2019-2020学年湖南省株洲市攸县震林中学八年级下学期期中数学试卷 (解析版)

合集下载

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学八年级第二学期期中数学试卷一、选择题1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣24.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+ 7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10 8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.19.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.210.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC211.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式.14.(3分)化简:=.15.(3分)如果最简二次根式与是同类二次根式,那么a=.16.(3分)已知a=﹣1,则a2+2a+2的值是.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行米.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).20.(6分)计算:(1);(2).21.(8分)计算:(3﹣)(3+)+(2﹣)22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.参考答案一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.解:A.=|﹣2|=2,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.=|x|,此选项错误;D.==×=2,此选项正确;故选:D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2解:由题意,得x+2≥0,解得x≥﹣2.故选:D.4.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+解:A、,错误;B、x2•x5=x7,错误;C、(x2)3=x6,正确;D、,错误;故选:C.7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10解:A、12+32≠42 ,不能构成直角三角形,所以不是勾股数,故符合题意;B、32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C、52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D、62+82=102,能构成直角三角形,所以是勾股数,故不符合题意;故选:A.8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.1解:设正方形的边长为c,由勾股定理可知:c2=32+42,∴c2=25,故选:B.9.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.10.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC2解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.11.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④解:由勾股定理可知:m===,故①②④正确,∵3<<4,∴3<m<4,故③错误,故选:C.12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式5.解:原式=5,故答案为:514.(3分)化简:=.解:原式===,故答案为.15.(3分)如果最简二次根式与是同类二次根式,那么a=1.解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.16.(3分)已知a=﹣1,则a2+2a+2的值是12.解:∵a=﹣1,∴a2+2a+2=(a+1)2+1=(﹣1+1)2+1=11+1=12.故答案为:12.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行10米.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,则EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6(m),在Rt△AEC中,AC═=10(m),答:小鸟至少飞行10米.故答案为:10.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).解:(1)原式=7﹣25=﹣18;(2)原式==.20.(6分)计算:(1);(2).解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.21.(8分)计算:(3﹣)(3+)+(2﹣)解:原式=9﹣7+2﹣2=2.22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=(2)2=8.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S△ACB=AB•CD=AC•BC,×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.解:(1)以点A,B,C为顶点的三角形的形状是直角三角形,理由是:∵∠ADC=90°,AD=4m,CD=3m,∴由勾股定理得:AC==5cm,∵AB=13m,BC=12m,∴AC2+BC2=AB2,∴∠ACB=90°,即以点A,B,C为顶点的三角形的形状是直角三角形;(2)图形的面积S=S△ACB﹣S△ADC===24(cm)2.。

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)一、选择题(本大题共6小题,每小题3分,共计18分.在每小题所给的四个选项中,请将符合要求的选项前面的字母填入下表相应的空格内)1.(3分)函数y=﹣的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定考点:反比例函数的图象.分析:此题可根据反比例函数的图象与两坐标轴无限接近但不相交进行解答.解答:解:∵反比例函数的图象与两坐标轴无限接近但不相交,∴函数y=﹣的图象与x轴没有交点.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数的图象与两坐标轴无限接近但不相交.2.(3分)代数式,,,中分式有()A.1个B.2个C.3个D.4个考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有,2个,故选B.点评:本题考查分式的定义:分母中含有字母的式子就叫做分式;注意π是一个具体的数,不是字母.3.(3分)2008年1月11日,埃科学研究中心在浙江大学成立,“埃”是一个长度单位,是一个用来衡量原子间距离的长度单位.同时,“埃”还是一位和诺贝尔同时代的从事基础研究的瑞典著名科学家的名字,这代表埃科学研究中心的研究要有较为深刻的理论意义.十“埃”等于1纳米.已知:1米=109纳米,那么:15“埃”等于()A.15×10﹣8米B.1.5×10﹣8米C.15×10﹣9米D.1.5×10﹣9米考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:15“埃”=0.000 000 001 5米=1.5×10﹣9米.故选D.点评:注意弄清“埃”和纳米的关系.十“埃”等于1纳米,1米=109纳米.4.(3分)如果点P为反比例函数的图象上一点,PQ⊥x轴,垂足为Q,那么△POQ的面积为()A.2B.4C.6D.8考点:反比例函数系数k的几何意义.分析:此题可从反比例函数系数k的几何意义入手,△POQ的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=.解答:解:由题意得,点P 位于反比例函数的图象上,故S△POQ =|k|=2.故选A.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.5.(3分)在同一平面直角坐标系中,函数的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据一次函数的系数、反比例函数的系数确定直线和双曲线所经过的象限即可.解答:解:∵k>0,∴3k>0,2k>0,∴直线y=3kx+3k经过第一、二、三象限,双曲线y=经过第一、三象限,故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.(3分)(2006•天津)已知,则的值等于()A.6B.﹣6 C.D.考点:分式的基本性质;分式的加减法.专题:计算题.分析:由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.解答:解:已知可以得到a﹣b=﹣4ab,则==6.故选A.点评:观察式子,得到已知与未知的式子之间的关系是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分.)7.(3分)已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=﹣1时,y= ﹣6 .考点:待定系数法求反比例函数解析式.分析:根据y与(2x+1)成反比例可设出反比例函数的解析式为y=(k≠0),再把已知代入求出k的值,再把x=﹣1时,代入求得y的值.解答:解:∵y与(2x+1)成反比例,∴设反比例函数的解析式为y=(k≠0),又∵当x=1时,y=2,即2=,解得:k=6,∴反比例函数的解析式为:y=,则当x=﹣1时,y=﹣6.故答案为:﹣6.点评:本题主要考查了用待定系数法求反比例函数的解析式,关键是根据题意设出解析式,求出k的值.8.(3分)如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<0,根据反比例函数的性质可得答案.解答:解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.点评:此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)若分式方程无解,则m的值为 3 .考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解得到x=3,代入整式方程即可求出m的值.解答:解:去分母得:x﹣2x+6=m,将x=3代入得:﹣3+6=m,则m=3.故答案为:3.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(3分)(2011•哈尔滨模拟)反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在图象上,则n= 10 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:将点(2,5)代入反比例函数解析式得出k值,然后再将(1,n)代入所求出的函数解析式可得出n的值.解答:解:将点(2,5)代入y=得:5=∴k=10,函数解析式为y=,将点(1,n)代入y=得:n==10∴n=10.故答案为:10.点评:本题考查了待定系数法求函数解析式,属于比较经典的题目,要注意待定系数法的掌握.11.(3分)(2006•南汇区二模)当x= ﹣2 时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:∵=0,∴x=﹣2.故答案为﹣2.点评:此题考查的是对分式的值为0的条件的理解,比较简单.12.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是﹣1 .考点:反比例函数的性质;反比例函数的定义.分析:先根据反比例函数的性质判断出(2m﹣1)的符号以及利用m2﹣2=﹣1求出m的值,再写出符合条件的m即可.解答:解:∵反比例函,x>0时,y随着x的增大而增大,∴m2﹣2=﹣1,∴m2=1,m=±1,∵2m﹣1<0,∴m<,∴m=﹣1.故答案为:﹣1.点评:本题考查的是反比例函数的性质,利用反比例函数y=(k≠0),当k<0时,反比例函数图象在第二、四象限内,在每一象限内y随x的增大而增大是解题关键.13.(3分)(2011•南京)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.解答:解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.点评:考查函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.14.(3分)观察下面给定的一列分式:,,,,…(其中y≠0).根据你发现的规律,给定的这列分式中的第7个分式是.考点:分式的定义.专题:规律型.分析:分子的指数是3,5,7,9…是连续奇数,分母的指数是大于0的自然数,奇数项的符号是负号.解答:解:第奇数个式子的符号是负数,偶数个是正数,分母是第几个式子就是y的几次方;分子是第几个式子就是x的第几加1个奇数次方.所以第七个分式是.点评:注意观察每项变化,然后找出的规律.三、解答题(本大题共10小题,共78分)15.(6分)计算:(2m2n﹣1)2÷3m3n﹣5.考点:负整数指数幂.分析:根据负整数指数幂的意义计算即可.解答:解:原式=4m4n﹣2÷3m3n﹣5=mn3.点评:本题主要考查了负指数幂的运算,解题的关键是根据负整数指数幂的意义计算.16.(6分)(2011•莒南县模拟)化简:.考点:分式的混合运算.专题:计算题.分析:先通分,计算括号里的,再除法转化成乘法,最后算减法.解答:解:原式=1﹣×=1﹣=﹣.点评:本题考查了分式的混合运算,解题的关键是注意通分以及对分式分子分母的因式分解.17.(6分)先化简,.考点:分式的混合运算.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=•+=+=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是约分,约分的关键是找公因式.18.(6分)解方程.考点:解分式方程.分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,解得x=1.检验:把x=1代入(x﹣1)(x+2)=0.所以原方程无解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(8分)已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?考点:反比例函数的定义;一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义知2﹣n=1,且5m﹣3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2﹣n=1,m+n=0,5m﹣3≠0,据此可以求得m、n的值;(3)根据反比例函数的定义知2﹣n=﹣1,m+n=0,5m﹣3≠0,据此可以求得m、n的值.解答:解:(1)当函数y=(5m﹣3)x2﹣n+(m+n)是一次函数时,2﹣n=1,且5m﹣3≠0,解得,n=1,m≠;(2)当函数y=(5m﹣3)x2﹣n+(m+n)是正比例函数时,,解得,n=1,m=﹣1.(3)当函数y=(5m﹣3)x2﹣n+(m+n)是反比例函数时,,解得n=3,m=﹣3.点评:本题考查了一次函数、正比例函数、反比例函数的定义.关键是掌握正比例函数是一次函数的一种特殊形式以及三种函数的关系是形式.20.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,两种机器人每小时分别搬运多少千克化工原料?考点:分式方程的应用.分析:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程求出其解就可以得出结论.解答:解:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,由题意得,解得:x=60,经检验,x=60是原方程的解,故A种机器人每小时搬运90千克化工原料.答:B种机器人每小时搬运60千克化工原料,则A种机器人每小时搬运90千克化工原料.点评:本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.21.(9分)(2009•桂林)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?考点:分式方程的应用.专题:工程问题.分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解答:解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1.(3分)解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.(8分)点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)在25℃的室内烧开一壶水用了5分钟(水温与时间的关系是一次函数关系),又过了一分钟(其中在5﹣6分钟之间,水温保持不变),随后壶中的水温按反比例关系下降.(1)在这个过程中,水温超过60℃的时间是多少分钟?(2)从水烧开到水温降至25℃用了多长时间?考点:一次函数的应用.分析:设水温为y,时间为x.(1)则由题意得到y=k1x+b(k1≠0).所以把x=0,y=25;x=5,y=100代入其中可以求得k1的值,易求该一次函数解析式;把y=60代入该解析式即可求得相应的x,即所需的时间;(2)设y=(k2≠0).把x=6,y=100代入该反比例函数解析式可以求得k2的值,易求该反比例函数解析式,然后把y=25代入该解析式即可求得x的值.解答:解:设水温为y,时间为x.(1)依题意可设y=k1x+b(k1≠0).则,解得,,则该一次函数解析式为y=15x+25.所以,当y=60时,60=15x+25,(2)由题意可设y=(k2≠0).则100=,解得x=,即在这个过程中,水温超过60℃的时间是分钟;解得,k2=600.所以,该反比例函数解析式为:y=.则当y=25时,25=,解得,x=24,即从水烧开到水温降至25℃用了24分钟.点评:本题考查了一次函数的应用.注意开水的温度是100℃,所以在解题中,这是隐含在题中的已知条件.23.(10分)如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学,已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少km/h?考点:分式方程的应用.分析:王老师接小明上学后走的总路程为3+3+0.5=6.5km,平时步行去学的路程为0.5km,根据时间=路程÷速度,以及关键语“比平时步行上班多用了20分钟”可得出的等量关系是:接小明上学后走的路程÷骑车的速度=平时上班的路程÷步行的速度+20分钟.解答:解:设王老师步行速度为xkm/h,则骑自行车的速度为3xkm/h,依题意,得=+,解得x=5,经检验x=5是原方程的根,∴3x=15.答:王老师步行速度为5km/h,骑自行车的速度为15km/h.点评:此题主要考查了分式方程的应用题,重点在于准确地找出相等关系,这是列方程的依据.本题要注意时间的单位要一致.24.(9分)(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.解答:解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S△ABC=×2×5=5.点评:此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.。

