实变函数积分理论部分复习试题[附的答案解析版]
(完整版)实变函数试题库1及参考答案
实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂¡是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈¡,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( )A ()\B A A =∅I B ()\A B A =∅IC ()\A B B A =UD ()\B A A B =U2.若nR E ⊂是开集,则( )A E E '⊂B 0E E =C E E =DE E '=3.设(){}n f x 是E 上一列非负可测函数,则( )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂¡是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系?六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩L L ,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =U U2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差.六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰.2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明(\)()c A B B A B B =U I U ()()()c c A B A B B A B B B A B ===I U I U I U U U2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]cE F F ==I ,故E 是可测集.由于E F =∅I ,所以1[0,1]()0m m E F mE mF mF ===+=+U ,故1mF =3.证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<I U U因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =L ,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数(复习资料,带答案)
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
实变函数(复习资料_带答案)资料
集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2
分
xn E, f ( xn ) a ………………… .3 分
实变函数试题库(5)及参考答案
实变函数试题库(5)及参考答案实变函数试题库及参考答案(5)本科一、填空题1.设,A B 为集合,则___(\)A B B A A2.设nE R ?,如果E 满足0E E =(其中0E 表示E 的内部),则E 是3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b必为G 的4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B -6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是7.若()E R ?是可数集,则__0mE 8.设{}()n f x 为可测集E上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立)二、选择题1、设E 是1R 中的可测集,()x ?是E 上的简单函数,则()(A )()x ?是E 上的连续函数(B )()x ?是E 上的单调函数(C )()x ?在E 上一定不L 可积(D )()x ?是E 上的可测函数 2.下列集合关系成立的是()(A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ?3. 若()nE R ?是闭集,则()(A )0E E = (B )E E = (C )E E '? (D )E E '=三、多项选择题(每题至少有两个以上的正确答案)1.设{[0,1]}E =中的有理点,则()(A )E 是可数集(B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点2.若()E R ?的外测度为0,则()(A )E 是可测集(B )0mE =(C )E 一定是可数集(D )E 一定不是可数集3.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ?∈,则下列哪些结果不一定成立()(A )()Ef x dx ?存在(B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈(D )lim ()()n EEn f x dx f x dx →∞=??4.若可测集E 上的可测函数()f x 在E 上有L 积分值,则()(A )()()f x L E +∈与()()f x L E -∈至少有一个成立(B )()()f x L E +∈且()()f x L E -∈ (C )|()|f x 在E 上也有L -积分值(D )|()|()f x L E ∈四、判断题1. 可列个开集的交集仍为开集()2. 任何无限集均是可列集()3. 设E 为可测集,则一定存在F σ集F ,使F E ?,且()\0m E F =. ()4. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:?实数a 都有()E x f x a ?≥是可测集()五、定义题1. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?2. 可测集E 上的可测函数与连续函数有什么关系?3.[],a b 上的绝对连续函数与有界变差函数有什么关系?六、计算题 1. 设()[][]101001x D x x ??=为,上的有理点为,上的无理点,求()[]01D x dx ?,.2. 求()0ln limcos xn x n e xdx n+∞-→∞+?.七、证明题1.设nE R ?是有界集,则*m E <+∞2.1R 上的实值连续函数()f x 是可测函数3.设mE <+∞,函数()f x 在E 上有界可测,则()f x 在E 上L -可积,从而[,]a b 上的连续函数是L -可积的4.设()n f x (1,2,n = )是E 上的L -可积函数,如果lim|()|0nn E n f x dx →∞=?,则()0n f x ?实变函数试题库及参考答案(2)本科一、填空题1.=2.开集3.构成区间4.=5.=6.可测集7.=8.不一定成立二、单选题 1.D 2.A 3.B 三、多选题1.AC2.AB3.ABCD4.AD 四、判断题××√√ 五、定义题1.答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ?. 反之不成立,但不论mE <+∞还是mE =+∞,(){}nf x 存在子列(){}kn f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.2.