(易错题)沪科版九年级数学下册期末综合检测试卷(学生用).docx
2023年沪科版初中数学九年级(下)期末综合测试卷及答案(共四套)
沪科版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题4分,共40分)1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()2.下列四个图案中,是中心对称图形的是()3.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD等于() A.160°B.100°C.80°D.20°4.下列语句所描述的事件是随机事件的是()A.安徽的省会是合肥B.打开电视机,正好看到安徽卫视的节目C.实数的绝对值小于零D.通常温度降到0℃以下,纯净的水会结冰5.如图,为了测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()A.8.8mB.12mC.16mD.20m6.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过点C 作CD ⊥AB 于点D .已知cos∠ACD =35,BC =4,则AC 的长为()A.1B.203C.3D.1637.一个不透明的袋内装有标号分别为1,2,3,4的4个小球(小球除标号外其余均相同).从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字.则组成的两位数是3的倍数的概率为()A.14B.516C.716D.128.如图,这是一个长方体纸盒的表面展开图,纸片厚度不计.根据图中数据,可得这个盒子的容积为()A.6B.8C.10D.159.如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为()A.2.5B.2.8C.3D.3.210.如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过点A 的切线交于点B ,且∠APB =60°,设OP =x ,则△PAB 的面积y 关于x 的函数图象大致是()二、填空题(每题5分,共20分)11.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是________.12.小明家的客厅有一张直径为1.2米,高为0.8米的圆桌BC ,在距地面2米的A 处有一盏灯,圆桌的影子为DE ,依据题意建立如图所示的平面直角坐标系,其中D 点坐标为(2,0),则点E 的坐标是________.13.如图,矩形ABCD 中,AB =3,BC =2,E 为BC 的中点,AF =1,以EF 为直径的半圆与DE交于点G ,则劣弧GE ︵的长为________.14.抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,若一个半径为5的圆也经过点A ,B ,则该圆的圆心坐标为______________.三、(每题8分,共16分)15.如图是由5个大小相同的小正方体搭成的几何体,其中每个小正方体的棱长为1cm.(1)直接写出这个几何体的表面积:__________;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.16.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.(1)请分别作出如图所示的两个三角形的最小覆盖圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论.(不要求证明)四、(每题8分,共16分)17.如图,在8×8的小正方形网格中,△ABC三顶点的坐标分别为A(2,3),B(2,1),C(5,1),把△ABC绕着点A顺时针旋转90°得到△AEF,点B的对应点为E,点C的对应点为F.(1)在图中画出△AEF;(2)点C的运动路径长为____________;(3)直接写出线段BC扫过的面积:________.18.一个不透明的袋中装有20个只有颜色不同的球,其中有5个黄球,8个黑球,7个红球.(1)求从袋中摸出1个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀袋中的球,使从袋中摸出1个球是黑球的概率是13.求从袋中取出黑球的个数.五、(每题10分,共20分)19.一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.20.如图,已知直线l :y =3x ,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;过点A 2作x 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此方法进行下去.求:(1)点B 1的坐标和∠A 1OB 1的度数;(2)弦A 4B 3的弦心距.六、(12分)21.在不透明的袋中有大小、形状和质地等完全相同的小球,它们分别标有-1、-2、1、2,从袋中任意摸出一个小球(不放回),将袋中剩余的小球搅匀后,再从袋中摸出另一个小球.(1)请你列出摸出小球上的数可能出现的所有结果;(2)规定:如果摸出的两个小球上的数都是方程x2-3x+2=0的根,则小明赢.如果摸出的两个小球上的数都不是方程x2-3x+2=0的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?七、(12分)22.如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.(1)求证:∠ECD=∠EDC;(2)若OC=2,求DE的长;(3)在∠A从15°增大到30°的过程中,请直接写出弦AD在圆内扫过的面积.八、(14分)23.如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)请判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF·AB;(3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积.答案一、1.A 2.D 3.B 4.B 5.B6.D点拨:∵AB 为直径,∴∠ACB =90°,∴∠ACD +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°,∴∠B =∠ACD ,∵cos∠ACD =35,∴cos B =35,易知tan B =43,∵BC =4,∴tan B =AC BC =AC 4=43,∴AC =163.7.B 8.A9.B点拨:连接BD ,∵AD 平分∠BAC ,∴∠CAE =∠DAB ,∴CD ︵=BD ︵.∵AB 是⊙O 的直径,∴∠ACE =∠ADB =90°,∴△ACE ∽△ADB ,∴AC AD =AE AB ,即AC 5=AE6.设AC =5x ,则AE =6x ,∴DE =5-6x .连接OD 交BC 于点F ,则DO ⊥BC ,∴OD ∥AC ,易知OF =12AC =52x ,∴DF =OD -OF =3-52x ,易得△ACE ∽△DFE ,∴AC DF =AE DE ,即5x 3-52x =6x5-6x ,解得x =715(x =0舍去),则AE =6x =2.8.10.D二、11.41512.(4,0)13.54π点拨:如图,连接OG ,DF ,根据勾股定理分别求出DF 、EF ,证明Rt△DAF ≌Rt△FBE ,求出∠DFE =90°,进而推出∠GOE=90°,最后根据弧长公式计算即可.14.(-1,1)或(-1,-1)点拨:不妨设点A 在点B 的左侧.∵抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,∴A (-3,0),B (1,0),∴圆心在直线x =-1上,设圆心坐标为(-1,m ),由题意得22+m 2=(5)2,解得m =±1,∴圆心坐标为(-1,1)或(-1,-1).三、15.解:(1)22cm 2(2)如图所示:16.解:(1)如图所示.(2)若三角形为锐角三角形,则其最小覆盖圆为三角形的外接圆;若三角形为直角三角形或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.四、17.解:(1)如图所示,△AEF 即为所求.(2)132π点拨:易知AC =22+32=13,∠CAF =90°,∴点C 的运动路径长为90·π·13180=132π.(3)94π点拨:线段BC 扫过的面积为S 扇形CAF -S 扇形BAE =90·π·(13)2360-90·π·22360=134π-π=94π.18.解:(1)20个球里面有5个黄球,故P (摸出1个球是黄球)=520=14.(2)设从袋中取出x (0<x <8,且x 为整数)个黑球,则此时袋中总共还有(20-x )个球,黑球剩(8-x )个.因为从袋中摸出1个球是黑球的概率是13,所以8-x 20-x =13,解得x =2.经检验,x =2是所列方程的解,且符合实际.所以从袋中取出了2个黑球.五、19.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.∴菱形的边长为52cm,∴棱柱的侧面积S =52×8×4=80(cm 2).20.解:(1)设B 1的坐标为(1,m ).∵B 1在直线l 上,∴3=m ,∴B 1(1,3).∴A 1B 1=3,OA 1=1,∴tan∠A 1OB 1=A 1B 1OA 1=3,∴∠A 1OB 1=60°.(2)如图,作OH ⊥A 4B 3于H .由题意可得OA 2=2,OA 3=4,OA 4=8.∵OA 4=OB 3,OH ⊥A 4B 3,∴∠A 4OH =12∠A 4OB 3=30°,∴OH =OA 4·cos30°=8×32=4 3.∴弦A 4B 3的弦心距为43.六、21.解:(1)可能出现的所有结果如下表-1-212-1(-1,-2)(-1,1)(-1,2)-2(-2,-1)(-2,1)(-2,2)1(1,-1)(1,-2)(1,2)2(2,-1)(2,-2)(2,1)(2)∵x 2-3x +2=0,∴(x -1)(x -2)=0,∴x 1=1,x 2=2.∵共有12种等可能的结果,其中摸出的两个小球上的数都是方程x 2-3x +2=0的根的结果有2种,摸出的两个小球上的数都不是方程x 2-3x +2=0的根的结果有2种,∴P (小明赢)=212=16,P (小亮赢)=212=16,∴游戏规则公平.七、22.(1)证明:如图,连接OD ,则OD ⊥DE ,∴∠ODA +∠EDC =90°.∵OA =OD ,∴∠OAD =∠ODA ,又∵OA ⊥OB ,∴∠OAD +∠OCA =90°,∴∠OCA =∠EDC .又∵∠OCA =∠ECD ,∴∠ECD =∠EDC .(2)解:由(1)知,∠ECD =∠EDC ,∴ED =EC .设ED =x ,则OE =OC +CE =2+x .在Rt△ODE 中,∵OD 2+DE 2=OE 2,OD =OA =8,∴82+x 2=(2+x )2,解得x =15,∴DE 的长为15.(3)解:弦AD 在圆内扫过的面积为16π3+163-16.点拨:如图,连接OD ′,过点O 作OH ⊥AD ′于点H ,延长AO 交⊙O 于点M ,过点D 作DN ⊥AM 于点N .设弦AD 在圆内扫过的面积为S ,则S =S 扇形AOD -S △OAD -S 弓形ABD ′,由题意知,∠OAH =30°,∴在Rt△OAH 中,∠AOH =60°,AH =32OA =43,OH =12OA =4,∴AD ′=2AH =83,∠AOD ′=120°,∴S 弓形ABD ′=S 扇形AOD ′-S △OAD ′=120π×82360-12×83×4=64π3-163.在Rt△ODN 中,∠DON =2∠OAD =30°,∴DN =12OD =4,∴S△OAD =12OA ·DN =12×8×4=16.∵∠AOD =180°-∠DON =150°,∴S 扇形AOD =150π×82360=80π3,∴S =S 扇形AOD -S △OAD -S 弓形ABD ′=80π3-16-=16π3+163-16,∴弦AD 在圆内扫过的面积为16π3+163-16.八、23.(1)解:PA 与⊙O 相切.理由如下:连接CD .∵AD 为⊙O 的直径,∴∠ACD =90°.∴∠D +∠CAD =90°.∵∠B =∠D ,∠PAC =∠B ,∴∠PAC =∠D .∴∠PAC +∠CAD =90°,即DA ⊥PA .∴PA 与⊙O 相切.(2)证明:连接BG .∵AD 为⊙O 的直径,CG ⊥AD ,∴AC ︵=AG ︵.∴∠AGF =∠ABG .∵∠GAF =∠BAG ,∴△AGF ∽△ABG .∴AG ∶AB =AF ∶AG .∴AG 2=AF ·AB .(3)解:连接BD .∵AD 是⊙O 的直径,∴∠ABD =90°.∵AG 2=AF ·AB ,AG =AC =25,AB =45,∴AF =AG 2AB= 5.∵CG ⊥AD ,∴∠AEF =∠ABD =90°.又∵∠EAF =∠BAD ,∴△AEF ∽△ABD .∴AE AB =AF AD ,即AE 45=510,解得AE =2.∴EF =AF 2-AE 2=1.