八年级下册期中考试数学试题含答案解析.doc

八年级下册期中考试数学试题含答案解析.doc

2019-2020 年八年级下册期中考试数学试题含答案解析一、选择题(本题共 12 个小题。

在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里)。

1 .若 1 2x 有意义 , 则 x的取值范围 ( )A.x > 2B. x ≤1C. x≠1D. x ≤ 2222 .已知一个直角三角形的两边长分别为3 和 4,则第三边长的平方是()A. 25B. 14C. 7D.7 或 253 .下列各组数中不能作为直角三角形的三边长的是()A. 1.5, 2, 3;B. 7, 24, 25;C. 6 ,8, 10;D. 9, 12, 15.4. 如图, 四边形 ABCD 中,对角线 AC , BD 相交于点 O ,下列条件不能判定这个四边形是平行四边形的是 ()A. AB ∥ DC ,AD ∥ BCB. AB=DC,AD=BCC.AO=CO,BO=DOD.AB ∥DC ,AD=BC5 .在 5a ,8a , c, a 2b 2 , a 3 中,最简二次根式有( )9A. 1 个B. 2 个C. 3 个D. 4 个6 .如图,长为 8cm 的橡皮筋放置在 x 轴上,固定两端 A 和 B ,然后把中点 C 向上拉升3cm 至 D 点,则橡皮筋被拉长了 ( )A. 2cmB.3cmC.4cmD. 5cm7 .如图:平行四边形 ABCD 的对角线交于点 O ,且 AB=6,△OCD 的周长为 16, 则 AC 与 BD 的和是 ()A. 10B. 16C. 20D. 228 .如下图字母 B 所代表的正方形的面积是()A. 12B. 13C. 144D. 1949. 如果 最简 根 式是能合并,那么使4a2x 有意义的x 的范围是() A. x ≤10B. x≥10C. x<10D. x>1010.如图所示,在菱形 ABCD 中,AC 、BD 相交于点若 OE=3,则菱形 ABCD 的周长是()O ,E 为AB 中点,A.12B.18C. 24D. 3011.矩形一个内角的平分线把矩形的一边分成3cm和5cm ,则矩形的周长为( )A.16cmB.22cm或 26cmC.26cmD.以上都不对12 .实数 a 在数轴上的位置如图所示,则( a 4) 2(a 11) 2化简后为()A. 7B. -7C. 2a -15D.无法确定二、填空题(本题共 6 个小题。

2019-2020学年八年级下学期期中考试数学试卷(解析版)

2019-2020学年八年级下学期期中考试数学试卷(解析版)

2019-2020学年八年级下学期期中考试数学试卷一.填空题(每小题4分,共24分)1.若,则的值是.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥09.下列各数中,与的积为有理数的是()A.B.C.D.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.211.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.14.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD的面积为()A.24B.36C.40D.48三.解答题(共44分)15.(5分)计算(1).(2).16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.参考答案与试题解析一.填空题(每小题4分,共24分)1.若,则的值是2.【分析】直接利用二次根式的性质计算得出答案.【解答】解:∵,∴a=,b=﹣1,∴=2÷=2.故答案为:2.【点评】此题主要考查了非负数的性质以及二次根式的乘除运算,正确掌握相关运算法则是解题关键.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为6.【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义得到AD,然后根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8,设CD=x,则AC=16﹣x,∵AC2=AD2+CD2,∴(16﹣x)2=82+x2,∴x=6,∴CD=6,故答案为:6.【点评】本题考查等腰三角形的性质,勾股定理,由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为4cm2.【分析】先根据两个小正方形的面积分别是6cm2和2cm2求出正方形的边长,进而可得出矩形的长和宽,进而得出结论.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB =A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥0【分析】直接利用二次根式的性质分析得出答案.【解答】解:等式成立的条件是:,解得:a>5.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9.下列各数中,与的积为有理数的是()A.B.C.D.【分析】利用二次根式乘法法则判断即可.【解答】解:•2=6,故选:C.【点评】此题考查了分母有理化,熟练掌握二次根式乘法法则是解本题的关键.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.2【分析】此题可借助于方程.设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4;把xy看作整体求解即可.【解答】解:设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4,则(x+y)2=x2+y2+2xy,∴6=4+2xy,∴xy=1,∴这个三角形的面积是xy==0.5,故选:B.【点评】此题考查了勾股定理的应用,解题时注意方程思想与整体思想的应用.11.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选:B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质得出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠AED=∠EAD=60°,AE=AD,求出∠BAE=150°,AB=AE,∠ABE=∠AEB=15°,求出∠AFB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AED是等边三角形,∴∠AED=∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠DFE=∠AFB=90°﹣15°=75°,故选:D.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠ABE的度数,难度适中.13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.【分析】本题主要根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB 与△ABC同底且△AOB的高是△ABC高的得出结论.【解答】解:∵四边形为矩形,∴OB =OD =OA =OC ,在△EBO 与△FDO 中, ∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.14.如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,且▱ABCD 的周长为40,则▱ABCD 的面积为( )A .24B .36C .40D .48【分析】根据平行四边形的周长求出BC +CD =20,再根据平行四边形的面积求出BC =CD ,然后求出CD 的值,再根据平行四边形的面积公式计算即可得解.【解答】解:∵▱ABCD 的周长=2(BC +CD )=40,∴BC +CD =20①,∵AE ⊥BC 于E ,AF ⊥CD 于F ,AE =4,AF =6,∴S ▱ABCD =4BC =6CD ,整理得,BC =CD ②,联立①②解得,CD =8,∴▱ABCD 的面积=AF •CD =6CD =6×8=48.故选:D .【点评】本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.三.解答题(共44分)15.(5分)计算(1).(2).【分析】(1)直接利用二次根式的性质以及零指数幂的性质、绝对值的性质分别化简得出答案;(2)利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣﹣(﹣1)﹣1+=﹣﹣+1﹣1+=0;(2)原式=1﹣12﹣(1+3﹣2)=﹣15+2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.【分析】先化简,再代入计算即可,注意x>2.【解答】解:原式=×=当x=4时,原式=2.【点评】本题考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质,注意一定要先化简再代入求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.【分析】(1)可先证明四边形DAEF是平行四边形,再由角的关系求得∠AED=∠1,根据等角对等边得AD=AE,再依据有一组邻边相等的平行四边形是菱形可得四边形AEFD是菱形;(2)由已知求得两条对角线的长,根据菱形的面积等于两条对角线的积的一半,求得菱形的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DF∥AE,∵EF∥AD,∴四边形DAEF是平行四边形,∵∠2=∠AED,∵DE是▱ABCD的∠ADC的平分线∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF与DE相交于O,则EO=.∴OA==.∴AF=5.=AF•DE=.∴S菱形AEFD【点评】此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【分析】(1)利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.(2)利用(1)的结论可知,DE=DF,再加上三个角都是直角,可证出四边形DFAE是正方形.【解答】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.∵△BED≌△CFD,∴DE=DF.∴四边形DFAE为正方形.【点评】本题利用了全等三角形的判定和性质以及矩形、正方形的判定.解答此题的关键是利用等腰三角形的两个底角相等,从而证明Rt△BED和Rt△CFD中的两个锐角对应相等.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.。