答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数3.答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、解答题1.证明记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==? ,120,1mE mE ==,且()1210EE D x χχ=+,所以()[]120,1100D x dx mE mE=+=?.2.解易知()ln limcos 0xn x n e x n-→∞+= 对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤ 设()ln ()x y f y y+=,0y >,则()2ln ()yx y x yf y y -++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥);又()ln 1limlim 0n n x n n x n→∞→∞+==+,由Levi 单调收敛定理得()()000ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===?,即()ln ()x n L E n+∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===?七、证明题1..证明因为E 是有界集,所以存在开区间I ,使E I ?由外测度的单调性,**m E m I ≤,而*||m I I =<+∞(其中||I 表示区间I 的体积),所以 *m E <+∞2.证明因为()f x 连续,所以对任何实数a ,{|()}x f x a >是开集,而开集为可测集,因此()f x 是可测函数3.证明因为()f x 在E 上有界可测,所以存在0M >,使|()|f x M <,x E ∈,|()|f x 是非负可测函数,由非负可测函数的积分单调性,|()|EEf x dx Mdx M mE <=?<+∞??故|()|f x 在E 上L -可积,从而()f x 在E 上L -可积因为[,]a b 上的连续函数是有界可测函数,所以L -可积的4.证明对任何常数0σ>,[|()|][|()|]|()|n n n E x f x mE x f x f x dx σσσ≥?≥≤所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dx σσσ≥≥≤1|()|0()nEfx dx n σ≤→→∞?因此 ()0n f x ?。
实变函数(复习资料_带答案)资料
2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。
实变函数试题库及参考答案
实变函数试题库及参考答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数(复习资料,带答案)
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
实变函数(复习资料,带答案).doc
《实变函数试卷一一、单项选择题(3分X5=15分)1、下列各式正确的是( )_________ oo oo oo oo(A) limA = u n A ; (B) lim A = n u A ;n—H=1k=n,?一z?=l k=n00 00 00 00(C) limA" = n u ; (D) lim= A k ;打一>oo z:=l k=n z?=l k=n2、设P为Cantor集,则下列各式不成立的是( )(A) ~P= c (B) mP = 0 (C) P = P (D) P=P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设以(4是£上的E有限的可测函数列,则下而不成立的是( )(A)若又(x)=>/(x),则又(x) + /(x) (B)sup{/…Cr)}是可测函数(O inf{//%)}是可测函数;(D)若/T H又⑺=>/U),则/(X)可测5、设f(X)是上有界变差函数,则卜*面不成立的是()(A) /(X)在[6Z,/7]上有界(B) /(X)在[6/,刎上儿乎处处存在导数c b(C) / (X)在上L 可积(D) J a f\x)cbc=f(b)-f(a)二.填空题(3分X 5=15分)1、(C s AuC v5)n(A-(A-B))= ________________2、设£是[0,1]上有理点全体,则E - ______ , E- ________ , E- _______ .3、设£是/?。
中点集,如果对任一点集r都,贝1J称£是£可测的4、/⑶可测的________ 条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设/(x)为上的有限函数,如果对于的一切分划,使_____________________________________ ,则称/(x)为[6Z,/7]上的有界变差函数。
实变函数期末复习题及答案
实变函数综合练习题《实变函数》综合训练题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若nE R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是nR 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D ) (A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
(完整版)实变函数论考试试题及答案
实变函数论考试试题及答案证明题:60分1、证明 1lim =n m n n m nA A ∞∞→∞==。
证明:设lim n n x A →∞∈,则N ∃,使一切n N >,n x A ∈,所以 ∞+=∈1n m mAx ∞=∞=⊂1n nm m A ,则可知n n A ∞→lim ∞=∞=⊂1n nm m A 。
设 ∞=∞=∈1n n m m A x ,则有n ,使 ∞=∈nm m A x ,所以n n A x lim ∞→∈。
因此,n n A lim ∞→= ∞=∞=1n nm m A 。
2、若n R E ⊂,对0>∀ε,存在开集G , 使得G E ⊂且满足 *()m G E ε-<, 证明E 是可测集。
证明:对任何正整数n , 由条件存在开集E G n ⊃,使得()1*m G E n-<。
令 ∞==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n-≤-<, 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。
由)(E G G E --=知E 可测。
证毕。
3、设在E 上()()n f x f x ⇒,且1()()n n f x f x +≤几乎处处成立, ,3,2,1=n , 则有{()}n f x a.e.收敛于)(x f 。
证明 因为()()n f x f x ⇒,则存在{}{}i n n f f ⊂,使()i n f x 在E 上a.e.收敛到()f x 。
设0E 是()i n f x 不收敛到()f x 的点集。
1[]n n n E E f f +=>,则00,0n mE mE ==。
因此0()0n n n n m E mE ∞∞==≤=∑。