∵EG =AG 2-AE 2=4,∴FG =EG -EF =4-1=3.∴S △AFG =12FG ·AE =12×3×2=3.沪科版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题4分,共40分)1.下列图形中,是中心对称图形但不是轴对称图形的是()2.如图所示的四个几何体中,左视图是矩形的个数是()A.1B.2C.3D.43.下列所给的事件中,是必然事件的是()A.一个标准大气压下,水加热到100℃时会沸腾B.买一注福利彩票会中奖C.连续4次抛掷质地均匀的硬币,4次均正面朝上D.2021年的春节假期屯溪区将下雪4.如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB =α,则α的值为()A.135°B.120°C.110°D.100°5.从-1、2、3、-6这四个数中任取两数,分别记为m 、n ,那么点(m ,n )在函数y =6x的图象上的概率是()A.12B.13C.14D.186.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:今有勾八步,股十五步,问勾中容圆,径几何?其意思:今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少?此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步7.一个几何体的三视图如图所示,那么这个几何体的侧面积是()A.16πB.24πC.32πD.48π8.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm 2B.48cm 2C.24πcm 2D.12πcm 29.如图,在△ABC 中,CA =CB ,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形EDF ,点C 恰好在EF ︵上,设∠BDF =α(0°<α<90°).当α由小到大变化时,图中阴影部分的面积()A.由小变大B.由大变小C.不变D.先由小变大,后由大变小10.如图,已知⊙O 的半径为1,锐角三角形ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin∠CBD 的值等于()A.OM 的长B.2OM 的长C.CD 的长D.2CD 的长二、填空题(每题5分,共20分)11.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.12.小颖妈妈经营的玩具店某次进了一箱黑、白两种颜色的球共3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球有________个.13.如图,高为6m 的电线杆的顶上有一盏路灯,电线杆的底部为A ,身高1.5m 的男孩站在与点A 相距6m 的点B 处,若男孩以6m 为半径绕电线杆走一圈,则他在路灯下的影子BC 扫过的面积为________m 2.14.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是________mm 2.三、解答题(15题10分,19,20题每题14分,21题16分,其余每题12分,共90分)15.如图,在正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上).(1)把△ABC 沿BA 方向平移后,点A 移动到点A 1,在网格中画出平移后得到的△A 1B 1C 1;(2)把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2;(3)如果网格中小正方形的边长为1,求点B 经过(1)(2)变换的路径总长.16.如图是某个几何体的三视图.(1)写出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.17.如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,连接AB .(1)求证:AB 平分∠OAC ;(2)延长OA 至点P 使得OA =AP ,连接PC ,若⊙O 的半径为1,求PC 的长.18.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.19.如图所示,文华在广场上游玩时,他由路灯A 走向路灯B ,当他走到P 点时,发现他身后的影子的顶部刚好接触路灯A 的底部,当他再向前走12m 到达Q 点时,发现他身前的影子的顶部刚好接触到路灯B 的底部,已知文华的身高为1.6m,两个路灯的高度都是9.6m,且AP =QB =x m.(1)求两个路灯之间的距离;(2)当文华走到路灯B 时,他在路灯A 下的影子长是多少?20.如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC ︵的中点,作DE ⊥AC ,交AC 的延长线于点E ,交AB 的延长线于点F ,连接DA .(1)求证:EF 为半圆O 的切线;(2)若DA=DF=63,求阴影区域的面积.(结果保留根号和π)21.如图,在矩形ABCD中,AD=a cm,AB=b cm(a>b>4),半径为2cm的⊙O在矩形内且与AB,AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P沿着A→B→C→D的方向匀速移动,全程共移动了______cm.(用含a,b的代数式表示)(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点.若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离.(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),PD与⊙O1恰好相切?请说明理由.答案一、1.B 2.B3.A4.B5.B6.B点拨:如图,在Rt△ABC 中,AC =8,BC =15,∠C =90°,∴AB =AC 2+BC 2=17,∴S △ABC =12AC ·BC =12×8×15=60,设内切圆的圆心为O ,分别连接圆心和三个切点及OA 、OB 、OC ,设内切圆的半径为r ,则S △ABC =S △AOB +S △BOC +S △AOC =12×r ×(AB +BC +AC )=20r ,∴20r =60,解得r =3,∴内切圆的直径为6步,故选B.7.B点拨:由三视图知该几何体是圆柱,其底面直径是4,高是6,故这个几何体的侧面积是π×4×6=24π.8.C 9.C10.A点拨:如图,连接OA ,OB .∵OA =OB ,OM ⊥AB ,∴∠BOM =∠AOM =12∠AOB .∵∠C =12∠AOB ,∴∠BOM =∠C .∵BD ⊥AC ,OM ⊥AB ,∴∠CBD +∠C =90°,∠OBM +∠BOM =90°,∴∠CBD =∠OBM .∵sin∠OBM =OMOB=OM ,∴sin∠CBD =OM ,即sin∠CBD 的值等于OM 的长.二、11.312.210013.28π14.200点拨:由三视图可知立体图形由上下两个长方体构成,上面长方体长4mm,宽2mm,高4mm,下面长方体长8mm,宽6mm,高2mm,去掉重合部分,立体图形表面积为6×8×2+8×2×2+6×2×2+4×4×2+4×2×2=200(mm 2).三、15.解:(1)如图.(2)如图.(3)如图,点B 经过的路径为线段BB 1和B 1B 2︵,∴点B 经过的路径总长为32+32+90π·2180=32+2π2.16.解:(1)直三棱柱.(2)表面积为12×3×4×2+15×3+15×4+15×5=192.17.(1)证明:如图,连接OC .∵∠AOB =120°,C 是AB ︵的中点,∴∠AOC =∠BOC =60°.又∵OA =OB =OC ,∴△OAC 和△OBC 都是等边三角形,∴OA =AC =OB =BC ,∴四边形AOBC 是菱形,∴AB 平分∠OAC .(2)解:由(1)知△OAC 是等边三角形,∴∠AOC =∠OCA =∠OAC =60°.∵OA =AC ,OA =AP ,∴AP =AC ,∴∠APC =∠ACP =12∠OAC =30°,∴∠OCP =∠OCA +∠ACP =60°+30°=90°.∴在Rt△OPC 中,PC =OC tan∠APC =1tan30°=133= 3.18.解:(1)画树状图如图:(2)由(1)可知共有8种等可能的结果,其中晋级的有4种结果,所以P (选手A 晋级)=48=12.19.解:(1)由题意可知,PQ =12m,AB =(12+2x )m.易知1.69.6=AP AB ,即1.69.6=x 12+2x,解得x =3.∴AB =18m,即两个路灯之间的距离为18m.(2)设当文华走到路灯B 时,他在路灯A 下的影子长是a m,则 1.69.6=a a +18,解得a =3.6.∴他在路灯A 下的影子长是3.6m.20.(1)证明:如图,连接OD ,∵D 为BC ︵的中点,∴CD ︵=DB ︵.∴∠EAD =∠DAO .∵OA=OD,∴∠DAO=∠ODA.∴∠ODA=∠EAD.∴OD∥AE.∵DE⊥AC,∴DE⊥OD.∴EF是半圆O的切线.(2)解:如图,连接OC,CD.∵DA=DF,∴∠DAF=∠F.又由(1)知∠CAD=∠DAF,∴∠F=∠DAF=∠CAD.∵∠EAF+∠F=90°,∴3∠F=90°.∴∠F=30°.∴∠BAC=60°.又∵OC=OA,∴△OAC为等边三角形.∴∠AOC=60°.由(1)知OD⊥EF,∴∠DOF=90°-∠F=60°.在Rt△DOF中,DF=63,∴OD=DF·tan30°=63×33=6.在Rt△AED中,DA=63,∠CAD=30°,∴DE=12DA=33,EA=DA·cos30°=9.∵∠COD=180°-∠AOC-∠DOF=60°,OC=OD,∴△COD 是等边三角形.∴∠DCO =60°=∠AOC .∴CD ∥AB .∴S △ACD =S △COD .∴S 阴影=S △AED -S 扇形COD =12×9×33-60π·62360=2732-6π.21.解:(1)(a +2b )(2)在整个运动过程中,点P 移动的距离为(a +2b )cm,圆心O 移动的距离为2(a -4)cm.由题意,得a +2b =2(a -4).①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm,点P 继续移动3s,到达BC 的中点,即点P 用3s 移动了12a cm,∴b 2=12a3.②=24,=8.∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为b2=4(cm/s).∴在这5s 时间内圆心O 移动的距离为5×4=20(cm).(3)存在这种情形.理由如下:设点P 移动的速度为v 1cm/s,⊙O 移动的速度为v 2cm/s,∴v 1v 2=a +2b 2(a -4)=20+2×102×(20-4)=54.如图,作直线OO 1,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G ,连接O 1G ,则O 1G ⊥AD .若PD 与⊙O 1相切,设切点为H ,连接O 1H ,则O 1H ⊥DP ,O 1G =O 1H ,易得Rt△DO 1G ≌Rt△DO 1H ,∴∠ADB =∠BDP .∵BC ∥AD ,∴∠ADB =∠CBD .∴∠BDP =∠CBD ,∴BP =DP ,设BP =x cm,则DP =x cm,PC =(20-x )cm,在Rt△PCD 中,由勾股定理,可得PC 2+CD 2=PD 2,即(20-x )2+102=x 2,解得x =252.∴此时点P 移动的距离为10+252=452(cm),易知EF ∥AD ,∴△BEO 1∽△BAD ,∴EO 1AD =BE BA ,即EO 120=10-210,∴EO 1=16cm,∴OO 1=14cm.(i )当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm,此时点P 与⊙O 移动的速度比为45214=4528,∵4528≠54,∴此时PD 与⊙O 1不可能相切.(ii )当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm),此时点P 与⊙O 移动的速度比为45218=4536=54,∴此时PD 与⊙O 1恰好相切.沪科版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题4分,共40分)1.下列图形中,是中心对称图形的是()2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.下列语句所描述的事件是随机事件的是()A.安徽的省会是合肥B.打开电视机,正好看到安徽卫视的节目C.实数的绝对值小于零D.通常温度降到0℃以下,纯净的水会结冰4.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD等于() A.160°B.100°C.80°D.20°5.