湖南省2019-2020年八年级下学期期中测试数学试卷2

湖南省2019-2020年八年级下学期期中测试数学试卷2

湖南省2019-2020年八年级下学期期中测试数学试卷一.精心选一选,旗开得胜(每小题3分,共30分)1.(3分)直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的()A.8倍B.4倍C.2倍D.6倍2.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.(3分)下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D.对角互补4.(3分)如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对5.(3分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.466.(3分)若点M(x,y)满足x+y=0,则点M位于()A.第一、三象限两坐标轴夹角的平分线上B.x轴上C.第二、四象限两坐标轴夹角的平分线上D.y轴上7.(3分)已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25 C.7D.158.(3分)在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个10.(3分)如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若BD=6,则四边形CODE的周长是()A.10 B.12 C.18 D.24二.细心填一填,一锤定音(每小题3分,共30分)11.(3分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B=.12.(3分)一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为cm.13.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是.14.(3分)▱ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=cm.15.(3分)已知在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于点E,交CD 的延长线于点F,则DF=cm.16.(3分)一个多边形的每一个外角等于30°,则此多边形是边形,它的内角和等于.17.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.18.(3分)点P(a,a﹣3)在第四象限,则a的取值范围是.19.(3分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(﹣1,4),则点C的坐标是.20.(3分)如图所示,矩形纸片ABCD中,AB=5cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC= cm.三.用心做一做,慧眼识金(每小题8分,共24分)21.(8分)如图,△ABC中,∠BAC=90°,AD是△ABC的高,∠C=30°,BC=4,求BD 的长.22.(8分)如图所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.23.(8分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?四.综合用一用,马到成功(共8分)24.(8分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?五.耐心想一想,再接再厉(共8分)25.(8分)已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC 三个顶点的坐标.六.探究试一试,超越自我(每小题10分,共20分)26.(10分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.27.(10分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.参考答案与试题解析一.精心选一选,旗开得胜(每小题3分,共30分)1.(3分)直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的()A.8倍B.4倍C.2倍D.6倍考点:勾股定理.专题:计算题.分析:设直角三角形两直角边分别为a,b,斜边为c,根据勾股定理列出关系式,将两直角边变形为2a与2b,利用勾股定理求出变化后的斜边,即可做出判断.解答:解:设直角三角形两直角边分别为a,b,斜边为c,根据勾股定理得:a2+b2=c2,若两直角边扩大2倍,变为2a与2b,根据勾股定理得:斜边为=2=2c,则斜边扩大到原来的2倍.故选C.点评:此题考查了勾股定理,勾股定理很好的建立了直角三角形三边的关系,熟练掌握勾股定理是解本题的关键.2.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等考点:直角三角形全等的判定.专题:压轴题.分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.解答:解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.点评:本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.3.(3分)下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D.对角互补考点:平行四边形的性质.分析:由平行四边形具有的性质:内角和为360°,邻角互补,对角相等,即可求得答案.解答:解:∵平行四边形具有的性质:内角和为360°,邻角互补,对角相等,∴平行四边形不一定具有的是:对角互补.故选D.点评:此题考查了平行四边形的性质.注意熟记定理是解此题的关键.4.(3分)如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对考点:全等三角形的判定;平行四边形的性质.分析:根据平行四边形的性质及全等三角形的判定方法进行分析,从而得到答案.解答:解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选D.点评:本题主要考查了平行四边形的性质的运用,记忆平行四边形的性质,应从边、角、对角线三个方面掌握.5.(3分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.(3分)若点M(x,y)满足x+y=0,则点M位于()A.第一、三象限两坐标轴夹角的平分线上B.x轴上C.第二、四象限两坐标轴夹角的平分线上D.y轴上考点:点的坐标.分析:根据点的横坐标与纵坐标互为相反数,点在第二、四象限的角平分线上,可得答案.解答:解:点M(x,y)满足x+y=0,则点M位于第二、四象限的角平分线上,故选:C.点评:本题考查了点的坐标,第二、四象限的角平分线上点的横坐标与纵坐标互为相反数,第一、三象限角平分线上点的坐标相等.7.(3分)已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25 C.7D.15考点:勾股定理;非负数的性质:绝对值;非负数的性质:偶次方.分析:本题可根据“两个非负数相加和为0,则这两个非负数的值均为0”解出x、y的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.解答:解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选C.点评:本题综合考查了勾股定理与非负数,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.8.(3分)在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形考点:多边形.分析:根据矩形、菱形、正方形的判定定理,即可解答.解答:解:A.四个角相等的四边形是矩形,正确;B.对角线垂直的平行四边形是菱形,故错误;C.对角线相等的平行四边形是矩形,故错误;D.四边相等的四边形菱形,故错误;故选:A.点评:本题考查了矩形、菱形、正方形的判定,解决本题的关键是熟记矩形、菱形、正方形的判定定理.9.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:第一个、第四个图形既是轴对称图形又是中心对称图形,共2个.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.(3分)如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若BD=6,则四边形CODE的周长是()A.10 B.12 C.18 D.24考点:菱形的判定与性质;矩形的性质.分析:由已知条件先证明四边形CODE是平行四边形,再由矩形的性质得出OC=OD=3,即可求出四边形CODE的周长.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD=6,∴OC=OD=3,∴四边形CODE是菱形,∴DE=OC=OD=CE=3,∴四边形CODE的周长=4×3=12.点评:本题考查了矩形的性质、菱形的判定与性质;熟练掌握矩形的性质,证明四边形是菱形是解决问题的关键.二.细心填一填,一锤定音(每小题3分,共30分)11.(3分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B=25°.考点:直角三角形的性质.分析:根据直角三角形两锐角互余列式计算即可得解.解答:解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.点评:本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.12.(3分)一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为6 cm.考点:等腰直角三角形.分析:根据等腰三角形三线合一的性质及已知不难求得斜边的长.解答:解:因为等腰直角三角形中,斜边上的高即是斜边上的中线,所以高等于斜边的一半,已知斜边与斜边上的高的和是18cm,则高是6cm,斜边是12cm.故答案为:6.点评:此题考查等腰直角三角形的性质,关键是利用三线合一,求得斜边与斜边上的高的关系.13.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是3.考点:平行四边形的性质.分析:根据平行四边形的对边相等,可得CD=AB=6,又因为S▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长是3.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=6,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.点评:此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.14.(3分)▱ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=20cm.考点:平行四边形的性质.分析:根据平行四边形的性质知,平行四边形的对边相等,则已知周长,可以求出一组邻边的长,△AOB的周长比△BOC的周长多10cm,则AB比BC的值多10,则进一步可求出AB和BC的长.解答:解:∵▱ABCD的周长为60cm,AB+BC=30cm,∵△AOB的周长比△BOC的周长多10cm,∴AB﹣BC=10cm,∴AB=20cm,BC=10cm.故答案为:20.点评:本题考查的是平行四变形的性质:平行四边形的两组对边分别相等;平行四边形的对角线互相平分.15.(3分)已知在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于点E,交CD 的延长线于点F,则DF=3cm.考点:平行四边形的性质.分析:由在▱ABCD中,∠ABC的平分线交AD于点E,交CD的延长线于点F,易证得AB=AE,DE=DF,继而可求得答案.解答:解:∵四边形ABCD是平行四边形,∵AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠FED=∠CBE,∠ABF=∠F,∵∠ABE=∠CBE,∴∠ABE=∠AEB,∠FED=∠F,∴AB=AE=5cm,DF=DE,∵AD=8cm,∴DE=AD﹣AE=3(cm),∴DF=3cm.故答案为:3.点评:此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.16.(3分)一个多边形的每一个外角等于30°,则此多边形是十二边形,它的内角和等于1800°.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:∵多边形的每一个外角等于30°,360°÷30°=12,∴这个多边形是十二边形;其内角和=(12﹣2)•180°=1800°.故答案为:十二,1800°.点评:本题考查了多边形的内角与外角,理解多边形的外角和是360度,外角和不随边数的变化而变化是关键.17.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是﹣.考点:勾股定理;实数与数轴.专题:压轴题.分析:在直角三角形中根据勾股定理求得OB的值,即OA的值,进而求出数轴上点A 表示的数解答:解:∵OB==,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是﹣,故答案为:﹣.点评:本题考查了实数与数轴、勾股定理的综合运用.18.(3分)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.解答:解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).19.(3分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(﹣1,4),则点C的坐标是(3,0).考点:坐标与图形性质.分析:根据点A的坐标求出正方形的边长与OB的长度,再求出OC的长,然后写出点C 的坐标即可.解答:解:∵点A的坐标是(﹣1,4),∴BC=AB=4,OB=1,∴OC=BC﹣OB=4﹣1=3,∴点C的坐标为(3,0).故答案为:(3,0).点评:本题考查了坐标与图形性质,主要利用了正方形的性质,根据点A的坐标求出正方形的边长是解题的关键.20.(3分)如图所示,矩形纸片ABCD中,AB=5cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=10 cm.考点:翻折变换(折叠问题).分析:由矩形与折叠的性质,即可求得EB′⊥AC,又由AE=EC,根据三线合一的性质,即可求得答案.解答:解:∵四边形ABCD是矩形,∴∠B=90°,根据题意得:∠BAE=∠EAB′,∠AB′E=∠B=90°,∴EB′⊥AC,∵AE=EC,∴AB′=CB′=AB=5cm,∴AC=10cm.故答案为:10.点评:此题考查了矩形的性质,折叠的性质以及等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.三.用心做一做,慧眼识金(每小题8分,共24分)21.(8分)如图,△ABC中,∠BAC=90°,AD是△ABC的高,∠C=30°,BC=4,求BD 的长.考点:含30度角的直角三角形.分析:在直角△ABC中,根据“30度角所对的直角边等于斜边的一半”求得AB=BC=2;然后在直角△ABD中,根据“30度角所对的直角边等于斜边的一半”求得BD=AB=1.解答:解:如图,∵在△ABC中,∠BAC=90°,∠C=30°,AD是高,∴∠ADB=90°,∠BAD=∠C=30°,∴在直角△ABC中,AB=BC=2,∴在直角△ABC中,BD=AB=1.∴BD的长为1.点评:本题考查了含30度角的直角三角形.应用时,要注意找准30°的角所对的直角边和斜边是解题的关键.22.(8分)如图所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.考点:平行四边形的性质.分析:由平行四边形ABCD中,∠BAD的平分线交BC于E,易得∠BAE=∠BEA,则AB=BE;又因为AE=BE,所以△ABE是等边三角形;即能求得∠BCD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵AE=BE,∴△ABE是等边三角形,∴∠B=60°,∴∠BCD=120°.∴▱ABCD各内角的度数分别是:∠B=∠D=60°,∠BAD=∠C=120°.点评:此题考查了平行四边形的性质:平行四边形的对边平行.还考查了等边三角形的判定与性质:等角对等边;等边三角形的三个角都等于60°,把四边形问题转化为三角形问题是关键.23.(8分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?考点:勾股定理的应用.分析:(1)在Rt△ABE中利用勾股定理求出AC的长即可;(2)首先在Rt△CDE中利用勾股定理求出DE的长,然后再计算出DB的长即可.解答:解:(1)由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE==2.4米;(2)由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE==1.5(米),∴BD=0.8米.点评:此题主要考查了勾股定理的应用,关键是掌握正确运用勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.四.综合用一用,马到成功(共8分)24.(8分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?考点:勾股定理的逆定理.专题:计算题.分析:(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;(2)分别利用三角形的面积公式求出△ABC、△ACD的面积,两者相加即是四边形ABCD 的面积,再乘以100,即可求总花费.解答:解:(1)在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cm CD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC=×3×4=6,S△ACD=×5×12=30,∴S四边形ABCD=6+30=36,费用=36×100=3600(元).点评:本题考查勾股定理、勾股定理的逆定理的应用、三角形的面积公式.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.五.耐心想一想,再接再厉(共8分)25.(8分)已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC 三个顶点的坐标.考点:坐标与图形性质;三角形的面积.分析:根据S△ABC=30,求出OA,根据∠ABC=45°,所以OA=OB,根据BC=12,所以OC=7,即可解答.解答:证明:∵∠ABC=45°,∴OA=OB,∵BC•OA=30,BC=12,∴OA=OB=60÷12=5,∴OC=BC﹣BO=12﹣5=7,∴A(0,5),B(﹣5,0),C(7,0).点评:本题考查了坐标与图形性质,解决本题的关键是利用三角形的面积求出OA的长.六.探究试一试,超越自我(每小题10分,共20分)26.(10分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.考点:平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).分析:(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.解答:(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.点评:此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.27.(10分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.考点:全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定.专题:几何综合题.分析:(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴▱四边形AGBD是矩形.点评:本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.。

2019-2020学年湖南省株洲市攸县震林中学八年级下学期期中数学试卷 (解析版)

2019-2020学年湖南省株洲市攸县震林中学八年级下学期期中数学试卷 (解析版)

