,解题的关键是明确什么情况下代数式有意义.解答题16、计算:(13)﹣1﹣√18×(﹣√3)﹣|√6﹣3|.答案:4√6分析:根据负整数幂运算公式,二次根式的运算,绝对值的运算进行化简运算即可.(13)−1﹣√18×(﹣√3)﹣|√6﹣3|=3+3√6+√6﹣3=4√6.小提示:本题主要考查了负整数指数幂、实数的运算,熟练掌握运算公式和法则是解题的关键.17、已知a =2+√5,b =2−√5,求代数式a 2b +ab 2的值.答案:-4分析:先将代数式因式分解,再代入求值.a 2b +ab 2=ab(a +b)=(2+√5)(2−√5)(2+√5+2−√5)=−1×4=−4.故代数式的值为−4.小提示:本题考查因式分解、二次根式的混合运算,解决本题的关键是熟练进行二次根式的计算.18、先化简再求值:a2−b2a2+ab ÷(a−2ab−b2a),其中a=1+√2,b=1−√2.答案:√24分析:先根据分式的混合计算法则化简,然后代值计算即可.解:a2−b2a2+ab ÷(a−2ab−b2a)=(a+b)(a−b)a(a+b)÷a2−2ab+b2a=(a+b)(a−b)a(a+b)⋅a(a−b)2=1a−b,当a=1+√2,b=1−√2时,原式=1+√2−1+√2=2√2=√24.小提示:本题主要考查了分式的化简求值,分母有理化,熟知相关计算法则是解题的关键.。

人教版八年级下册第十六章 二次根式复习归纳总结(提高题参考答案详解)

人教版八年级下册第十六章 二次根式复习归纳总结(提高题参考答案详解)

第十六章 二次根式复习总结(一)知识归纳(1)二次根式定义:形如式子叫做二次根式。

二次根式的形式定义:①从形式上看,二次根式必须含有二次根号“”。

②被开方数a 可以是数,也可以是含有字母的式子,但a 必须是非负数,否则a 无意义。

③“”的根指数为2,即“ 2”,一般省略根指数2,写作“”.需要注意的是:(1)建议不要把精力放在辨别一个式子是否为二次根式上,而应该侧重于理解被开方数是非负数(不要误记为正数)的要求.(2)提醒学生的是“数式通性”:如果被开方数是一个常数,那么它不可以是负数;如果被开方数含字母,那么它有取值范围的限制(与分式类似).(3)形如a b (a ≥o )的式子也是二次根式,b 与a 是相乘的关系,要注意当b 是假分数时不能写成带分数。

二次根式(根号)的双重非负性:)0(,0≥≥a a ;(1)注意:)0(≥a a 的最小值是0.(2)拓展:具有非负性的式子有:)0(0;0;02≥≥≥≥a a a a 若02=++c b a ,则a=b=c=0)0(≥a a(2)二次根式的性质:1、 是一个非负数;2、3、 (a )2= a (a ≥0) ;a 2=||a =⎩⎪⎨⎪⎧(a >0),(a =0),(a <0).化简二次根式时注意: ab =a ·b (a ≥0,b ≥0)a b =ab (a ≥0,b >0)2a 与2)(a 的对比:① 运算顺序不同:2)(a 是先求算术平方根再平方,2a 是先平方再求算术平方根;② a 的取值不同:2)(a 中a 的取值是0≥a ,而2a 中a 的取值是任意实数;③ 运算结果不同:2)(a =a (0≥a );2a =⎩⎨⎧<-≥=)0()0(||a a a a a .总结:求使代数式有意义的字母取值范围的类型:二次根式型:被开方数大于或等于0; 分式型:分母不等于0;复合型:对于分式、根式组成的复合型代数式,应取其各部分字母取值范围的公共部分。

