2020版高考数学一轮复习课时跟踪检测三十三数列的概念与简单表示含解析
2020版高考数学一轮复习课后限时集训33基本不等式文含解析北师大版
课后限时集训(三十三)(建议用时:60分钟) A 组 基础达标一、选择题1.(2018·武汉模拟)下列命题中正确的是( ) A .函数y =x +1x的最小值为2B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 3D [由x >0知3x +4x ≥43,当且仅当3x =4x ,即x =233时等号成立,则2-3x -4x ≤2-43,因此函数y =2-3x -4x(x >0)的最大值为2-43,故选D.]2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72B .4C .92D .5 C [由a >0,b >0,a +b =2知1a +4b =12()a +b ⎝ ⎛⎭⎪⎫1a +4b =12⎝ ⎛⎭⎪⎫5+b a +4a b ≥92,当且仅当b a =4a b ,即b =2a =43时等号成立,故选C .]3.(2018·太原模拟)已知x ,y 为正实数,则4x x +3y +3yx的最小值为( ) A .53 B .103C .32D .3D [4x x +3y +3y x =4x x +3y +x +3yx-1≥3, 当且仅当4x x +3y =x +3yx,即x =3y 时,等号成立.故选D.] 4.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝ ⎛⎭⎪⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <QC [∵a >b >1,∴lg a >lg b >0, 12(lg a +lg b )>lg a ·lg b , 即Q >P .∵a +b2>ab ,∴lga +b2>lg ab =12(lg a +lg b )=Q ,即R >Q ,∴P <Q <R .] 5.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元C [设容器底面矩形的长和宽分别为a 和b ,容器的总造价为y 元,则ab =4,y =4×20+10×2(a +b )=20(a +b )+80,∵a +b ≥2ab =4(当且仅当a =b =2时等号成立),∴y ≥160,故选C .]二、填空题6.(2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. 8 [∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+4a b +b a≥4+24a b ·ba=8,当且仅当b a=4ab,即a =2,b =4时,等号成立.故2a +b 的最小值为8.]7.(2019·徐州模拟)已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________. 2 [a b 2+1=22×2a b 2+1≤22×12(2a 2+b 2+1)=24×(3+1)=2, 当且仅当2a =b 2+1,且2a 2+b 2=3, 即a 2=1,b 2=1时,等号成立. 故a b 2+1的最大值为 2.]8.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.20 [每次都购买x 吨,则需要购买400x次.∵运费为4万元/次,一年的总存储费用为4x 万元,∴一年的总运费与总存储费用之和为4×400x+4x 万元.∵4×400x +4x ≥160,当且仅当4x =4×400x时取等号,∴x =20吨时,一年的总运费与总存储费用之和最小.] 三、解答题9.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x4-2x 的最大值.[解] (1)y =12(2x -3)+82x -3+32=-⎝⎛⎭⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0,∴3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)∵0<x <2,∴2-x >0, ∴y =x 4-2x =2·x 2-x≤2·x +2-x2=2,当且仅当x =2-x ,即x=1时取等号,∴当x =1时,函数y =x4-2x 的最大值为 2. 10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.[解] (1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0, 则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y·8yx=18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.B 组 能力提升1.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为( ) A .24 B .32 C .20D .28C [∵x ,y 均为正实数,且1x +2+1y +2=16, 则x +y =(x +2+y +2)-4=6⎝ ⎛⎭⎪⎫1x +2+1y +2(x +2+y +2)-4=6⎝ ⎛⎭⎪⎫2+x +2y +2+y +2x +2-4≥6×2+2x +2y +2·y +2x +2-4=20,当且仅当x =y =10时取等号. ∴x +y 的最小值为20.]2.(2017·天津高考)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.4 [∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号.故a 4+4b 4+1ab的最小值为4.]3.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a 元/千克、b 元/千克,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3千克鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠)________.(在横线上填甲或乙即可)乙 [甲购买产品的平均单价为3a +3b 6=a +b 2,乙购买产品的平均单价为2010a +10b=2aba +b.∵a +b2-2ab a +b =a -b22a +b ≥0,且两次购买的单价不同,∴a ≠b ,∴a +b2-2aba +b>0, ∴乙的购买方式的平均单价较小.故答案为乙.]4.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C(x )(单位:万元),当年产量不足80千件时,C (x )=13x 2+10x (单位:万元).当年产量不少于80千件时,C (x )=51x +10 000x-1 450(单位:万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(单位:万元)关于年产量x (单位:千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?[解] (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得,当0<x <80时,L (x )=(0.05×1 000x )-13x 2-10x -250=-13x 2+40x -250;当x ≥80时,L (x )=(0.05×1 000x )-51x -10 000x+1 450-250=1 200-⎝⎛⎭⎪⎫x +10 000x,则L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250,0<x <80,1 200-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950,此时,当x =60时,L (x )取得最大值L (60)=950.当x ≥80时,L (x )=1 200-⎝⎛⎭⎪⎫x +10 000x≤1 200-2x ·10 000x=1 200-200=1 000,当且仅当x =10 000x时,即x =100时,L (x )取得最大值1 000.因为950<1 000,所以当年产量为100千件时,该厂在这一商品的生产中所获利润最大.最大利润为1 000万元.。
课时跟踪检测(三十三) 生态系统的结构与能量流动
课时跟踪检测(三十三)生态系统的结构与能量流动一、单项选择题1.(2020·威海一模)下列关于生态系统成分的叙述,正确的是()A.动物都属消费者,食草动物属第三营养级B.细菌都属分解者,将有机物分解成无机物C.生产者都属自养生物,食物链中除生产者外,还有消费者D.分解者一定是微生物,都不能有氧呼吸解析:选C少数动物如蚯蚓以腐败的食物为食,属于分解者,食草动物属于第二营养级,A错误;细菌不一定属于分解者,也可以是消费者和生产者,如寄生细菌异养,属于消费者,B错误;生产者属于自养生物,是生态系统的主要成分,食物链中除生产者外,还有消费者,C正确;分解者不一定是微生物(如蚯蚓等动物),D错误。
2.(2020·盐城模拟)关于生态系统能量流动的理解,正确的是()A.输入某生态系统中的能量可能不只是生产者固定的太阳能B.除去农田中的杂草,使能量更多的流向人类,体现了对能量的多级利用C.生态系统的能量流动是指生态系统中能量的输入、传递和散失的过程D.分解者将有机物分解为无机物,并为生产者提供能量解析:选A对于人工生态系统如鱼塘,输入的能量不只是生产者固定的太阳能,还有饲料中的有机物含有的化学能,A正确;除去农田中的杂草,使能量持续高效地流向对人类最有益的部分,但是没有实现能量的多级利用,B错误;生态系统的能量流动是指生态系统中能量的输入、传递、转化和散失的过程,C错误;分解者将有机物分解为无机物,并为生产者提供矿质元素,但是不能为植物提供能量,D错误。
3.(2021·辽宁省招生考试适应性测试)为预防某水库蓝藻大量繁殖形成水华,管理人员每年在休渔期投放适量的喜食蓝藻的滤食性鱼苗,而在捕鱼期适量捕捞所投放的鱼类成体。
下列叙述错误的是()A.若改为投放肉食性鱼类,能获得更大的生态和经济效益B.控制投放量和捕捞量,有利于维持生态系统的稳定性C.人为投放和捕捞鱼类调整了水库的能量流动关系,使能量更多地流向人类D.投放滤食性鱼类控制蓝藻数量属于利用种间关系进行的生物防治解析:选A若改为投放肉食性鱼类,无法预防水华,且食物链延长,不能获得更大的生态和经济效益,A错误;控制投放量和捕捞量,可以提高生态系统自我调节能力,有利于维持生态系统的稳定性,B正确;人为投放和捕捞鱼类调整了水库的能量流动关系,使能量更多地流向人类,C正确;投放滤食性鱼类控制蓝藻数量属于生物防治,利用了生物与生物的种间关系,D正确。
人教版2020届高考一轮数学(理)复习:课时作业33 数列求和(含答案)
课时作业33 数列求和1.已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( B )A .9B .18C .36D .72 解析:∵a 2·a 8=4a 5, 即a 25=4a 5,∴a 5=4,∴a 5=b 4+b 6=2b 5=4,∴b 5=2. ∴S 9=9b 5=18,故选B.2.(2019·广州调研)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n . 3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=( B )A .22 018-1B .3×21 009-3C .3×21 009-1D .3×21 008-2解析:a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列, ∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018) =1-21 0091-2+2(1-21 009)1-2=3×21 009-3.4.定义n p 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知正项数列{a n }的前n 项的“均倒数”为12n +1,又b n =a n +14,则1b 1b2+1b 2b 3+…+1b 10b 11=( C )A.111B.112C.1011D.1112解析:依题意有n a 1+a 2+…+a n =12n +1,即前n 项和S n =n (2n +1)=2n 2+n , 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,a 1=3满足该式. 则a n =4n -1,b n =a n +14=n . 因为1b n b n +1=1n (n +1)=1n -1n +1,所以1b 1b 2+1b 2b 3+…+1b 10b 11=1-12+12-13+…+110-111=1011.5.(2019·华中师大联盟质量测评)在数列{a n }中,已知a 1=3,且数列{a n +(-1)n }是公比为2的等比数列,对于任意的n ∈N *,不等式a 1+a 2+…+a n ≥λa n +1恒成立,则实数λ的取值范围是( C )A.⎝ ⎛⎦⎥⎤-∞,25B.⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤-∞,23 D .(-∞,1]解析:由已知,a n +(-1)n =[3+(-1)1]·2n -1=2n ,∴a n =2n -(-1)n .当n 为偶数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1)=2n +1-2,a n +1=2n +1-(-1)n +1=2n +1+1,由a 1+a 2+…+a n ≥λa n +1,得λ≤2n +1-22n +1+1=1-32n +1+1对n ∈N *恒成立,∴λ≤23;当n 为奇数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1-1)=2n +1-1,a n +1=2n +1-(-1)n +1=2n +1-1, 由a 1+a 2+…+a n ≥λa n +1得, λ≤2n +1-12n +1-1=1对n ∈N *恒成立, 综上可知λ≤23.6.