2019-2020学年湖南省株洲市攸县震林中学八年级第二学期期中数学试卷一、选择题(共10小题).1.(4分)下列图形是中心对称图形的是()A.B.C.D.2.(4分)下列各组线段能构成直角三角形的一组是()A.9,40,41B.7,12,13C.5,9,12D.3,4,63.(4分)已知过一个多边形的一个顶点可以引2条对角线,则它是()A.六边形B.五边形C.四边形D.三角形4.(4分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形5.(4分)菱形的两条对角线分别是12和16,则此菱形的边长是()A.10B.8C.6D.56.(4分)如图,在△ABC中,AC=10,DE是△ABC的中位线,则DE的长度是()A.3B.4C.4.8D.57.(4分)如图,菱形ABCD中,∠B=120°,则∠1的度数是()A.30°B.25°C.20°D.15°8.(4分)如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24B.25C.30D.369.(4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.310.(4分)如图,矩形ABCD的面积为28,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1:以AB、AO1为邻边作平行四边形AO1C2B;…,依此类推,则平行四边形AO6C7B的面积为()A.B.C.D.二、填空题(每题4分,共8题)11.(4分)一个多边形的每一个内角都是120°,则这个多边形是边形.12.(4分)直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为.13.(4分)如图,在△ABC中,∠C=90°,AD是角平分线,CD=9,则点D到AB的距离为.14.(4分)如图,直线l上有三个正方形,A,B,C,若A,C的面积分别为36和64,则B的面积为.15.(4分)如图,▱ABCD的周长是22,△ABC的周长是17,则AC的长为.16.(4分)如图,在平行四边形ABCD中,AB=,AD=4,AC⊥BC.则BD=.17.(4分)已知四边形ABCD是正方形,以AD为边在正方形ABCD所在平面内作等边三角形PAD,那么∠BPC的度数是.18.(4分)如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P 以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为秒时,以点P,Q,E,D为顶点的四边形是平行四边形.三、解答题(共8题,共78分)19.(8分)如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.20.(8分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=6,求PD的长.(提示:过点P作PE⊥OA于点E)21.(8分)如图所示的一块地(图中阴影部分)∠ADC=90°,AD=4,CD=3,AB=13,BC=12(1)求∠ACB的度数;(2)求阴影部分的面积.22.(8分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.23.(10分)如图,已知A、B两艘船同时从港口O出发,船A以40km/h的速度向东航行;船B以30km/h的速度向北航行,它们离开港口2h后相距多远?24.(10分)已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.25.(12分)如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C 出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是a秒(0<a≤20).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的a值;如果不能,请说明理由;(2)当a为何值时,△DEF为直角三角形?请说明理由.26.(14分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.参考答案一.选择题(每小题4分,共10题)1.(4分)下列图形是中心对称图形的是()A.B.C.D.解:A、C、D中图形都不是中心对称图形,B中图形是中心对称图形,故选:B.2.(4分)下列各组线段能构成直角三角形的一组是()A.9,40,41B.7,12,13C.5,9,12D.3,4,6解:A、92+402=412,能构成直角三角形;B、72+122≠132,不能构成直角三角形;C、52+92≠122,不能构成直角三角形;D、32+42≠62,不能构成直角三角形.故选:A.3.(4分)已知过一个多边形的一个顶点可以引2条对角线,则它是()A.六边形B.五边形C.四边形D.三角形解:设多边形的边数为n.根据题意得;n﹣3=2.解得:n=5.故选:B.4.(4分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形解:∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项A不符合题意;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是正方形,选项C不符合题意;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,选项D符合题意;故选:D.5.(4分)菱形的两条对角线分别是12和16,则此菱形的边长是()A.10B.8C.6D.5解:如图,∵菱形ABCD中,AC=12,BD=16,∴OA=AC=6,OB=BD=8,AC⊥BD,∴AB==10.即菱形的边长是10.故选:A.6.(4分)如图,在△ABC中,AC=10,DE是△ABC的中位线,则DE的长度是()A.3B.4C.4.8D.5解:∵DE是△ABC的中位线,∴DE=AC=×10=5,故选:D.7.(4分)如图,菱形ABCD中,∠B=120°,则∠1的度数是()A.30°B.25°C.20°D.15°解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=120°,∴∠1==30°,故选:A.8.(4分)如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24B.25C.30D.36解:∵CE是斜边AB上的中线,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故选:C.9.(4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.3解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,∵在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,∴DF=1.5,EF=1+1.5=2.5.故选:B.10.(4分)如图,矩形ABCD的面积为28,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1:以AB、AO1为邻边作平行四边形AO1C2B;…,依此类推,则平行四边形AO6C7B的面积为()A.B.C.D.解:设矩形ABCD的面积为S,根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=S=,…,平行四边形AO n﹣1∁n B的面积=,∴平行四边形AO n C n+1B的面积=,∴平行四边形AO6C7B的面积为==;故选:C.二、填空题(每题4分,共8题)11.(4分)一个多边形的每一个内角都是120°,则这个多边形是六边形.解:180﹣120=60,多边形的边数是:360÷60=6.则这个多边形是六边形.12.(4分)直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为16cm.解:如图,在Rt△ABC中,∠B=90°,∠A=30°,BC=8cm,则BC=AC=8cm,所以AC=2BC=16cm.故答案是:16cm.13.(4分)如图,在△ABC中,∠C=90°,AD是角平分线,CD=9,则点D到AB的距离为9.解:如图,过D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=DC=9,即点D到AB的距离为9.故答案为:9.14.(4分)如图,直线l上有三个正方形,A,B,C,若A,C的面积分别为36和64,则B的面积为100.解:如图,∵图形A、B、C都是为正方形,∴EF2=36,MN2=64,GE=GM,∠EGM=90°,∴∠EGF+∠NGM=90°,而∠EGF+∠FEG=90°,∴∠FEG=∠NGM,在△EFG和△GNM中,,∴△EFG≌△GNM,∴GF=MN,在Rt△EFG中,EG2=EF2+FG2=EG2+MN2=36+64=100,∴正方形B的面积为100.故答案为100.15.(4分)如图,▱ABCD的周长是22,△ABC的周长是17,则AC的长为6.解:∵,▱ABCD的周长是22,∴AB+BC=11,∵△ABC的周长是17,∴AC=17﹣11=6,故答案为:616.(4分)如图,在平行四边形ABCD中,AB=,AD=4,AC⊥BC.则BD=10.解:∵四边形ABCD是平行四边形,∴BC=AD=4,OB=OD,OA=OC,∵AC⊥BC,∴由勾股定理得:AC===6,∴OC=AC=3,∵在Rt△BCO中,∠BCO=90°,∴OB===5,∴BD=2OB=10,故答案为:10.17.(4分)已知四边形ABCD是正方形,以AD为边在正方形ABCD所在平面内作等边三角形PAD,那么∠BPC的度数是30°或150°.解:如图(1),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD+∠PAB=90°+60°=150°.∵PA=AD,AB=AD,∴PA=AB,∴∠ABP=(180°﹣150°)=15°,∴∠PBC=∠ABC﹣∠ABP=90°﹣15°=75°,同理:∠PCB=75°,∴∠BPC=180°﹣75°﹣75°=30°.如图(2),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD﹣∠PAB=90°﹣60°=30°.∵PA=AD,AB=AD,∴PA=AB,∴∠APB=(180°﹣30°)=75°,同理:∠CPD=75°,∴∠BPC=360°﹣75°﹣75°﹣60°=150°.综上可得:∠BPC的度数是30°或150°.故答案为:30°或150°.18.(4分)如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P 以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.解:∵E是BC的中点,∴BE=CE=BC=×12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CE﹣CQ=6﹣2t,∴4﹣t=6﹣2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CQ﹣CE=2t﹣6,∴4﹣t=2t﹣6,解得:t=,∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2或.三、解答题(共8题,共78分)19.(8分)如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=150度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=∠DAB,∠EBA=∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°﹣(∠DAB+∠CBA)=180°﹣(360°﹣∠C﹣∠D)=(∠C+∠D),∵∠C+∠D=210°,∴∠E=(∠C+∠D)=105°.20.(8分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=6,求PD的长.(提示:过点P作PE⊥OA于点E)解:过点P作PE⊥OA于点E,如图所示,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∠AOB=30°,∴∠COP=∠POD=15°,PD=PE,∵CP∥OB,∴∠POD=∠CPO,∴∠COP+∠CPO=∠COP+∠POD=30°,∴∠ECP=∠COP+∠CPO=30°,∵PC=6,∠PEC=90°,∴PE=3,∴PD=3.21.(8分)如图所示的一块地(图中阴影部分)∠ADC=90°,AD=4,CD=3,AB=13,BC=12(1)求∠ACB的度数;(2)求阴影部分的面积.解:(1)在Rt△ADC中,由勾股定理得:AC===5,∵AB=13,BC=12,AC=5,∴AC2+BC2=AB2,∴∠ACB=90°;(2)阴影部分的面积S=S△ACB﹣S△ADC=﹣=24.22.(8分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠DFC=90°,∠DFC+∠FDC=90°,∴∠EFB=∠DFC,∵BE=CF,∴△BEF≌△CFD,∴BF=CD.23.(10分)如图,已知A、B两艘船同时从港口O出发,船A以40km/h的速度向东航行;船B以30km/h的速度向北航行,它们离开港口2h后相距多远?解:∵A、B两艘船同时从港口O出发,船A以40km/h的速度向东航行;船B以30km/h 的速度向北航行,∴∠AOB=90°,它们离开港口2h后,AO=40×2=80km,BO=30×2=60km,∴AB==100km,答:它们离开港口2h后相距100km.24.(10分)已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.【解答】证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形EFDC是矩形,∵EF=ED,∴四边形CDEF是正方形.25.(12分)如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C 出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是a秒(0<a≤20).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的a值;如果不能,请说明理由;(2)当a为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=2a,∴DF=a,又∵AE=a,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣2a=a,解得a=.∴当a=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=a,又AD=40﹣2a,即40﹣2a=a,解得a=16;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣2a=2a,解得a=10.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当a=16或10秒时,△DEF为直角三角形.26.(14分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.。

湖南省2019-2020年八年级下学期期中测试数学试卷6

湖南省2019-2020年八年级下学期期中测试数学试卷6

湖南省2019-2020年八年级下学期期中测试数学试卷一、填空(每小题3分)1.如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形全等的依据是()。

2、三角形三边长分别为6、8、10,那么它的最短边上的高为()。

3、等边三角形的高为2,则它的面积是()。

4、若A、B、C是不在同一直线上的三点,则以这三点为顶点画平行四边形,可画()个5、□ABCD中,AC、BD相交于点O,AC=4cm,BD=6cm,AB=3cm,则△ABO 的周长是______。

6. □ABCD中,∠A=2∠D,则∠A=____°,∠B=____°7、已知P(-4,3),与P关于x轴对称的点的坐标是()8、直角坐标系中,点P(x,y),xy<0,x<y,且P到x轴、y轴的距离分别为3,7,则P点的坐标为()169、下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.有两条边对应相等C.一条边和一锐角对应相等D.一条边和一个角对应相等10、在△ABC中,AD⊥BC于D,BD=,DC=1,AC=,那么AB的长度是( )A. B.3 C. D.2511、在Rt△ABC中,∠ACB=90°,AC=CB,CD是斜边AB的中线,若AB=2,则点D到BC的距离为()A.1B.C.2D.12、下列条件中,能判别四边形ABCD是平行四边形的是( )A. AB=BC=CDB. ∠B+∠C=180°,∠C+∠D=180°C. AB=BC,CD=DAD. ∠A+∠B=180°,∠C+∠D=180°13、任意三角形两边中点的连线与第三边上的中线( )A. 互相平分B. 互相垂直C. 相等D. 互相垂直平分14、点E、F分别是□ABCD的边AB、CD的中点,DE、BF交于AC于M、N,则A. AM=MEB. AM=BEC. AM=CND. AM⊥MD15、已知x轴上一点A(6,0),y轴上一点B(0,b),且AB=10,则b的值为()A.8 B.-8 C.±8 D.以上答案都不对16、在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5)B.(-2,5)C.(2,-5) D.(2,5)三、解答题(17、如图。

湖南省株洲市八年级下学期数学期中考试试卷

湖南省株洲市八年级下学期数学期中考试试卷

湖南省株洲市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·白云期末) 在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A . (1)(3)B . (1)(4)C . (2)(3)D . (2)(4)2. (2分)小莉站在离一棵树水平距离为a米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为()A .B .C .D .3. (2分) (2017九上·夏津开学考) 如图,在中,,、分别是,的中点,则等于()A . 6B . 3C .D . 94. (2分) (2020七下·三水期末) 如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()①体育场离张强家3.5千米②张强在体育场锻炼了15分钟③体育场离早餐店1.5千米④张强从早餐店回家的平均速度是3千米/小时A . 1个B . 2个C . 3个D . 4个5. (2分) (2016九上·吉安期中) 下列命题不正确的是()A . 对角线互相平分且一组邻边相等的四边形是菱形B . 两组对边分别平行且一组邻边相等的四边形是菱形C . 两组对角分别相等且一组邻边相等的四边形是菱形D . 对角线互相垂直且相等的四边形是菱形6. (2分)已知线段AB长3厘米,经过A,B两点,以半径2厘米作圆,则()A . 可作1个B . 可作2个C . 可作无数个D . 无法作出二、填空题 (共4题;共4分)7. (1分) (2020八下·长沙期中) 将直线向上平移3个单位长度,则所得直线的解析式是________.8. (1分) (2017八下·乌海期末) 如图,小聪上午8:00整从家里出发,骑车去一家超市购物,然后从这家超市返回家中。

2019-2020学年株洲市攸县震林中学八年级(下)期中数学试卷(含答案解析)

2019-2020学年株洲市攸县震林中学八年级(下)期中数学试卷(含答案解析)

2019-2020学年株洲市攸县震林中学八年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下面四个英文字母图案,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.以下列条件构成的三角形中,不属于直角三角形的是()A. ∠A=∠B=45°B. ∠A=∠B+∠CC. AB=5,BC=12,AC=13D. ∠A=2∠B=3∠C3.若一个正多边形的每一个外角36°,则这个正多边形从一个顶点出发可以做的对角线条数是()A. 35B. 70C. 7D. 104.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A. 若△ABC为任意三角形,则四边形ADEG是平行四边形B. 若∠BAC=90°,则四边形ADEG是矩形C. 若AC=√2AB,则四边形ADEG是菱形D. 若∠BAC=135°且AC=√2AB,则四边形ADEG是正方形5.如图,菱形OABC的边长为4,且点A、B、C在⊙O上,则劣弧BC⏜的长度为()A. π3B. 2π3C. 8π3D. 4π36.如图,菱形ABCD中,对角线AC与BD相交于点O,OE//DC且交BC于点E,AD6cm,则OE的长为()A. 6cmB. 4cmC. 3cmD. 2cm7.矩形具有而菱形不一定具有的性质是()A. 对角相等B. 对角线相等C. 对角线互相垂直D. 邻边相等8.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若平面内动点P满足S△PAB=S△PCD,则满足此条件的点P有()A. 1个B. 2个C. 4个D. 无数个9.如图,矩形ABCD中,AB=4,AD=5,E是CD上的一点,将△ADE沿AE折叠,点D刚好与BC边上点F重合,则线段CE的长为()A. 32B. 52C. 3D. 410.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当时间t为()s时,能够使△BPE与△CQP全等.A. 1B. 1或4C. 1或2D. 2或4二、填空题(本大题共8小题,共32.0分)11.如图,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠DCB,则∠P与∠A+∠B+∠E+∠F的数量关系可表示为______ .12.如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为______.13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是______.14.如图,AB比AC长2,DE垂直平分BC,△ACD周长为14,则AB 2−AC 2=____ .15.已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,S△AOE=3,S△BOF=5,则▱ABCD的面积是______ .16.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.17.如图,三个小正方形的边长都为a,则图中阴影部分面积的和是______(结果保留π).18.在下列结论中,正确结论的序号是______.(请把所有正确结论的序号都填上)①一组对边和一组对角分别相等的四边形是平行四边形;②两组对角的内角平分线分别平行的四边形是平行四边形;③一组对边中点的距离等于另一组对边边长的和的一半的四边形是平行四边形;④两条对角线都平分四边形的面积的四边形是平行四边形.三、计算题(本大题共1小题,共10.0分)19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?四、解答题(本大题共7小题,共68.0分)20.折一折,想一想,如图所示,在△ABC中,将纸片一角折叠,使点C落在△ABC内一点C′上,若∠1=40°,∠2=30°.(1)求∠C的度数;(2)试通过第(1)问,直接写出∠1、∠2、∠C三者之间的关系.21.在△ABC中,∠ACB=90°,AC=BC,过C作CD//AB交∠ABC的平分线于点D,∠ACB的平分线交BD于点E。