最新人教版数学八年级下册第16章《二次根式》全章教学案含解析

最新人教版数学八年级下册第16章《二次根式》全章教学案含解析

人教版数学八下第16章《二次根式》全章教案含解析第十六章二次根式1.理解二次根式的概念.2.理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).3.掌握²=(a≥0,b≥0),=²(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).4.了解最简二次根式的概念,并能灵活运用其对二次根式进行加减.1.通过先提出问题,让学生探讨、分析问题,师生共同归纳得出概念,再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.2.让学生用具体数据探究规律,采用不完全归纳法得出二次根式的乘(除)法法则,并运用法则进行计算.3.让学生利用逆向思维,得出二次根式的乘(除)法法则的逆向等式,并运用它们进行化简.4.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,让学生对被开方数相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.1.培养学生利用二次根式的性质和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.2.经过探索二次根式的重要结论和二次根式的乘除法法则,发展学生观察、分析、发现问题的能力.二次根式是新课标中数与代数领域的重要内容,它是在前面平方根、立方根的基础上进行学习的,是对代数式及实数等内容的延伸与补充.同时,也是后继学习勾股定理、一元二次方程的求根公式及三角形的边角关系等内容的学习基础.因此,本章的相关知识对于整个初中阶段学习数与代数有着承前启后的重要意义.本章内容分为三节,第一节主要学习二次根式的概念和性质;第二节是二次根式的乘法和除法运算,主要研究二次根式的乘除法运算法则和二次根式的化简;第三节是二次根式的加法和减法运算,主要研究二次根式的加减法运算法则和二次根式的化简.【重点】1.对(a≥0)是一个非负数的理解和对()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式乘除法的法则及其运用.3.最简二次根式的概念.4.二次根式的加减运算.【难点】1.对(a≥0)是一个非负数的理解和对等式()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.1.通过前面的学习,我们已经知道了平方根、立方根的概念和求法,实数的有关概念和运算,对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受.因此,本章应充分注意与已有经验的联系.同时,本章内容与整式也有着密切的联系.由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,所以整式的运算法则和公式在二次根式的运算中仍然适用.因此本章强调了与整式相关内容的联系.2.对于一些重要结论,要注意经历观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于二次根式的乘法法则,首先利用二次根式的概念和性质进行具体的计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,再归纳得出二次根式的乘法运算法则.这个过程实际上就是反映了一个由特殊到一般的认识过程.要通过这样的探究活动来发展我们的思维能力,有效改变学生的学习方式.3.熟练掌握二次根式的概念和运算需要一定的训练,可以适当增加练习,以便较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础.单元概括整合1课时16.1二次根式1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.[设计意图]将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).[设计意图]以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.[设计意图]让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0.[设计意图]加深对二次根式的理解,进一步明确二次根式的非负性.下列各式中,哪些是二次根式?并指出二次根式中的被开方数,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.[解题策略]①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C 中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.[易错分析]容易产生只考虑到x+1≥0,而忽略了x≠0的错误.[设计意图]通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.[知识拓展](1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3³,-表示-³,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014²南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数. (2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数. (3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数. (4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015²遵义中考)使二次根式有意义的x的取值范围是.【能力提升】5.当x 时,+在实数范围内有意义.6.(2015²攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=²,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a²2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3cm,宽取2cm.2.解:(1)当a-1≥0,即a≥1时,有意义. (2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义. (4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2³(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2³(-3)=-8.所以x+2y的值是-4或-8.[解题策略]根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.[解题策略]本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.[设计意图]以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质.[设计意图]复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一2()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2. 是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22³()2=4³5=20.[解题策略]把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4³3=12.[知识拓展]形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2二次根式的性质2:=(≥0),,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.[知识拓展](1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出: ()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=. (2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出: ()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.[设计意图]学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2³()2=25³2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22³()2=44,(3)2=32³()2=45,又∵44<45,且2>0,3>0,∴2<3.母也是代数式式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3. +的值是.解析:+=2+2=4.故填4.4.(1)当x 时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9. (2)(2)2=22³()2=12. (3)=(-2)2³=2.(4)(-)2=(-1)2³()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015²杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-[-(a+b)]=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22³5,所以正整数m 的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1). (2)宽:3;长:5.8.解:(1)=. (2)(3)2=32³()2=18. (3)=(-2)2³=. (4)-=-=-3π. (5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3. (2)(3)2=32³()2=9³2=18.2.解:(1)=0.3. (2)=. (3)-=-π. (4)=10-1=.习题16.1(教材第5页)1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a ≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.。

