通信原理课程教案 实验四 数字同步及眼图

合集下载

通信原理课程教案实验四数字同步及眼图

通信原理课程教案实验四数字同步及眼图

实验四数字同步及眼图实验(理论课:教材第13章P404)实验内容1.位定时、位同步提取实验2.信码再生实验3.眼图观察及分析实验4.仿真眼图观察测量实验一、实验目的1.掌握数字基带信号的传输过程。

2.熟悉位定时产生与提取位同步信号的方法。

3.学会观察眼图及其分析方法。

二、实验电路工作原理(一)、眼图概念一个实际的基带传输系统,尽管经过十分精心的设计,但要使其传输特性完全符合理想情况是不可能的。

码间干扰是不可能完全避免的,码间干扰问题与信道特性、发送滤波器、接受滤波器特性等因素有关。

因而计算由于这些因素所引起的误码率就十分困难,尤其是在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

在码间干扰和噪声同时存在的情况下,系统性能的定量分析,就是想得到一个近似的结果都是十分繁杂的。

那么,怎样来衡量整个系统的传输质量呢? 眼图,就是一种可以直观地、方便地估价系统性能一种方法。

这种方法具体做法是:用一个示波器接在接受滤波器的输出端,然后调整示波器水平扫描周期,使其与接受码元的周期同步。

这时就可以从示波器显示的图形上,观察出码间干扰和噪声的影响,从而估计出系统性能的优劣程度。

所谓眼图是指示波器显示的这种图像。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像一只人的眼睛而得名。

如图4-3所示。

(二)、同步信号的作用与电路工作原理数字通信系统能否有效地工作,在相当大的程度上依赖于发端和收端正确地同步。

同步的不良将会导致通信质量的下降,甚至完全不能工作。

通常有三种同步方式:即载波同步、位同步和群同步。

在本实验中主要位同步。

实现位同步的方法有多种,但可分为两大类型:一类是外同步法。

另一类是自同步法。

所谓外同步法,就是在发端除了要发送有用的数字信息外,还要专门传送位同步信号,到了接收端得用窄带滤波器或锁相环进行滤波提取出该信号作为位同步之用。

所谓自同步法,就是在发端并不专门向收端发送位同步信号,而收端所需要的位同步信号是设法从接收信号中或从解调后的数字基带信号中提取出来。

通信原理实验图,全

通信原理实验图,全

实验内容:从时域、频域和误码率比较2fsk和msk,时域是看眼图;从时域、频域和误码率比较2psk和2dpsk;从时域、频域和误码率比较2psk和mpsk;从时域、频域和误码率比较msk 和gmsk。

Gmsk:
Msk;
Gmsk和qpsk:
结果分析:衡量一个数字通信系统的指标有很多,但是最主要的是有效性和可靠性的讨论。

基于前面的讨论我觉得全面的分析二进制数字系统在时域在频域以及误码率显得很重要。

所以我结合上面的图形与书中所介绍的内容做一个比较全面的分析:
(1) 误码率
1、误码率是衡量一个数字通信系统的重要的指标。

2、在信道高斯白噪声的干扰下,各种二进制数字调制系统的误
码率取决于解调器输入信噪比,而误码率表达式的形式则取决于解调方式。

3、由于在有两种不同的解调:相干解调与非相干解调,一般来说相干解调的误码率比非相干解调的要高。

在相同的解调方式下其排序是:ASK FSK DSK DPSK不断增加。

(2)时域和频域上的比较
1、在时域和频域上2ASK与2PSK系统的近似度为2/Ts,在频带宽度和频带利用率上其排序为:FSK ASK PSK DPSK在不断的增加。