在1n n E E ∞=-上,()i n f x 收敛到()f x , 且()n f x 是单调的。
因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。
实变函数试题库(3)及参考答案
实变函数试题库及参考答案(3) 本科一、填空题1.设为集合,则 ,A B ()\B A B A I U A BU 2.设为无理数集,则 (其中表示自然数集的基数)A A c c []0,13.设,如果中没有不是内点的点,则称是nE ⊂¡E E 4.任意个闭集的交是5.设是定义在可测集上的实函数,如果,是可测,()f x E 1a ∀∈¡()E x a f xb ⎡⎤≤<⎣⎦()则称在上 a b ≤()f x E 6.可测函数列的上确界也是7.设,,则()()n f x f x ⇒()()n g x g x ⇒..a e ()()n n f x g x ⇒8.设,那么由黎斯定理,有子列,使 于()()n f x f x ⇒(){}n f x ()k n f x ..a e E二、选择题1.下列集合关系成立的是()A cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭I I B ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭I U C ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭I U D cc cA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭I U 2.设,则( )n R E ⊂ A E E ⊃B E E '⊂C E E '⊂D E E=3.设为康托集,则( )P 是可数集 是不可数集 是开集A PB 0mP =C PD P4.下列集合关系成立的是( )若则 若则A A B ⊂c c B A ⊂B A B ⊂c cA B ⊂ 若则 若则C A B ⊂A B B =I D A B ⊂A B B=U 三、多项选择题(每题至少有两个以上的正确答案)1.设是狄利克莱函数,即,则( )()D x ()[][]10,100,1x D x x ⎧⎪=⎨⎪⎩为中有理数为中无理数几乎处处等于 几乎处处等于A ()D x 1B ()D x 0是非负可测函数 是可积函数C ()D x D ()D x L 2.设,,则( )nE ⊂¡*0m E = 是可测集 的任何子集是可测集 是可数集 不一定是可数集A EB EC EDE 3.设,,则( )nE ⊂¡()10E cx Ex x Eχ∈⎧=⎨∈⎩ 当是可测集时,是可测函数 当是可测函数时,是可测A E ()E x χB ()E x χE 集当是不可测集时,可以是可测函数C E ()E x χ 当是不是可测函数时,不一定是可测集D ()E x χE 4.设是上的连续函数,则( )()f x (),a b 在上有界 在上可测A ()f x (),a bB ()f x (),a b 在上可积 在上不一定可积C ()f x (),a b LD ()f x (),a b L 四、判断题1. 对等的集合不一定相等.()2. 称在上几乎处处相等是指使的全体是零测集. ( )()(),f x g x E ()()f x g x ≠x3. 可数个开集的交是开集 ( )4. 可测函数不一定是连续函数. ( )5. 对等的集合有相同的基数. ()五、定义题1. 简述证明集合对等的伯恩斯坦定理.2. 简述中开集的结构.1R 3. 可测集与闭集、集有什么关系?F σ4. 为什么说绝对连续函数几乎处处可微?六、计算题1. 设,为中有理数集,求.()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩E 0,2π⎡⎤⎢⎥⎣⎦()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰2. 设,求.()()[]22cos ,0,11n nx nx f x x n x =∈+()[]0,1lim n n f x dx →∞⎰七、证明题1.设是上的可测函数,则对任何常数,有()f x E 0a >()[|()]af x EmE x f x a ee dx-≥≤⎰2.设是上的可积函数,为的一列可测子集,,如果()f x E {}n E E mE <+∞lim n n mE mE→∞=则lim()()nE En f x dx f x dx→∞=⎰⎰3.证明集合等式:()\(\)(\)A B C A C B C =U U 4.设是零测集,则的任何子集是可测集,且nE R ⊂EF 0mF =5. 证明:上的实值连续函数必为上的可测函数1R ()f x 1R本科实变函数试题库及参考答案(3)1、填空题1.=2.=3.开集4.闭集5.可测6.可测函数7.8.()()f x g x ()()k n f x f x →二、单选题1.B2.A3.B4.A三、多选题1.BCD 2.ABD 3.AB 4.BD四、判断题 √√×√√五、定义题1.答:若,又,则A B B *⊂:B A A *⊂:A B:2.答: 设为中开集,则可表示成中至多可数个互不相交的开区间的并.G 1R G 1R 3.答:设是可测集,则,闭集,使或 集,E 0ε∀>∃F E ⊂()\m E F ε<∃F σF E⊂使.()\0m E F =4.答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.六、解答题1.解:因为,所以于0mE =()cos ,.f x x a e =[]0,1于是()0,0,22cos f x dx xdxππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而在上连续,所以黎曼可积,由牛顿莱布尼公式cos x 0,2π⎡⎤⎢⎥⎣⎦[]()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰2.解:因为在上连续,所以可测()n f x []0,1()1,2,n =L 又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++L 而,所以.22lim01n nxn x →∞=+()lim 0n n f x →∞=因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nn n n f x dx f x dx dx →∞→∞===⎰⎰⎰七、证明题1.证明 因为在上可测,所以是非负可测函数,于是由非负可测函数积分性()f x E ()f x e质,()()[|()][|()]a f x f x E x f x a E x f x a Ee dx e dx e dx≥≥≤≤⎰⎰⎰而,[|()][|()]a a E x f x a e dx e mE x f x a ≥=⋅≥⎰所以()[|()]a f x EmE x f x a e e dx-≥≤⎰2.证明因在上可积,由积分的绝对连续性知,对任意,存在,()f x E L -0ε>0δ>对任何,当时有,由于,故对上述的A E ⊆mA δ<|()|Af x dx ε<⎰lim n n mE mE →∞=<+∞,存在,当时,且有,于是0δ>0k 0n k >n E E ⊆()n n mE mE m E E δ-=-<,|()()||()|nnEE E E f x dx f x dx f x dx ε--=<⎰⎰⎰即lim ()()nE En f x dx f x dx→∞=⎰⎰3.证明 ()\()()()(\)(\)c c cA B C A B C A C B C A C B C ===U U I I U I U 4.证明 设,,由外测度的单调性和非负性,,所以F E ⊂*0m E =*00m F mE ≤≤=,于是由卡氏条件易知是可测集*0m F =F 5.证明,不妨假设,因为是上的连续函数,故是1,a b R ∀∈a b <()f x 1R ()f x 上的连续函数,记,由在上连续,则,使[],a b [],F a b =()f x F (),M m m M ∃<,则显然易证,是闭集,即为上的可测()m f x M ≤≤()1,R F f αα∀∈≥()f x [],a b 函数,由的任意性可知,是上的可测函数.,a b ()f x 1R。