如图,为了测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()A.8.8m B.12m C.16m D.20m6.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB于D.已知cos∠ACD=35,BC=4,则AC的长为()A.1B.203C.3D.1637.九(4)班第三学习小组共有8名学生,其中女生3名,男生5名,如果从中随机选择1名学生参加学校举行的国学经典演讲比赛,那么选到女生的概率是()A.58B.35C.38D.148.如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为14的三视图中,其主视图的面积是()A.21π4cm2B.21π16cm2C.30cm2D.7.5cm29.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A.2.5B.2.8C.3D.3.210.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O 过点A的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()二、填空题(每题5分,共20分)11.如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD 的距离为________.12.小颖妈妈经营的玩具店某次进了一箱黑、白两种颜色的球共3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球有________个.13.如图,高为6m的电线杆的顶上有一盏路灯,电线杆的底部为A,身高1.5m 的男孩站在与点A相距6m的点B处,若男孩以6m为半径绕电线杆走一圈,则他在路灯下的影子BC扫过的面积为________m2.14.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是________mm2.三、解答题(15题10分,19,20题每题14分,21题16分,其余每题12分,共90分)15.如图,在正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移动到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)(2)变换的路径总长.16.如图是某个几何体的三视图.(1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.17.如图,△ABC内接于⊙O,CE是⊙O的直径,CD⊥AB,垂足为D,BC=2,AC=4,sin∠BAC=1.3(1)求证:△ACD∽△ECB;(2)求⊙O的面积.18.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.19.如图所示,文华在广场上游玩时,他由路灯A走向路灯B,当他走到P点时,发现他身后的影子的顶部刚好接触路灯A的底部,当他再向前走12m到达Q点时,发现他身前的影子的顶部刚好接触到路灯B的底部,已知文华的身高为1.6m,两个路灯的高度都是9.6m,且AP=QB=x m.(1)求两个路灯之间的距离;(2)当文华走到路灯B时,他在路灯A下的影子长是多少?20.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为BC︵的中点,作DE ⊥AC,交AC的延长线于点E,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=63,求阴影区域的面积.(结果保留根号和π)21.如图,在矩形ABCD中,AD=a cm,AB=b cm(a>b>4),半径为2cm的⊙O 在矩形内且与AB,AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P沿着A→B→C→D的方向匀速移动,全程共移动了______cm.(用含a,b的代数式表示)(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点.若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离.(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),PD与⊙O1恰好相切?请说明理由.答案一、1.A2.A3.B4.B 5.B6.D点拨:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=35,∴cos B=3 5,易知tan B=43,∵BC=4,∴tan B=ACBC=AC4=43,∴AC=163.7.C8.D点拨:12×14=3(cm),10×14=2.5(cm),3×2.5=7.5(cm2),即其主视图的面积是7.5cm2.9.B点拨:连接BD,∵AD平分∠BAC,∴∠CAE=∠DAB,∴CD︵=BD︵.∵AB是⊙O的直径,∴∠ACE=∠ADB=90°,∴△ACE∽△ADB,∴ACAD=AE AB,即AC5=AE6.设AC=5x,则AE=6x,∴DE=5-6x.连接OD交BC于点F,则DO ⊥BC ,∴OD ∥AC ,易知OF =12AC =52x ,∴DF =OD -OF =3-52x ,易得△ACE ∽△DFE ,∴AC DF =AEDE ,即5x 3-52x =6x 5-6x,解得x =715(x =0舍去),则AE =6x =2.8.10.D 二、11.312.210013.28π14.200点拨:由三视图可知立体图形由上下两个长方体构成,上面长方体长4mm ,宽2mm ,高4mm ,下面长方体长8mm ,宽6mm ,高2mm ,去掉重合部分,立体图形表面积为6×8×2+8×2×2+6×2×2+4×4×2+4×2×2=200(mm 2).三、15.解:(1)如图.(2)如图.(3)如图,点B 经过的路径为线段BB 1和B 1B 2︵,∴点B 经过的路径总长为32+32+90π·2180=32+2π2.16.解:(1)直三棱柱.(2)表面积为12×3×4×2+15×3+15×4+15×5=192.17.(1)证明:∵∠CAD 和∠CEB 都为BC ︵所对的圆周角,∴∠CAD =∠CEB .∵CD ⊥AB ,∴∠CDA =90°,∵CE 为⊙O 的直径,∴∠CBE =90°,∴∠CDA =∠CBE ,∴△ACD ∽△ECB .(2)解:在Rt △ACD 中,sin ∠BAC =CD AC =13,∵AC =4,∴CD =13AC =43.∵△ACD ∽△ECB ,∴AC EC =CD CB ,即4EC =432,∴EC =6,∴⊙O 的半径为3,∴⊙O 的面积为9π.点拨:解题的关键是利用三角形相似的判定证得三角形相似,第(1)题的结论可以作为第(2)题的条件.18.解:(1)画树状图如图:(2)由(1)可知共有8种等可能的结果,其中晋级的有4种情况,所以P (A 晋级)=48=12.19.解:(1)由题意可知,PQ =12m ,AB =(12+2x )m.易知1.69.6=AP AB ,即1.69.6=x 12+2x ,解得x =3.∴AB =18m.即两个路灯之间的距离为18m.(2)设当文华走到路灯B 时,他在路灯A 下的影子长是a m ,则1.69.6=a a +18,解得a =3.6.∴他在路灯A 下的影子长是3.6m.20.(1)证明:如图,连接OD ,∵D 为BC ︵的中点,∴CD ︵=DB ︵.∴∠EAD =∠DAO .∵OA =OD ,∴∠DAO =∠ODA .∴∠ODA =∠EAD .∴OD ∥AE .∵DE ⊥AC ,∴DE ⊥OD .∴EF 是半圆O 的切线.(2)解:如图,连接OC ,CD .∵DA =DF ,∴∠DAF =∠F .又由(1)知∠CAD =∠DAF ,∴∠F =∠DAF =∠CAD .∵∠EAF +∠F =90°,∴3∠F =90°.∴∠F =30°.∴∠BAC =60°.又∵OC =OA ,∴△OAC 为等边三角形.∴∠AOC =60°.由(1)知OD ⊥EF ,∴∠DOF =90°-∠F =60°.在Rt △DOF 中,DF =63,∴OD =DF ·tan 30°=63×33=6.在Rt △AED 中,DA =63,∠CAD =30°,∴DE =12DA =33,EA =DA ·cos 30°=9.∵∠COD =180°-∠AOC -∠DOF =60°,OC =OD ,∴△COD 是等边三角形.∴∠DCO =60°=∠AOC .∴CD ∥AB .∴S △ACD =S △COD .∴S 阴影=S △AED -S 扇形COD =12×9×33-60π·62360=2732-6π.21.解:(1)(a +2b )(2)∵在整个运动过程中,点P 移动的距离为(a +2b )cm ,圆心O 移动的距离为2(a -4)cm.由题意,得a +2b =2(a -4).①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm ,∴b 2=12a 3.②=24,=8.∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为b2=4(cm/s).∴在这5s 时间内圆心O 移动的距离为5×4=20(cm).(3)存在这种情形.理由如下:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得v1v 2=a +2b 2(a -4)=20+2×102×(20-4)=54.如图,作直线OO 1,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G ,连接O 1G ,则O 1G ⊥AD .若PD 与⊙O 1相切,设切点为H ,连接O 1H ,则O 1H ⊥DP ,O 1G =O 1H ,易得Rt△DO1G≌Rt△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD.∴∠BDP=∠CBD,∴BP=DP,设BP=x cm,则DP=x cm,PC=(20-x)cm,在Rt△PCD中,由勾股定理,可得PC2+CD2=PD2,即(20-x)2+102=x2,解得x=25 2.∴此时点P移动的距离为10+252=452(cm),易知EF∥AD,∴△BEO1∽△BAD,∴EO1AD=BEBA,即EO120=10-210,∴EO1=16cm,∴OO1=14cm.(i)当⊙O首次到达⊙O1的位置时,⊙O移动的距离为14cm,此时点P与⊙O移动的速度比为45214=4528,∵4528≠54,∴此时PD与⊙O1不可能相切.(ii)当⊙O在返回途中到达⊙O1的位置时,⊙O移动的距离为2×(20-4)-14=18(cm),此时点P 与⊙O 移动的速度比为45218=4536=54,∴此时PD 与⊙O 1恰好相切.沪科版初中数学九年级(下)期末综合测试卷及答案(四)一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案CADCDBACDB1.下列图形中,既是轴对称图形又是中心对称图形的是2.如图,将正方体沿相对的棱的中点切割去其四分之一,则剩余部分的主视图是3.如图,AB 是☉O 的弦,OC ⊥AB ,交☉O 于点C ,连接OA ,OB ,BC ,若∠ABC=20°,则∠AOB 的度数是A.40°B.50°C.70°D.80°4.(包头中考)下列事件中,属于不可能事件的是A.某个数的绝对值大于0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形5.如图,正方形的边长都相等,其中阴影部分面积相等的有A.(1)(2)(3)(4)B.(2)(3)(4)C.(1)(2)(3)D.(1)(3)(4)6.将分别标有-10,-2,2,4,5数字的五个小球装在一个不透明的口袋中,这些球除数字外无其他差别.随机摸出一球,把小球上的数字作为点的横坐标;不放回,再随机摸出一球,把小球上的数字作为点的纵坐标.则两次摸出的球上的数字组成的点的坐标恰好在反比例函数y=20的图象上的概率是A.425B.15C.14D.127.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC,△COB,弓形BmC 的面积分别为S1,S2,S3,则它们之间的关系是A.S2<S1<S3B.S3<S2<S1C.S1<S3<S2D.S1<S2<S38.从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边心距是A.52B.102C.53D.1039.如图,在Rt△ABC中,∠C=90°,以BC为直径的☉O交AB于点D,E是AC的中点,连接DE.下列结论:①DE是☉O的切线;②∠CED+2∠B=180°;③若AD=16,DE=10,则BC=15.其中正确的结论是A.①②B.①③C.②③D.①②③第9题图第10题图10.如图,线段AB=4,C为线段AB上的一个动点,以AC,BC为边作等边△ACD和等边△BCE,☉O外接于△CDE,则☉O半径的最小值为。
沪科版九年级下册数学期末测试卷(综合考试)