通信原理中的眼图如何描述

通信原理中的眼图如何描述

通信原理中的眼图如何描述通信原理中的眼图是一种常用的信号分析方法,用来描述数字通信中的信号质量和带宽利用率。

它可以表达信号的波形、噪声、振幅和时间间隔等信息,是衡量数字通信系统性能的重要工具。

眼图的基本定义是将连续的信号序列按照一定时间间隔进行采样,然后将采样到的数字信号以一定的水平缩放因子和垂直偏移因子绘制到坐标系中,形成一系列的“眼睛”形状。

每个“眼睛”代表一个样本周期内的传输信号,通过分析这些“眼睛”的开口大小、对称性、向上或向下的移动等特征,可以推断出信道传输特性和影响因素。

眼图可以从多个方面提供有关信号质量的信息。

首先,眼图的开口大小可以反映信号的抗噪声能力和抗干扰能力。

如果开口较小,意味着传输信号容易受到噪声和干扰的影响,信号质量较差;反之,如果开口较大,信号质量较好,传输容易。

其次,眼图的对称性可以反映信号的失真情况。

如果眼图不对称,说明信号可能发生了失真,需要进行补偿或校正。

此外,眼图的移动方向和距离可以表达信号的时钟同步性和信号间隔的准确程度。

如果眼图向上或向下移动,或者眼图的顶部或底部出现扭曲,意味着信号的时钟同步不好,信号间隔的准确性较差。

眼图的形状和特征主要受到以下几个因素的影响。

首先,信号的带宽决定了眼图的开口大小。

带宽越大,眼图的开口越大,信号质量越好。

其次,信号的噪声和干扰会使眼图的开口变窄,影响信号的清晰度。

因此,抗噪声和抗干扰能力越强的信号,眼图的开口越大。

此外,时钟同步误差也会对眼图产生影响。

时钟同步误差越大,眼图的移动越明显,信号间隔的准确度越低。

最后,传输介质的失真和信道衰减会使眼图发生形变,降低信号的质量。

在实际应用中,通过观察和分析眼图,可以识别出信号传输中的问题和优化方案。

例如,如果眼图的开口非常小,表明信号的抗噪声和抗干扰能力差,可以考虑增加信号的幅度、使用更好的编码和解码算法,或者改善传输环境等方法来提高信号质量。

如果眼图的对称性不好,可以考虑采用均衡技术或预编码技术来补偿信号失真。

通信原理硬件实验一 眼图实验

通信原理硬件实验一 眼图实验

电子信息与自动化学院《通信原理》实验报告学号:姓名:实验名称:硬件实验一眼图实验成绩:一、实验目的1.掌握眼图观测方法;2.学会用眼图分析通信系统性能;二、实验仪器1.RZ9681实验平台2.实验模块:•主控模块A1•基带信号产生与码型变换模块-A2•信道编码与频带调制模块-A4•纠错译码与频带解调模块-A53.信号连接线4.100M双通道示波器5.PC机(二次开发)三、实验原理1.1 什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于评价实际系统的性能,常用观察眼图进行分析。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

在下图眼图示意图中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

在图中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在硬件实验一 眼图实验报告 姓名: 学号:随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

图1.1无失真及有失真时的波形及眼图(a) 无码间串扰时波形;无码间串扰眼图 (b) 有码间串扰时波形;有码间串扰眼图 1.2 眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

通信原理课程设计----基带信号眼图仿真

通信原理课程设计----基带信号眼图仿真

课程设1 需求分析1.设基带传输系统响应是α=1的升余弦滚降系统,画出在接收端的基带数字信号波形及其眼图。

2.设定二进制数字基带信号 an∈{+1,-1},g(t)= 1 0≤t≤Ts;t为其他值时g(t)= 0。

系统加性高斯白噪声的双边功率谱密度为0。

画出:(1) 经过理想低通H(f)= 1 │f│≤5/(2 Ts) 后的眼图。

(2) 经过理想低通H(f)= 1 │f│≤1/ Ts后的眼图。

(3) 比较分析上面图形。

在该部分中叙述:对题目中要求的功能进行的简单的叙述分析,把题目内容给介绍一下,还需要介绍分工情况。

2 概要设计1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图2-1 基带系统的分析模型抑制码间干扰。

设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。

其中1()()2j t h t H e d ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数(3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图2-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

通信原理实验报告眼图

通信原理实验报告眼图

部分响应系统一、实验目的1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。

二、实验原理 1.部分响应系统为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。

理想低通传输特性可以有最高的频带利用率2=s η,但拖尾的波动比较大,衰减也比较慢。

若能改善这种情况,并保留系统的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。

这是有实际意义的,特别是在高速大容量传输系统中。

部分响应传输系统就具有这样的特点。

部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。

当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。

由于这种组合并不影响系统的传输带宽,因此频带利用率高。

第一类部分响应系统是在相邻的两个码元间引入码间干扰。

由于理想低通系统的传递函数为其冲激响应为ssT t T t t h //sin )(ππ=,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的冲激响应,那么它的系统带宽肯定限制在⎪⎪⎭⎫ ⎝⎛-s s TT 21,21,也就是说,系统的频带利用率为2bit/Hz 。