实变函数试题库及参考答案
实变函数试题库及参考答案Last updated on the afternoon of January 3, 2021实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数复习题(一)
实变函数复习题(一)实变函数复习题实变函数是数学分析中一门重要的课程,是几乎所有科学学科的一个基础,也是微积分的基础。
在学习实变函数的过程中,我们需要复习一些理论知识和解题技巧。
以下是一些重要的复习题目。
一、理论知识1. 实变函数的定义和性质2. 连续性和一致连续性的定义及其关系3. 极限的定义及其性质4. 导数的定义及其性质5. 高阶导数的定义及其性质6. 麦克劳林公式及其应用7. 极值和最值的定义及其求解方法8. 函数的单调性、凸性和拐点的定义及其求解方法9. 不定积分的定义及其性质10. 定积分的定义及其性质11. 变限积分和重积分的定义及其性质12. 广义积分的定义及其性质二、解题技巧1. 理解定理的证明过程,掌握其具体应用2. 运用极限的定义求解无穷小量、无穷大量等问题3. 对于特殊函数如三角函数、反三角函数、指数函数、对数函数、双曲函数等,需要熟悉其性质和求导规则4. 对于一些常用函数的不定积分,如$\int \frac{1}{x^2+a^2}dx$,$\int \frac{1}{\sqrt{a^2-x^2}}dx$,$\int e^{ax}dx$,需要掌握其求解方法5. 对于求解最大值、最小值、拐点等问题,需要作图、求导、判别法等多种方法相结合6. 对于解决变限积分、重积分、广义积分等问题,需要根据相关定理进行计算和判定三、练习题1.$\lim\limits_{x\rightarrow 0}\frac{\sin x}{x}$2.证明函数$f(x)=x^3$在$x=0$处连续,但不一致连续3.证明$\lim\limits_{x\rightarrow 0}\frac{\sin x}{x}=1$4.求函数$f(x)=x^5-5x^4+10x^3+10x^2-5x+1$的极值和最值5.求函数$f(x)=x^3-3x^2+3x+1$的单调性、凸性和拐点6.求$\int\limits_0^1\frac{1}{\sqrt{1-x^2}}dx$7.求$\iint\limits_D(x^2+y^2)dx dy$,其中$D$是由$x^2+y^2=1$及$x^2+y^2=4$围成的区域8.求$\int_{-\infty}^\infty\frac{1}{1+x^2}dx$的值9.证明$\int_1^\infty\frac{1}{x^\alpha}dx$收敛当且仅当$\alpha>1$10.证明$\int_0^\infty\frac{\sin x}{x}dx=\frac{\pi}{2}$以上是实变函数复习的一些基本知识、技巧和练习题,通过对这些内容的熟练掌握和灵活运用,可以在以后的学习和科研中起到重要的作用。
实变函数(复习资料,带答案)
《实变函数》试卷一一、单项选择题(3分X 5=15分)1、下列各式正确的是( )(A)limA n A k;(B) lim 代A;n nlkn n nlkn(C)limA n ik A k;( D) l imA n 人;n nikn n nikn2、设P为Cantor集,则下列各式不成立的是( )(A)P c (B) mP 0 (C) P' P (D) P P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n(x)是E上的ae•有限的可测函数列,则下面不成立的是()(A)若f n(x) f(x),则f n(x) f (x) (B)sup f n(x)是可测函数(C) inf f n(x)是可测函数;(D)若nnf n(x) f(x),则f(x)可测5、设f(x)是[a,b]上有界变差函数,则下面不成立的是( )(A) f(x)在[a,b]上有界(B) f(x)在[a,b]上几乎处处存在导数b (C) f'(x)在[a, b]上L 可积(D) f'(x)dx f(b) f(a)a二.填空题(3分X 5=15分)E f(x)1、 ___________________________________ (C s A C s B) (A (A B))2、设E是0,1上有理点全体,则' o—E = _____ , E = _____ , E = _____3、设E是R n中点集,如果对任一点集T都___________________________________ 则称E是L可测的4、f(x)可测的_________ 件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设f (x)为a,b上的有限函数,如果对于a, b的一切分划,使 _______________________________________ 则称f (x)为a,b上的有界变差函数。
实变函数试题库参考答案
实变函数试题库参考答案(共37页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断45、若}{n A 是一开集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断46、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断49、若]1,0[ Q E =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、xx f 1)(=在(0,1)有限 B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=E x E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、.