(2019·衡水质检)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [(2a +c )b +(2c +a )d +(d -b )]6个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为 1 360 .解析:各层木桶长与宽的木桶数自上而下组成一等差数列,且公差为1,根据题意得,a =2,b =1,c =2+14=16,d =1+14=15,n =15,则木桶的个数为15[(2×2+16)×1+(2×16+2)×15+(15-1)]6=1 360(个). 7.(2019·安阳模拟)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |= 4n -1 .解析:由已知得b 1=a 2=-3,q =-4, ∴b n =(-3)×(-4)n -1, ∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列, ∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n-1.8.(2019·海口调研)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=43⎝⎛⎭⎪⎫1-14n +2 .解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. 9.(2019·广东潮州模拟)已知S n 为数列{a n }的前n 项和,a n =2·3n-1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n = 12-13n +1-1.解析:因为a n +1a n=2·3n2·3n -1=3,且a 1=2,所以数列{a n }是以2为首项,3为公比的等比数列, 所以S n =2(1-3n )1-3=3n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n-1S n +1=1S 1-1S n +1=12-13n +1-1. 10.(2019·潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n项和T 2n .解:(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ, ∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2 =4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43.11.(2019·江西百校联盟联考)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5. (1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n . 解:(1)由题意,得S nn =a 1+n -1, 即S n =n (a 1+n -1),所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5. 解得a 1=1,所以S n =n 2,所以当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又n =1时也满足,故a n =2n -1. (2)由(1)得b n =(2n -1)·3n ,所以T n =1×3+3×32+…+(2n -1)·3n , 则3T n =1×32+3×33+…+(2n -1)·3n +1.∴T n -3T n =3+2×(32+33+…+3n )-(2n -1)·3n +1,则-2T n =3+2×32-3n ×31-3-(2n -1)·3n +1=3n +1-6+(1-2n )·3n +1=(2-2n )·3n +1-6,故T n =(n -1)·3n +1+3.12.(2019·贵阳一模)已知数列{a n }的前n 项和是S n ,且S n +12a n=1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解:(1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1, 则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2). 故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n .所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(n +2).13.(2019·湖北四地七校联考)数列{a n }满足a 1=1,na n +1=(n +1)a n+n (n +1),且b n =a n cos 2n π3,记S n 为数列{b n }的前n 项和,则S 24=( D )A .294B .174C .470D .304解析:∵na n +1=(n +1)a n +n (n +1), ∴a n +1n +1-a n n=1, ∴数列⎩⎨⎧⎭⎬⎫a n n 是公差与首项都为1的等差数列.∴a nn =1+(n -1)×1,可得a n =n 2. ∵b n =a n cos 2n π3,∴b n =n 2cos 2n π3, 令n =3k -2,k ∈N *,则b 3k -2=(3k -2)2cos 2(3k -2)π3= -12(3k -2)2,k ∈N *,同理可得b 3k -1=-12(3k -1)2,k ∈N *, b 3k =(3k )2,k ∈N *.∴b 3k -2+b 3k -1+b 3k =-12(3k -2)2-12(3k -1)2+(3k )2=9k -52,k ∈N *,则S 24=9×(1+2+…+8)-52×8=304.14.(2019·衡水联考)已知数列{a n }与{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,n ∈N *,b n =2a n(2a n -1)(2a n +1-1),若∀n ∈N *,k >T n 恒成立,则k 的最小值是( B )A.17B.149 C .49D.8441解析:当n =1时,6a 1=a 21+3a 1,解得a 1=3或a 1=0. 由a n >0,得a 1=3.由6S n =a 2n +3a n ,得6S n +1=a 2n +1+3a n +1. 两式相减得6a n +1=a 2n +1-a 2n +3a n +1-3a n .所以(a n +1+a n )(a n +1-a n -3)=0. 因为a n >0,所以a n +1+a n >0,a n +1-a n =3.即数列{a n }是以3为首项,3为公差的等差数列, 所以a n =3+3(n -1)=3n . 所以b n =2a n (2a n -1)(2a n +1-1)=8n(8n -1)(8n +1-1) =17⎝ ⎛⎭⎪⎫18n -1-18n +1-1. 所以T n =17⎝⎛18-1-182-1+182-1-183-1+…⎭⎪⎫+18n -1-18n +1-1 =17⎝ ⎛⎭⎪⎫17-18n +1-1<149. 要使∀n ∈N *,k >T n 恒成立,只需k ≥149.故选B.15.设f (x )=4x4x +2,若S =f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017,则S = 1 008 .解析:∵f (x )=4x4x +2,∴f (1-x )=41-x 41-x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x=1.S =f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+…+f ⎝ ⎛⎭⎪⎫2 0162 017,① S =f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫2 0152 017+…+f ⎝ ⎛⎭⎪⎫12 017,②①+②,得2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫2 0152 017+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝ ⎛⎭⎪⎫12 017 =2 016, ∴S =2 0162=1 008.16.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *.(1)求数列{a n }的通项公式.(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34.解:(1)由a n +1=2S n +3, 得a n =2S n -1+3(n ≥2),两式相减得a n +1-a n =2(S n -S n -1)=2a n , 故a n +1=3a n (n ≥2),所以当n ≥2时,{a n }是以3为公比的等比数列. 因为a 2=2S 1+3=2a 1+3=9,a 2a 1=3,所以{a n }是首项为3,公比为3的等比数列,a n =3n . (2)a n =3n ,故b n =log 3a n =log 33n =n ,b n a n =n3n =n ·⎝ ⎛⎭⎪⎫13n ,T n =1×13+2×⎝ ⎛⎭⎪⎫132+3×⎝ ⎛⎭⎪⎫133+…+n ×⎝ ⎛⎭⎪⎫13n ,① 13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+3×⎝ ⎛⎭⎪⎫134+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ×⎝ ⎛⎭⎪⎫13n +1.②①-②,得23T n =13+⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫133+…+⎝ ⎛⎭⎪⎫13n -n ×⎝ ⎛⎭⎪⎫13n +1=13-⎝ ⎛⎭⎪⎫13n +11-13-n ×⎝ ⎛⎭⎪⎫13n +1=12-⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n +1,所以T n =34-12⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n.因为⎝ ⎛⎭⎪⎫32+n ⎝ ⎛⎭⎪⎫13n >0,所以T n <34.又因为T n +1-T n =n +13n +1>0,所以数列{T n }单调递增, 所以(T n )min =T 1=13, 所以13≤T n <34.。
湘教版高考总复习一轮数学精品课件 第6章数列 课时规范练37 数列的概念与简单表示法
,下列说法正确的是( C )
A.{an}有最大项,但没有最小项
B.{an}没有最大项,但有最小项
C.{an}既有最大项,又有最小项
D.{an}既没有最大项,也没有最小项
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
解析 数列
10 n
an=(n+1)(- ) (n∈N*),当
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
本 课 结 束
1-(-3)
1-3
1-(- )
2
- +1
1+1
1
4 +1
3 =2=a ,…,所以{a }是以 4 为周期的周期数列,且
,a
=
=
5
1
n
1
3
1-4
13
a5a6a7a8=a1a2a3a4=1,a9a10=a1a2=2×(-3)=-6,所以
T1ቤተ መጻሕፍቲ ባይዱ=a1a2a3a4a5a6a7a8a9a10=-6.故选D.
11
n 为奇数时,an<0,当 n 为偶数时,an>0,当
10 2(k+1)
10 2k -42+179 10 2k
)时,a2(k+1)-a2k=[2(k+1)+1]·
(- )
-(2k+1)(- ) =
·( ) ,
11
11
121
11
*
n=2k(k∈N
所以当 k≤4 时,a2(k+1)-a2k>0,a2k 单调递增;当 k≥5 时,a2(k+1)-a2k<0,a2k 单调递减,
一轮复习-数列的概念与简单表示法
(1)
(2)
(3)
(4)
例2 写出数列的一个通项公式, 使它的前4项分别是下列各数:
(1)1,3,5,7;
解:此数列的前四项1,3,5,7都 是序号的2倍减去1,所以通项公式 是:
an 2n 1
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
(1)1,3,5,7; (2)4,9, 16,25;
这说明:数列的项是序号的函数,序号从1 开始依次增加时,对应的函数值按次序排出就 是数列,这就是数列的实质。
所以:数列可以看成以正整数集N*(或它的有 限子集{1,2,3,4,…,n})为定义域的函数 an=f(n),当自变量按照从小到大的顺序依次取值时, 所对应的一列函数值。反过来,对于函数y=f(x),如 果f(i) (i=1,2,3,…)有意义,那可得到一个数列 f(1),f(2),f(3),…f(n),… 即数列是一种特殊的函数。
数列的一般形式可以写成: a1, a2, a3,an ,,
其中an是数列的第n项,上面的数列又可简记为 an
根据数列的前若干项写出的通项 公式的形式唯一吗?请举例说明。
注意:①一些数列的通项公式不是唯一的
②不是每一个数列都能写出它的通项公式 ③ {an }表示以an为通项的数列,即{an }表示
无穷数列:项数无限的数列. 例如数列1,2,3,4,5,6,…是无穷数列
2)根据数列项的大小分:
递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,
有些项小于它的前一项的数列
(3)1, 1 ,1 , 1 ; 23 4
2020年高中数学课时跟踪检测含解析(全一册)新人教A版
2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
人教版2020届高考一轮数学(理)复习:课时作业34数列的综合应用(含答案)
xx sin2+cos2
2-1
10.已知函数 f(x)= cos22x-sin2x2 ,函数 y=f(x)- 3在(0,+
∞)上的零点按从小到大的顺序构成数列 { an}( n∈N* ).