接着来看系统的冲激响应函数)(t g :s ss s s s s T t T t T tT T t c T tc T t h t h t g /11sin)(sin sin )()()(-=⎥⎦⎤⎢⎣⎡-+=-+=ππππsT f 21||<其他⎩⎨⎧=0)(sTf H可以看到,这个系统的冲激响应的衰减是理想低通冲激响应函数衰减的sT t /11-,它比理想低通系统冲激响应函数衰减快,因此相对于对定时精度的要求降低,它的系统响应为可以看到,第一类部分响应系统并不满足抽样点无码间干扰的条件,其每个抽样点仅受前一个码元的影响,因此可以通过减去前一码元的干扰来确定当前抽样点值,从而正确判决。

通信原理实验四RS422

通信原理实验四RS422

本科实验报告实验名称:RS232与RS422接口实验RS422接口实验一、实验目的熟悉RS422的基本特性和应用二、实验仪器1、ZH7001通信原理综合实验系统一台2、20MHz双踪示波器一台三、实验原理一个数据通信设备在与外部进行信息交换时,一般是通过数据接口进行。

在数据接口中主要是传输两类信息:(1)数据;(2)时钟。

有时也只有数据信息而没有时钟信息,这时时钟信息将由接收端从接收数据流中提取出来。

数据接口的设计取决于应用场合。

复杂的接口可包括物理层、链路层等,简单的只包括物理层:即物理结构与信号方式的定义(信号的传输方式)。

在信号传输方式方面,目前可选的种类很多:TTL、RS232、RS422、V35、ECL等。

信号传输方式的选择与信号的速率、传输距离、抗干扰性能等有关。

对于低速、近距离信号的传输可采用TTL方式,对于一般略高速率、距离较近时可选用RS232方式。

随着距离的增加、信号速率的提高可采用RS422、V35等信号方式,对于很高的信号速率通常采用ECL信号接口方式。

RS422是电气设备之间常用的数据接口标准之一。

采用平衡接口传输方式,当− +− o o V V为正时,为数据0,当− +− o o V V 为负时为数据1。

在通信原理综合实验系统中,RS422接口采用接口专用集成芯片SN75172与SN75173。

SN75172完成由TTL->RS422的电平转换;SN75173完成由RS422->TTL的电平转换。

该功能的电原理框图如图8.1.1所示。

在该模块中,测试点的安排如下:1、TPH01:发送时钟2、TPH02:接收时钟3、TPH03:接收数据4、TPH04:RS422译码输出其余测试点安排在JH02连接头的外部自环接头上。

自环连接头的制作见图8.1.2。

四、实验步骤准备工作:为便于引入观测信号,将来自解调器的数据送往RS422端口进行测试,测试系统连接参见图8.1.3所示。

通信原理实验教学大纲

通信原理实验教学大纲

《通信原理》课程实验教学大纲课程编号:032031课程总学时:80 实验学时:8 课程总学分:4.5适用专业:物联网工程,网络工程一、本课程实验的主要目的与任务通信原理是物联网工程专业必修的一门专业必修课。

本课程的任务是使学生获得通信技术的基本理论与技术,目的在于培养学生分析问题和解决问题的能力以及实践动手能力。

实验是提高同学们深入理解课堂内容的重要环节。

本实验课是配合理论学习单独开出的课程,要学习独立分析和设计基本单元电路,简单的通信系统,培养学生的实际动手能力和分析处理问题的能力,提高调试电路的能力。

通信原理实验是为今后的课程设计和毕业设计奠定基础。

通过实验可巩固和加深对通信原理、通信电路理论的理解。

通过实验教学,使学生进一步加强对通信原理中的基本单元电路的了解,搞清调幅、调频等电路的基本原理和实际电路。

基本任务是:了解每个实验的目的,理解实验方案、实验步骤的合理性,理解实验原理,弄清实验电路的结构和组成。

有效测出所需数据和波形,判别数据和波形的正确性;能应用理论对测得的数据和波形进行分析、整理,并根据实验目的作出结论。

将上述各项要求及实验结果编写成实验报告。

二、本课程实验项目注:1、类型---指验证性、综合性、设计性;2、该表格不够可拓展。

三、各实验项目主要实验内容和基本要求实验一 幅度调制及解调实验(一)、实验目的研究已调波与调制信号的关系。

序号实验项目名称学时类型必做/选做所需主要设备1 幅度调制及解调2 验证 必做 实验箱+示波器 2 FM 调制及解调实验2 验证 必做 实验箱+示波器3 调幅及FDM 频分复用传输实验2 验证 必做 实验箱+示波器 4 FSK 调制及解调实验2验证必做实验箱+示波器掌握AM、DSB调制。