一致收敛59、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( ) A 、0 B 、1 C 、2 D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对 69、下列说法正确的是( ) A 、x x f sec )(=在)4,0(π上无界B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x xx f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f 72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数 73、()=-)2,1()1,0( m ( ) A 、1、 B 、2 C 、3 D 、4 74、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对 75、下列说法正确的是( ) A 、21)(x x f =在(0, 1)有限、 B 、21)(xx f =在]1,21[无界C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x Ex x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f - 78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( ) A 、1 B 、2 C 、3 D 、4 80、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和. 81、下列说法正确的是( ) A 、31)(x x f =在)1,21(无界 B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x xx f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x xx f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f - 84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上.收敛于.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定 86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积 87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积 88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( )A 、 0B 、 1/3C 、2/3D 、 1 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 17、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃=9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂=10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃=11、若}{n A 是任意一个集合列, 则=∞→n n A lim12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)= 17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂= 22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂= 24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '= 25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) = 26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) = 27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) = 29、一个非空集合A 的直径的定义为)(A δ= 30、设A = [0, 1] ⋂Q, 则)(A δ=31、nR E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。
实变函数试题库(4)及参考答案
实变函数试题库(4)及参考答案实变函数试题库及参考答案(4)本科⼀、填空题1.设为两个集合,则.,A B __cA B A B -I 2.设,如果满⾜(其中表⽰的导集),则是nE R ?E E E '?E 'E E 3.若开区间为直线上开集的⼀个构成区间,则满(i) (,)αβG (,)αβ)(b a ,G(ii),a G b G4.设为⽆限集.则的基数(其中表⽰⾃然数集的基数) A A __A a a N5.设为可测集, ,则.12,E E 2mE <+∞1212(\)__m E E mE mE -6.设为可测集上的可测函数列,且,则由______定理可知得,{}()n f x E ()(),n f x f x x E ∈存在的⼦列,使得.{}()n f x {}()k n f x .()()()k a en f x f x x E →∈7.设为可测集()上的可测函数,则在上的积分值存在且()f x E nR ?()f x E L 在上可积.(填“⼀定”“不⼀定”)|()|f x E L 8.若是上的绝对连续函数,则是上的有 ()f x [,]a b ()f x [,]a b ⼆、选择题1.设,则()(){},001E x x =≤≤ 是中闭集是中完备集A 1mE =B 0mE =C E 2RDE 2R 2.设,是上的可测函数,则()()f x ()g x E 、不⼀定是可测集、是可测集A ()()E x f x g x ??≥??B ()()E x f x g x ??≠??、是不可测集、不⼀定是可测C ()()E x f x g x ??≤??D ()()E x f x g x ??=??集3.下列集合关系成⽴的是()A 、 B 、 (\)A B B A B =U U (\)A B B A =U C 、 D 、(\)B A A A ?U \B A A4. 若是开集,则()()nE RA 、的导集B 、的开核C 、D 、的导集E E ?E E =E E =E E=三、多项选择题(每题⾄少有两个以上的正确答案)1.设是上有界函数,且可积,则()()f x [],a b L 在上黎曼可积在上可测A ()f x [],a bB ()f x [],a b 在上⼏乎处处连续在上不⼀定连续C ()f x [],a bD ()f x [],a b 2. 设,则(){[0,1]}E =中的⽆理点A 、是可数集 B 、是闭集 C 、中的每个点均是聚点 D 、E E E 0mE >3. 若()⾄少有⼀个内点,则()E R ?A 、可以等于0 B 、 C 、可能是可数集 D 、不可能是可数集*m E *0m E =E E 4.设是可测集,则的特征函数是()[,]E a b ?E ()E x χA 、上的符号函数C 、上的连续函数[,]a b E B 、上的可测函数 D 、上的连续函数[,]a b [,]a b四、判断题1. 零测集上的函数是可测函数. ()2. 可列个闭集的并集仍为闭集()3. 任何⽆限集均含有⼀个可列⼦集()4. 设为可测集,则⼀定存在集,使,且. ()E G σG E G ?()\0m G E =五、定义题1. 为什么说有界变差函数⼏乎处处可微?2. 简述⽆穷多个开集的交集是否必为开集?3. 可测集上的可测函数与简单函数有什么关系?E 4. 上的有界变差函数与单调函数有什么关系?[],a b 六、计算题7. 设,为康托集,求.()[]3sin 0,1\xx Pf x x x P ?∈?=?∈??P ()[]0,1f x dx ?8. 求.()()0,ln limcos xn n x n e xdx n -→∞+?七、证明题1.设是上⼏乎处处有限的可测函数,且,(),(),(),()n n f x g x f x g x E ()()n f x f x ?,则()()n g x g x ?