沪科版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5)B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)2、下列图案中,是中心对称图形的是()A. B. C. D.3、如图,矩形ABCD中,G是BC的中点,过A,D,G三点的圆O与边AB,CD 分别交于点E,点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.34、如图,圆锥形烟囱帽的底面直径为80cm,母线长为50cm,则这样的烟囱帽的侧面积是()A.4000πcm 2B.3600πcm 2C.2000πcm 2D.1000πcm 25、下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A. B. C. D.6、在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(1.6,1)D.(2.4,1)7、如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE= ,CE=1.则的长是()A. B. C. D.8、以下四个命题:用换元法解分式方程时,如果设,那么可以将原方程化为关于的整式方程;如果半径为的圆的内接正五边形的边长为,那么;有一个圆锥,与底面圆直径是且体积为的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为;④二次函数,自变量的两个值对应的函数值分别为,若,则.其中正确的命题的个数为()A. 个B. 个C. 个D. 个9、如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A. B. C. D.10、下列说法中正确的是()A.了解一批日光灯的使用寿命适宜采用抽样调查B.“打开电视,正在播放《沈视早报》”是必然事件C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小11、如图,点A,B,C,D,E在⊙O上,的度数为60°,则∠B+∠D的度数是()A.180°B.120°C.100°D.150°12、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是【】A. B. C. D.13、已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.14、如图,已知⊙O中,半径OC垂直于弦AB,垂足为D,若OD=3,OA=5,则AB的长为()A.2B.4C.6D.815、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是A. B. C. D.二、填空题(共10题,共计30分)16、如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=________.17、如图所示是日本三菱汽车的标志,它可以看作由一个菱形经过________次旋转,每次至少旋转________得到的.18、如图,一副直角三角板ABC和DEF,∠F=30°,将ABC和DEF放置如图2的位置,点B、D、C、F在同一直线上,点A在DE上,ABC固定不动,当EDF绕点D逆时针旋转至180°的过程中(不含180°),当旋转角为________时,EF与ABC的边垂直.19、如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为________.20、等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是________.21、如图,在矩形ABCD中,AB=1,∠DBC=30°.若将BD绕点B旋转后,点D 落在BC延长线上的点E处,点D经过的路径为弧DE,则图中阴影部分的面积为________.22、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F 分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为________.23、如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE,在点D变化的过程中,线段BE 的最小值是________cm.24、一个不透明的袋中装有四张形状大小质地完全相同的卡片,它们上画分别标有数字0,1,2,3,随机抽取一张不放回,再随机抽取一张,两次抽取的卡片数字同奇偶的概率是________.25、圆锥底面圆的半径为2,母线长为5,它的侧面积等于________(结果保留π).三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图所示,已知为正方形外的一点.,.将绕点顺时针旋转,使点旋转至点,且,求的度数.28、如图,AB是的直径,点C、D是两点,且AC=CD.求证:OC//BD.29、如图所示AB是⊙O的直径,圆心为点O,点C为⊙O上一点,OM⊥AB于点O交AC于点D,MC=MD求证:MC为⊙O的切线.30、某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、C5、C6、C7、B8、D9、C10、A11、D12、B13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)29、30、。
沪科版九年级数学下期末综合检测复习试卷(有答案)-优质
期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B . 28° C.33° D.48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B.C.D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C.D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3c mC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B . 70° C.50° D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4) C. (4,2) D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是________枚.13.如图,在⊙O 中,AA∧=AA ∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC 中,∠ABC =24°,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,若点E 在BD 的垂直平分线上,则∠C 的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于________ .18.如图,是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,AC=1,则BB ′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD 中,tanA= √3,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,给出如下几个结论:(1)△AED ≌△DFB ;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
沪科版九年级数学下期末综合检测复习试卷(有答案).docx
期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B. C. D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B. 70°C. 50°D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4)C. (4,2)D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是________枚.13.如图,在⊙O中,AB∧=BC∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC中,∠ABC=24°,以AB为直径的⊙O交BC于点D,交CA 的延长线于点E,若点E在BD的垂直平分线上,则∠C的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于________ .18.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD中,tanA= √3,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG 与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
2023年沪科版初中数学九年级(下)期末综合测试卷及答案
沪科版初中数学九年级(下)期末综合测试卷及答案一、选择题(每题4分,共40分)1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )2.下列四个图案中,是中心对称图形的是( )3.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD等于( ) A.160°B.100°C.80°D.20°4.下列语句所描述的事件是随机事件的是( )A.安徽的省会是合肥B.打开电视机,正好看到安徽卫视的节目C.实数的绝对值小于零D.通常温度降到0 ℃以下,纯净的水会结冰5.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为( )A.8.8 mB.12 mC.16 mD.20 m6.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过点C 作CD ⊥AB 于点D .已知cos ∠ACD =35,BC =4,则AC 的长为( )A .1B .203C .3D .1637.一个不透明的袋内装有标号分别为1,2,3,4的4个小球(小球除标号外其余均相同).从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字.则组成的两位数是3的倍数的概率为( ) A .14B .516C .716D .128.如图,这是一个长方体纸盒的表面展开图,纸片厚度不计.根据图中数据,可得这个盒子的容积为( )A .6B .8C .10D .159.如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为( ) A .2.5 B .2.8 C .3 D .3.210.如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过点A 的切线交于点B ,且∠APB =60°,设OP =x ,则△PAB 的面积y 关于x 的函数图象大致是( )二、填空题(每题5分,共20分)11.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是________.12.小明家的客厅有一张直径为1.2米,高为0.8米的圆桌BC ,在距地面2米的A 处有一盏灯,圆桌的影子为DE ,依据题意建立如图所示的平面直角坐标系,其中D 点坐标为(2,0),则点E 的坐标是________.13.如图,矩形ABCD 中,AB =3,BC =2,E 为BC 的中点,AF =1,以EF 为直径的半圆与DE交于点G ,则劣弧GE ︵的长为________.14.抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,若一个半径为5的圆也经过点A ,B ,则该圆的圆心坐标为______________.三、(每题8分,共16分)15.如图是由5个大小相同的小正方体搭成的几何体,其中每个小正方体的棱长为1 cm.(1)直接写出这个几何体的表面积:__________;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.16.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.(1)请分别作出如图所示的两个三角形的最小覆盖圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论.(不要求证明)四、(每题8分,共16分)17.如图,在8×8的小正方形网格中,△ABC三顶点的坐标分别为A(2,3),B(2,1),C(5,1),把△ABC绕着点A顺时针旋转90°得到△AEF,点B的对应点为E,点C的对应点为F.(1)在图中画出△AEF;(2)点C的运动路径长为____________;(3)直接写出线段BC扫过的面积:________.18.