(1)求数列 {an} 的通项公式; 3 πan
(2)设 bn= 4n2-1 3n-2 ,求数列 { bn} 的前 n 项和 Sn.
8 bn= n· an+1+ 1·11
n-1,则数列 { bn}
的最大项为第 6 项.
解析: 由 a1= 0,且 an-an-1-1=2(n-1)(n∈N*,n≥ 2),得 an
- an- 1=2n- 1(n≥2),则 a2- a1= 2× 2-1,a3-a2= 2×3- 1, a4- a3
= 2×4-1,…, an-an-1=2n-1(n≥ 2),以上各式累加得 an= 2(2+3
=
1 3(n+
1)(n+
2)(2n+3)-
1 3n·(n+
1)
·(2n+1)=
2(n+1)
2(n∈
N
*
),
令 2(n+1)2≤ 130,所以 1≤n≤ 65-1,
所以 1≤n≤7.故最长的生产期限为 7 年.
3.定义:若数列 {an} 对任意的正整数 n,都有 |an+ 1|+|an|= d(d 为
A.3 B.4 C.5 D.6
a2n+1= 4Sn+4n+1, 解析: 当 n≥ 2 时, a2n=4Sn-1+4 n- 1 + 1, 两式相减得 a2n+ 1-a2n= 4an+ 4, 即 a2n+1=a2n+ 4an+4= (an+ 2)2, 又 an> 0,所以 an+1= an+2(n≥ 2). 对 a2n+1=4Sn+ 4n+ 1,
高考数学一轮复习课时跟踪检测三十三数列的概念与简单表示含解析
课时跟踪检测(三十三) 数列的概念与简单表示[A 级 基础题——基稳才能楼高]1.在数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),则a 4的值为( ) A .31 B .30 C .15D .63解析:选C 由题意,得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,故选C. 2.已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 019=( ) A .-1 B .12 C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+3=a 3=-1.3.数列-1,4,-9,16,-25,…的一个通项公式为( ) A .a n =n 2B .a n =(-1)n ·n 2C .a n =(-1)n +1·n 2D .a n =(-1)n ·(n +1)2解析:选B 易知数列-1,4,-9,16,-25,…的一个通项公式为a n =(-1)n·n 2,故选B.4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝⎛⎦⎥⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.[B 级 保分题——准做快做达标]1.(·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.-1n +1n +1B .-1nn +1C.-1nnD .-1n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪⎪⎪1n +1,故此数列的一个通项公式为-1n +1n +1.故选A. 2.(·沈阳模拟)已知数列{a n }中a 1=1,a n =n (a n +1-a n )(n ∈N *),则a n =( ) A .2n -1 B .⎝⎛⎭⎪⎫n +1n n -1C .nD .n 2解析:选C 由a n =n (a n +1-a n ),得(n +1)a n =na n +1,即a n +1n +1=a nn ,∴⎩⎨⎧⎭⎬⎫a n n 为常数列,即a n n =a 11=1,故a n =n .故选C. 3.(·北京西城区模拟)已知数列{a n }的前n 项和S n =2-2n +1,则a 3=( )A .-1B .-2C .-4D .-8解析:选D ∵数列{a n }的前n 项和S n =2-2n +1,∴a 3=S 3-S 2=(2-24)-(2-23)=-8.故选D.4.(·桂林四地六校联考)数列1,2,2,3,3,3,4,4,4,4,…的第100项是( ) A .10 B .12 C .13D .14解析:选D 1+2+3+…+n =12n (n +1),由12n (n +1)≤100,得n 的最大值为13,易知最后一个13是已知数列的第91项,又已知数列中14共有14项,所以第100项应为14.故选D.5.(·兖州质检)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,6-a n -a ,n ≥4,若对任意的n ∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)解析:选A 因为对任意的n ∈N *都有a n <a n +1成立,所以数列{a n }是递增数列,因此⎩⎪⎨⎪⎧1<a ,6-a >0,a <6-a ×4-a ,解得1<a <4,故选A.6.(·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( )A .8B .2C .3D .7解析:选D 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 019=4×504+3,故b 2 019的末位数字为7.故选D.7.(·长沙调研)已知数列{a n },则“a n +1>a n -1”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由题意,若“数列{a n }为递增数列”,则a n +1>a n >a n -1,但a n +1>a n -1不能推出a n +1>a n ,如a n =1,a n +1=1,{a n }为常数列,则不能推出“数列{a n }为递增数列”,所以“a n +1>a n -1”是“数列{a n }为递增数列”的必要不充分条件.故选B.8.(·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n 等于( )A.13n -1B .2nn +1C.6n +1n +2D .5-2n 3解析:选 B 由题意知,S n +na n =2,当n ≥2时,(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,有a n =2n n +1,当n =1时上式成立,所以a n =2n n +1.9.(·兰州诊断)已知数列{a n },{b n },若b 1=0,a n =1nn +1,当n ≥2时,有b n =b n-1+a n -1,则b 501=________.解析:由b n =b n -1+a n -1得b n -b n -1=a n -1,所以b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,所以b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n =11-12+12-13+…+1n -1-1n=1-1n =n -1n ,又b 1=0,所以b n =n -1n ,所以b 501=500501.答案:50050110.(·河南八市重点高中测评)已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________.解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得21-a n +1a n +1-21-a na n=1a n +1-1a n +1,整理,得1a n +1-1a n =1,即⎩⎨⎧⎭⎬⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2.答案:1n +211.(·宝鸡质检)若数列{a n }是正项数列,且a 1+a 2+a 3+…+a n =n 2+n ,则a 1+a 22+…+a nn=________. 解析:由题意得当n ≥2时,a n =n 2+n -(n -1)2-(n -1)=2n ,∴a n =4n 2.又n =1,a 1=2,∴a 1=4,∴a n n =4n ,∴a 1+a 22+…+a n n =12n (4+4n )=2n 2+2n .答案:2n 2+2n12.(·深圳期中)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.解析:由a 1+a 222+a 332+…+a nn 2=a n (n ∈N *)知,当n ≥2时,a 1+a 222+a 332+…+a n -1n -12=a n -1,∴a n n 2=a n -a n -1,即n +1n a n =n n -1a n -1,∴n +1n a n =…=2a 1=2,∴a n =2nn +1.答案:2nn +113.(·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式; (2)证明:a n +1+1a n +1=4.解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n-1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4a n +1a n +1=4. 14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).15.(·武汉调研)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)∵a 1=S 1=2,a n =S n -S n -1=2n -1(n ≥2), ∴b n=⎩⎪⎨⎪⎧23n =1,1nn ≥2.(2)由题意得c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-12n +32n +2<0,∴c n +1<c n ,∴数列{c n }为递减数列.。
2020版高考数学一轮复习课时作业33《 等比数列》(含解析)
课时作业33 等比数列一、选择题1.(2018·北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( B )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:a ,b ,c ,d 是非零实数,若ad =bc ,则b a =dc ,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =cd ,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件,故选B.2.已知在等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值是( C )A.1B.-12C.1或-12D.-1或12解析:当q =1时,a 3=7,S 3=21,符合题意;当q ≠1时,⎩⎨⎧a 1q 2=7,a 1(1-q 3)1-q=21,得q =-12.综上,q 的值是1或-12,故选C.3.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A.a ,b ,c 成公比为2的等比数列,且a =507 B.a ,b ,c 成公比为2的等比数列,且c =507 C.a ,b ,c 成公比为12的等比数列,且a =507 D.a ,b ,c 成公比为12的等比数列,且c =507解析:由题意可得,a ,b ,c 成公比为12的等比数列, b =12a ,c =12b ,故4c +2c +c =50, 解得c =507.故选D.4.(2019·云南11校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( B )A.40B.60C.32D.50解析:由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 9-S 6=16,S 6=12,S 12-S 9=32,S 12=32+16+12=60.5.已知等比数列{a n }的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( C )A.4B.6C.8D.10解析:由题意得a 1+a 3+…=85,a 2+a 4+…=170,所以数列{a n }的公比q =2,由数列{a n }的前n 项和S n =a 1(1-q n )1-q ,得85+170=1-2n1-2,解得n =8. 6.(2019·福建模拟)已知递增的等比数列{a n }的公比为q ,其前n 项和S n <0,则( A )A.a 1<0,0<q <1B.a 1<0,q >1C.a 1>0,0<q <1D.a 1>0,q >1解析:∵S n <0,∴a 1<0,又数列{a n }为递增的等比数列, ∴a n +1>a n ,且|a n |>|a n +1|,∴-a n >-a n +1>0, 则q =-a n +1-a n ∈(0,1),∴a 1<0,0<q <1.故选A.二、填空题7.(2019·西安八校联考)设公比为q 的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =32或-1.解析:解法1:易知q ≠1.由S 2=3a 2+2,得a 1(1-q 2)1-q =3a 1q +2,化简得a 1=21-2q ,由S 4=3a 4+2,得a 1(1-q 4)1-q =3a 1q 3+2,化简得a 1(1+q +q 2-2q 3)=2.从而,可得21-2q·(1+q +q 2-2q 3)=2,变形整理得q (2q -3)(q +1)=0,又q ≠0,所以q =32或q =-1.