高分子逐步聚合反应

合集下载

高分子化学_余木火_第五章 逐步聚合反应

高分子化学_余木火_第五章 逐步聚合反应

H-[OROCOR'O]m-[OROCOR'O]n-OH
+ H-[OROCOR'O]p-[OROCOR'O]q-OH → H-[OROCOR'O]m- [OROCOR'O]q-OH + H-[OROCOR'O]p-[OROCOR'ON]q-OH 五、热降解及交联 缩聚产物在聚合后期和挤出加工中会发生热降解或支化甚至交联。 聚酰胺在受热过程中发生热分解。 尽管这种热分解不太明显, 但影响聚合物 (5-19)
的物理性能。 降解由大分子链上-NH-CH2-骨架的均列产生的自由基引发。 裂 解过程中放出水和二氧化碳。 水进一步水解酰胺健[-NH-C(O)-]而导致进一步的 降解。 末端胺基~-NH2 与主链羰基反应会生成支链, 严重时引起聚合物的交联 (式 5-20)。
— b) ,通常 a 与 b 并不能发生反应,此种单体只能与其它单体进行共聚合。 4.A—R—a + b—R’—b 型单体 带有相同的官能团(a—R—a 或 b—R’一
b),本身所带的官能团(a 与 b 间或 b 与 b 之间)不能相互反应,只有同另一种单 体上所带的另一类型的官能团(即 a 与 b 间)进行反应, 这种缩聚反应常标为混缩 聚,如 a 为氨基(一 NH2),b 为羧基(一 COOH),a 和 b 两两之间可反应生成酰胺 基连接的聚合物,此类单体体系记为“2—2”型单体体系。 (二)单体上能参与反应的官能团数大于 2 的情况 如果单体体系中有一种单体,它带有 2 个以上能参与反应的官能团,例如甘 油带有能参与反应的官能团数为 3,则这种单体与另外的单体组成的体系进行聚 合反应,得到支链型或三维网状大分子。 单体的反应活性对聚合过程和聚合物的聚合度都有影响。单体通过官能团进 行反应,因此,单体的活性直接依赖于官能团的活性。例如聚酯可通过醇类(含 羟基一 OH)单体与下列带有不同官能团的单体反应来制取,它们的活性次序由强 到弱排列为:酰氮>酸酐>羧酸>酯。

高分子课件第二章 逐步聚合反应

高分子课件第二章  逐步聚合反应

五、线型缩聚机理
许多缩聚物都是通过逐步聚合的机理聚合得到的。
单体(一聚体)
二聚体
三聚体
......
低聚体 + 低聚体
高聚体
低聚体 + 高聚体
高聚体
大多数缩聚反应都是可逆平衡反应
OH +
k1 COOH k-1
OCO
+ H2O
平衡常数
K
k1 k1
OCO H2O OH COOH
酯化反应的K=4。在实际生产中,为使反应尽量 向生成高聚物的方向移动,通常要采取措施将副产 物小分子尽量排除。如:通入惰性气体或抽真空。
a
a
AA
n
+n
A
如: a
b
b
BB
B b
AA A
B B BA A
A
B B BA
B AB B
A
B BB
3、按照热力学特征分 ⑴ 平衡缩聚
具有可逆变化特性的缩聚反应
如:
nHOROH + nHOOCR'COOH
H
OROOCR'CO n OH + (2n-1)H 2O
⑵ 不平衡缩聚反应
在缩聚反应的条件下不发生逆反应的缩聚反应
NH2(CH2)3COOH
成环—单分子反应 缩聚—双分子反应
O
( 内
C
CH3 CH
O
交 酯
/
O
H2C H2C
CH CH3

C

O
酯 )(
CH2

C O +H2O 酰
N

H

故增加单体浓度,有利于缩聚反应

高分子化学第二章逐步聚合反应

高分子化学第二章逐步聚合反应
高分子化学第二章逐步聚合反应
2.1 缩合反应与缩聚反应
O
酯 化
CH3C_ OH + H_OCH2CH3

O

CH3C_OCH2CH3 + H2O
酰 胺 化
O CH3C_OH + H_NHCH2CH3

O

CH3C_NHCH2CH3 + H2O
双官能团单体的多步缩合反应:
H O O C(CH 2)4CO_O H+H _N H (CH 2)6N H 2
3、单体通式 a–R–c
H2N(CH2) 5OH 仅参加前面二类型的均缩聚或混缩聚反应而不能单独进行 聚合,这叫共缩聚反应,产物叫做共缩聚物。
合成一种线型缩聚物一般可有多种聚合反应路线和相应的 单体,但是按照这些单体的合成难易、聚合反应的难易以 及聚合物相对分子质量的高低,通常只有一两种单体是最 符合条件的。
2 与官能团所处的空间环境有关 对苯二胺 + 对Biblioteka 二甲酰氯 反应活性较低H2N_
_NH 2+CO l C _ _COl C 全芳聚酰胺
间苯二胺 + 间苯二甲酰氯 反应活性较高
H2N_ _NH 2+CO l C _ _COl C 全 芳 聚 酰 胺
3 环化反应倾向大小 羟基酸的聚合-环化反应倾向与碳原子数
由带两个或两个以上官能团的单体之间连续、重复进行的缩 合反应称为缩合聚合反应,简称缩聚反应。
2.2 逐步聚合反应单体
2.2.1 线型缩聚反应单体的类型
1、单体通式 a–R–b
HO(CH2)5COOH
H2N(CH2) 5COOH
属于均缩聚反应,得到均缩聚物。