一个不透明的袋中装有20个只有颜色不同的球,其中有5个黄球,8个黑球,7个红球. (1)求从袋中摸出1个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀袋中的球,使从袋中摸出1个球是黑球的概率是13.求从袋中取出黑球的个数.五、(每题10分,共20分)19.一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.20.如图,已知直线l :y =3x ,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;过点A 2作x 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此方法进行下去.求:(1)点B 1的坐标和∠A 1OB 1的度数;(2)弦A4B3的弦心距.六、(12分)21.在不透明的袋中有大小、形状和质地等完全相同的小球,它们分别标有-1、-2、1、2,从袋中任意摸出一个小球(不放回),将袋中剩余的小球搅匀后,再从袋中摸出另一个小球.(1)请你列出摸出小球上的数可能出现的所有结果;(2)规定:如果摸出的两个小球上的数都是方程x2-3x+2=0的根,则小明赢.如果摸出的两个小球上的数都不是方程x2-3x+2=0的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?七、(12分)22.如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.(1)求证:∠ECD=∠EDC;(2)若OC=2,求DE的长;(3)在∠A从15°增大到30°的过程中,请直接写出弦AD在圆内扫过的面积.八、(14分)23.如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)请判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF·AB;(3)若⊙O的直径为10,AC=2 5,AB=4 5,求△AFG的面积.答案一、 1.A 2.D 3.B 4.B 5.B6.D 点拨:∵AB 为直径,∴∠ACB =90°,∴∠ACD +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°,∴∠B =∠ACD ,∵cos ∠ACD =35,∴cos B =35,易知tan B =43,∵BC =4,∴tan B =AC BC =AC 4=43,∴AC =163.7.B 8.A9.B 点拨:连接BD ,∵AD 平分∠BAC ,∴∠CAE =∠DAB ,∴CD ︵=BD ︵.∵AB 是⊙O 的直径,∴∠ACE =∠ADB =90°,∴△ACE ∽△ADB ,∴AC AD =AE AB ,即AC 5=AE6.设AC =5x ,则AE =6x ,∴DE =5-6x .连接OD 交BC 于点F ,则DO ⊥BC ,∴OD ∥AC ,易知OF =12AC =52x ,∴DF =OD -OF =3-52x ,易得△ACE ∽△DFE , ∴AC DF =AE DE ,即5x 3-52x=6x 5-6x, 解得x =715(x =0舍去),则AE =6x =2.8. 10.D二、11.41512.(4,0) 13.54π 点拨:如图,连接OG ,DF ,根据勾股定理分别求出DF 、EF ,证明Rt △DAF ≌Rt △FBE ,求出∠DFE =90°,进而推出∠GOE=90°,最后根据弧长公式计算即可. 14.(-1,1)或(-1,-1)点拨:不妨设点A 在点B 的左侧.∵抛物线y =-x 2-2x +3与x 轴交于A ,B 两点, ∴A (-3,0),B (1,0), ∴圆心在直线x =-1上,设圆心坐标为(-1,m ),由题意得22+m 2=(5)2,解得m =±1, ∴圆心坐标为(-1,1)或(-1,-1). 三、15.解:(1)22 cm 2(2)如图所示:16.解:(1)如图所示.(2)若三角形为锐角三角形,则其最小覆盖圆为三角形的外接圆;若三角形为直角三角形或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.四、17.解:(1)如图所示,△AEF 即为所求.(2)132π 点拨:易知AC = 22+32= 13,∠CAF =90°, ∴点C 的运动路径长为90·π· 13180=132π.(3)94π 点拨:线段BC 扫过的面积为S 扇形CAF -S 扇形BAE =90·π·( 13)2360-90·π·22360=134π-π=94π. 18.解:(1)20个球里面有5个黄球,故P (摸出1个球是黄球)=520=14.(2)设从袋中取出x (0<x <8,且x 为整数)个黑球,则此时袋中总共还有(20-x )个球,黑球剩(8-x )个.因为从袋中摸出1个球是黑球的概率是13,所以8-x 20-x =13,解得x =2.经检验,x =2是所列方程的解,且符合实际.所以从袋中取出了2个黑球. 五、19.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm. ∴菱形的边长为52 cm ,∴棱柱的侧面积S =52×8×4=80(cm 2).20.解:(1)设B 1的坐标为(1,m ).∵B 1在直线l 上,∴3=m ,∴B 1(1,3). ∴A 1B 1=3,OA 1=1,∴tan ∠A 1OB 1=A 1B 1OA 1=3,∴∠A 1OB 1=60°. (2)如图,作OH ⊥A 4B 3于H .由题意可得OA 2=2,OA 3=4,OA 4=8. ∵OA 4=OB 3,OH ⊥A 4B 3, ∴∠A 4OH =12∠A 4OB 3=30°,∴OH =OA 4·cos30°=8×32=4 3. ∴弦A 4B 3的弦心距为4 3. 六、21.解:(1)可能出现的所有结果如下表-1 -2 1 2 -1 (-1,-2)(-1,1) (-1,2) -2 (-2,-1) (-2,1)(-2,2) 1 (1,-1) (1,-2) (1,2) 2(2,-1)(2,-2)(2,1)(2)∵x 2-3x +2=0,∴(x -1)(x -2)=0,∴x 1=1,x 2=2.∵共有12种等可能的结果,其中摸出的两个小球上的数都是方程x 2-3x +2=0的根的结果有2种,摸出的两个小球上的数都不是方程x 2-3x +2=0的根的结果有2种, ∴P (小明赢)=212=16,P (小亮赢)=212=16,∴游戏规则公平.七、22.(1)证明:如图,连接OD ,则OD ⊥DE ,∴∠ODA +∠EDC =90°.∵OA =OD ,∴∠OAD =∠ODA ,又∵OA ⊥OB ,∴∠OAD +∠OCA =90°,∴∠OCA =∠EDC .又∵∠OCA =∠ECD ,∴∠ECD =∠EDC .(2)解:由(1)知,∠ECD =∠EDC ,∴ED =EC .设ED =x ,则OE =OC +CE =2+x .在Rt △ODE 中,∵OD 2+DE 2=OE 2,OD =OA =8,∴82+x 2=(2+x )2,解得x =15,∴DE 的长为15.(3)解:弦AD 在圆内扫过的面积为16π3+16 3-16. 点拨:如图,连接OD ′,过点O 作OH ⊥AD ′于点H ,延长AO 交⊙O 于点M ,过点D 作DN ⊥AM 于点N .设弦AD 在圆内扫过的面积为S ,则S =S 扇形AOD -S △OAD -S 弓形ABD ′,由题意知,∠OAH =30°,∴在Rt △OAH 中,∠AOH =60°,AH =32OA =4 3,OH =12OA =4, ∴AD ′=2AH =8 3,∠AOD ′=120°,∴S 弓形ABD ′=S 扇形AOD ′-S △OAD ′=120π×82360-12×8 3×4=64π3-16 3. 在Rt △ODN 中,∠DON =2∠OAD =30°,∴DN =12OD =4, ∴S △OAD =12OA ·DN =12×8×4=16. ∵∠AOD =180°-∠DON =150°,∴S 扇形AOD =150π×82360=80π3, ∴S =S 扇形AOD -S △OAD -S 弓形ABD ′=80π3-16-⎝ ⎛⎭⎪⎫64π3-16 3=16π3+16 3-16, ∴弦AD 在圆内扫过的面积为16π3+16 3-16. 八、23.(1)解:PA 与⊙O 相切.理由如下:连接CD .∵AD 为⊙O 的直径,∴∠ACD =90°.∴∠D +∠CAD =90°.∵∠B =∠D ,∠PAC =∠B ,∴∠PAC =∠D .∴∠PAC +∠CAD =90°,即DA ⊥PA .∴PA 与⊙O 相切.(2)证明:连接BG .∵AD 为⊙O 的直径,CG ⊥AD ,∴AC ︵=AG ︵.∴∠AGF =∠ABG .∵∠GAF =∠BAG ,∴△AGF ∽△ABG .∴AG ∶AB =AF ∶AG . ∴AG 2=AF ·AB .(3)解:连接BD .∵AD 是⊙O 的直径,∴∠ABD =90°. ∵AG 2=AF ·AB ,AG =AC =2 5,AB =4 5,∴AF =AG 2AB = 5. ∵CG ⊥AD ,∴∠AEF =∠ABD =90°.又∵∠EAF =∠BAD ,∴△AEF ∽△ABD .∴AE AB =AF AD ,即AE 4 5=510,解得AE =2.∴EF =AF 2-AE 2=1. ∵EG =AG 2-AE 2=4,∴FG =EG -EF =4-1=3.∴S △AFG =12FG ·AE =12×3×2=3.。
沪科版九年级下册数学期末测试卷(易错题)
沪科版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm 2B.48π cm 2C.60π cm 2D.80π cm 22、已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A.0.5B.0.6C.0.7D.0.83、如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.6cmB.4cmC.3cmD.8cm4、如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°5、在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.6、如图是一个由7个相同正方体组合而成的几何体,它的主视图为()A. B. C. D.7、如图几何体的主视图是()A. B. C. D.8、下列说法正确的是()A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式 C.一组数据8,8,7,10,6,8,9 的众数和中位数都是8 D.若甲组数据的方差s 2=0.01,乙组数据的方差s 2=0.1,则乙组数据比甲组数据稳定9、如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40。
,则∠C的度数是( )A.100°B.80°C.50°D.40°10、已知⊙O的直径AB与弦AC的夹角为30°,过点C的切线PC与AB的延长线交于P.PC=5,则⊙O的半径为()A. B. C.5 D.1011、如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A.48°B.42°C.45°D.24°12、将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A.10cmB.20cmC.30cmD.60cm13、如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110°B.120°C.150°D.160°14、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为()A.4πB.2πC.πD.15、已知⊙O的半径是6,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.无法确定二、填空题(共10题,共计30分)16、如图,∠BOD=140°,则∠BCD的度数为________.17、如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为6,点A(0,3),点B(5,0),点C(0,12),将线段OC绕点O顺时针旋转α(0°≤α≤90°),得线段OC’,OC’与弧MN交于点P,连PA,PB.则2PA+PB的最小值为________.18、如图,已知用一块圆心角为270°的扇形铁皮做一个圆锥形的烟囱帽(接缝忽略不计),做成的烟囱帽底面圆直径是60cm,则这个烟囱帽的侧面积是________ cm2.19、如图,⊙O的直径CD⊥AB,∠A=30°,则∠D=________ .20、不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是________.21、投掷一枚普通的六面体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4 ;④掷得的点数不小于2.这些事件发生的可能性由大到小排列结果按序号排列是________.22、如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.23、在平面直角坐标系中,点P(-5,3)关于原点对称点P′的坐标是________。