()()()() n n f x g x f x g x +?+2.设是上在上也是可积的(),()f x g x E L -E L -3.设是可测集上的⾮负可测函数,如果,则于()f x E ()0Ef x dx =?()0.f x a e =E4.证明等式:\()(\)(\)A B C A B A C =U I实变函数试题库及参考答案(4)本科⼀、填空题1.等于2.闭集.3.4.5.6.黎斯7.不⼀定不⼀定8.界变差函数.(a,b)G ?≥≥2、单选题1.B 2.B 3.A 4.B3、多选题1.BD 2.CD 3.BD 4.ABC四、判断题√×√√五、定义题1.答:由若当分解定理,有界变差函数可表⽰成两个单调增函数的差,⽽单调函数⼏乎处处可微,所以有界变差函数⼏乎处处可微.2.答:不⼀定,如[]1111,11,1n n n +∞=??---+=- ??I 3.答:简单函数必是可测函数但可测函数不⼀定是简单函数,可测函数⼀定可表⽰成简单函数列的极限形式.4.答:单调函数必为有界变差函数但有界变差函数不⼀定为单调函数,有界变差函数可表⽰成单调函数之差.六、解答题1.解:因为,所以于0mP =(),.f x x a e =[]0,1于是⽽在上连续,所以()[][]0,10,1f x dx xdx =??x []0,1 因此.[]()2121000,11|22x xdx R x dx ===??()[]0,112f x dx =2.解:令()()()()0,ln cos xn n x n f x x e x nχ-+=显然在上可测,且()n f x ()0,+∞()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=??因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤?∈+∞=L 不难验证,当⾜够⼤时,是单调递减⾮负函数,且()()ln n x n g x n+=n ,所以()lim 0n n g x →∞=()()()()()()0,0,0,ln lim lim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==() 0,00dx +∞==?由勒贝格控制收敛定理 ()()0,limn n f x dx →∞+∞=?故.()()0,ln limcos 0xn n x n e xdx n -→∞+=?七、证明题1.证明对任何正数,由于0σ>|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+- 所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥[|()()|[|()()|22n n E x f x f x E x g x g x σσ-≥-≥U 于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥[|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞ 故()()()()n n f x g x f x g x +?+2.证明因是上可积,所以在上可积,从⽽(),()f x g x E L -|()|,|()|f x g x E L -可积,|()||()|f x g x +L -|()||()|f x g x ≤=+在上可积E L -3.证明反证,令,则由的可测性知,是可测集.下证,[|()0]A E x f x =>()f x A 0mA =若不然,则0 mA >由于,所以存在,使11[|()0][|()]n A E x f x E x f x n ∞==>=≥U 1N ≥1[|()]0mE x f x d N≥=> 于是11[|()[|()]111()()[|()0EE x f x E x f x NNd f x dx f x dx dx mE x f x N N N N≥≥≥≥=≥=>?因此,⽭盾,故于()0Ef x dx >?()0.f x a e =E4.证明\()()()()()(\)(\)c c c c cA B C A B C A B C A B A C A B A C ====U I U I I I I I I。
实变函数试题库(5)及参考答案
实变函数试题库及参考答案(5) 本科一、填空题1.设为集合,则,A B ___(\)A B B A A U U 2.设,如果满足(其中表示的内部),则是nE R ⊂E 0E E =0E E E 3.设为直线上的开集,若开区间满足且,则必为G (,)a b (,)a b G ⊆,a G b G ∉∉(,)a b 的G 4.设,则的基数(其中表示自然数集的基数){|2,}A x x n n ==为自然数A a a N 5.设为可测集,且,则,A B B A ⊆mB <+∞__(\)mA mB m A B -6.设是可测集上的可测函数,则对任意实数,都有()f x E ,()a b a b <是[()]E x a f x b <<7.若是可数集,则()E R ⊆__0mE 8.设为可测集上的可测函数列,为上的可测函数,如果{}()n f x E ()f x E ,则(是否成立).()()()a en f x f x x E →∈()()n f x f x ⇒x E ∈二、选择题1、设是中的可测集,是上的简单函数,则 ( )E 1R ()x ϕE (A )是上的连续函数 (B )是上的单调函数()x ϕE ()x ϕE (C )在上一定不可积 (D )是上的可测函数()x ϕE L ()x ϕE 2.下列集合关系成立的是()(A ) (B ) ()()()A B C A B A C =I U I U I (\)A B A =∅I(C ) (D )(\)B A A =∅I A B A B⊆U I 3. 若是闭集,则 ()()nE R⊆(A ) (B ) (C ) (D )0E E =E E =E E '⊆E E '=三、多项选择题(每题至少有两个以上的正确答案)1.设,则( ){[0,1]}E =中的有理点(A )是可数集 (B )是闭集E E (C )(D )中的每一点均为的内点0mE =E E 2.若的外测度为0,则( )()E R ⊆(A )是可测集 (B )E 0mE =(C )一定是可数集(D )一定不是可数集E E 3.设,为上几乎处处有限的可测函数列,为上几乎处处有mE <+∞{}()n f x E ()f x E 限的可测函数,如果,则下列哪些结果不一定成立()()(),()n f x f x x E ⇒∈(A )存在(B )在上-可积()Ef x dx ⎰()f x E L (C ) (D ).()()()a en f x f x x E →∈lim()()n EEn f x dx f x dx→∞=⎰⎰4.若可测集上的可测函数在上有积分值,则()E ()f x E L (A )与至少有一个成立()()f x L E +∈()()f x L E -∈(B )且()()f x L E +∈()()f x L E -∈(C )在上也有-积分值 |()|f x E L (D )|()|()f x L E ∈四、判断题1. 可列个开集的交集仍为开集 ()2. 任何无限集均是可列集 ( )3. 设为可测集,则一定存在集,使,且. ( E F σF F E ⊆()\0m E F =)4.设为零测集,则为上的可测函数的充要条件是:实数都有E ()f x E ∀a 是可测集(()E xf x a ⎡≥⎤⎣⎦)五、定义题1. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?2. 可测集上的可测函数与连续函数有什么关系?E 3. 上的绝对连续函数与有界变差函数有什么关系?[],a b 六、计算题1. 设,求.()[][]101001x D x x ⎧⎪=⎨⎪⎩为,上的有理点为,上的无理点()[]01D x dx ⎰,2. 求.()0ln limcos xn x n e xdx n+∞-→∞+⎰七、证明题1.设是有界集,则nE R ⊂*m E <+∞2.上的实值连续函数是可测函数1R ()f x3.设,函数在上有界可测,则在上可积,从而上的mE <+∞()f x E ()f x E L -[,]a b 连续函数是可积的L -4.设()是上的可积函数,如果,则()n f x 1,2,n =L E L -lim|()|0nn E n f x dx →∞=⎰()0n f x ⇒实变函数试题库及参考答案(2) 本科一、填空题1.=2.开集3.构成区间4.=5.=6.可测集7.=8.不一定成立2、单选题1.D 2.A 3.B三、多选题1.AC2.AB3.ABCD4.AD4、判断题××√√五、定义题1.答:设是可测集上的一列可测函数,那()(),n f x f x E当时,于,必有.mE <+∞()(),.n f x f x a e →E ()()n f x f x ⇒反之不成立,但不论还是,存在子列,使mE <+∞mE =+∞(){}n f x (){}k n f x 于.()(),.k n f x f x a e →E 当时,于,由定理可得近一致收敛于mE <+∞()(),.n f x f x a e →E Egoroff ()n f x ,反之,无需条件,结论也成立.()f x mE <+∞2.答:上连续函数必为可测函数但上的可测函数不一定时连续函数,上可测函数在E E E 上是“基本上”连续的函数E 3.答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数6、解答题1.证明 记是中有理数集,是中无理数集,则1E []0,12E []0,1,,且,[]12120,1,E E E E ==∅U I120,1mE mE ==()1210E E D x χχ=+所以.()[]120,1100D x dx mEmE =+=⎰2.解 易知()ln lim cos 0xn x n e x n-→∞+=对任意,0,1x n ≥≥()()ln ln cos x x n x n e x n n-++≤设,,则,()ln ()x y f y y +=0y >()2ln ()yx y x yf y y-++'=当时,,.3y ≥()1ln yx y x y<<++()0f y '<则是单调减函数且非负();()ln ()x n f n n+=3n ≥又,由单调收敛定理得()ln 1limlim 0n n x n n x n→∞→∞+==+Levi ,即,()()000ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===⎰⎰⎰()ln ()x n L E n+∈再由控制收敛定理得Lebsgue ()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===⎰⎰⎰7、证明题1..证明 因为是有界集,所以存在开区间,使 E I E I ⊂由外测度的单调性,,而(其中表示区间的体**m E m I ≤*||m I I =<+∞||I I 积),所以*m E <+∞2.证明因为连续,所以对任何实数,是开集,而开集为可测集,()f x a {|()}x f x a >因此是可测函数()f x 3.证明因为在上有界可测,所以存在,使,,()f x E 0M >|()|f x M <x E ∈是非负可测函数,由非负可测函数的积分单调性,|()|f x|()|EEf x dx Mdx M mE <=⋅<+∞⎰⎰故在上可积,从而在上可积|()|f x E L -()f x E L -因为上的连续函数是有界可测函数,所以可积的[,]a b L -4.证明 对任何常数,0σ>[|()|][|()|]|()|n n n E x f x mE x f x f x dxσσσ≥⋅≥≤⎰所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dxσσσ≥≥≤⎰1|()|0()nEf x dx n σ≤→→∞⎰因此()0n f x ⇒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011级实变函数积分理论复习题一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例)1、设{}()n f x 是[0,1]上的一列非负可测函数,则1()()nn f x fx ∞==∑是[0,1]上的Lebesgue可积函数。
(×)2、设{}()n f x 是[0,1]上的一列非负可测函数,则1()()nn f x fx ∞==∑是[0,1]上的Lebesgue可测函数。
(√)3、设{}()n f x 是[0,1]上的一列非负可测函数,则[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞=⎰⎰。
(×)4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{}()k n f x ,使得,[0,1][0,1]lim ()d lim ()d k k n n k k f x x f x x →∞→∞<⎰⎰。
(×,比如{}()n f x 为单调递增时,由Levi 定理,这样的子列一定不存在。
) 5、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{}()k n f x ,使得,[0,1][0,1]lim ()d lim ()d k k n n k k f x x f x x →∞→∞=⎰⎰。
(×,比如课本上法都引理取严格不等号的例子。
) 6、设{}()n f x 是[0,1]上的一列非负可测函数,则[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞≤⎰⎰。
(√)7、设{}()n f x 是[0,1]上的一列非负可测函数,则[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞≥⎰⎰。
(×)8、设()f x 是[0,1]上的黎曼可积函数,则()f x 必为[0,1]上的可测函数。
(√,Lebesgue 积分与正常黎曼积分的关系)9、设()f x 是[0,)+∞的上黎曼反常积分存在,则()f x 必为[0,)+∞上的可测函数。
(√,注意到黎曼反常积分的定义的前提条件,对任意自然数0n >,()f x 在[0,]n 上黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1[0,)[0,]n n ∞=+∞=上的可测函数)10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在[0,1]上的下方图形,()lim ()n nf x f x =,则()[0,1],n G f 单调递增,且()()()1lim [0,1],[0,1],[0,1],n nnn G f G fG f ¥===U ,()()[0,1],lim [0,1],n nmG f mG f =。