(二)、实验器材主控&信号源、1号、17号模块各一块双踪示波器一台连接线若干(三)、实验原理本实验由信号源模块产生幅度调制信号,通过17号模块进行解调。

其中,幅度调制载波为20KHz正弦波,可在主控模块的【信号源】中设置【输出频率】来改变载频;音频信号为主控模块上MUSIC端口的1K+3K正弦合成波或音乐信号。

《通信原理实验》DBPSK、QPSK、眼图等实验

《通信原理实验》DBPSK、QPSK、眼图等实验

《通信原理实验》DBPSK、QPSK、眼图等实验一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义。

2、掌握眼图观测的方法并记录研究,3、掌握DBPSK调制和解调的基本原理。

4、掌握DBPSK数据传输过程,熟悉典型电路。

5、熟悉DBPSK调制载波包络的变化6、掌握QPSK调制原理。

7、了解OQPSK调制原理。

8、了解眼图与信噪比、码间干扰之间的关系及其实际意义。

9、掌握眼图观测的方法并记录研究。

二、实验器材1、主控&信号源模块,9号、10号、13号、17号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、低通信道模拟框图2、DBPSK实验原理框图3、DBPSK非相干解调框图4、QPSK/OQPSK调制框图5、QPSK/OQPSK解调框图5、低通信道模拟框图四、实验步骤实验项目一低通信道模拟和眼图实验1、在主控菜单中分别设置不同截止频率的低通信道,观察17号模块信道输出波形的“眼睛”大小,并分析原因。

截止频率为6KHz:截止频率为5.5KHz:截止频率为5KHz:截止频率为4.5KHz:注:第一个图中CH1(上面的波形)为CLK,CH2(下面的波形)为信道输出。

由图可知,随着截止频率的减小,“眼睛”张开的越来越小。

“眼睛”张开的大小反映着码间串扰的强弱,说明截止频率越小,码间串扰越大。

2、再在主控菜单中分别设置有成形滤波的低通信道,对比观测不带成形滤波的低通信道的输出眼图波形,并分析原因。

截止频率为6KHz:截止频率为5.5KHz:截止频率为5KHz:截止频率为4.5KHz:注:第一个图中CH1(上面的波形)为CLK,CH2(下面的波形)为信道输出。

通过与不带成形滤波的低通信道的输出眼图波形对比观察,发现带成形滤波的输出效果比不带成形滤波的效果要好。

实验项目二ASK调制1、分别观测DIN1和相对码,TH7(I-out)和P1(调制输出)。

观测DIN1和相对码:I-out和调制输出:注:第一个图中CH1(上面的波形)为DIN1,CH2(下面的波形)为相对码;第二个图中CH1(上面的波形)为I-out,CH2(下面的波形)为调制输出。

数通实验报告四.数字解调与眼图

数通实验报告四.数字解调与眼图

中南大学通信原理实验报告书题目:实验四专业:姓名:学号:时间:2014-12-13通信原理实验报告(实验四)实验名称:数字解调与眼图一.实验目的1. 掌握2DPSK相干解调原理。

2. 掌握2FSK过零检测解调原理。

二.实验内容1. 用示波器观察2DPSK相干解调器各点波形。

2. 用示波器观察2FSK过零检测解调器各点波形。

3.用示波器观察眼图。

三.实验步骤本实验使用数字信源单元、数字调制单元、载波同步单元、2DPSK解调单元及2FSK解调单元,它们之间的信号连结方式如图4-5所示,其中实线是指已在电路板上布好的,虚线是实验中要手工连接的。

实际通信系统中,解调器需要的位同步信号来自位同步提取单元。

本实验中尚未用位同步提取单元,所以位同步信号直接来自数字信源。

在做2DPSK解调实验时,位同步信号送给2DPSK解调单元,做2FSK解调实验时则送到2FSK解调单元。

图4-5 数字解调实验连接图1. 复习前面实验的内容并熟悉2DPSK解调单元及2FSK解调单元的工作原理,接通实验箱电源。

将数字调制单元单刀双掷开关K7置于左方NRZ端。

2. 检查要用到的数字信源、数字调制及载波同步单元是否工作正常,保证载波同步单元处于同步态!3. 2DPSK解调实验(1)将数字信源单元的BS-OUT用信号连线连接到2DPSK解调单元的BS-IN点,以信源单元的FS信号作为示波器外同步信号,将示波器的CH1接数字调制单元的BK,CH2(建议使用示波器探头的x10衰减档)接2DPSK解调单元的MU。