(易错题)沪科版九年级数学下册期末综合检测试卷(学生用)
【易错题解析】沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A. 主视图B. 左视图 C. 俯视图 D. 左视图和俯视图2.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A. 65°B. 80°C. 105°D. 115°3.我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B.C. D.4.已知点A(2m ,-3)与B(6,1-n)关于原点对称,那么m和n的值分别为()A. 3,-2B. -3,-2 C. -2,-3 D. -2,35.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A. l1B. l2C. l3D. l46.由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( )A. 6个 B. 5个 C. 4个 D. 3个7.下列说法正确的是()A. 彩票中奖的概率是1%,则买100张彩票一定会中奖B. 一组数据的中位数就是这组数据正中间的数C. 鞋店老板进货时最关心的是鞋码的众数D. 甲每次考试成绩都比乙好,则方差S甲2<S乙28.如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A. 25°B. 25°+ n°C. 50°D. 50°+n°9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A. 4个B. 6个C. 34个 D. 36个10.AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2 √3,则阴影部分的面积为()A. π3B. 2π3C. πD. 2π二、填空题(共10题;共30分)11.若点P(π,−2)、Q(3,π)关于原点对称,则π−π =________。
沪科版九年级数学下期末综合检测复习试题(有答案)
期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B . 28° C.33° D.48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B.C.D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C.D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3c mC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B . 70° C.50° D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4) C. (4,2) D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是________枚.13.如图,在⊙O 中,AA∧=AA ∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC 中,∠ABC =24°,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,若点E 在BD 的垂直平分线上,则∠C 的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于________ .18.如图,是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,AC=1,则BB ′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD 中,tanA= √3,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,给出如下几个结论:(1)△AED ≌△DFB ;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
沪科版九年级数学下期末综合检测复习试卷(有答案)
期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B . 28° C.33° D.48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B.C.D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C.D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3c mC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B . 70° C.50° D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4) C. (4,2) D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是________枚.13.如图,在⊙O 中,AA∧=AA ∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC 中,∠ABC =24°,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,若点E 在BD 的垂直平分线上,则∠C 的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于________ .18.如图,是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,AC=1,则BB ′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD 中,tanA= √3,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,给出如下几个结论:(1)△AED ≌△DFB ;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
沪科版九年级数学下期末综合检测复习试卷(有答案)
期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B . 28° C.33° D.48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B.C.D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C.D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3c mC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B . 70° C.50° D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4) C. (4,2) D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是________枚.13.如图,在⊙O 中,AA∧=AA ∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC 中,∠ABC =24°,以AB 为直径的⊙O 交BC 于点D ,交CA 的延长线于点E ,若点E 在BD 的垂直平分线上,则∠C 的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于________ .18.如图,是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,AC=1,则BB ′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD 中,tanA= √3,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,给出如下几个结论:(1)△AED ≌△DFB ;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
(易错题)沪科版九年级数学下册期末综合检测试卷(学生用)
【易错题解析】沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A. 主视图B. 左视图C. 俯视图D. 左视图和俯视图2.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A. 65°B. 80°C. 105°D. 115°3.我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.已知点A(2m ,-3)与B(6,1-n)关于原点对称,那么m和n的值分别为()A. 3,-2B. -3,-2C. -2,-3D. -2,35.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A. l1B. l2C. l3D. l46.由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( )A. 6个B. 5个C. 4个D. 3个7.下列说法正确的是()A. 彩票中奖的概率是1%,则买100张彩票一定会中奖B. 一组数据的中位数就是这组数据正中间的数C. 鞋店老板进货时最关心的是鞋码的众数D. 甲每次考试成绩都比乙好,则方差S甲2<S乙28.如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A. 25°B. 25°+n°C. 50°D. 50°+n°9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A. 4个 B. 6个 C. 34个 D. 36个10.AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2 ,则阴影部分的面积为()A. B. C. π D. 2π二、填空题(共10题;共30分)11.若点P()、Q()关于原点对称,则=________。
【精品试卷】(易错题)沪科版九年级数学下册期末综合检测试卷(学生用)
【易错题解析】沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A. 主视图B. 左视图C. 俯视图D. 左视图和俯视图2.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A. 65°B. 80°C. 105°D. 115°3.我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.已知点A(2m ,-3)与B(6,1-n)关于原点对称,那么m和n的值分别为()A. 3,-2B. -3,-2C. -2,-3D. -2,35.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A. l1B. l2C. l3D. l46.由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( )A. 6个B. 5个C. 4个D. 3个7.下列说法正确的是()A. 彩票中奖的概率是1%,则买100张彩票一定会中奖B. 一组数据的中位数就是这组数据正中间的数C. 鞋店老板进货时最关心的是鞋码的众数D. 甲每次考试成绩都比乙好,则方差S甲2<S乙28.如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A. 25°B. 25°+n°C. 50°D. 50°+n°9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A. 4个B. 6个C. 34个D. 36个10.AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2 ,则阴影部分的面积为()A. B. C. π D. 2π二、填空题(共10题;共30分)11.若点P()、Q()关于原点对称,则=________。
【易错题】沪科版九年级数学下册期末综合检测试卷学生用-含答案