八年级数学下册 第16章《二次根式》章末复习 新人教版(2021年整理)

八年级数学下册 第16章《二次根式》章末复习 新人教版(2021年整理)

八年级数学下册第16章《二次根式》章末复习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第16章《二次根式》章末复习(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第16章《二次根式》章末复习(新版)新人教版的全部内容。

章末复习(一) 二次根式01 分点突破知识点1 二次根式及其相关概念1.(荆门中考)要使式子错误!有意义,则x的取值范围是(C)A.x>1 B.x>-1C.x≥1 D.x≥-12.下列根式中是最简根式的是(B)A.错误!B.错误!C。

错误!D.错误!3.若xy<0,则错误!化简后的结果是(D)A.x错误!B.x错误!C.-x-y D.-x错误!4.若二次根式错误!是最简二次根式,则最小的正整数a=2.知识点2 二次根式的运算5.(龙岩中考)与-5可以合并的二次根式的是(C)A.错误!B。

错误!C。

20 D。

错误!6.下列各式中,同学们的计算结果不正确的是(A)A。

错误!×错误!=2错误!B.错误!÷错误!=错误!C.错误!×错误!=错误!D.错误!÷错误!=错误! 7.计算:5÷错误!×错误!=1。

8.计算:错误!×(错误!-错误!).解:原式=错误!×错误!-错误!×错误!=错误!-错误!=2。

知识点3 二次根式的实际应用9.如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了大长方形,已知小长方形的长为3错误!、宽为2错误!,下列是四位同学对该大长方形的判断,其中不正确的是(C)A.大长方形的长为6错误!B.大长方形的宽为5错误!C.大长方形的长为11错误!D.大长方形的面积为30010.若平行四边形相邻的两边长分别是错误!cm和错误!cm,其周长为14错误!cm.02 综合训练11.若式子错误!有意义,则x的取值范围为(D)A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠312.下列二次根式的运算:①2×错误!=2错误!,②错误!-错误!=错误!;③错误!=错误!;④错误!=-2,其中运算正确的有(B)A.1个B.2个C.3个D.4个13。