(√,用集合关系的定义,单调递增可测集列的极限性可以证明。
)二、叙述题(请完整地叙述以下定理或命题) (自己在书上找答案,务必要跟书上一模一样)1、单调收敛定理(即Levi 定理)2、Fatou 引理(法都引理)3、非负可测函数的Fubini 定理和Lebesgue 可积函数的Fubini 定理4、Lebesgue 控制收敛定理(两个)5、Lebesgue 基本定理(即非负可测函数项级数的逐项积分定理)6、积分的绝对连续性三、计算题(请完整写出计算过程和结果)1、设0D 为[0,]π中的零测集,30sin ,(),x x x D f x e x D ∉⎧⎪=⎨∈⎪⎩ ,求[0,]()d f x x π⎰。
解:由题设()sin f x x =,..a e 于[0,]π,而sin x 在[0,]π上连续,于是由积分的惟一性和L 积分与R 积分的关系得[0,][0,]()d sin d ()sin (cos )2f x x x x R xdx x ππππ===-=⎰⎰⎰。
2、设Q 为[0,+)∞中有理数全体,23sin ,[0,)\(),x x xxe x Q f x ex Q-⎧∈+∞⎪=⎨∈⎪⎩ ,求[0.)()d f x x +∞⎰。
解:因为Q 为可数集,所以0mQ =,从而2()x f x xe -=,..a e 于[0,)+∞,而2x xe-在[0,)+∞上非负连续,且22011()()d ()d 22x xR f x x R xe x e +∞+∞--+∞==-=⎰⎰, 所以由积分的惟一性和L 积分与R 积分的关系得222[0.)[0.)11()d d ()d 22x x x f x x xex R xex e+∞---+∞+∞+∞===-=⎰⎰⎰。
3、设P 为[0,1]上的Cantor 三分集,2,[0,)\()sin(),x x xe x Pf x e x P-⎧∈+∞⎪=⎨∈⎪⎩ ,求[0.)()d f x x +∞⎰。
解:因为0mP =,所以2()x f x xe -=,..a e 于[0,)+∞,而2x xe -在[0,)+∞上非负连续,且22011()()d ()d 22x xR f x x R xe x e +∞+∞--+∞==-=⎰⎰, 所以由积分的惟一性和L 积分与R 积分的关系得222[0.)[0.)11()d d ()d 22x x xf x x xe x R xe x e +∞---+∞+∞+∞===-=⎰⎰⎰。
4、计算20lim(1)d nn x n x e x n-→∞+⎰。
解: 令2[0,]()(1)()n xn n x f x e x nχ-=+,易见()n f x 在[0,)+∞非负可测,且()n f x 单调上升lim ()xn n f x e-→∞=,故由单调收敛定理200lim (1)d d 1n x x n xe x e x n+∞+∞--→∞+==⎰⎰。
5、积分计算(1)设¤为全体有理数所成的集合,在[0,1][0,1]E =⨯上函数f 定义如下:1,,(,)sin ,.xyx y f x y x y e x y +∉⎧=⎨++∈⎩求 ()d Ef z z ⎰。
(2)设¤为全体有理数所成的集合,在[0,1][0,1]E =⨯上函数f 定义如下:sin ,(,),(,)ln(1||),(,).xx y x y f x y e xy x y ∉⨯⎧=⎨++∈⨯⎩ 求 ()d Ef z z ⎰。
解:(1)记12{,,}r r =,令{(,):}k k A x y E x y r =?=,则()0,k m A =故10,k k m A ¥=骣÷ç=÷ç÷桫U 从而(,)1f x y =几乎处处于E 。
显然,1是E 上的连续函数,从而在E 上有界且Riemann 可积,故由Riemann 积分与Lebesgue 积分的关系定理,1在E 上Lebesgue 可积且1d (R)1d d 1.EEz x y ==蝌由于(,)1f x y =几乎处处于E ,故由积分的基本性质 .(d )d 11EEf z z z ==⎰⎰(2)解:因()0,m ?い从而(,)sin f x y x y =几乎处处于E 。
显然,sin x y 是E上的连续函数,从而在E 上有界且Riemann 可积,故由Riemann 积分与Lebesgue 积分的关系定理,sin x y 在E 上Lebesgue 可积且1101sin d(,)(R)sin d d d sin d (1cos1).2EEx y x y x y x y x xy y ===-蝌蝌 由于(,)sin f x y x y =几乎处处于E ,故由积分的基本性质 1s i n d (,)(1c o ()d s 1).2E Ef x y z y x z =-=⎰⎰三、证明题(请完整地写出以下命题的证明)1、用Fubini 定理证明:若(,)f x y 为2R =(,+)(,+)-∞∞⨯-∞∞上的非负可测函数,则d (,)d d (,)d x yx f x y y y f x y x +∞+∞+∞=⎰⎰⎰⎰。
证明:记00{(,)}{(,)}0x y D x y x y y xy x ≤<+∞≤<+∞==≤≤≤≤+∞,令(,),(,)(,)0,(,)f x y x y DF x y x y D ∈⎧=⎨∉⎩,由题设易知(,)F x y 也是2R 上的非负可测函数,于是,由非负可测函数的Fubini 定理2d (,)d d (,)d (,)d d x Rx f x y y x F x y y F x y x y +∞+∞+∞-∞-∞==⎰⎰⎰⎰⎰d (,)d d (,)d yy F x y x y f x y x +∞+∞+∞+∞-∞-∞==⎰⎰⎰⎰。
2、设E 是R n中的可测集,若(1)1k k E E ∞==⋃,其中k E 为可测集,12E E ⊂⊂;(2)()f x ,()n f x (12)n =都是E 上的可测函数,且lim ()()n n f x f x →∞= ..a e 于E ;(3)存在E 上的Lebesgue 可积函数()F x ,使得n ∀,()()n f x F x ≤ ()x E ∈。
证明:()f x 在E 上也Lebesgue 可积,且 lim()d ()d nn n E Ef x x f x x →∞=⎰⎰。
证明:记()()()n n n E f x f x x χ=⋅,由题设知lim ()()n n f x f x →∞= ..a e 于E (事实上x E ∀∈,存在0n ,当0n n ≥时,总有n x E ∈,从而()1n E x χ=,于是()()()()n n n E n f x f x x f x χ=⋅=。
)又 ()()()()()n n n E n f x f x x f x F x χ=⋅≤≤,()F x 在E 上Lebesgue 可积 所以 由Lebesgue 控制收敛定理,并注意到()()()()n nn n E n EEE f x dx f x x dx f x dx χ=⋅=⎰⎰⎰可得lim ()lim ()()nn n n n E EEf x dx f x dx f x dx →∞→∞==⎰⎰⎰。
3、设E 是Lebesgue 可测集,()n f x (12)n =,()f x 都是E 上的Lebesgue 可积函数,若lim ()()n n f x f x →∞= ()x E ∈,且lim ()d ()d n n EEf x x f x x →∞=⎰⎰,证明:(1)()()()()()n n n F x f x f x f x f x =+--在E 上非负可测;(2)用Fatou 引理证明:lim()()d 0n n Ef x f x x →∞-=⎰。