【易错题解析】沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A. 主视图B. 左视图C. 俯视图D. 左视图和俯视图2.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A. 65°B. 80°C. 105°D. 115°3.我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.已知点A(2m ,-3)与B(6,1-n)关于原点对称,那么m和n的值分别为()A. 3,-2B. -3,-2C. -2,-3D. -2,35.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A. l1B. l2C. l3D. l46.由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( )A. 6个B. 5个C. 4个D. 3个7.下列说法正确的是()A. 彩票中奖的概率是1%,则买100张彩票一定会中奖B. 一组数据的中位数就是这组数据正中间的数C. 鞋店老板进货时最关心的是鞋码的众数D. 甲每次考试成绩都比乙好,则方差S甲2<S乙28.如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A. 25°B. 25°+n°C. 50°D. 50°+n°9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A. 4个B. 6个C. 34个D. 36个10.AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2 √3,则阴影部分的面积为()A. π3 B. 2π3C. πD. 2π二、填空题(共10题;共30分)11.若点P(a,−2)、Q(3,b)关于原点对称,则a−b=________。
沪科版九年级数学下期末综合检测复习试卷(有答案).docx
期末专题复习:沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°2.同时抛掷两枚均匀的硬币,落地后两枚硬币都是正面朝上的概率是()A. 1B. 12C. 13D. 143.与如图所示的三视图对应的几何体是()A. B. C. D.4.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.5.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. 143π﹣6 B. 259π C. 338π﹣3 D. √33 +π6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 488.如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A. 80°B. 70°C. 50°D. 40°9.如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为( )A. (2,2)B. (2,4)C. (4,2)D. (1,2)10.点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A. 2B. 2.5C. 3D. 3.5二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是________枚.13.如图,在⊙O中,AB∧=BC∧,∠C=75°,则∠A=________ °.14.(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________ 颗.15.如图(右上),在△ABC中,∠ABC=24°,以AB为直径的⊙O交BC于点D,交CA 的延长线于点E,若点E在BD的垂直平分线上,则∠C的度数为________.16. 3.12日植树节,老师想从甲、乙、丙、丁4名同学中挑选2名同学代表班级去参加学校组织的植树活动,恰好选中甲和乙去参加的概率是________.17.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于________ .18.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________ .19.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为________ .20.如图,在菱形ABCD中,tanA= √3,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG 与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG= √3CG2;其中正确结论的序号为________.4三、解答题(共9题;共60分)21.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
沪科版九年级下册数学期末测试卷(易错题)
沪科版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、⊙O半径是6cm,点A到圆心O距离是5.6cm,则点A与⊙O的位置关系是()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.不能确定2、如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8, 则BE为()A.2B.3C.4D.3.53、如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则扇形BOC的面积为()A. B. C.π D.4、如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB= ,则∠ADC的度数为()A. B. C. D.5、如图,CD是圆O的直径,弦AB⊥CD于点G,直线EF与圆O相切与点D,则下列结论中不一定正确的是()A.AG=BGB.AD∥BCC.AB∥EFD.∠ABC=∠ADC6、如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A. B. C. D.7、如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°8、若一个口袋中装有2个红球和一个黑球,对于“从中摸出一个球是红球”这个事件,下列说法正确的是()A.发生的可能性为B.是不可能事件C.随机事件D.必然事件9、将图形按顺时针方向旋转90°后的图形是()A. B. C. D.10、下列四个图案中,属于中心对称图形的是()A. B. C. D.11、如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A. B. C. D.12、如下图,在Rt△ABC中,∠ACB=90o, AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为A. B. C. D.13、如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.130°B.100°C.50°D.65°14、如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2 时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣415、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB= ,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是________.17、如图,C、D是直径为4的半圆O上的三等分点,P是直径AB上的任意一点,连接CP、DP,则图中阴影部分的面积是________.18、一张扇形纸片,半径是6,圆心角为120°,将它围成一个圆锥,则这个圆锥的底面半径为________.19、已知:在△ABC中,AB=AC=6,∠B=30°,E为BC上一点,BE=2EC,DE=DC,∠ADC=60°。
沪科版九年级下册数学期末测试卷(综合)
沪科版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,直线y=x+与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的点P有( )个A.2B.3C.4D.52、袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A. B. C. D.3、一条排水管的截面如图所示,已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A.8B.10C.12D.164、如图,在△ABC中,点I为△ABC的内心,点D在BC上,且ID⊥BC,若∠ABC=44°,∠C=56°,则∠AID的度数为()A.174°B.176°C.178°D.180°5、下列说法中,正确的有()①圆的半径垂直于弦;②直径是弦;③圆的内接平行四边形是矩形;④圆内接四边形的对角互补;⑤长度相等的两条弧是等弧;⑥相等的圆心角所对的弧相等.A.2个B.3个C.4个D.5个6、如图几何体的俯视图是()A. B. C. D.7、如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A.2B.2.5C.3D.3.58、下列图形中既是轴对称图形又是中心对称图形的是( )A.正六边形B.正五边形C.平行四边形D.等腰三角形9、如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S 1、S 2,则S 1与S 2的大小关系是A. S1=S 2B. S1>S2C. S1<S 2D. S1与S 2大小关系不确定10、A,B,C,D,依次是⊙O上的四个点,==,弦AB,CD的延长线交于P点,若∠ABD=60°,则∠P等于()A.40°B.10°C.20°D.30°11、如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC等于()A.130°B.125°C.120°D.115°12、点(-1,2)关于原点对称的点的坐标是()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)13、将一块形状如图的直角梯形木板从一个圆钢圈中穿过,那么这个圆钢圈的最小直径是()A.1B.C.D.214、如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为( )A. cmB.5cmC.4cmD. cm15、在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)二、填空题(共10题,共计30分)16、点( ,2)关于原点对称的点的坐标是________.17、从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是________.18、有四张卡片(背面完全相同)分别写有运算符号+,﹣,×,÷,把它们背面朝上洗匀后,从中随机抽出1张卡片,放在“2□1”的方框里组成一个算式,再计算出结果,则计算结果是2的可能性是________.19、如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为________.20、用半经为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是________.21、如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是________cm3.22、如图,在半径为10cm的⊙O中,圆心O到弦AB的距离OC为6cm,则弦AB 的长为________cm.23、如图,从一块直径为6的圆形铁皮上裁出一个圆心角为的扇形,把这个扇形围成一个圆锥,则这个圆锥的底面半径是________.24、若圆锥的底面直径为6 cm,母线长为5 cm,则它的侧面积为________.(结果保留π)25、如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为________.三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,若,求证:AB=AC28、如图,直径AB为6的半圆,绕点A逆时针旋转60°此时点B到达点B′,求圆中阴影部分的面积.29、如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.30、如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、A5、B6、D7、B8、A9、C10、C11、B12、D13、C14、A15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
沪科版九年级下册数学期末测试卷(综合卷)