解法2:由S 2=3a 2+2,S 4=3a 4+2,两式作差得S 4-S 2=3(a 4-a 2),即a 3+a 4=3(a 4-a 2),整理得a 3+3a 2=2a 4,所以a 2q +3a 2=2a 2q 2,又a 2≠0,所以2q 2-q -3=0,解得q =32或q =-1.8.(2019·广州高三调研)在各项都为正数的等比数列{a n }中,若a 2018=22,则1a 2 017+2a 2 019的最小值为4.解析:设公比为q (q >0),因为a 2 018=22,所以a 2 017=a 2 018q =22q ,a 2 019=a 2 018q =22q ,则有1a 2 017+2a 2 019=2q +222q =2q +22q ≥22q ×2q =4,当且仅当q 2=2,即q =2时取等号,故所求最小值为4.9.(2019·河北衡水中学模拟)在等比数列{a n }中,a 2·a 3=2a 1,且a 4与2a 7的等差中项为17,设b n =a 2n -1-a 2n ,n ∈N *,则数列{b n }的前2n 项和为112(1-42n ).解析:设{a n }的公比为q ,则由等比数列的性质,知a 2a 3=a 1a 4=2a 1,则a 4=2,由a 4与2a 7的等差中项为17,知a 4+2a 7=2×17=34,得a 7=16,∴q 3=a 7a 4=162=8,即q =2,∴a 1=a 4q 3=14,则a n =14×2n -1=2n -3,∴b n =a 2n -1-a 2n =22n -4-22n -3=22n -4-2×22n -4=-22n -4,∴b 1+b 2+b 3+…+b 2n =-(2-2+20+22+…+22·2n -4)=-14(1-42n )1-4=112(1-42n ).三、解答题10.(2019·贵阳市监测考试)设等比数列{a n }的前n 项和为S n ,公比q >0,a 1+a 2=4,a 3-a 2=6.(1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,ka n ,S n ,-1都成等差数列,求实数k 的值.解:(1)∵a 1+a 2=4,a 3-a 2=6,∴⎩⎨⎧a 1(1+q )=4,a 1(q 2-q )=6,∵q >0,∴q =3,a 1=1.∴a n =1×3n -1=3n -1, 故数列{a n }的通项公式为a n =3n -1.(2)由(1)知a n =3n -1,S n =1×(1-3n )1-3=3n -12,∵ka n ,S n ,-1成等差数列,∴2S n =ka n -1, 即2×3n -12=k ×3n -1-1,解得k =3.11.(2019·南京、柳州联考)已知a 1=2,a 2=4,数列{b n }满足:b n+1=2b n +2且a n +1-a n =b n .(1)求证:数列{b n +2}是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:由题知,b n +1+2b n +2=2b n +2+2b n +2=2,∵b 1=a 2-a 1=4-2=2,∴b 1+2=4,∴数列{b n +2}是以4为首项,2为公比的等比数列. (2)由(1)可得,b n +2=4·2n -1,故b n =2n +1-2. ∵a n +1-a n =b n , ∴a 2-a 1=b 1, a 3-a 2=b 2,a 4-a 3=b 3, ……a n -a n -1=b n -1.累加得,a n -a 1=b 1+b 2+b 3+…+b n -1(n ≥2), a n =2+(22-2)+(23-2)+(24-2)+…+(2n -2)=2+22(1-2n -1)1-2-2(n -1)=2n +1-2n ,故a n =2n +1-2n (n ≥2).∵a 1=2=21+1-2×1, ∴数列{a n }的通项公式为a n =2n +1-2n (n ∈N *).12.(2019·武汉市调研)等比数列{a n }的前n 项和为S n ,若对任意的正整数n ,S n +2=4S n +3恒成立,则a 1的值为( C )A.-3B.1C.-3或1D.1或3解析:设等比数列{a n }的公比为q ,当q =1时,S n +2=(n +2)a 1,S n =na 1,由S n +2=4S n +3得,(n +2)a 1=4na 1+3,即3a 1n =2a 1-3,若对任意的正整数n,3a 1n =2a 1-3恒成立,则a 1=0且2a 1-3=0,矛盾,所以q ≠1,所以S n =a 1(1-q n )1-q ,S n +2=a 1(1-q n +2)1-q ,代入S n +2=4S n +3并化简得a 1(4-q 2)q n =3+3a 1-3q ,若对任意的正整数n 该等式恒成立,则有⎩⎨⎧4-q 2=0,3+3a 1-3q =0,解得⎩⎨⎧a 1=1,q =2或⎩⎨⎧a 1=-3,q =-2,故a 1=1或-3,故选C.13.(2019·潍坊市统一考试)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n项和T 2n .解:(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ2n -1. (2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎨⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1)=4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43.尖子生小题库——供重点班学生使用,普通班学生慎用 14.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( C )A.4B.5C.6D.7解析:∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6,故选C. 15.(2019·江西南昌模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *).(1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≥(n +1)3n λ成立,求实数λ的最大值. 解:(1)∵a 1+2a 2+3a 3+…+na n =n +12a n +1,① ∴a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n (n ≥2),② ①-②,得na n =n +12a n +1-n2a n ,即(n +1)a n +1=3na n ,∴(n +1)a n +1nan=3(n ≥2). ∴数列{na n }(n ≥2)是以2a 2=2为首项,3为公比的等比数列. ∴na n =2·3n -2,∴a n =2n ·3n -2(n ≥2),又a 1=1不满足上式.∴a n =⎩⎪⎨⎪⎧1,n =1,2n·3n -2,n ≥2.(2)∵存在n ∈N *,使得a n ≥(n +1)3n λ成立,∴存在n ∈N *,使得λ≤a n(n +1)3n成立.令f (n )=a n(n +1)3n,则λ≤f (n )max . 由(1)可知当n =1时,f (1)=a 1(1+1)31=16, 当n ≥2时,f (n )=a n (n +1)3n=29n (n +1), 则f (n +1)-f (n )=29(n +1)(n +2)-29n (n +1)=-49n (n +1)(n +2)<0,∴当n ≥2时,数列{f (n )}是递减数列, ∴当n ≥2时,f (n )≤f (2)=127. ∴当n ∈N *时,f (n )max =16.∴λ≤16. 故所求实数λ的最大值为16.。
2020版高考理科数学(人教版)一轮复习课时跟踪检测:(三十二) 数列的概念与简单表示 Word版含解析
课时跟踪检测(三十二) 数列的概念与简单表示一、题点全面练1.已知数列1,2,,,,…,则2在这个数列中的项数是( )7101319A .16 B .24C .26D .28解析:选C 因为a 1=1=,a 2=2=,a 3=,a 4=,a 5=,…,所以a n =.14710133n -2令a n ==2=,解得n =26.3n -219762.若数列{a n }满足a 1=1,a 2=3,a n +1=(2n -λ)a n (n =1,2,…),则a 3等于( )A .5 B .9C .10D .15解析:选D 令n =1,则3=2-λ,即λ=-1,由a n +1=(2n +1)a n ,得a 3=5a 2=5×3=15.故选D.3.若S n 为数列{a n }的前n 项和,且S n =,则等于( )n n +11a5A. B.5665C. D .30130解析:选D 当n ≥2时,a n =S n -S n -1=-=,所以=5×6=30.n n +1n -1n 1n (n +1)1a 54.(2019·西宁模拟)数列{a n }满足a 1=2,a n +1=a (a n >0),则a n=( )2n A .10n -2 B .10n -1C .102n -4D .22n -1解析:选D 因为数列{a n }满足a 1=2,a n +1=a (a n>0),所以log 2a n +1=2log 2a n ⇒=2n log 2a n +1log 2a n2,所以{log 2a n }是公比为2的等比数列,所以log 2a n =log 2a 1·2n -1⇒an=22n -1.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.(-∞,92]解析:选C 因为数列{a n}是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.6.(2018·佛山模拟)若数列{a n }满足a 1+a 2+a 3+…+a n =2n +1,则数列{a n }的通1212212312n 项公式a n =________.解析:因为a 1+a 2+a 3+…+a n =2n +1,所以a 1+a 2+a 3+…+a n +a n +1212212312n 1212212312n 12n +11=2(n +1)+1,两式相减得a n +1=2,即a n=2n +1,n ≥2.又a 1=3,所以a 1=6,因此a n =12n +112Error!答案:Error!7.已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=,13则数列{a n }的通项公式a n =________.解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得-=-+1,整理,得-=1,即是以3为首项,1为公差2(1-a n +1)a n +12(1-a n )a n 1a n +11a n 1a n +11a n {1a n }的等差数列,∴=3+(n -1)×1=n +2,即a n =.1a n 1n +2答案:1n +28.已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =________.解析:由a n +2+2a n -3a n +1=0,得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1,∴n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(n ≥2),经检验,当n =1时,a n =1,符合上式.∴a n =3×2n -1-2.答案:3×2n -1-29.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n .(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解:(1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),即b n +1=2b n ,又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2,[12(32)n -2+a -3]当n ≥2时,a n +1≥a n ⇒12n -2+a -3≥0⇒a ≥-9.(32)又a 2=a 1+3>a 1.综上,a 的取值范围是[-9,3)∪(3,+∞).10.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a }的前n 项和为T n ,2n 且3T n =S +2S n,n ∈N *.2n (1)求a 1的值;(2)求数列{a n }的通项公式.解:(1)由3T 1=S +2S 1,21得3a =a +2a 1,即a -a 1=0.212121因为a 1>0,所以a 1=1.(2)因为3T n =S +2S n ,①2n 所以3T n +1=S +2S n +1,②2n +1②-①,得3a =S -S +2a n +1.2n +12n +12n 因为a n +1>0,所以3a n +1=S n +1+S n +2,③所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1,所以当n ≥2时,=2.a n +1a n 又由3T 2=S +2S 2,2得3(1+a )=(1+a 2)2+2(1+a 2),即a -2a 2=0.22因为a 2>0,所以a 2=2,所以=2,a 2a 1所以对n ∈N *,都有=2成立,a n +1a n所以数列{a n }的通项公式为a n =2n -1,n ∈N *.二、专项培优练(一)易错专练——不丢怨枉分1.已知数列{a n }的前n 项和S n =n 2+1(n ∈N *),则a n =________.解析:当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =Error!答案:Error!2.若数列{a n }的通项公式是a n =(n +1)n,则此数列的最大项是第________项.(1011)解析:∵a n +1-a n=(n +2)n +1-(n +1)n=n×,(1011)(1011)(1011)9-n 11当n <9时,a n +1-a n>0,即a n +1>a n;当n =9时,a n +1-a n =0,即a n +1=a n ;当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项.答案:9或103.若数列{a n }满足a n +1=Error!a 1=,则数列{a n }的第2 019项为________.35解析:由已知可得,a 2=2×-1=,3515a 3=2×=,1525a 4=2×=,2545a 5=2×-1=,4535∴{a n }为周期数列且T =4,∴a 2 019=a 504×4+3=a 3=.25答案:254.(2019·湖南永州模拟)已知数列{a n }中,a 1=a ,a 2=2-a ,a n +2-a n =2,若数列{a n }单调递增,则实数a 的取值范围为________.解析:由a n +2-a n =2可知数列{a n }的奇数项、偶数项分别递增,若数列{a n }单调递增,则必有a 2-a 1=(2-a )-a >0且a 2-a 1=(2-a )-a <a n +2-a n =2,可得0<a <1,故实数a 的取值范围为(0,1).答案:(0,1)(二)交汇专练——融会巧迁移5.[与函数零点交汇]已知二次函数f (x )=x 2-ax +a (a >0,x ∈R)有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).。