MU与BK同相或反相,其波形应接近图4-3所示的理论波形。

(2)示波器的CH2接2DPSK解调单元的LPF,可看到LPF与MU同相。

当一帧内BK中“1”码“0”码个数相同时,LPF的正、负极性信号电平与0电平对称,否则不对称。

(3)示波器的CH1接VC,调节电位器R39,保证VC处在0电平(当BK中“1”与“0”等概时LPF的中值即为0电平),此即为抽样判决器的最佳门限。

通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.

通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.

实验一码型变换实验一、基本原理在数字通信中, 不使用载波调制装置而直接传送基带信号的系统, 我们称它为基带传输系统,基本结构如图所示。

干扰基带传输系统的基本结构基带信号是代码的一种电表示形式。

在实际的基带传输系统中, 并不是所有的基带电波形都能在信道中传输。

对传输用的基带信号的主要要求有两点:(1对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型; (2 对所选码型的电波形要求, 期望电波形适宜于在信道中传输。

AMI :AMI 码的全称是传号交替反转码。

这是一种将信息代码 0(空号和 1(传号按如下方式进行编码的码:代码的 0仍变换为传输码的 0, 而把代码中的 1交替地变换为传输码的 +1, -1, +1, -1,……。

HDB3:HDB 3码是对 AMI 码的一种改进码,它的全称是三阶高密度双极性码。

其编码规则如下:先检察消息代码(二进制的连 0情况,当没有 4个或 4个以上连 0串时,按照 AMI 码的编码规则对信息代码进行编码; 当出现 4个或 4个以上连 0串时, 则将每 4个连 0小段的第 4个 0变换成与前一非 0符号 (+1或 -1 同极性的符号, 用V 表示 (即 +1记为 +V, -1记为 -V ,为使附加 V 符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻 V 符号也应极性交替。

当两个相邻 V 符号之间有奇数个非 0符号时,用取代节“ 000V ” 取代 4连 0信息码; 当两个相邻 V 符号间有偶数个非 0符号时, 用取代节“ B00V ” 取代 4连 0信息码。

CMI :CMI 码是传号反转码的简称,其编码规则为:“ 1”码交替用“ 11”和“ 00”表示; “ 0”码用“ 01”表示。

BPH :BPH 码的全称是数字双相码,又称 Manchester 码,即曼彻斯特码。

它是对每个二进制码分别利用两个具有 2个不同相位的二进制新码去取代的码,编码规则之一是: 0→ 01(零相位的一个周期的方波1→ 10(π相位的一个周期的方波二、实验结果CMIBPHHDB3 AMI三、结果分析各码型波形如上所示, 我们发现许多波形产生了不同程度的畸变, 表现是幅值不是单一的水平线, 而成了曲线。

《通信原理》课程实验报告

《通信原理》课程实验报告

《通信原理》课程实验报告班级:14通信技术x班 学号:尾数后两位 姓名: 座号:实验箱编号实验时间:实验地点:科A704实验课题:眼图观察测量实验实验目的:1.学会观察眼图及其分析方法,调整传输滤波器特性.实验过程:1、简述实验原理:2、什么是眼图?3、 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

①最佳抽样判决时刻对应于眼睛张开最大的时刻;②判决门限电平对应于眼图的横轴;③最大信号失真量即信号畸变范围用眼皮厚度;④噪声容限是用信号电平减去眼皮厚度;⑤过零点畸变为压在横轴上的阴影长度;⑥对定时误差的灵敏度由斜边的斜率反映。

1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。

无畸变眼图的开启度应为100%。

其中U=U++U-2.“眼皮”厚度2ΔU/U指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应等于0。

3.交叉点发散度ΔT/T指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发散度应为0。

4.正负极性不对称度指在最佳抽样点处眼图正、负幅度的不对称程度。

无畸变眼图的极性不对称度应为0。

最后,还需要指出的是:由于噪声瞬时电平的影响无法在眼图中得到完整的反映,因此,即使在示波器上显示的眼图是张开的,也不能完全保证判决全部正确。

不过,原则上总是眼睛张开得越大,误判越小4、实验的操作步骤与实验波形1、PSK调制与解调调制与解调波形:两个方波2、PSK调制与解调调制与解调,无噪声情况下的眼图波形:对眼图整体图:分析范例3、PSK调制与解调调制与解调,有噪声情况下的眼图波形:对眼图整体图:分析范例:对眼图整体图:分析案例:自己写。