八年级数学下册 第十六章 二次根式本章小结学案 (新版)新人教版-(新版)新人教版初中八年级下册数学

八年级数学下册 第十六章 二次根式本章小结学案 (新版)新人教版-(新版)新人教版初中八年级下册数学

第十六章二次根式本章小结学习目标1.掌握二次根式有意义的条件和基本性质(√a)2=a(a≥0).(重点)2.能用二次根式的性质√a2=|a|来化简根式.(难点)3.能识别最简二次根式、同类二次根式.(重点)4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.(难点)学习过程一、梳理知识1.二次根式:一般地,我们把形如的式子叫做二次根式.2.最简二次根式:满足下面两个条件的二次根式是最简二次根式:(1)被开方数中不含分母;(2)被开方数中不含开方开的尽的因数或因式.3.二次根式的性质(1)二次根式√a(a≥0)是一个数.(2)(√a)2=(a≥0).(3)√a2=|a|={(a>0) (a=0) (a<0)4.二次根式的乘除:(1)乘法法则:√a·√a=(a≥0,b≥0).(2)除法法则:√a√a=(a≥0,b>0).5.二次根式的加减:先把各个二次根式化成,再把相同的二次根式进行合并.6.二次根式的混合运算的顺序与运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).二、归纳考点考点一、二次根式概念与性质【例1】二次根式√-2a+4有意义,则实数x的取值X围是()A.x ≥-2B.x>-2C.x<2D.x ≤2【跟踪练习】1.若代数式√3a -1有意义,则x 的取值X 围是() A.x<13 B.x ≤13C.x>13D.x ≥132.代数式√a +1a -1有意义,则x 的取值X 围是()A.x ≥-1且x ≠1B.x ≠1C.x ≥1且x ≠-1D.x ≥-13.在式子1a -2,1a -3,√a -2,√a -3中,x 可以取2和3的是() A.1a -2B.1a -3C.√a -2D.√a -3考点二、二次根式的运算【例2】 如果ab>0,a+b<0,那么下面各式:①√aa =√a √a,②√a a ·√a a =1,③√aa ÷√aa =-b ,其中正确的是()A.①②B.②③C.①③D.①②③【跟踪练习】 1.下列计算正确的是() A.√4−√2=√2B.√202=√10C.√2·√3=√6D.√(-3)2=-3 2.下列计算错误..的是() A.√2+√3=√6B.√2·√3=√6C.√12÷√3=2D.√8=2√2 3.计算:√27−√3=. 考点三、二次根式混合运算【例3】计算:√24×√13-4×√18×(1-√2)0【跟踪练习】1.下列运算中错误的是() A.√2+√3=√5B.√2×√3=√6C.√8×√2=2D.(-√3)2=32.已知x 1=√6+√5,x 2=√6−√5,则a 12+a 22=.考点四、二次根式运算中的技巧 【例4】若y=√a -4+√4-a 2-2,则(x+y )y=.【跟踪练习】1.若(m-1)2+√a +2=0,则m+n 的值是() A.-1B.0C.1D.22.已知实数x ,y 满足√a -1+|y+3|=0,则x+y 的值为() A.-2B.2C.4D.-4考点五、估算大小【例5】a ,b 是两个连续整数,若a<√7<b ,则a ,b 分别是 ()A.2,3B.3,2C.3,4D.6,8【跟踪练习】若a<√13<b ,且a ,b 为连续正整数,则b 2-a 2=. 三、达标检测 (一)选择题1.下列二次根式:√5,√13,√0.5a ,-2√a 2a ,√a 2+a 2中,是最简二次根式的有() A.2个B.3个C.4个D.5个2.若√a 2=-a 成立,那么a 的取值X 围是() A.a ≤0B.a ≥0C.a<0D.a>03.无论x 取任何实数,代数式√a 2-6a +a 都有意义,则m 的取值X 围是() A.m ≥6 B.m ≥8 C.m ≥9 D.m ≥124.已知a=√5-2,b=√5+2,则√a 2+a 2+7的值为()A.5B.6C.3D.45.已知x+y=-5,xy=3,则x √a a +y √aa 的结果是 ()A.2√3B.-2√3C.3√2D.-3√26.等式√3a -1a -2=√3a -1√a -2成立的条件是() A.x>13B.x ≥13C.x>2D.13≤x<27.计算:6√7×13√21÷2√3的结果是() A.-4 B.-2√3 C.40 D.7(二)填空题8.如果√(2a -1)2=2a-1,则a 的取值X 围是.9.计算:(√24+√16)×√6=. 10.计算(4+√7)(4-√7)的结果等于.11.已知x=12(√7+√5),y=12(√7−√5),则x 2-xy+y 2=.(三)计算题12.计算:(1)√8-2√12;(2)(3√2-2)2;(3)√20+√125√5+5;(4)(√32+√13)×√3-2√163.(四)解答题13.已知实数a ,b 在数轴上的对应点如图所示,化简√a 2+|a+b|+|√2-a|-√(a -√2)2.14.阅读下面材料,并解答后面的问题:√6+√5=√6-√5)(√6+√5)(√6-√5)=√6−√5;√5+2=√5-(√5+2)(√5-2)=√5-2; √4+√3=√4-√3)(√4+√3)(√4-√3)=√4−√3.(1)观察上面的等式,请直接写出√a +1+√a的结果;(2)计算(√a +1+√a )(√a +1−√a )=,此时称√a +1+√a 与√a +1−√a 互为有理化因式;(3)请利用上面的规律与解法计算:√2+1√3+√2√4+√3+…+√100+√99.参考答案一、梳理知识略二、归纳考点考点一、二次根式概念与性质 【例1】 D【跟踪练习】1.D 2.A 3.C 考点二、二次根式的运算 【例2】 B【跟踪练习】1.C 2.A 3.2√3 考点三、二次根式混合运算 【例3】 解:原式=32√2【跟踪练习】1.A 2.22考点四、二次根式运算中的技巧 【例4】 14【跟踪练习】1.A 2.A 考点五、估算大小 【例5】 A 【跟踪练习】7 三、达标检测1.A2.A3.C4.A5.B6.C7.D8.a ≥129.1310.911.51212.解:(1)原式=2√2−√2=√2;(2)原式=18-12√2+4=22-12√2; (3)原式=√5+√5√5+5=7+5=12;(4)原式=(4√2+√33)×√3−8√33=4√6+1-8√33.13.解:由数轴可知:a<b<0,∴a<0,a+b<0,∵√2>0,∴√2-a>0,b-√2<0, ∴原式=|a|-(a+b )+√2-a-|b-√2| =-a-a-b+√2-a+(b-√2) =-3a-b+√2+b-√2=-3a14.(1)√a +1−√a ;(2)1;(3)9。