新课改瘦专用2020版高考数学一轮复习课时跟踪检测三十三数列的概念与简单表示含解析
课时跟踪检测(三十三) 数列的概念与简单表示[A 级 基础题——基稳才能楼高]1.在数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),则a 4的值为( ) A .31 B .30 C .15D .63解析:选C 由题意,得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,故选C. 2.已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 019=( ) A .-1 B .12 C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+3=a 3=-1.3.数列-1,4,-9,16,-25,…的一个通项公式为( ) A .a n =n 2B .a n =(-1)n ·n 2C .a n =(-1)n +1·n 2D .a n =(-1)n ·(n +1)2解析:选B 易知数列-1,4,-9,16,-25,…的一个通项公式为a n =(-1)n·n 2,故选B.4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝⎛⎦⎥⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.[B 级 保分题——准做快做达标]1.(2019·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.-1n +1n +1B .-1nn +1C.-1nnD .-1n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪⎪⎪1n +1,故此数列的一个通项公式为-1n +1n +1.故选A. 2.(2019·沈阳模拟)已知数列{a n }中a 1=1,a n =n (a n +1-a n )(n ∈N *),则a n =( ) A .2n -1 B .⎝⎛⎭⎪⎫n +1n n -1C .nD .n 2解析:选C 由a n =n (a n +1-a n ),得(n +1)a n =na n +1,即a n +1n +1=a nn ,∴⎩⎨⎧⎭⎬⎫a n n 为常数列,即a n n =a 11=1,故a n =n .故选C. 3.(2019·北京西城区模拟)已知数列{a n }的前n 项和S n =2-2n +1,则a 3=( )A .-1B .-2C .-4D .-8解析:选D ∵数列{a n }的前n 项和S n =2-2n +1,∴a 3=S 3-S 2=(2-24)-(2-23)=-8.故选D.4.(2019·桂林四地六校联考)数列1,2,2,3,3,3,4,4,4,4,…的第100项是( ) A .10 B .12 C .13D .14解析:选D 1+2+3+…+n =12n (n +1),由12n (n +1)≤100,得n 的最大值为13,易知最后一个13是已知数列的第91项,又已知数列中14共有14项,所以第100项应为14.故选D.5.(2019·兖州质检)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,6-a n -a ,n ≥4,若对任意的n∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)解析:选 A 因为对任意的n ∈N *都有a n <a n +1成立,所以数列{a n }是递增数列,因此⎩⎪⎨⎪⎧1<a ,6-a >0,a <6-a ×4-a ,解得1<a <4,故选A.6.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( )A .8B .2C .3D .7解析:选D 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 019=4×504+3,故b 2 019的末位数字为7.故选D.7.(2018·长沙调研)已知数列{a n },则“a n +1>a n -1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 由题意,若“数列{a n }为递增数列”,则a n +1>a n >a n -1,但a n +1>a n -1不能推出a n +1>a n ,如a n =1,a n +1=1,{a n }为常数列,则不能推出“数列{a n }为递增数列”,所以“a n +1>a n -1”是“数列{a n }为递增数列”的必要不充分条件.故选B.8.(2019·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n 等于( )A.13n -1B .2nn +1C.6n +1n +2D .5-2n 3解析:选 B 由题意知,S n +na n =2,当n ≥2时,(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,有a n =2n n +1,当n =1时上式成立,所以a n =2nn +1. 9.(2019·兰州诊断)已知数列{a n },{b n },若b 1=0,a n =1nn +1,当n ≥2时,有b n =b n -1+a n -1,则b 501=________.解析:由b n =b n -1+a n -1得b n -b n -1=a n -1,所以b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,所以b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n ,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n =11-12+12-13+…+1n -1-1n =1-1n =n -1n ,又b 1=0,所以b n =n -1n ,所以b 501=500501. 答案:50050110.(2019·河南八市重点高中测评)已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________.解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得21-a n +1a n +1-21-a na n=1a n +1-1a n+1,整理,得1a n +1-1a n=1,即⎩⎨⎧⎭⎬⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2.答案:1n +211.(2019·宝鸡质检)若数列{a n }是正项数列,且a 1+a 2+a 3+…+a n =n 2+n ,则a 1+a 22+…+a nn=________.解析:由题意得当n ≥2时,a n =n 2+n -(n -1)2-(n -1)=2n ,∴a n =4n 2.又n =1,a 1=2,∴a 1=4,∴a n n =4n ,∴a 1+a 22+…+a n n =12n (4+4n )=2n 2+2n .答案:2n 2+2n12.(2019·深圳期中)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.解析:由a 1+a 222+a 332+…+a nn 2=a n (n ∈N *)知,当n ≥2时,a 1+a 222+a 332+…+a n -1n -12=a n -1,∴a n n 2=a n -a n -1,即n +1n a n =n n -1a n -1,∴n +1n a n =…=2a 1=2,∴a n =2nn +1.答案:2nn +113.(2019·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式;(2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n-1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4a n +1a n +1=4. 14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).15.(2019·武汉调研)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)∵a 1=S 1=2,a n =S n -S n -1=2n -1(n ≥2), ∴b n=⎩⎪⎨⎪⎧23n =1,1nn ≥2.(2)由题意得c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-12n +32n +2<0,∴c n +1<c n ,∴数列{c n }为递减数列.。
2020年新高考数学一轮复习考点题型深度剖析专题30数列的概念与简单表示法课下层级训练课后层级训练含解析
课下层级训练(三十) 数列的概念与简单表示法[A 级 基础强化训练]1.(2019·山东青州检测)有下列命题:①数列23,34,45,56,…的通项公式是a n =n n +1; ②数列的图象是一群孤立的点;③数列1,-1,1,-1,1,…与数列-1,1,-1,1,…是同一数列;④数列12,14, (12)是递增数列. 其中正确命题的个数为( )A .1B .2C .3D .0【答案】A [由通项公式知a 1=12,故①不正确;易知②正确;由于两数列中数的排列次序不同,故不是同一数列,所以③不正确;④中的数列为递减数列,所以④不正确.]2.(2019·山东德州月考)已知S n 为数列{a n }的前n 项和,且满足S n =n 2+4n +2,则a 3+a 4+a 5=( )A .10B .11C .33D .34【答案】C [由数列{a n }的前n 项和满足S n =n 2+4n +2,则a 3+a 4+a 5=S 5-S 2=33.]3.现有这么一列数:2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为( ) A .916B .1116C .12D .1118【答案】B [分母为2n ,n ∈N ,分子为连续的质数,所以( )中的数应为1116.] 4.(2019·山东淄博检测)在数列{a n }中,a 1=-14,a n =1-1a n -1(n >1),则a 2 020的值为( ) A .-14B .5C .45D .以上都不对【答案】A [由题意知,a 2=5,a 3=45,a 4=-14=a 1,因此数列{a n }的周期为3,即a 2 020=a 673×3+1=a 1=-14.] 5.数列{a n }中,如果存在a k ,使得a k >a k -1且a k >a k +1成立(其中k ≥2,k ∈N *),则称a k 为数列{a n }的峰值,若a n =-3n 2+15n -18,则{a n }的峰值为( )A .0B .4C .133D .163 【答案】A [因为a n =-3⎝⎛⎭⎫n -522+34,且n ∈N *,所以当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.] 6.(2019·山东菏泽模拟)已知数列{a n }的前n 项和S n 满足S n +S m =S m +n (m ,n ∈N *)且a 1=5,则a 8=( )A .40B .35C .5D .12【答案】C [数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,令m =1,则S n +1=S n +S 1=S n +5.可得a n +1=5.则a 8=5.]7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________. 【答案】85 [借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.] 8.已知数列{a n }的前n 项和S n =3-3×2n ,n ∈N *,则a n =________.【答案】-3×2n -1 [分情况讨论: ①当n =1时,a 1=S 1=3-3×21=-3;②当n ≥2时,a n =S n -S n -1=(3-3×2n )-(3-3×2n -1)=-3×2n -1. 