通信原理实验(1-8)

通信原理实验(1-8)

通信原理实验报告学院:信息工程学院专业:通信工程学号:6姓名:李瑞鹏实验一 带通信道模拟及眼图实验一、实验目的1、 了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、 掌握眼图观测的方法并记录研究。

二、实验器材1、 主控&信号源、9号、13号、17号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK 信号和经过升余弦滤波后调制的PSK 信号送入带通信道,比较两种状况的眼图。

然后,改变带通信道的带宽重复观测。

四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。

2PSK 调制信号加升余弦滤波的带通信道模拟【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。

17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

五、实验报告1、完成实验并思考实验中提出来的问题。

2、分析实验电路工作原理,简述其工作过程。

3、整理信号在传输过程中的各点波形。

实验二 HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

实验四 数字解调与眼图

实验四  数字解调与眼图

实验四数字解调与眼图一、实验目的1 .掌握2DPSK 相干解调原理。

2 .掌握2FSK 过零检测解调原理。

二、实验原理可用相干解调或差分相干解调法(相位比较法)解调2DPSK信号。

在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。

本实验系统中,2DPSK载波频率等码速率13倍,两种解调方法都可用。

实际工程中相干解调法用得最多。

2FSK信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

本实验采用相干解调法解调2DPSK信号、采用过零检测法解2FSK信号。

图4-1为两个解调器的方框图。

图 4-l 数字解调方框图(a)2DPSK相干解调(b)2FSK过零检测解调在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。

本实验系统中为简化实验设备,发端即数字调制的输出端没有带通滤波器、信道是理想的,故解调器输入端就没加带通滤波器。

下面对2DPSK相干解调电路中的一些具体问题加以说明。

·电位器R26可以改变相乘器的增益。

相乘器增益太大时运放 U30可能会出现畸变。

调节R26时使MU的峰峰值不大于5V,此时运放输出信号的峰峰值也不大于5V,MU的波形接近图4-2所示的理论波形,但略有区别。

·信源是周期为24bit的周期信号,当24bit的相对码BK中“l”码和“0”码个数不相等时,相乘器U29的输出信号均值不等于0,此信号经电容C16隔直、低通滤波、反相放大器放大后得到的LPF信号就是一个均值为0但正负不对称的信号。

在实际的2DPSK通信系统中,抽样判决器输入信号是一个均值为 0且正负对称的信号,因此最佳判决电平为0。

本实验系统中,Vc 决定判决电平。

当 Vc =0而相对码 BK 中“1”码和“0”码个数差别太大时,会出现误判决,即解调器出现误码。

因为此时LPF信号的正电平或负电平非常接近0电平,抽样脉冲(位同步信号)稍不理想就会造成误码。

数字通信原理实验一、二、四报告

数字通信原理实验一、二、四报告

中南大学数字通信原理实验报告目录实验一:数字基带信号 (3)实验二:数字调制 (7)实验四:数字调解和眼图 (11)实验内容:实验一、实验二、实验四实验一:数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

三、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1.熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2.用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3.用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。

(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。

通信原理实验课件

通信原理实验课件

实验三 二相(PSK,DPSK)解调器系 统实验
• 一、实验目的
• l、掌握二相(PSK、DPSK)解调器的工作原理 与系统电路组成
• DPSK是利用前后相邻码元对应的载波相对相移来表示数 字信息的一种相移键控方式。设载波相对相移用△ 表示, (定义为本码元初相与前—码元初相之差),而且:
• △ψ= π 时,表示数字信息“1”。 • △ψ= 0 时,表示数字信息“0”。 • 则数字信息序列与DPSK信号的相位关系可举例说明如下:
• (6)做二相PSK实验时,必须把开关K700的1脚与2脚相连 接.做二相DPSK实验时,必须把开关K700的2脚与3脚相 连接。
T700 T702 T703
f =512 KHz f =512 KHz
f =512 KHz
K7004-5
T706
K7005-6
T706
f=128KHz (1010码)
1台
2、通信原理实验箱 1台
三、实验原理 1、基本概念:
2、四种基本码型
数字基带信号的常用码型
10100110 +E 0
( a( ( ( ( NRZ(
+E -E
(b)( ( ( NRZ(
+E 0
(c)( ( ( RZ(
+E -E
(d)( ( ( RZ(
+E -E
(e)( ( (
+E -E
(f)AMI(
对具有变压器或其它交流隅合的传输信道来说, 不易受隔直特性的影响。 ➢ 若接收端收到的码元极性与发送端的完全相反, 也能正确判决。
➢ 便于观察误码情况。
6. HDB3码 AMI码有一个重要缺点,即它可能出现长的连
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四数字同步及眼图实验
(理论课:教材第13章P404)
实验内容
1.位定时、位同步提取实验
2.信码再生实验
3.眼图观察及分析实验
4.仿真眼图观察测量实验
一、实验目的
1.掌握数字基带信号的传输过程。