株洲市八年级下学期数学期中考试试卷

株洲市八年级下学期数学期中考试试卷

株洲市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·河南期末) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分)下列二次根式是最简二次根式的是A .B .C .D .3. (2分)(2020·武汉模拟) 下列事件是必然事件的是()A . 某种彩票中奖率为1%,则买100张这种彩票必然中奖B . 今晚努力学习,明天考试必然考出好成绩C . 从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D . 抛掷一枚普通的骰子所得的点数一定小于64. (2分)(2019·桥西模拟) 下列判断正确是()A . 高铁站对旅客的行李的检查应采取抽样调查B . 一组数据5、3、4、5、3的众数是5C . “掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上D . 甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据更稳定5. (2分) (2019八上·房山期中) 下列各式中,正确的是()A .B .C .D .6. (2分)(2020·无锡模拟) 下列命题中错误的是()A . 两组对边分别相等的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 一组邻边相等的平行四边形是菱形D . 对角线垂直相等的四边形是正方形7. (2分) (2017九上·姜堰开学考) 为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A . 1 000名学生B . 被抽取的50名学生C . 1 000名学生的身高D . 被抽取的50名学生的身高8. (2分)如图,函数和函数的图象相交于两点,则不等式的解集为()A .B .C . 或D . 或9. (2分) (2018八上·汉滨期中) 如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD的长为()A . 3B . 5C . 4D . 不确定10. (2分)(2018·宁晋模拟) 如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数(x>0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会()A . 越来越小B . 越来越大C . 不变D . 先变大后变小二、填空题 (共8题;共10分)11. (1分) (2017八下·宜兴期中) 当x= ________时,分式的值为0;当 ________时,二次根式有意义.12. (1分) (2020九下·荆州期中) 函数的自变量x的取值范围是________;13. (2分)(2017·萍乡模拟) 如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF=________.14. (1分)若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:①以a2 , b2 , c2的长为边的三条线段能组成一个三角形;②以,,的长为边的三条线段能组成一个三角形;③以a+b,c+h,h的长为边的三条线段能组成直角三角形;④以,,的长为边的三条线段能组成直角三角形,正确结论的序号为________.15. (1分) (2019九上·慈溪期中) 如图,反比例函数的图象与以原点为圆心的圆相交,其中,则图中阴影部分面积为________(结果保留π).16. (1分)(2014·成都) 已知关于x的分式方程﹣ =1的解为负数,则k的取值范围是________.17. (1分) (2017八下·大丰期中) “平行四边形的对角线互相垂直”是________事件.(填“必然”、“随机”、“不可能”)18. (2分) (2017八下·老河口期末) 如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,若PA=6,PB=8,PC=10,则∠APB=________°.三、解答题 (共9题;共77分)19. (10分)(2017·高港模拟) 根据要求进行计算:(1)计算:()﹣2﹣(π﹣2011)0+| ﹣2|+2cos45°.(2)先化简,再求值:( + )÷ ,其中x= ﹣1.20. (10分)解方程:.21. (5分) (2018八上·岳池期末) 计算(1)先化简再求值:,其中.(2)(3)先化简再求值:,其中b=3.22. (2分)如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?23. (12分)(2020·嘉兴模拟) 我市某中学艺术节期间,向全校学生征集书画作品,九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如图两幅不完整的统计图.(1)王老师采取的调查方式是▲(填“普查”或“抽样调查”),请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有3件获得一等奖,其中有2名作者是男生,1名作者是女生,现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)24. (2分) (2017·天桥模拟) 如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y 轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .(1)求反比例函数y= 和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.25. (11分)如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)△ABC绕着点B逆时针旋转90°,得到△A1BC1 .请画出△A1BC1 .(2)求线段BC旋转过程中所扫过的面积.26. (10分)(2011·湖州) 我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:养殖种类成本(万元/亩)销售额(万元/亩)甲鱼 2.43桂鱼2 2.5(1) 2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?27. (15分)(2020·扬州) 如图,已知点、,点P为线段AB上的一个动点,反比例函数的图像经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共77分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。

湖南省2019-2020年八年级下学期期中测试数学试卷3

湖南省2019-2020年八年级下学期期中测试数学试卷3

湖南省2019-2020年八年级下学期期中测试数学试卷一、选择题(每题只有一个结果符合要求,每小题5分,共40分)1.(5分)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.82.(5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.O A=OC,OB=OD B.A D∥BC,AB∥DC C.AB=DC,AD=BC D.A B∥DC,AD=BC3.(5分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④4.(5分)下列各组数据中,不能作为一个直角三角形三边长的一组是()A.32,42,52B.C.D.5.(5分)下列判断不正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线垂直的平行四边形是菱形6.(5分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.67.(5分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.58.(5分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)二、填空题(每小题5分,共30分)9.(5分)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为cm.10.(5分)如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是.11.(5分)如图,Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线,AC=8,DC=AD,则D到AB的距离为.12.(5分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.13.(5分)如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分别为M和N,则M+N的最小值为.14.(5分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三、解答题(每题8分,共24分)15.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.16.(8分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)17.(8分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.四、解答题(每题10分,共30分)18.(10分)如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.19.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣A.∵S四边形ADCB=S△ACD+S△ABC=b2+aB.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2解决问题:请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.20.(10分)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.五、解答题(本题12分)21.(12分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?六、解答题(本题14分)22.(14分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.参考答案与试题解析一、选择题(每题只有一个结果符合要求,每小题5分,共40分)1.(5分)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.8考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.2.(5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.O A=OC,OB=OD B.A D∥BC,AB∥DC C.AB=DC,AD=BC D.A B∥DC,AD=BC考点:平行四边形的判定.专题:证明题.分析:根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.解答:解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;B、∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;C、AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选:D.点评:此题考查了平行四边形的判定.此题比较简单,注意熟记定理是解此题的关键.3.(5分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.4.(5分)下列各组数据中,不能作为一个直角三角形三边长的一组是()A.32,42,52B.C.D.考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,就不是直角三角形.解答:解:A、(32)2+(42)2≠(52)2,不符合勾股定理的逆定理,故本选项符合题意;B、12+()2=()2,符合勾股定理的逆定理,故本选项不符合题意;C、12+()2=22,符合勾股定理的逆定理,故本选项不符合题意;D、12+12=()2,符合勾股定理的逆定理,故本选项不符合题意.故选A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.(5分)下列判断不正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线垂直的平行四边形是菱形考点:矩形的判定;菱形的判定.分析:分别利用矩形、菱形的判定定理分别判断后即可确定正确的选项.解答:解:A、四个角相等的四边形是矩形,正确;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的平行四边形是矩形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选B.点评:本题考查了矩形的判定、菱形的判定定理,解题的关键是分别熟知两个图形的判定方法,难度不大.6.(5分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6考点:含30度角的直角三角形;等腰三角形的性质.专题:计算题.分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.7.(5分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).专题:几何图形问题.分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.8.(5分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)考点:坐标与图形变化-旋转.专题:分类讨论.分析:分顺时针旋转和逆时针旋转两种情况讨论解答即可.解答:解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.点评:本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.二、填空题(每小题5分,共30分)9.(5分)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为5cm.考点:直角三角形斜边上的中线;勾股定理.分析:利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:有勾股定理得,AB===10cm,∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.10.(5分)如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是2.考点:三角形中位线定理;含30度角的直角三角形.分析:根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.解答:解:∵D为AB的中点,AB=8,∴AD=4,∵DE⊥AC于点E,∠A=30°,∴DE=AD=2,故答案为:2.点评:本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.11.(5分)如图,Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线,AC=8,DC=AD,则D到AB的距离为.考点:角平分线的性质.分析:根据题意作辅助线,然后根据角平分线的性质得出DE=CD,根据已知可得CD=,所以DE=,即D点到BC的距离可得.解答:解:解:过点D作DE⊥AB于点E,∵已知∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴∠C=∠DEB=90°,根据角平分线的性质可得:DE=CD.∵AC=8,DC=AD,∴CD=,∴DE=,∴D到AB的距离为,故答案为:.点评:本题主要考查角平分线的性质,作出辅助线是解决本题的关键.12.(5分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为30度.考点:矩形的性质;含30度角的直角三角形;平行四边形的性质.分析:根据矩形以及平行四边形的面积求法得出当AE=AB,则符合要求,进而得出答案.解答:解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.点评:此题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE=AB是解题关键.13.(5分)如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分别为M和N,则M+N的最小值为360°.考点:多边形内角与外角.分析:根据多边形内角和定理:(n﹣2)•180°,列出M+N的式子,然后求出最小值.解答:解:一条直线将该矩形ABCD分割成两个多边形,设两个多边形的分别为m边形和n边形,则M+N=(m﹣2)×180°+(n﹣2)×180°,∵m≥3,n≥3,∴M+N≥360°,即最小值为:360°故答案为:360°.点评:此题主要考查了多边形的内角与外角,解答本题的关键是掌握多边形的内角和定理,题目比较简单.14.(5分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.考点:正方形的性质;直角三角形斜边上的中线;勾股定理.分析:根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.解答:解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.点评:本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.三、解答题(每题8分,共24分)15.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).考点:作图-平移变换;关于x轴、y轴对称的点的坐标.专题:作图题.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解答:解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).点评:本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.16.(8分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)考点:勾股定理的应用.专题:几何图形问题.分析:首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.解答:解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.点评:此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.(8分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.考点:矩形的性质;平行四边形的判定与性质.专题:证明题.分析:根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.解答:证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.点评:本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.四、解答题(每题10分,共30分)18.(10分)如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC,求证:BE=AF.考点:平行四边形的判定与性质.专题:证明题.分析:由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论.解答:证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF.点评:本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想的应用.19.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣A.∵S四边形ADCB=S△ACD+S△ABC=b2+aB.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2解决问题:请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.考点:勾股定理的证明.专题:计算题.分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.解答:证明:连结BD,过点B作DE边上的高BF,可得BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.点评:此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.20.(10分)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质.专题:证明题.分析:(1)首先根据矩形的性质和折叠的性质可得DE=BC,∠E=∠C=90°,对顶角∠DFE=∠BFC,利用AAS可判定△DEF≌△BCF;(2)在Rt△ABD中,根据AD=3,BD=6,可得出∠ABD=30°,然后利用折叠的性质可得∠DBE=30°,继而可求得∠EBC的度数.解答:(1)证明:由折叠的性质可得:DE=BC,∠E=∠C=90°,在△DEF和△BCF中,,∴△DEF≌△BCF(AAS);(2)解:在Rt△ABD中,∵AD=3,BD=6,∴∠ABD=30°,由折叠的性质可得;∠DBE=∠ABD=30°,∴∠EBC=90°﹣30°﹣30°=30°.点评:本题考查了折叠的性质、矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键.五、解答题(本题12分)21.(12分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵A B=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.六、解答题(本题14分)22.(14分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.21。