综合①②,得a n =-3×2n -1.] 9.(2019·山东潍坊月考)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则a n =________.【答案】⎩⎪⎨⎪⎧ 1,n =112×⎝⎛⎭⎫32n -2,n ≥2[因为S n =2a n +1,a 1=1,当n =1时,S 1=a 1=2a 2,∴a 2=12.当n ≥2时,S n -1=2a n ,两式相减得a n =2a n +1-2a n ,即a n +1a n =32(n ≥2).∴当n ≥2时,a n =a 2·⎝⎛⎭⎫32n -2=12×⎝⎛⎭⎫32n -2,故a n =⎩⎪⎨⎪⎧ 1,n =1,12×⎝⎛⎭⎫32n -2,n ≥2.] 10.(2019·山东潍坊检测)已知数列{a n }的通项公式为a n =n 2-kn ,请写出一个能说明“若{a n }为递增数列,则k ≤1”是假命题的k 的值________.【答案】(1,3)内任意一个数均可 [由题意,数列{a n }的通项公式为a n =n 2-kn ,若{a n }为递增数列,则a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k >0,n ∈N *恒成立,即k <2n +1,n ∈N *恒成立,所以实数k <3,所以“若{a n }为递增数列,则k ≤1”是假命题的k 的值可取(1,3).][B 级 能力提升训练]11.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=( )A .64B .32C .16D .8【答案】B [由a n +1·a n =2n ,所以a n +2·a n +1=2n +1,故a n +2a n=2,又a 1=1,可得a 2=2,故a 10=25=32.] 12.(2019·山东济南检测)设数列{a n }满足a 1+a 22+a 33+…+a n n =1-12n ,则a n =( )A .1-12nB .12n -3C .12nD .n 2n 【答案】D [a 1+a 22+a 33+…+a n n =1-12n ①, 当n ≥2时,a 1+a 22+a 33+…+a n -1n -1=1-12n -1 ②, ①-②得a n n =12n -1-12n =12n ,故a n =n 2n (n ≥2), 当n =1时,a 1=12,满足上式.故a n =n 2n .] 13.(2019·山东临沂检测)如果{a n }的首项a 1=2 017,其前n 项和S n 满足S n +S n -1=-n 2(n ∈N *,n ≥2),则a 101=________.【答案】1 917 [∵S n +S n -1=-n 2,∴S n +1+S n =-(n +1)2,∴S n +1-S n -1=-2n -1,即a n +1+a n =-2n -1,∴a n +2+a n +1=-2n -3,故a n +2-a n =-2,∴数列{a n }的所有奇数项构成以a 1=2 017为首项,以-2为公差的等差数列,则a 101=2 017+(51-1)×(-2)=1 917.]14.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1且前n 项和为T n ,设c n =T 2n +1-T n . (1)求数列{b n }的通项公式;(2)判断数列{c n }的增减性.【答案】解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).所以b n =⎩⎨⎧ 23n =,1n n(2)因为c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1,所以c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1n +n +<0, 所以c n +1<c n ,所以数列{c n }为递减数列.15.已知数列{a n }中,a n =1+1a +n -(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.【答案】解 (1)∵a n =1+1a +n -(n ∈N *,a ∈R 且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2,已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a 2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。
2020届高考数学(理科)总复习课时跟踪练(三十二)数列的概念与简单表示法含解析
课时跟踪练(三十二)A 组 基础巩固1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B .cosn π2C .cos n +12πD .cos n +22π解析:令n =1,2,3,…,逐一验证四个选项,可得D 正确. 答案:D2.(2019·承德模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1 D.⎝ ⎛⎭⎪⎫12n -1 解析:S n =2a n +1=2S n +1-2S n ⇒3S n =2S n +1⇒S n +1S n =32,故数列{S n }为等比数列,公比是32,又S 1=1,所以S n =1×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n -1.故选B.答案:B3.(2019·常德调研)已知数列{a n }的前n 项和为S n ,且S n =2a n +n ,则a 10=( ) A .-210B .-29C .1-29D .1-210解析:当n =1时,a 1=2a 1+1,所以a 1=-1. 当n ≥2时,由S n =2a n +n ,① 得S n -1=2a n -1+(n -1),②由①-②得,a n =2a n -2a n -1+1,所以a n =2a n -1-1.所以a n -1=2(a n -1-1).又易知a n ≠1,所以a n -1a n -1-1=2,所以a n -1=-2·2n -1=-2n .所以a n =1-2n .所以a 10=1-210.故选D. 答案:D4.(2019·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n∈N *),则a 2 018的值为( )A .-14B .5C.45D.54解析:在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14, 所以{a n }是以3为周期的周期数列,所以a 2 018=a 672×3+2=a 2=5,故选B. 答案:B5.(2019·郑州毕业班质量预测)已知f (x )=⎩⎪⎨⎪⎧(2a -1)x +4,x ≤1,a x ,x >1,数列{a n }(n ∈N *)满足a n =f (n ),且{a n }是递增数列,则a 的取值范围是( )A .(1,+∞) B.⎝ ⎛⎭⎪⎫12,+∞ C .(1,3)D .(3,+∞)解析:因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a >1,a 2>2a -1+4,解得a >3,则a 的取值范围是(3,+∞). 答案:D6.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的第________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,则(2n -5)(n -10)=0,解得n =10或n =52(舍去).所以a 10=0.08. 答案:107.已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又a n a n +1=S n ,则a 3-a 1=________.解析:因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1. 答案:18.(2019·山东、湖北部分重点中学联考)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则S 10=________.解析:a 1=2,a n +1=a n +2n -1+1⇒a n +1-a n =2n -1+1⇒a n =(a n -a n -1)+(a n -1-a n-2)+…+(a 3-a 2)+(a 2-a 1)+a 1⇒a n =2n -2+2n -3+…+2+1+n -1+a 1=1-2n -11-2+n -1+2=2n -1+n .S 10=1+2+22+…+29+1+2+3+…+10=1×(1-210)1-2+10×112=1 078.答案:1 0789.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式. 解:(1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.10.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解:(1)由S n =12a 2n +12a n (n ∈N *)可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .B 组 素养提升11.(2019·长沙雅礼中学、河南省实验中学联考)在数列{a n }中,a 1=2,a n +1n +1=a nn+ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =( ) A .2+n ln n B .2n +(n -1)ln nC .2n +n ln nD .1+n +n ln n解析:由题意得a n +1n +1-a n n =ln(n +1)-ln n ,a n n -a n -1n -1=ln n -ln(n -1),a n -1n -1-a n -2n -2=ln(n -1)-ln(n -2),a n -2n -2-a n -3n -3=ln(n -2)-ln(n -3),……,a 22-a 11=ln 2-ln 1,累加得a n n -a 11=ln n -ln 1=ln n ,所以a nn=2+ln n ,所以a n =2n +n ln n ,故选C.答案:C12.(2019·衡水中学检测)若数列{a n }满足a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:因为a 1=19,a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列, 所以a n =19+(n -1)×(-3)=22-3n .设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223,因为k ∈N *,所以k =7.所以满足条件的n 的值为7. 答案:B13.(2019·菏泽模拟)已知数列{a n }的前n 项和为S n ,且满足S n =(-1)n ·a n -12n ,记b n =8a 2·2n -1,若对任意的n ∈N *,总有λb n -1>0成立,则实数λ的取值范围为________.解析:令n =1,得a 1=-14;令n =3,可得a 2+2a 3=18;令n =4,可得a 2+a 3=316;故a 2=14, 即b n =8a 2·2n -1=2n .由λb n -1>0对任意的n ∈N *恒成立,得λ>⎝ ⎛⎭⎪⎫12n对任意的n ∈N *恒成立,又⎝ ⎛⎭⎪⎫12n ≤12,所以实数λ的取值范围为⎝ ⎛⎭⎪⎫12,+∞.答案:⎝ ⎛⎭⎪⎫12,+∞ 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)因为a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,所以a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).所以数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。
2020版江苏高考数学一轮复习学案:第60课《数列的概念及简单表示》(含解析)