最新人教版八年级数学下册第16章知识点总结【全文】

最新人教版八年级数学下册第16章知识点总结【全文】

精选全文完整版可编辑修改
本单元的主要内容是人教版八年级数学下册第16章知识点,包括二次根式、二次根式的乘除、二次根式的加减三部分内容,希望对大家有帮助!
一、二次根式
I.二次根式的定义和概念
1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。

当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。

√ā(a≥0)是一个非负数。

II.二次根式√ā的简单性质和几何意义
1)a≥0 ; √ā≥0 [ 双重非负性 ]
2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]
3) √(a^2+b^2)表示平面间两点之间的间隔,即勾股定理推论。

二、二次根式的乘除
1.积的算数平方根的性质
列如:√ab=√a·√b(a≥0,b≥0)
2. 乘法法那么
列如:√a·√b=√ab(a≥0,b≥0)
二次根式的乘法运算法那么,用语言表达为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

三、二次根式的加减
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,假设被开方数一样,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

(Ⅱ)判断同类二次根式的方法:
(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否一样。

(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

人教版八年级数学下册第16章知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,获得优异的成绩。

八下数学人教版第十六章知识点汇总

八下数学人教版第十六章知识点汇总

八下数学人教版第十六章知识点汇总一、二次根式的概念。

1. 二次根式的定义。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”称为二次根号,a叫做被开方数。

例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。

- 注意:被开方数a必须是非负数,这是二次根式有意义的条件。

如果a<0,√(a)在实数范围内无意义。

例如√(-2)在实数范围内就没有意义。

2. 最简二次根式。

- 满足下列两个条件的二次根式,叫做最简二次根式:- 被开方数中不含能开得尽方的因数或因式;例如√(8)不是最简二次根式,因为8 = 2^3,√(8)=√(4×2) = 2√(2),2√(2)是最简二次根式。

- 分母中不含根号。

例如(1)/(√(2))不是最简形式,化为最简形式为(√(2))/(2)。

二、二次根式的性质。

1. (√(a))^2=a(a≥slant0)- 例如(√(3))^2=3。

这个性质表明,一个非负数的算术平方根的平方等于它本身。

2. √(a^2)=| a|=a(a≥slant0) - a(a<0)- 例如√(2^2) = 2,√((-2)^2)=| - 2|=2。

这一性质在化简二次根式时经常用到,当a的正负不确定时,要先取绝对值,再根据a的正负去绝对值符号。

三、二次根式的运算。

1. 二次根式的乘法。

- 法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

- 例如√(2)×√(3)=√(2×3)=√(6)。

- 推广:√(a)·√(b)·√(c)=√(abc)(a≥slant0,b≥slant0,c≥slant0)。

2. 二次根式的除法。

- 法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b > 0)。

- 例如(√(12))/(√(3))=√(frac{12){3}}=√(4) = 2。

八年级数学下册 第十六章 二次根式 第8课时《二次根式

八年级数学下册 第十六章 二次根式 第8课时《二次根式

(3)
.
解:原式=4.
知识点3:二次根式的化简求值 【例3】先化简,再求值:
变式训练
1.若式子 A.a<5 C.a≥5 2.计算: (1)
(3)
有意义,则a的取值范围是 B.a≤5 D.a>5
( C)
; (2)