湖南省株洲市攸县震林中学2023-2024学年八年级下学期期中数学试题

湖南省株洲市攸县震林中学2023-2024学年八年级下学期期中数学试题

湖南省株洲市攸县震林中学2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中,点2(1)A ,在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.下列图形中,内角和等于360°的是 ( ) A .三角形B .四边形C .五边形D .六边形3.下列四组线段中,能组成直角三角形的是( ) A .a =1,b =2,c =3 B .a =4,b =2,c =3 C .a =4,b =2,c =5D .a =4,b =5,c =34.下列关于四边形的说法正确的是( ) A .菱形对角线相等 B .矩形对角线互相垂直C .平行四边形是轴对称图形D .正方形具有矩形和菱形的一切性质 5.将一副三角板如图所示放置,斜边平行,则1∠的度数为( )A .5︒B .10︒C .15︒D .20︒6.两个矩形的位置如图所示,若1∠=α,则2∠=( )A .90α-︒B .45α-︒C .180α︒-D .270α︒-7.如图,在ABCD Y 中,一定正确的是( )A .AD CD =B .AC BD = C .AB CD = D .CD BC =8.如图,在△ABC 中,BD ⊥AC 于点D ,点E 为AB 的中点,AD=6,DE=5,则线段BD 的长为( )A .5B .6C .8D .109.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .12510.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCDEFGHS S正方形正方形的值是( )A .1B .2C .5D .154二、填空题11.在平面直角坐标系中,点(-3,2)关于y 轴的对称点的坐标是 . 12.在▱ABCD 中,已知∠A +∠C =200°,则∠B 的度数为 °.13.如图所示,点O在一块直角三角板ABC上(其中30∠=︒),O M A B⊥于点M,ABC∠=度.=,则ABOON BC⊥于点N,若OM ON14.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.15.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是.16.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.17.如图,在平行四边形ABCD 中,连接BD ,且BD CD =,过点A 作AM BD ⊥于点M ,过点D 作DN AB ⊥于点N ,且6DN =,在DB 的延长线上取一点P ,满足ABD MAP PAB ∠=∠+∠,则AP = .18.定义:f (a ,b )=(﹣a ,b ),g (m ,n )=(m ,﹣n ),例 f (1,2)=(﹣1,2),g (﹣4,﹣5)=(﹣4,5),则 g ( f (2,﹣3))= .三、解答题19.如图所示:在平面直角坐标系xoy 中,A (-1,5),B (-1,0),C (-4,3)(1)三角形ABC 的面积是 .(2)在图中画出三角形ABC 向下平移2个单位长度,向右平移5个单位长度后的三角形111A B C .(3)写出点111,,A B C 的坐标.20.如图,Rt △ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC =6,BC =8,CD =3.(1)求DE 的长; (2)求△ADB 的面积.21.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,DE//AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F . (1)求∠F 的度数. (2)若CE =1,求EF 的长.22.如图所示,点E 在四边形ABCD 的边AD 上,连接CE ,并延长CE 交BA 的延长线于点F ,已知AE DE =,FE CE =.(1)求证:AEF DEC △≌△;(2)若AD BC ∥,求证:四边形ABCD 为平行四边形.23.如图,在Rt ABC V 中,90ACB ∠=︒,30B ∠=︒,将ABC V 绕点C 按顺时针方向旋转n 度后,得到DEC V ,点D 刚好落在AB 边上.(1)求n 的值;(2)若F 是DE 的中点,判断四边形ACFD 的形状,并说明理由.24.如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .25.如图所示,BEF △的顶点E 在正方形ABCD 对角线AC 的延长线上,AE 与BF 交于点G ,连接AF 、CF ,满足ABF CBE △≌△.(1)求证:90EBF ∠=︒.(2)若正方形ABCD 的边长为1,2CE =,求CF .26.如图,在菱形ABCD 中,10AB =,菱形ABCD 的面积为60,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)求菱形ABCD的高.(2)如图1,点G在AC上.求证:FA FG=.(3)若EF FG=,当EF过AC中点时,求AG的长.。

湘教版2019-2020学年八年级数学下册期中模拟试卷1解析版

湘教版2019-2020学年八年级数学下册期中模拟试卷1解析版

湘教版2019-2020学年八年级数学下册期中模拟试卷1姓名座号题号一二三总分得分考后反思(我思我进步):一、细心选一选(将正确答案的序号填在对应的题号下面,本大题共10小题,每小题3分,共30分)1.(3分)Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是()A.66°B.36°C.56D.46°2.(3分)在Rt△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.2 cm B.2.5 cm C.3 cm D.4 cm3.(3分)以下四组数中,不是勾股数的是()A.3,4,5B.5,12,13C.4,5,6D.8,15,17 4.(3分)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是()A.等腰三角形B.正三角形C.平行四边形D.菱形5.(3分)等腰三角形腰长为13,底边长为10,则它底边上的高为()A.12B.7C.5D.66.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD7.(3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°8.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角9.(3分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.410.(3分)已知,G是矩形ABCD的边AB上的一点,P是BC边上的一个动点,连接DG、GP,E、F分别是GD、GP的中点,当点P从B向C运动时,EF的长度()A.保持不变B.逐渐增大C.逐渐减少D.不能确定二、细心填一填(本大题共8个小题,每小题3分,共24分)11.(3分)在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=4cm,则AB=cm.12.(3分)已知一个直角三角形的两边长分别为3,4,则第三边的长为.13.(3分)一个等腰三角形一边长为6cm,另一边长为3cm,那么这个等腰三角形的周长是cm.14.(3分)若菱形的对角线长为24和10,则菱形的边长为.15.(3分)若矩形的对角线长为2cm,两条对角线相交所成的一个夹角为60°,则该矩形的面积为.16.(3分)△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是.17.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.18.(3分)如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是cm.三、用心做一做(本大题共7个小题,共66分,要求写出证明步骤或解答过程)19.(8分)如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.20.(8分)若a、b、c为△ABC的三边长,且a、b、c满足等式(a﹣5)2+(b ﹣12)2+|c﹣13|=0,求△ABC的面积.21.(8分)如图所示,在▱ABCD中,点M、N分别在BC、AD上,且BM=DN.求证:四边形AMCN是平行四边形.22.(10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,菱形ABCD 的周长是48.求:(1)菱形ABCD两条对角线的长度.(2)菱形ABCD的面积.23.(10分)如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC 上的中点,AB=5,CD=7.求四边形EFGH的周长.24.(10分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.求证:AE⊥BF.25.(12分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案与试题解析一、细心选一选(将正确答案的序号填在对应的题号下面,本大题共10小题,每小题3分,共30分)1.(3分)Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是()A.66°B.36°C.56D.46°【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【解答】解:∵Rt△ABC中,∠C=90°,∠B=54°,∴∠A=90°﹣∠B=90°﹣54°=36°;故选:B.【点评】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.2.(3分)在Rt△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】由题意可得,∠B是直角,AB=AC,直接代入即可求得AB的长.【解答】解:∵△ABC为直角三角形,∠C=30°,∴AB=AC=2.5cm.故选:B.【点评】此题考查的是直角三角形的性质,30°的直角边所对的直角边等于斜边的一半.3.(3分)以下四组数中,不是勾股数的是()A.3,4,5B.5,12,13C.4,5,6D.8,15,17【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,是勾股数;B、52+122=132,是勾股数;C、42+52≠62,不是勾股数;D、152+82=172,是勾股数.故选:C.【点评】考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.4.(3分)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是()A.等腰三角形B.正三角形C.平行四边形D.菱形【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、等腰三角形,不是中心对称图形,是轴对称图形,故本选项错误;B、正三角形,不是中心对称图形,是轴对称图形,故本选项错误;C、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;D、菱形,既是中心对称图形又是轴对称图形.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)等腰三角形腰长为13,底边长为10,则它底边上的高为()A.12B.7C.5D.6【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解答】解:如图:∵△ABC中,AB=AC,AD⊥BC;∴BD=DC=BC=5;Rt△ABD中,AB=13,BD=5;由勾股定理,得:AD===12.故选:A.【点评】本题主要考查了等腰三角形的性质、勾股定理;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.6.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.根据判定定理逐项判定即可.【解答】解:如图示,根据平行四边形的判定定理知,只有C符合条件.故选:C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.7.(3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°【分析】根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.【解答】解:根据正八边形的内角公式得出:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°.故选:B.【点评】此题主要考查了正多边形的内角公式运用,正确的记忆正多边形的内角求法公式是解决问题的关键.8.(3分)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【分析】利用特殊四边形的性质进而得出符合题意的答案.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.【点评】此题主要考查了多边形,正确掌握多边形的性质是解题关键.9.(3分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S=BC•EF=×5×2=5,△BCE故选:C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.(3分)已知,G是矩形ABCD的边AB上的一点,P是BC边上的一个动点,连接DG、GP,E、F分别是GD、GP的中点,当点P从B向C运动时,EF的长度()A.保持不变B.逐渐增大C.逐渐减少D.不能确定【分析】连接PD,根据E、F分别是GD、GP的中点,即EF是中位线,可得EF= DP,当点P从B向C运动时,DP长度逐渐减小,于是判断出EF长度的变化.【解答】解:连接PD,∵E、F分别是GD、GP的中点,∴EF是中位线,∴EF=DP,当点P从B向C运动时,DP长度逐渐减小,故EF的长度也逐渐减小.故选:C.【点评】本题主要考查矩形的性质和三角形中位线定理的知识点,解答本题的关键是熟练运用三角形中位线定理,此题比较简单.二、细心填一填(本大题共8个小题,每小题3分,共24分)11.(3分)在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=4cm,则AB=8 cm.【分析】由于直角三角形斜边上的中线等于斜边的一半,已知了中线CD的长,即可求出斜边的长.【解答】解:∵D是斜边AB的中点,∴CD是斜边AB上的中线;故AB=2CD=8cm.【点评】此题主要考查的是直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.(3分)已知一个直角三角形的两边长分别为3,4,则第三边的长为5或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.(3分)一个等腰三角形一边长为6cm,另一边长为3cm,那么这个等腰三角形的周长是15cm.【分析】题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为3cm时,3+3=6,所以不能构成三角形;当腰为6cm时,3+6>6,所以能构成三角形,周长是:3+6+6=15(cm).故答案为:15.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.(3分)若菱形的对角线长为24和10,则菱形的边长为13.【分析】首先根据题意画出图形,然后由平行四边形的性质,可得OA、OB的长,又因为AC⊥BD,继而利用勾股定理,求得这个菱形的边长.【解答】解:如图,BD=10,AC=24,∵四边形ABCD是菱形,∴OA=AC=12,OB=BD=5,AC⊥BD,∴AB==13,故答案为:13.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.15.(3分)若矩形的对角线长为2cm,两条对角线相交所成的一个夹角为60°,则该矩形的面积为.【分析】由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OA=1,由勾股定理求出BC,矩形的面积=AB•BC,即可得出结果.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC=1,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1,∴BC===,∴矩形ABCD的面积=AB•BC=1×=;故答案为:.【点评】本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.16.(3分)△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是6.【分析】利用三角形的中位线定理可以得到:DE=AC,EF=AB,DF=BC,则△DEF的周长是△ABC的周长的一半,据此即可求解.【解答】解:∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,∴C=DE+EF+DF=AC+BC+AB=(AC+BC+AC)=×12=6.△DEF故答案是:6.【点评】本题考查了三角形的中位线定理,正确根据三角形中位线定理证得:△DEF的周长是△ABC的周长的一半是关键.17.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.18.(3分)如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是2cm.【分析】直接利用正方形的性质,得出B,D点关于直线AC对称,连接BD,ED,BP,进而利用勾股定理得出答案.【解答】解:如图所示:连接BD,DE,BP,由题意可得:B,D点关于直线AC对称,则P点是ED与AC的交点,∵正方形ABCD的边长为10cm,BE=4cm,∴AE=6cm,AD=10cm,则EP+BP=ED==2(cm).故答案为:2.【点评】此题主要考查了利用轴对称求最短路线以及正方形的性质,正确得出P 点位置是解题关键.三、用心做一做(本大题共7个小题,共66分,要求写出证明步骤或解答过程)19.(8分)如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.【分析】先证出BC=FE,由HL证明Rt△ABC≌Rt△DFE,得出对应边相等即可.【解答】证明:∵BE=FC,∴BE+CE=FC+CE,即BC=FE,∵∠A=∠D=90°,在Rt△ABC和Rt△DFE中,,∴Rt△ABC≌Rt△DFE(HL),∴∠B=∠F.【点评】本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.20.(8分)若a、b、c为△ABC的三边长,且a、b、c满足等式(a﹣5)2+(b ﹣12)2+|c﹣13|=0,求△ABC的面积.【分析】首先根据非负数的性质可得a、b、c的值,再利用勾股定理逆定理证明△ABC是直角三角形,然后根据三角形的面积公式计算即可.【解答】解:∵(a﹣5)2+(b﹣12)2+|c﹣13|=0,∴a﹣5=0,b﹣12=0,c﹣13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S=×5×12=30.△ABC【点评】此题考查了非负数的性质,勾股定理逆定理以及三角形的面积,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.21.(8分)如图所示,在▱ABCD中,点M、N分别在BC、AD上,且BM=DN.求证:四边形AMCN是平行四边形.【分析】根据平行四边形的性质可以证明AN∥CM且AN=CM,则依据一组对边平行且相等的四边形是平行四边形即可判断.【解答】证明:∵▱ABCD中,AD∥BC,AD=BC,又∵BM=DN,∴AN∥CM且AN=CM,∴四边形AMCN是平行四边形.【点评】此题考查了平行四边形的性质与判定.注意选择适宜的判定方法.22.(10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,菱形ABCD 的周长是48.求:(1)菱形ABCD两条对角线的长度.(2)菱形ABCD的面积.【分析】(1)直接利用菱形的性质得出∠ABO=30°,进而求出AO,BO的长即可得出答案;(2)直接利用菱形面积等于对角线乘积的一半,即可得出答案.【解答】解:(1)∵在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,∴∠ABC=60°,∠BAD=120°,AC⊥BD,∴∠ABO=30°,∵菱形ABCD的周长是48cm,∴AB=BC=DC=AD=12cm,∴AO=6cm,则BO=6cm,故AC=12cm,BD=12cm;(2)则菱形ABCD的面积为:×12×12=72(cm2).【点评】此题主要考查了菱形的性质以及勾股定理,得出∠ABO的度数是解题关键.23.(10分)如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7.求四边形EFGH的周长.【分析】利用三角形中位线定理,证明四边形EFGH是平行四边形即可解决问题;【解答】解:∵E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7.∴EF∥AB∥GH,EH∥CD∥FG,EF=2.5,EH=3.5,∴四边形EFGH为平行四边形,∴四边形EFGH的周长为2(EF+EH)=2×6=12.【点评】本题考查中点四边形,平行四边形的判定和性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(10分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.求证:AE⊥BF.【分析】由E,F分别是正方形ABCD边BC,CD的中点知CF=BE,证Rt△ABE≌Rt△BCF得∠BAE=∠CBF,根据∠BAE+∠BEA=90°即可得∠CBF+∠BEA=90°,据此即可得证.【解答】证明:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∵∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的性质与全等三角形的判定与性质.25.(12分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.【分析】(1)四边形ADEF平行四边形.根据△ABD,△EBC都是等边三DAE角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF是平行四边形.(2)若边形ADEF是矩形,则∠DAE=90°,然后根据已知可以得到∠BAC=150°.(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形.(2)∵四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.∴∠BAC=150°时,四边形ADEF是矩形.(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【点评】此题主要用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.。