第60课 数列的概念及简单表示1. 数列的概念及数列与函数的关系(A 级要求).2. 数列的几种简单表示方法(列表、图象、通项公式)(A 级要求).1. 阅读:必修5第31~34页.2. 解悟:①读懂数列的定义,并与函数的定义作比较;②写出数列的通项公式,就是寻找a n 与n 的对应关系a n =f(n);③重解第33页例3,体会方法.3. 践习:在教材空白处,完成第34页习题第7、8、9题.基础诊断1. 数列1,2,7,10,13,…中的第26项为 219 .解析:因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,所以a n =3n -2,所以a 26=3×26-2=76=219.2. 下列四个图形中,着色三角形的个数依次构成一个数列{a n }的前4项,则这个数列的一个通项公式为 a n =3n -1 .(1) (2) (3) (4)解析:由图可知前4个图中着色三角形的个数分别为1,3,32,33,…,猜想第n 个图的着色三角形的个数为3n -1,所以这个数列的通项公式为a n =3n -1.3. 已知在数列{a n }中,a 1=12,a n =1-1a n -1(n ≥2),则a 16= 12 .解析:由题意知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,所以此数列是以3为周期的周期数列,所以a 16=a 3×5+1=a 1=12.4. 已知数列{a n }的前n 项和S n =n 2+1,则a n = ⎩⎪⎨⎪⎧2, n =1,2n -1, n ≥2 .解析:当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2, n =1,2n -1, n ≥2.范例导航考向❶ 数列的通项公式例1 根据数列的前几项,写出下列各数列的一个通项公式: (1) -1,7,-13,19,…;解析:(1) 数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5).(2) 1,0,13,0,15,0,17,…;解析:(2) 分母依次为1,2,3,4,5,6,7,…,分子依次为1,0,1,0,1,0,1,…,把数列改写成11,02,13,04,15,06,17,…,因此数列的一个通项公式为a n =1+(-1)n -12n.(3) 0.9,0.99,0.999,….解析:(3) 数列可改写成1-110,1-1102,1-1103,…,可得该数列的一个通项公式为a n =1-110n .数列12,14,-58,1316,-2932,6164,…,的一个通项公式是 a n =(-1)n·2n -32n .解析:各项的分母分别为21,22,23,24,…,从第2项起,每一项的绝对值的分子分别比分母小3,因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n ·2n -32n. 【注】 由前几项归纳数列通项的常用方法及具体策略:(1) 常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2) 具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *进行处理.考向❷ 由a n 与S n 的关系求通项公式例2 已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.(1) a 1=1,S n =n +23a n; (2) S n =3n +b ; (3) S n =23a n +13.解析:(1) 由题设知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13·a n -1,整理得a n =n +1n -1a n -1, 于是a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1.将上面n 个等式两端分别相乘,整理得a n =n (n +1)2,显然,当n =1时也满足上式. 综上可知,数列{a n }的通项公式a n =n (n +1)2.(2) 当n =1时,a 1=S 1=3+b ;当n ≥2时,a n =S n -S n -1=(3n +b)-(3n -1+b)=2×3n -1.当b =-1时,a 1=2,满足上式;当b ≠-1时,a 1≠2,不满足上式,所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2×3n -1, n ≥2. (3) 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,所以当n ≥2时,a n =-2a n -1,即a na n -1=-2.又当n =1时,a 1=S 1=23a 1+13,即a 1=1,所以a n =(-2)n -1.已知数列{a n }满足a 1+2a 2+…+na n =4-n +22n -1(n ∈N *).(1) 求a 3的值;(2) 求数列{a n }的前n 项和T n .解析:(1) 由题意得3a 3=(a 1+2a 2+3a 3)-(a 1+2a 2)=4-3+223-1-⎝ ⎛⎭⎪⎫4-2+222-1=34,所以a 3=14.(2) 由题设知当n ≥2时,na n =(a 1+2a 2+…+na n )-[a 1+2a 2+…+(n -1)a n -1]=4-n +22n -1-⎝ ⎛⎭⎪⎫4-n +12n -2=n 2n -1, 所以a n =⎝⎛⎭⎫12n -1.当n =1时,a 1=4-1+220=1满足上式,所以a n =⎝⎛⎭⎫12n -1,所以数列{a n }是首项为1,公比为12的等比数列,故T n =1-⎝⎛⎭⎫12n1-12=2-⎝⎛⎭⎫12n -1.【注】 已知S n ,求a n 的步骤:①当n =1时,a 1=S 1;②当n ≥2时,a n =S n -S n -1; ③对n =1时的情况进行检验,若满足n ≥2的通项公式则可以合并;若不满足则写成分段函数形式.这种转化是解决这种题型的基本思路,要重点掌握. 考向❸ 数列的性质例3已知数列{a n}的通项公式a n=(n+1)·⎝⎛⎭⎫1011n(n∈N*),则数列{a n}有没有最大项?若有,求出最大项;若没有,请说明理由.解析:因为a n+1-a n=⎝⎛⎭⎫1011n·9-n11,所以当n<9时,a n+1>a n;当n>9时,a n+1<a n,则当n<9时,数列{a n}是递增数列;当n>9时,数列{a n}是递减数列;当n=9时,a n+1=a n,所以当n=9或10时,数列取得最大项a9=a10=1010119.设a n=-3n2+15n-18,则数列{a n}中的最大项的值是0.解析:因为a n=-3⎝⎛⎭⎫n-522+34,由二次函数的性质,得当n=2或3时,a n最大,最大值为0.【注】(1) 解决数列的单调性问题可用以下三种方法:①用作差比较法,根据a n+1-a n的符号判断数列{a n}是递增数列、递减数列还是常数列;②用作商比较法,根据a n+1a n(a n>0或a n<0)与1的大小关系进行判断;③结合相应函数的图象直观判断.(2) 解决数列周期性问题的方法:先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.(3) 数列的最值可以利用数列的单调性或求函数最值的思想求解.自测反馈1. 数列0.8,0.88,0.888,…,的一个通项公式是a n=89⎝⎛⎭⎫1-110n.解析:数列变为89×(1-110),89×⎝⎛⎭⎫1-1102,89×⎝⎛⎭⎫1-1103,…,故a n=89⎝⎛⎭⎫1-110n.2. 已知数列{a n}的前n项和S n=2n-3,则数列{a n}的通项公式为a n=⎩⎪⎨⎪⎧-1, n=1,2n-1, n≥2.解析:当n=1时,a1=S1=-1;当n≥2时,a n=S n-S n-1=(2n-3)-(2n-1-3)=2n-1,所以a n=⎩⎪⎨⎪⎧-1, n=1,2n-1, n≥2.3. 已知数列{a n}满足a n+1=11-a n,a8=2,则a1=12.解析:因为a n+1=11-a n,所以a n+1=11-a n=11-11-a n-1=1-a n-11-a n-1-1=1-a n-1-a n-1=1-1a n-1=1-111-a n-2=1-(1-a n-2)=a n-2,n≥3,所以数列{a n}是以T=(n+1)-(n-2)=3为周期的周期数列,所以a 8=a 3×2+2=a 2=2.又a 2=11-a 1,所以a 1=12.4. 若数列{a n }满足a n +1=⎩⎨⎧2a n , 0≤a n ≤12,2a n -1, 12<a n <1,a 1=35,则数列的第2 015项为 25 .解析:由已知可得a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,所以数列{a n }为周期数列且T =4,所以a 2 015=a 503×4+3=a 3=25.1. 数列是一种特殊的函数,因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性.2. 通项公式a n 与前n 项和S n 的关系是一个十分重要的考点,运用时,不要忘记对a n=S n -S n -1的条件的验证.3. 你还有那些体悟,写下来:。
2020届高三数学(文)一轮总复习课时跟踪检测 数列的概念与简单表示法Word版含答案
课时跟踪检测数列的概念与简单表示法一抓基础,多练小题做到眼疾手快1.(2019·宝鸡一检)设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( )A .4B .6C .8D .10解析:选C a 4=S 4-S 3=20-12=8.2.数列1,23,35,47,59,…的一个通项公式a n =( ) A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n 2n -1. 3.(2019·哈尔滨二模)下列说法正确的是( )A .数列1,-2,3,-4,…是一个摆动数列B .数列-2,3,6,8可以表示为{-2,3,6,8}C .{a n }和a n 是相同的概念D .每一个数列的通项公式都是唯一确定的解析:选A 对于A ,摆动数列是指从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列,故A 正确;数列与数集是不同的,故B 错误;{a n }和a n 是不同的概念,{a n }表示数列a 1,a 2,a 3,…,a n ,而a n 表示的是这个数列的第n 项,故C 错误;每一个数列的通项公式并不都是唯一确定的,故D 错误.4.(2019·黄冈月考)已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( )A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2 解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为C.5.(2019·杭州三模)数列{a n }定义如下:a 1=1,当n ≥2时,a n=⎩⎨⎧ 1+a n 2,n 为偶数,1a n -1,n 为奇数,若a n =14,则n 的值为( )A .7B .8C .9D .10解析:选C 因为a 1=1,所以a 2=1+a 1=2,a 3=1a 2=12,a 4=1+a 2=3,a 5=1a 4=13,a 6=1+a 3=32,a 7=1a 6=23,a 8=1+a 4=4,a 9=1a 8=14,所以n =9.二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π 解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132解析:选B ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 3.(2019·石家庄二模)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( )A .8B .6C .4D .2 解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=( )A .100B .2C .-2D .-100解析:选C 因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 99=lg ⎝⎛⎭⎫12×23×…×99100=lg 1100=-2. 5.(2019·北京海淀区期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0, ∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第____________项. 解析:令n -2n 2=0.08,得2n 2-25n +50=0, 即(2n -5)(n -10)=0.解得n =10或n =52(舍去). 答案:107.(2019·浙江瑞安三校联考)已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 013=________,a 2 016=________.解析:由题意可得a 2 013=a 4×504-3=1,a 2 016=a 1 008=a 504=a 252=a 126=a 63=a 4×16-1=0. 答案:1 08.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3. 所以实数k 的取值范围为(-3,+∞).三上台阶,自主选做志在冲刺名校1.已知{a n }满足a n +1=a n +2n ,且a 1=33,则a n n的最小值为( ) A .21B .10 C.212 D.172解析:选C 由已知条件可知,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33满足此式.所以a n n =n +33n-1. 令f (n )=a n n =n +33n-1,则f (n )在[1,5]上为减函数, 在[6,+∞)上为增函数,又f (5)=535,f (6)=212, 则f (5)>f (6),故f (n )=a n n 的最小值为212. 2.(2019·天水一模)已知数列{a n }中,a 1=1,且a n +a n +1=2n .求数列{a n }的通项公式.解:∵a n +a n +1=2n ,①∴a n +1+a n +2=2n +1,② ②-①,得a n +2-a n =2n ,由a 1=1,a 1+a 2=2,得a 2=1.当n 为奇数时,a n =(a n -a n -2)+(a n -2-a n -4)+…+(a 3-a 1)+a 1 =2n -2+2n -4+…+2+1 =13×2n +13; 当n 为偶数时,a n =(a n -a n -2)+(a n -2-a n -4)+…+(a 4-a 2)+a 2 =2n -2+2n -4+…+22+1 =13×2n -13. 故a n =⎩⎨⎧ 13×2n +13,n 为奇数,13×2n -13,n 为偶数.。
2020届高考数学总复习课时跟踪练三十一数列的概念与简单表示法文含解析新人教A版
解:(1)由Sn= a + an(n∈N*)可得
a1= a + a1,解得a1=1;
S2=a1+a2= a + a2,解得a2=2;
同理,a3=3,a4=4.