2.熟悉位定时产生与提取位同步信号的方法。

3.学会观察眼图及其分析方法。

二、实验电路工作原理
(一)、眼图概念
一个实际的基带传输系统,尽管经过十分精心的设计,但要使其传输特性完全符合理想情况是不可能的。

码间干扰是不可能完全避免的,码间干扰问题与信道特性、发送滤波器、接受滤波器特性等因素有关。

因而计算由于这些因素
1
所引起的误码率就十分困难,尤其是在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

在码间干扰和噪声同时存在的情况下,系统性能的定量分析,就是想得到一个近似的结果都是十分繁杂的。

那么,怎样来衡量整个系统的传输质量呢? 眼图,就是一种可以直观地、方便地估价系统性能一种方法。

这种方法具体做法是:用一个示波器接在接受滤波器的输出端,然后调整示波器水平扫描周期,使其与接受码元的周期同步。

这时就可以从示波器显示的图形上,观察出码间干扰和噪声的影响,从而估计出系统性能的优劣程度。

所谓眼图是指示波器显示的这种图像。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像一只人的眼睛而得名。

如图4-3所示。

(二)、同步信号的作用与电路工作原理
数字通信系统能否有效地工作,在相当大的程度上依赖于发端和收端正确地同步。

同步的不良将会导致通信质量的下降,甚至完全不能工作。

通常有三种同步方式:即载波同步、位同步和群同步。

在本实验中主要位同步。

实现位同步的方法有多种,但可分为两大类型:一类是外同步法。

另一类是自同步法。

所谓外同步法,就是在发端除了要发送有用的数字信息外,还要专门传送位同步信号,到了接收端得用窄带滤波器或锁相环进行滤波提取出该信号作为位同步之用。

所谓自同步法,就是在发端并不专门向收端发送位同步信号,而收端所需要的位同步信号是设法从接收信号中或从解调后的数字基带信号中提取出来。

本实验中,位同步提取的方法是从二相PSK(DPSK)信号中,对解调出的数字基带信息再直接提取恢复出位同步信号。

图4-1是位同步恢复与信码再生电路方框图,图4-2是电原理图。

2
图4- 位同步恢复与信码再生电路方框图
1.带通滤波与全波整流电路
设计该电路时,以数字基带码元速率为32Kbit/s为例,数字基带信号由测量点TP705输入,经过电解电容E701与电阻R717进入该电路,带通滤波器由U710组成,测量点TP706为眼图测量点,利用双踪示波器的YB通道测量TP303或TP705,YA通道测量TP706时,调节示波器相应的开关与旋钮,就可以测量出眼图信号来。

关于眼图的具体测量在后面再作进一步的介绍。

由运算恢复出的眼图信号经过全波整波电路即完成了对32KHz/2基频的倍频作用,即在该电路的输出中已含有32KHz的频率成分。

在测量点TP711上可以测量出波形图来。

2.位定时处理电路
从图中可知,运算放大器U712(LM311)组成限幅放大电路。

32KHz谐振电路由电阻R731、R732、R722、电容C716、CA701(在电路板上这里为一可插入不同容量的电容作为实验调试,实验值为4700pf)、谐振线
3
圈L701组成。

由运算放大器U711∶A(TL084)组成射随器电路。

放大器U711∶C组成全波整流电路。

A/D模数转换电路由运算放大器U713(LM311)组成。

占空比调整电路由单稳态多谐振荡器U714∶A(74LS123)、电位器W703等组成。

电路工作过程如下:由全波整流电路输出的含有32KHz的频率信号,通过限幅放大变成数字信号后送入32KHz谐振电路,调谐后取出32KHz的正弦波信号,再经过射随器电路隔离送至A/D模数转换电路变成32KHz的尖脉冲信号,再经过位定时调整电路,调节W705,可改变32KHz的时钟脉冲的占空比宽度,以进一步保证与发送端的时钟信号同频但不同相。