2019-2020学年第二学期八年级数学期中检测试题(湘教版含答案)

2019-2020学年第二学期八年级数学期中检测试题(湘教版含答案)

2020年春季学期阶段性检测试题八年级数学(考试时间:90分钟 满分:100分)一、单选择题(本大题共12题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的)1.下列图形中,属于中心对称图形的是 A .B .C .D .2.如果一个三角形的三个内角的度数之比为1:2:3,那么这个三角形是 A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形 3.下列各组线段能构成直角三角形的是 A .1,2,3B .7,12,13C .5,8,10D .15,20,254.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是 A .2∶1∶2∶1B .1∶2∶2∶1C .1∶1∶2∶2D .1∶2∶3∶45.矩形具有而平行四边形不一定具有的性质是 A .对边平行且相等B .对角相等C .对角线互相平分D .对角线相等6.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相 交于点P ,作PE ⊥AB 于点E ,若PE =2,则两平行线AD 与BC 间的距离为 A .2B .3 C .4D .5第6题图BA DCPE7.一个多边形的内角和是它的外角和的2倍,则这个多边形是A.五边形B.六边形C.七边形D.八边形8.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是A.12B.16C.20 D.249.如图,在□ABCD中,按以下步骤作图:①以A为圆心,AB长为半径画弧,交边AD于点F;②再分别以B,F为圆心画弧,两弧交于□ABCD内部的点G处;③连接AG并延长交BC于点E,连接BF,若BF=3,AB=2.5,则AE的长为A.2B.4 C.8 D.510.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积A.不变B.先增大再减小C.先减小再增大D.不断增大11.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是A.2B.52C.332D.512.如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足为E,在线段AB上(E不与A、B重合),连接EF、CF,则下列结论中一定成立的是第11题图第8题图第9题图A DB C EF GH①∠DCF=12∠BCD ;②EF =CF ;③2BEC CEF S S ∆∆<; ④∠DFE =4∠AEFA .①②③④B .①②③C .①②D .①②④ 二、填空题(本大题共6题,每小题3分,共18分)13.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.14.如图,数轴上点A 表示的数据为_______.15.三个正方形的面积如图所示,则字母B 所代表的正方形的面积是.16.如图,DE 是△ABC 的中位线,点F 在DE 上,且∠AFB =90°,AB =6,BC =10,则EF =________. 17.如图,在矩形ABCD 中,点E 在边CD 上,将矩形ABCD 沿AE 所在直线折叠,点D 恰好落在边BC 上的点F 处.若AB =8,DE =5,则折痕AE 的长为________. 18.如图,菱形ABCD 的对角线交于点O ,BD =6,AC =8,P 是线段AC 上一动点,E 是线段AB 上一个动点,则BP +EP 的 最小值为____________.第12题图第13题图第14题图第18题图三、解答题(本大题共8题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.20.(6分)如图,□ABCD的对角线AC、BD相交于点O,AE=CF.求证:BE=DF.21.(6分)如图,在四边形ABCD中,AB=BC=6,CD=9,AD=3,且AB⊥BC于B.求四边形ABCD的面积.22.(8分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC5,AF=3,求BC的长.23.(9分)在□ABCD中,连接AC、BD交于点O,点E为AD的中点,连接CE并延长交于BA 的延长线于点F,连接DF.(1)求证:四边形ACDF是平行四边形;(2)若AD=2AB,∠ABC=60°,试判断四边形ACDF的形状,并说明理由.24.(9分)已知:如图,在△ABC中,AB=AC,AD⊥BC,AN为△ABC外角∠CAM的平分线,CE⊥AN于点E.(1)求证:四边形ADCE为矩形;(2)当AD与BC满足什么数量关系时,四边形ADCE是正方形?并给予证明25.(10分)如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形?26.(12分)如图①,已知点O为正方形ABCD的对角线的交点,点P是对角线AC上的一个动点(点P不与A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,连接OE和OF,EO延长线交垂线FC于点G.(1)求证:OE=OF;(2)如图②,延长正方形对角线CA,当点P运动到CA的延长线上时,通过证明判断(1)中的结论是否仍然成立;(3)若点P在射线OA上运动,AE=1,CF=4,求线段OE的长.2019-2020学年第二学期八年级数学教学质量期中检测(湘教版)参考答案一、二、13.12.14..14416.217..18.245三、19.证明:在Rt ABC 和Rt DCB 中……………………1分BD CABC CB =⎧⎨=⎩,……………………3分 ∴Rt ABC Rt DCB ≌(HL ),……………………4分∴∠OBC=∠OCB,……………………5分∴BO=CO.……………………6分20.证明:∵四边形ABCD 是平行四边形,∴BO =DO ,AO =CO ,……………………1分 ∵AE =CF ,∴AO ﹣AE =CO ﹣C F , ∴EO =FO ,……………………2分在△BOE和△DOF中,BO DOBOE DOFEO FO=⎧⎪∠=∠⎨⎪=⎩,……………………4分∴BOE DOF≌(SAS),……………………5分∴BE=DF.……………………6分21.解:∵在△ABC中,AB⊥BC,AB=BC=6,222226672AC AB BC∴=+=+=……………………1分在△ACD中,∵CD=9,AD=3,,22222981,39,72 CD AD AC∴=====∴AD2+AC2=CD2,……………………2分∴△ACD是直角三角形,……………………3分∴S△ADC=12×3×,……………………4分∵S△ABC=12×AB×BC=18,……………………5分∴S四边形ABCD=S△ABC+S△ACD.即四边形ABCD的面积为.……………………6分22.证明:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=12∠CAB=12×90°=45°,……………………1分∵FG∥AD∴∠F=∠DAB=45°,∠AEF=45°,……………………2分∴∠F=∠AEF,……………………3分∴AE=AF;……………………4分(2)∵AF=3,∴AE=3,……………………5分∵点E是AC的中点,∴AC=2AE=6,……………………6分在Rt△ABC中,AB2+AC2=BC2,∴AB2+32)2,解得AB=32(取正),……………………7分∴BC……………………8分23.解:(1)在ABCD中,AB∥CD,∴∠FAD=∠CDA,……………………1分∵点E为AD的中点∴AE=DE又∵∠AEF=∠DEC,∴△AEF≌△DEC……………………2分∴AF=CD,……………………3分又∵,A F∥CD∴四边形ACDF是平行四边形……………………4分(2)由(1)知四边形ACDF 是平行四边形,AF =CD∵AB=CD ∴AF =AB= BF ……………………5分又∵2,AD AB AD BC ==,∴BF=BC,……………………6分∵60ABC ∠=∴△BCF 是等边三角形,……………………7分 ∴FC=AD,……………………8分∴平行四边形ACDF 是矩形……………………9分24.证明:(1)在△ABC 中,AB=AC ,AD ⊥BC ,∴∠BAD=∠DAC ,……………………1分∵AN 是△ABC 外角∠CAM 的平分线,∴∠MAE=∠CAE ,……………………2分∴∠DAE=∠DAC+∠CAE=12×180°=90°,……………………3分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.……………………4分(2)当12AD BC =时,四边形ADCE 是一个正方形.……………………5分 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=……………………6分12AD BC =,AD BD DC ∴==,……………………7分∵四边形ADCE 为矩形,∴矩形ADCE 是正方形.……………………8分 ∴当12AD BC =时,四边形ADCE 是一个正方形.……………………9分 25.解:(1)由题意知,CD =AB =10,DE =7,BC =4CE =CD -DE =10﹣7=3,……………………1分在Rt △CBE 中,BE =2222435BC CE +=+=;……………………3分 (2)①当以P 为直角顶点时,即∠BPE =90°,……………………4分 AP =10﹣3=7,则t =7÷1=7(秒),……………………5分②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得BE 2+PE 2=BP 2,……………6分 设AP =t ,10BP t =-,2224(7)PE t =+-……………………7分 即52+42+(7﹣t )2=(10﹣t )2,……………………8分解得,t =53,……………………9分 当t =7或53秒时,△BPE 为直角三角形.……………………10分 26.证明:(1)∵点O 为正方形ABCD 的对角线的交点,OA OC ∴=,……………………1分,AE BP CF BP ⊥⊥,//AE CF ∴,EAO GCO ∴∠=∠,……………………2分在AEO △和△CGO 中,EAO GCO AO COEOA GOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆AEO ≌∆CGOEO GO ∴=,即点O 为EG 的中点,……………………3分在Rt EFG 中,OF 是斜边EG 上的中线,12OF EG ∴=, OE OF ∴=;……………………4分(2)OE OF =,仍然成立,……………………5分 证明:如图,∴点O 为正方形ABCD 的对角线的交点,OA OC ∴=,,AE BP CF BP ⊥⊥,//,AE CF EAO GCO ∴∴∠=∠,……………………6分在AEO △和△CGO 中,EAO GCO AO CO EOA GOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴∆AEO ≌∆CGO ……………………7分EO GO ∴=,即点O 为EG 的中点,在Rt EGF 中,OF 是斜边EG 上的中线,1,2OF EG OF OG OE ∴=∴==, OE OF ∴=仍然成立;……………………8分(3)解:①当点P 在线段OA 上时,如图∵∆AEO ≌∆CGO ,11,2AE CG OE OG EG ∴====. 易得∆BFC ≌∆AEB ……………………9分 1.3BF AE EF GF ∴==∴==.在Rt EFG 中,,,2OE OF GF EG EG =∴==,12OE EG ∴==;……………………10分 ②当点P 在线段OA 的延长线上时,如图.AEG ≌CGO 11,2AE CG OE OG EG ∴====. 同理可得5GF EF ==.……………………11分在Rt EFG 中,OE OF =,,2GF EG EG ∴==11222OE EG ∴==⨯=综上可知,OE 的长为2或2.……………………12分。