(2)Sn= + a ,①
当n≥2时,Sn-1= + a ,②
①-②得(an-an-1-1)(an+an-1)=0.
所以 =2,所以an-1=-2·2n-1=-2n.所以an=1-2n.所以a10=1-210.故选D.
答案:D
4.(20xx·江西重点中学盟校联考)在数列{an}中,a1=- ,an=1- (n≥2,n∈N*),则a2 018的值为()
A.- B.5C. D.
解析:在数列{an}中,a1=- ,an=1- (n≥2,n∈N*),
所以a2=1- =5,a3=1- = ,a4=1- =- ,
所以{an}是以3为周期的周期数列,所以a2 018=a672×3+2=a2=5,故选B.
答案:B
5.(20xx·郑州毕业班质量预测)已知f(x)= 数列{an}(n∈N*)满足an=f(n),且{an}是递增数列,则a的取值范围是()
A.(1,+∞)B.
= +n-1+2=2n-1+n.
S10=1+2+22+…+29+1+2+3+…+10= + =1 078.
答案:1 078
9.(20xx·全国卷Ⅲ)已知各项都为正数的数列{an}满足a1=1,a -(2an+1-1)an-2an+1=0.
(1)求a2,a3;
(2)求{an}的通项公式.
解:(1)由题意得a2= ,a3= .
由于an+an-1≠0,所以an-an-1=1,
又由(1)知a1=1,
故数列{an}为首项为1,公差为1的等差数列,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(三十三) 数列的概念与简单表示[A 级 基础题——基稳才能楼高]1.在数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),则a 4的值为( ) A .31 B .30 C .15D .63解析:选C 由题意,得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,故选C. 2.已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 019=( ) A .-1 B .12 C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+3=a 3=-1.3.数列-1,4,-9,16,-25,…的一个通项公式为( ) A .a n =n 2B .a n =(-1)n ·n 2C .a n =(-1)n +1·n 2D .a n =(-1)n ·(n +1)2解析:选B 易知数列-1,4,-9,16,-25,…的一个通项公式为a n =(-1)n·n 2,故选B. 4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( ) A .256 B .510 C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( ) A .(-∞,-1] B .(-∞,2] C .(-∞,3)D .⎝⎛⎦⎥⎤-∞,92解析:选C 因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3.[B 级 保分题——准做快做达标]1.(2019·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.-n +1n +1B .-nn +1C.-nnD .-n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪⎪⎪1n +1,故此数列的一个通项公式为-n +1n +1.故选A. 2.(2019·沈阳模拟)已知数列{a n }中a 1=1,a n =n (a n +1-a n )(n ∈N *),则a n =( ) A .2n -1 B .⎝⎛⎭⎪⎫n +1n n -1C .nD .n 2解析:选C 由a n =n (a n +1-a n ),得(n +1)a n =na n +1,即a n +1n +1=a n n ,∴⎩⎨⎧⎭⎬⎫a n n 为常数列,即a n n =a 11=1,故a n =n .故选C.3.(2019·北京西城区模拟)已知数列{a n }的前n 项和S n =2-2n +1,则a 3=( )A .-1B .-2C .-4D .-8解析:选D ∵数列{a n }的前n 项和S n =2-2n +1,∴a 3=S 3-S 2=(2-24)-(2-23)=-8.故选D.4.(2019·桂林四地六校联考)数列1,2,2,3,3,3,4,4,4,4,…的第100项是( ) A .10 B .12 C .13D .14解析:选D 1+2+3+…+n =12n (n +1),由12n (n +1)≤100,得n 的最大值为13,易知最后一个13是已知数列的第91项,又已知数列中14共有14项,所以第100项应为14.故选D.5.(2019·兖州质检)已知数列{a n }满足a n =⎩⎪⎨⎪⎧an -2,n <4,-a n -a ,n ≥4,若对任意的n ∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)解析:选A 因为对任意的n ∈N *都有a n <a n +1成立,所以数列{a n }是递增数列,因此⎩⎪⎨⎪⎧1<a ,6-a >0,a-a -a ,解得1<a <4,故选A.6.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( )A .8B .2C .3D .7解析:选D 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 019=4×504+3,故b 2 019的末位数字为7.故选D.7.(2018·长沙调研)已知数列{a n },则“a n +1>a n -1”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由题意,若“数列{a n }为递增数列”,则a n +1>a n >a n -1,但a n +1>a n -1不能推出a n +1>a n ,如a n =1,a n +1=1,{a n }为常数列,则不能推出“数列{a n }为递增数列”,所以“a n +1>a n -1”是“数列{a n }为递增数列”的必要不充分条件.故选B.8.(2019·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n 等于( ) A.13n -1B .2nn +C.6n +n +D .5-2n 3解析:选B 由题意知,S n +na n =2,当n ≥2时,(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a na n -1=13·24·…·n -1n +1,有a n =2nn +,当n =1时上式成立,所以a n =2nn +.9.(2019·兰州诊断)已知数列{a n },{b n },若b 1=0,a n =1nn +,当n ≥2时,有b n =b n -1+a n -1,则b 501=________.解析:由b n =b n -1+a n -1得b n -b n -1=a n -1,所以b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,所以b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n =11-12+12-13+…+1n -1-1n =1-1n =n -1n ,又b 1=0,所以b n =n -1n,所以b 501=500501.答案:50050110.(2019·河南八市重点高中测评)已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________.解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n +1,得-a n +1a n +1--a na n=1a n +1-1a n +1,整理,得1a n +1-1a n =1,即⎩⎨⎧⎭⎬⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2.答案:1n +211.(2019·宝鸡质检)若数列{a n }是正项数列,且a 1+a 2+a 3+…+a n =n 2+n ,则a 1+a 22+…+a nn =________.解析:由题意得当n ≥2时,a n =n 2+n -(n -1)2-(n -1)=2n ,∴a n =4n 2.又n =1,a 1=2,∴a 1=4,∴a n n =4n ,∴a 1+a 22+…+a n n =12n (4+4n )=2n 2+2n . 答案:2n 2+2n12.(2019·深圳期中)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn2=a n (n ∈N *),则数列{a n }的通项公式a n =________.解析:由a 1+a 222+a 332+…+a nn 2=a n (n ∈N *)知,当n ≥2时,a 1+a 222+a 332+…+a n -1n -2=a n -1,∴a nn2=a n -a n -1,即n +1n a n =n n -1a n -1,∴n +1n a n =…=2a 1=2,∴a n =2nn +1.答案:2nn +113.(2019·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式; (2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n-1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=a n +a n +1=4.14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).15.(2019·武汉调研)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)∵a 1=S 1=2,a n =S n -S n -1=2n -1(n ≥2), ∴b n=⎩⎪⎨⎪⎧23n =,1nn(2)由题意得c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1n +n +<0,∴c n +1<c n ,∴数列{c n }为递减数列.。