解:原式=13. .
3.已知
的值.
巩固训练
第1关
4. 二次根式
中的x的取值范围
A.x<-2
B.x≤-2
C.x>-2
D.x≥-2
5. 在下列各式中,一定是二次根式的是
A.
B.
C.
D.
( D) ( C)
第2关
6.计算或化简:
(1)
=_____5_____;
(2) =__________;
(3)
=____9_a_____;
(4) =_____4_____.
7.计算或化简:
(1)
=__________;
(2) =__________;
(3)
=__________;
(4)
=_____4_____.
第3关
8. 计算:
(1)
; (2)
.
9. 计算:
(1)
; (2)

10.先化简,再求值:
,其中
.
11.已知 的值.
,求代数式
第一部分 新课内容
第十六章 二次根式
第8课时 《二次根式》单元复习
核心知识
1.二次根式的概念. 2.二次根式的性质. 3.二次根式的计算.
典型例题
知识点1:二次根式的概念与性质
【例1】
当x满足__________时,二次根式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、x取何值时,下列二次根式有意义? ( 1 ) x +2 x≥-2 (2) -3-x x≤-3
1 X 取全体 2 ( 4) (3) x +1 3x 实数
x> 0
x≥0且
(5) x x≥0
5
x (6) x 1
x≠1
2、最简二次根式定义: (1)被开方数不含分母
(2)被开方数不含开的尽 方的因数或因式
巩固练习
3、化简
(1) 24,
(2) 72,
(3) 50
5 2
2 6
(4) 9a ,
6 2
(5) 2a ,
2
(6) a b
2 3
3 a
a 2
ab b
4、化简: (1) a b
4
a b
2
2
(2) 12a b 4a 3b 2a 3b
2
(3) 8a b
3
4
4a 2ab 2a 2ab
巩固练习
6、化简(分母有理化) 1 2 1 27 y 6x 3x
二次根式的三个性质:
1、 a 0, a 0. (双重非负性)
2、 a

2
2
a(a 0)
a -a (a≥ 0) (a≤0)
3、 a =∣a∣=
32 7、计算:( 5) =____;( ) = _____; 4 2 2 (2 3) ______ ; (3 a ) _______
二次根式的乘除法法则
a b ab
a b a b
a≥0,b≥0
a 0, b 0
巩固练习:
1、计算: 3-4 -2 + 12
x 2 5 x 2、计算:3 2 x 8 x 4 501 2 1 3、计算:18 1 2 + 2 2
2
提高练习:
4、已知:x 3 1, y 3 1, x 2 xy y 求 的值。 2 2 x y
2 2
提高练习:
5、已知: 4 x y -4 x 6 y 10 0,
2 2
2 x 1 y 2 2 求 x 9x y 3 - x 5x 的值。 3 y x x
2
1 2 3 2 2 10 3、同类二次根式的定义:
几个二次根式化成最简二次根 式以后,如果被开方数相同,这几 个二次根式就叫做同类二次根式.
巩固练习
5、下列各式中,哪些是同类二次根式? 2 75 1 50 a 6b 2b 1 27 3
2 3 8ab 3
4、分母有理化:
去掉分母中的二次根式 的变形叫分母有理化
课堂小结
一、知识结构
四个概念
二次根式 最简二次根式 同类二次根式 分母有理化
1、 a 0, a 0. (双重非负性)
二 次 根 式
三个性质
2、
a
2
a a 0
2 a a 3、
a a 0
aa 0
两个法则
1
2 四种运算
a b
a b ab a 0, b 0
2
巩固练习:
(2) =____;
2 2
( 2 3) = _____;
2
(m 4) _____(m 4); 9 x 6 x 1 ( 3x 1) _______
2 2
巩固练习:
8、ABC的三边满足 a b b c 0, 请你判断这个三角形的形状。
a (a 0, b 0) b
加 、减、乘、除
1、二次根式的定义:
形如 a (a 0) 的式子 叫做二次根式.
巩固练习 1.判断下列各式是否是二次根式.
5
( ×)
a (a 0)( ×)源自38( ×)
a (a 0)
(√ )
C) 2. 下列各式一定是二次根式的是( A. 1 B. D. 2 C. 2 x 1 x 1 x x
相关文档
最新文档