湖南省2019-2020年八年级下学期期中测试数学试卷5

湖南省2019-2020年八年级下学期期中测试数学试卷5

湖南省2019-2020年八年级下学期期中测试数学试卷时间:120分钟 总分:90分一、选择题(每小题3分,共30分)1.如果等边三角形的边长为4,那么等边三角形的中位线长为( ) A.2 B.4 C.6 D.82.顺次连接四边形各边中点所得的四边形一定是( )A.梯形B.矩形C.菱形D.平行四边形3.下列说法中正确的是( )A.已知c b a ,,是三角形的三边长,则222c b a =+B.在直角三角形中,两边长的平方和等于第三边长的平方C.在Rt△ABC 中,若∠C=90°,则222c b a =+D.在Rt△ABC 中,若∠A=90°,则222c b a =+4、在平面直角坐标系中,点A (2,3)与点B 关于y 轴对称,则点B 的坐标为( )A.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)5、均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是 ( )6,给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形; ②两组邻边分别相等的四边形是平行四边形; ③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形. A.1 B.2 C.3 D.4 7、能够判定一个四边形是矩形的条件是( )。

A .对角线互相平分且相等 B.对角线互相垂直平分 C.对角线相等且互相垂直 D.对角线互相垂直8、一个多边形的内角和为14400,则这个多边形的边数为( ):A 、11;B 、10;C 、9;D 、8; 9、下列函数中,y 随x 的增大而减少的函数是( )A .y =2x +8B .y =-2+4xC .y =-2x +8D .y =4xABCD10、已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点( )A .(4,6)B .(-4,-3) C.(6,9) D.(-6,6) 二、填空题(每题3分,共30分)11,八边形的外角和是 012、平行四边形的两邻边分别为3、4,则其周长为_________.13,点A (a,-5)和点B (-2,b )关于y 轴对称,则a+b= ;14,将点P(-3,4)向下平移3个单位,向左平移2个单位后得到点Q ,则点Q 的坐标是( ).15,三角形三个内角的度数之比为1∶2∶3,它的最大边等于16cm ,则最小边长是___________cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年湖南省株洲市攸县震林中学八年级第二学期期中数学试卷一、选择题(共10小题).1.(4分)下列图形是中心对称图形的是()A.B.C.D.2.(4分)下列各组线段能构成直角三角形的一组是()A.9,40,41B.7,12,13C.5,9,12D.3,4,63.(4分)已知过一个多边形的一个顶点可以引2条对角线,则它是()A.六边形B.五边形C.四边形D.三角形4.(4分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形5.(4分)菱形的两条对角线分别是12和16,则此菱形的边长是()A.10B.8C.6D.56.(4分)如图,在△ABC中,AC=10,DE是△ABC的中位线,则DE的长度是()A.3B.4C.4.8D.57.(4分)如图,菱形ABCD中,∠B=120°,则∠1的度数是()A.30°B.25°C.20°D.15°8.(4分)如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24B.25C.30D.369.(4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.310.(4分)如图,矩形ABCD的面积为28,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1:以AB、AO1为邻边作平行四边形AO1C2B;…,依此类推,则平行四边形AO6C7B的面积为()A.B.C.D.二、填空题(每题4分,共8题)11.(4分)一个多边形的每一个内角都是120°,则这个多边形是边形.12.(4分)直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为.13.(4分)如图,在△ABC中,∠C=90°,AD是角平分线,CD=9,则点D到AB的距离为.14.(4分)如图,直线l上有三个正方形,A,B,C,若A,C的面积分别为36和64,则B的面积为.15.(4分)如图,▱ABCD的周长是22,△ABC的周长是17,则AC的长为.16.(4分)如图,在平行四边形ABCD中,AB=,AD=4,AC⊥BC.则BD=.17.(4分)已知四边形ABCD是正方形,以AD为边在正方形ABCD所在平面内作等边三角形PAD,那么∠BPC的度数是.18.(4分)如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P 以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为秒时,以点P,Q,E,D为顶点的四边形是平行四边形.三、解答题(共8题,共78分)19.(8分)如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.20.(8分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=6,求PD的长.(提示:过点P作PE⊥OA于点E)21.(8分)如图所示的一块地(图中阴影部分)∠ADC=90°,AD=4,CD=3,AB=13,BC=12(1)求∠ACB的度数;(2)求阴影部分的面积.22.(8分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.23.(10分)如图,已知A、B两艘船同时从港口O出发,船A以40km/h的速度向东航行;船B以30km/h的速度向北航行,它们离开港口2h后相距多远?24.(10分)已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.25.(12分)如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C 出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是a秒(0<a≤20).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的a值;如果不能,请说明理由;(2)当a为何值时,△DEF为直角三角形?请说明理由.26.(14分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.参考答案一.选择题(每小题4分,共10题)1.(4分)下列图形是中心对称图形的是()A.B.C.D.解:A、C、D中图形都不是中心对称图形,B中图形是中心对称图形,故选:B.2.(4分)下列各组线段能构成直角三角形的一组是()A.9,40,41B.7,12,13C.5,9,12D.3,4,6解:A、92+402=412,能构成直角三角形;B、72+122≠132,不能构成直角三角形;C、52+92≠122,不能构成直角三角形;D、32+42≠62,不能构成直角三角形.故选:A.3.(4分)已知过一个多边形的一个顶点可以引2条对角线,则它是()A.六边形B.五边形C.四边形D.三角形解:设多边形的边数为n.根据题意得;n﹣3=2.解得:n=5.故选:B.4.(4分)关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是菱形B.若AB=AD,则▱ABCD是矩形C.若AB⊥BC,则▱ABCD是正方形D.若AC⊥BD,则▱ABCD是菱形解:∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项A不符合题意;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是正方形,选项C不符合题意;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,选项D符合题意;故选:D.5.(4分)菱形的两条对角线分别是12和16,则此菱形的边长是()A.10B.8C.6D.5解:如图,∵菱形ABCD中,AC=12,BD=16,∴OA=AC=6,OB=BD=8,AC⊥BD,∴AB==10.即菱形的边长是10.故选:A.6.(4分)如图,在△ABC中,AC=10,DE是△ABC的中位线,则DE的长度是()A.3B.4C.4.8D.5解:∵DE是△ABC的中位线,∴DE=AC=×10=5,故选:D.7.(4分)如图,菱形ABCD中,∠B=120°,则∠1的度数是()A.30°B.25°C.20°D.15°解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=120°,∴∠1==30°,故选:A.8.(4分)如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24B.25C.30D.36解:∵CE是斜边AB上的中线,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故选:C.9.(4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.3解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,∵在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,∴DF=1.5,EF=1+1.5=2.5.故选:B.10.(4分)如图,矩形ABCD的面积为28,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1:以AB、AO1为邻边作平行四边形AO1C2B;…,依此类推,则平行四边形AO6C7B的面积为()A.B.C.D.解:设矩形ABCD的面积为S,根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=S=,…,平行四边形AO n﹣1∁n B的面积=,∴平行四边形AO n C n+1B的面积=,∴平行四边形AO6C7B的面积为==;故选:C.二、填空题(每题4分,共8题)11.(4分)一个多边形的每一个内角都是120°,则这个多边形是六边形.解:180﹣120=60,多边形的边数是:360÷60=6.则这个多边形是六边形.12.(4分)直角三角形一条直角边长为8cm,它所对的角为30°,则斜边为16cm.解:如图,在Rt△ABC中,∠B=90°,∠A=30°,BC=8cm,则BC=AC=8cm,所以AC=2BC=16cm.故答案是:16cm.13.(4分)如图,在△ABC中,∠C=90°,AD是角平分线,CD=9,则点D到AB的距离为9.解:如图,过D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=DC=9,即点D到AB的距离为9.故答案为:9.14.(4分)如图,直线l上有三个正方形,A,B,C,若A,C的面积分别为36和64,则B的面积为100.解:如图,∵图形A、B、C都是为正方形,∴EF2=36,MN2=64,GE=GM,∠EGM=90°,∴∠EGF+∠NGM=90°,而∠EGF+∠FEG=90°,∴∠FEG=∠NGM,在△EFG和△GNM中,,∴△EFG≌△GNM,∴GF=MN,在Rt△EFG中,EG2=EF2+FG2=EG2+MN2=36+64=100,∴正方形B的面积为100.故答案为100.15.(4分)如图,▱ABCD的周长是22,△ABC的周长是17,则AC的长为6.解:∵,▱ABCD的周长是22,∴AB+BC=11,∵△ABC的周长是17,∴AC=17﹣11=6,故答案为:616.(4分)如图,在平行四边形ABCD中,AB=,AD=4,AC⊥BC.则BD=10.解:∵四边形ABCD是平行四边形,∴BC=AD=4,OB=OD,OA=OC,∵AC⊥BC,∴由勾股定理得:AC===6,∴OC=AC=3,∵在Rt△BCO中,∠BCO=90°,∴OB===5,∴BD=2OB=10,故答案为:10.17.(4分)已知四边形ABCD是正方形,以AD为边在正方形ABCD所在平面内作等边三角形PAD,那么∠BPC的度数是30°或150°.解:如图(1),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD+∠PAB=90°+60°=150°.∵PA=AD,AB=AD,∴PA=AB,∴∠ABP=(180°﹣150°)=15°,∴∠PBC=∠ABC﹣∠ABP=90°﹣15°=75°,同理:∠PCB=75°,∴∠BPC=180°﹣75°﹣75°=30°.如图(2),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD﹣∠PAB=90°﹣60°=30°.∵PA=AD,AB=AD,∴PA=AB,∴∠APB=(180°﹣30°)=75°,同理:∠CPD=75°,∴∠BPC=360°﹣75°﹣75°﹣60°=150°.综上可得:∠BPC的度数是30°或150°.故答案为:30°或150°.18.(4分)如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P 以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.解:∵E是BC的中点,∴BE=CE=BC=×12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CE﹣CQ=6﹣2t,∴4﹣t=6﹣2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD﹣AP=4﹣t,CQ=2t,EQ=CQ﹣CE=2t﹣6,∴4﹣t=2t﹣6,解得:t=,∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2或.三、解答题(共8题,共78分)19.(8分)如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=150度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=∠DAB,∠EBA=∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°﹣(∠DAB+∠CBA)=180°﹣(360°﹣∠C﹣∠D)=(∠C+∠D),∵∠C+∠D=210°,∴∠E=(∠C+∠D)=105°.20.(8分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=6,求PD的长.(提示:过点P作PE⊥OA于点E)解:过点P作PE⊥OA于点E,如图所示,∵OP平分∠AOB,PD⊥OB,PE⊥OA,∠AOB=30°,∴∠COP=∠POD=15°,PD=PE,∵CP∥OB,∴∠POD=∠CPO,∴∠COP+∠CPO=∠COP+∠POD=30°,∴∠ECP=∠COP+∠CPO=30°,∵PC=6,∠PEC=90°,∴PE=3,∴PD=3.21.(8分)如图所示的一块地(图中阴影部分)∠ADC=90°,AD=4,CD=3,AB=13,BC=12(1)求∠ACB的度数;(2)求阴影部分的面积.解:(1)在Rt△ADC中,由勾股定理得:AC===5,∵AB=13,BC=12,AC=5,∴AC2+BC2=AB2,∴∠ACB=90°;(2)阴影部分的面积S=S△ACB﹣S△ADC=﹣=24.22.(8分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠DFC=90°,∠DFC+∠FDC=90°,∴∠EFB=∠DFC,∵BE=CF,∴△BEF≌△CFD,∴BF=CD.23.(10分)如图,已知A、B两艘船同时从港口O出发,船A以40km/h的速度向东航行;船B以30km/h的速度向北航行,它们离开港口2h后相距多远?解:∵A、B两艘船同时从港口O出发,船A以40km/h的速度向东航行;船B以30km/h 的速度向北航行,∴∠AOB=90°,它们离开港口2h后,AO=40×2=80km,BO=30×2=60km,∴AB==100km,答:它们离开港口2h后相距100km.24.(10分)已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.【解答】证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形EFDC是矩形,∵EF=ED,∴四边形CDEF是正方形.25.(12分)如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C 出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是a秒(0<a≤20).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的a值;如果不能,请说明理由;(2)当a为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=2a,∴DF=a,又∵AE=a,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣2a=a,解得a=.∴当a=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=a,又AD=40﹣2a,即40﹣2a=a,解得a=16;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣2a=2a,解得a=10.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当a=16或10秒时,△DEF为直角三角形.26.(14分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.。

相关文档
最新文档