沪科版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、将等腰Rt△ABC绕点A逆时针旋转15°得到△AB′C′,若AC=1,则图中阴影部分面积为()A. B. C. D.2、下列四个几何体中,主视图、左视图、俯视图完全相同的是()A.圆锥B.球C.圆柱D.三棱柱3、在下列命题中,正确的是( )A.正多边形一个内角与一个外角相等,则它是正六边形B.正多边形都是中心对称图形C.边数大于3的正多边形的对角线长都相等D.正多边形的一个外角为,则它是正十边形4、下列事件中,确定事件是()A.向量与向量是平行向量B.方程有实数根; C.直线与直线相交 D.一组对边平行,另一组对边相等的四边形是等腰梯形5、将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为()A.(1,1)B.(﹣1,1)C.(1,﹣1)D. (,)6、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A. B. C. D.7、实验初中有A、B两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.下列事件中,是必然事件的为( )A.甲、乙同学都在A阅览室;B.甲、乙、丙同学中至少两人在A阅览室;C.甲、乙同学在同一阅览室D.甲、乙、丙同学中至少两人在同一阅览室8、如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.9、下面的图形既是轴对称图形又是中心对称图形的是()A.正六边形B.平行四边形C.正五边形D.等边三角形10、某射击运动员在同一条件下的射击成绩记录如下:射击次数20 80 100 200 400 1000 “射中九环以上”的次数18 68 82 168 327 823 “射中九环以上”的频率(结果保留两位小数)0.90 0.85 0.82 0.84 0.82 0.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.8411、关于频率和概率的关系,下列说法正确的是().A.频率等于概率B.当实验次数很大时,频率稳定在概率附近C.当实验次数很大时,概率稳定在频率附近D.实验得到的频率与概率不可能相等12、如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A.3πB.C.6πD.24π13、如图,⊙O是△ABC的内切圆,D,E是切点,∠A=50°,∠C=60°,则∠DOE=()A.70°B.110°C.120°D.130°14、如图,图形中是中心对称图形的是()A. B. C. D.15、如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是()A.扇形AOB的面积为B.弧BC的长为C.∠DOE=45°D.线段DE的长是二、填空题(共10题,共计30分)16、如图,在△ABC中,∠BAC=45°,AB=4cm,将△ABC绕点B按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为________cm2.17、如图,正方形是一飞镖游戏板,其中点,,,分别是各边中点,并将该游戏板划分成如图中所示的9个区域,现随机向正方形内投掷一枚飞镖(投中各区域的边界线或没有投中游戏板,则重投1次),则投中阴影区域的概率是________.18、如图,AB是的直径,C、D是圆上的两点,若,,则AB的长为________.19、如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= ,则BD的值为________20、如图,,,是上三点,若,的半径为2,则劣弧的长为________.21、阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,已知.求作:的角平分线.小霞的作法如下:①如图,在平面内任取一点;②以点为圆心,为半径作圆,交射线于点,交射线于点;③连接,过点作射线垂直线段,交⊙ 于点;④连接.所以射线为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是________.22、有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,再将水全部倒入A容器,结果为________.(填“溢出”“刚好”或“未装满”)23、如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为________.(结果保留π)24、如图,OA⊥OB于点O,OA=4,⊙A的半径是2,将OB绕点O按顺时针方向旋转,当OB与⊙A相切时,OB旋转的角度为________.25、如图,把绕点旋转,点旋转至边的点位置,,则的度数为________.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题解析】沪科版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.如图所示的几何体是由5个大小相同的小正方体紧密摆放而成的,其三视图中面积最小的是()A. 主视图B. 左视图C. 俯视图D. 左视图和俯视图2.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A. 65°B. 80°C. 105°D. 115°3.我国传统文化中的“福禄寿喜”图由下面四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.已知点A(2m ,-3)与B(6,1-n)关于原点对称,那么m和n的值分别为()A. 3,-2B. -3,-2C. -2,-3D. -2,35.如图为平面上圆O与四条直线l1、l2、l3、l4的位置关系.若圆O的半径为20公分,且O点到其中一直线的距离为14公分,则此直线为何?()A. l1B. l2C. l3D. l46.由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( )A. 6个B. 5个C. 4个D. 3个7.下列说法正确的是()A. 彩票中奖的概率是1%,则买100张彩票一定会中奖B. 一组数据的中位数就是这组数据正中间的数C. 鞋店老板进货时最关心的是鞋码的众数D. 甲每次考试成绩都比乙好,则方差S甲2<S乙28.如图,圆心角∠AOB=25°,将弧AB旋转n°得到弧CD,则∠COD等于()A. 25°B. 25°+n°C. 50°D. 50°+n°9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A. 4个B. 6个C. 34个D. 36个10.AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2 ,则阴影部分的面积为()A. B. C. π D. 2π二、填空题(共10题;共30分)11.若点P()、Q()关于原点对称,则=________。
12.如图,点A、B把⊙O分成:两条弧,则∠AOB=________.13.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为________.14.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=________.15.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是________.16.已知一扇形的圆心角为90°,弧长为6π,那么这个扇形的面积是________.17.如图,半径为的⊙O是△ABC的外接圆,∠CAB=60°,则BC=________ .18.有长度为3cm,5cm,7cm,9cm的四条线段,从中任取三条线段,能够组成三角形的概率是________.19.(2015•安顺)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 ________(结果保留π).20.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F 在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.三、解答题(共7题;共60分)21.在一个3m×4m的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.22.如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).①画出△ABC关于y轴对称的△A1B1C1;②将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)23.某日学校值周教师巡查早读情况,发现九年级共有三名学生迟到,年级主任通报九年级情况后,九(1)班班主任是数学老师,借此事在课堂上请同学们猜一猜、算一算迟到的学生是一个男生和两个女生的概率,李晓说:共有四种情况:一男二女,一女二男,三男,三女,因此概率是.请你利用树状图,判断李晓说法的正确性24.正方形网格在如图所示的平面直角坐标系中,现有过格点A,B,C的一段圆弧.请在图中标出该圆弧所在圆的圆心D,并写出圆心D的坐标.25.如图,已知点D是等腰直角三角形ABC斜边BC上一点(不与点B重合),连AD,线段AD绕点A逆时针方向旋转90°得到线段AE,连CE,求证:BD⊥CE.26.如图,AB是⊙O的直径,点F、C在⊙O上且,连接AC、AF,过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线;(2)若,CD=4,求⊙O的半径.27.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=,DF=y.请求出y关于的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】B4.【答案】B5.【答案】B6.【答案】C7.【答案】C8.【答案】A9.【答案】B10.【答案】B二、填空题11.【答案】-512.【答案】80°13.【答案】14.【答案】100°15.【答案】16.【答案】36π17.【答案】318.【答案】19.【答案】3﹣π20.【答案】≤l<13三、解答题21.【答案】22.【答案】①△A1B1C1如图所示②△A2BC2如图所示线段BC旋转过程中所扫过得面积S= = .23.【答案】解:李晓的说法不对.用树状图分析如下:(1个男生,2个女生).所以出现1个男生,2个女生的概率是.24.【答案】解:如图所示:D(2,0);25.【答案】证明:∵△ABC为等腰直角三角形,∴∠B=∠ACB=45°,∵线段AD绕点A逆时针方向旋转90°得到线段AE,∴∠ACE=∠B=45°,∴∠ACB+∠ACE=45°+45°=90°,即∠BCE=90°,∴BD⊥CE.26.【答案】(1)证明:连结OC,如图,∵,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵=,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=4,∴AC=2CD=8,在Rt△ACB中,BC2+AC2=AB2,即82+(AB)2=AB2,∴AB=,∴⊙O的半径为.27.【答案】(1)设直线AB的函数解析式为y=+4,代入(4,0)得:4+4=0,解得:=-1,则直线AB的函数解析式为y=-+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BDO≌△COD,∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②如图,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=;(3)当BD:BF=2:1时,如图,过点F作FH⊥OB于点H,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,∴=2,∴FH=2,OD=2BH,∵∠FHO=∠EOH=∠OEF=90°,∴四边形OEFH是矩形,∴OE=FH=2,∴EF=OH=4-OD,∵DE=EF,∴2+OD=4-OD,解得:OD=,∴点D的坐标为(0,),∴直线CD的解析式为y=+,由,得:,则点P的标为(2,2);当时,连结EB,同(2)①可得:∠ADB=∠EDP,而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°,∴△DEF是等腰直角三角形,1112 如图,过点F 作FG ⊥OB 于点G ,同理可得:△BOD ∽△FGB , ∴,∴FG=8,OD=BG ,∵∠FGO=∠GOE=∠OEF=90°,∴四边形OEFG 是矩形,∴OE=FG=8,∴EF=OG=4+2OD ,∵DE=EF ,∴8-OD=4+2OD ,OD=,∴点D 的坐标为(0,-),直线CD 的解析式为:,由,得:,∴点P 的坐为(8,-4),综上所述,点P 的坐标为(2,2)或(8,-4).。