再生时钟的输出是从U714∶A(74LS123)的Q端(第13引脚)上输出。

在测量点TP711上可以测出再生时钟信号的波形来。

3.信码再生电路
信码再生器电路比较简单,由D触发器U715∶A组成,数字基带信码从D 端(第2引脚)输入,再生时钟信号从CLK端(第3引脚输入),利用恢复出来的再生时钟对数字基带信码进行重新取样判决,使再生收信码与发信码保持准确的相位关系。

因此,把D触发器称为信码再生器。

再生收信码从D触发器的Q 端(第5引脚)输出。

收端码变换电路由D触发器U715∶B、模二加电路U706∶B、转码器开关K704组成。

若信道传输的是相对码,则要经过转码器变成绝对码,若传输的绝对码,则就不用进行转码了,直接从K703的第1脚输出。

总之,再生信码通过K705的第2脚输出。

位定时恢复电路的各主要测量点波形如图4-4所示。

图4-3 实验室理想状态下的眼图
5
三、实验内容
1.位定时、位同步提取实验
2.信码再生实验
6
3.眼图观察及分析实验
4.CPU仿真眼图观察测量实验
详细内容具体如下:
将二相PSK(DPSK)的调制电路调整好后,再将解调电路调整到最佳状态,逐一测量TP705~TP711各点处的波形,画出波形图并作记录,注意相位、幅度之间的关系。

四、实验步骤及注意事项
1.按下按键开关:K02、K01、K700。

2.跳线开关设置:K304的2–3、K301的2–3、K302的1–2或K302的2–3 或K302的5–6或K302的6–7、K303的1-2与3-4。

3.PSK调制时:
K302的1-2:伪随机码,速率为32KHz的绝对码。

4.PSK解调时:
(1)首先要使PSK调制电路正常工作。

即:K701的2-3、K702的1-2、 K703的1-2
(2)在CA701插上电容,使振荡器工作频率为4.096MHz,电容在 80Pf~120Pf之间。

(3)做观察眼图实验时:
示波器一根探头放在TP303(CHI),另一根探头放在TP706(CH2),使同步,能看到眼图;触发源应选择TO303的通道触发,即CH1通道触发。

示波器一根探头放在TP705, 另一根探头放在TP706,使同步,看到升余弦波形。

(4)CPU仿真眼图观察测量实验,具体步骤如下:
接通K704的2-3;示波器的一根探头放在TP303,另一根探头放在
TP706,使之同步,能看到CPU仿真眼图;它和PSK解调电路观察到的实际眼图基本一样。

7
五、测量点说明
TP702:压控振荡器输出 4.096MHz的载波信号,用频率计监视测量点TP704上的频
率值有偏差时,此时一方面可改变CA701中的电容值,另一方面也可调节
W701和W702,使其准确而稳定地输出4.096MHz的载波信号。

TP705:PSK解调输出波形,即数字基带信码。

TP706:眼图观察测量点或升余弦波形测量点。

TP707:全波整流输出测量点。

TP708:32KHz的选频输出测量点,若没有波形时,可调节W703。

TP709:32KHz的尖脉冲输出测量点,若没有波形时,可调节W704。

TP710:位定时输出测量点,为32KHz的时钟信号,它输出到增量调制译码电路中的工作时钟输入开关K801的6脚,作为增量调制
译码电路中的输入工作时钟。

若没有波形时,可调节W705。

TP711:信码再生输出波形,即经过位定时提取与信码再生整形后的数字基带信码。

(与调制波形TP304相同)
六、实验报告要求
1.根据实验结果,画出BPSK(DPSK)相干解调电路的波形图,在图上标上相位关系。

2.根据实验结果,记录并绘出眼图的波形图,并表明眼图的各项参数。

七、实测各点波形
8
9
TP705 二相PSK 解调输出波形,即数字基带信码
TP706:眼图观察测量点或升余弦波形测量点
TP707:全波整流输出测量点
10
TP708:32KHz 的选频输出
TP709:32KHz 的尖脉冲输出
TP710:位定时输出为32KHz 的时钟信号
11
TP711:信码再生输出波形
利用双踪示波器的YB 通道测量TP303,YA 通道测量TP706时
调节示波器相应的开关与旋钮,测量出的眼图信号
通信原理实验


12


黄河科技学院实验中心
2011 年 8 月
13。

相关文档
最新文档