高分子物理化学 第七章

高分子物理化学 第七章

2)2-2功能度体系 每个单体都有两个相同的功能 基或反应点,可得到线形聚合物, 如:
n HOOC(CH2)4COOH + n HOCH2CH2OH
HO CO(CH 2)4COOCH 2CH 2O
n
H + (2n-1) H2O
缩聚反应是缩合反应多次重复 结果形成聚合物的过程。
3)2功能度体系
同一单体带有两个不同 (或相同)且能相互反应的官 能团,得到线形聚合物,如:
按聚合产物分子链形态的不 同分类 线形逐步聚合反应 其单体为双功能基单体, 聚合产物分子链只会向两个方 向增长,生成线形高分子。
非线形逐步聚合反应 非线形逐步聚合反应的聚 合产物分子链不是线形的,而 是支化或交联的,即聚合物分 子中含有支化点,要引入支化 点,必须在聚合体系中加入含 三个以上功能基的单体。
n HO n HO
R COOH H O R CO n OH + (n-1) H2O R OH H O R n OH + (n-1) H2O
4) 2-3、2-4功能度体系
当功能度大于2时,分子链将向 多个方向增长,这样的话将得到支化 甚至是交联的聚合物。 例如: 通过苯酚和甲醛制备酚醛树脂时, 当反应程度较高时,可以得到支化甚 至交联的聚合物。
H (OROCOR`CO )m HO (COR`COORO)q ( OROCOR`CO)n OH ( COR`COORO)p H
+
既不增加又不减少功能基数目,不影响反应程度 特 不影响体系中分子链的数目,使分子量分布更均一 点 不同聚合物进行链交换反应,可形成嵌段缩聚物
线形缩聚动力学
1. 功能基等活性理论 缩聚反应在形成大分子的过程中 是逐步进行的,若每一步都有不同的 速率常数,研究将无法进行。Flory提 出了功能基等活性理论: 不同链长的端基功能基,具有相 同的反应能力和参加反应的机会,即 功能基的活性与分子的大小无关。

逐步聚合机理特征

逐步聚合机理特征

逐步聚合机理特征逐步聚合(Step Polymerization)是一种特殊的聚合反应过程,其特点在于无活性中心,单体官能团之间相互反应而逐步增长。

作为高分子材料合成的重要方法之一,逐步聚合机理具有一系列鲜明的特征。

首先,逐步聚合反应的实质是单体分子间的逐步增长过程,这使得聚合反应得以有序、可控地进行。

在这个过程中,单体分子间首先通过官能团间的反应形成二聚体,随后二聚体与单体进一步反应形成三聚体,以此类推,逐渐形成具有特定结构的高分子链。

其次,逐步聚合反应的单体转变成聚合物的化学反应是逐步进行的。

与自由基聚合等其他聚合方式相比,逐步聚合的聚合速率通常较慢,这使得聚合过程中的相对分子质量增长得以有效控制。

随着聚合反应的进行,相对分子质量逐渐增加,直至形成高分子量的聚合物。

此外,逐步聚合过程中单体转化率与相对分子质量的动态趋势呈现一定的规律性。

在聚合初期,单体转化率快速上升,相对分子质量增长迅速;随着聚合反应的进行,单体转化率逐渐趋于平缓,相对分子质量的增长速度也逐渐减缓。

这种规律性有助于我们更好地理解聚合过程并优化聚合条件。

在实施逐步聚合时,有多种方式可供选择,如熔融聚合、溶液聚合、界面聚合和固相聚合等。

这些不同的实施方式可以根据实际需求选择,以适应不同的聚合条件和目标产物的性质要求。

最后,逐步聚合机理具有广泛的应用前景。

由于逐步聚合方法能够制备出高分子量、结构规整的聚合物,因此在合成功能性高分子材料、高性能复合材料等领域具有广泛的应用价值。

随着逐步聚合机理研究的深入和聚合技术的不断发展,逐步聚合方法在未来的高分子材料合成领域将发挥更加重要的作用。

总而言之,逐步聚合作为一种独特的聚合反应过程,具有其独特的优势和特点。

通过对逐步聚合机理的深入了解和研究,我们可以更好地掌控聚合过程,制备出具有优异性能的高分子材料,推动高分子科学领域的发展。

逐步聚合包括哪些反应类型

逐步聚合包括哪些反应类型

逐步聚合包括哪些反应类型在化学领域中,逐步聚合是一种重要的反应类型,通常指的是通过一系列步骤将简单单体逐渐连接成高聚物的过程。

这种反应类型可以用于合成各种高分子化合物,广泛应用于塑料、橡胶、涂料和药物等领域。

逐步聚合的反应机制包括多种不同类型的反应,下面将介绍几种常见的逐步聚合反应类型。

首先,酯化反应是一种常见的逐步聚合反应类型之一。

在酯化反应中,羧酸和醇反应生成酯类化合物。

这种反应通常需要酸性条件下进行,通过羧基和羟基之间的酰基转移实现单体的连接。

酯化反应在高分子材料的合成中起着重要作用,例如聚酯树脂就是通过酯化反应合成的。

另外一种常见的逐步聚合反应类型是缩合反应。

缩合反应是指两个或多个单体分子之间发生亲核加成反应,形成键的建立并释放小分子(如水)。

缩合反应可以产生多种高分子化合物,例如聚酰胺的合成就是通过缩合反应进行的。

递交反应也是逐步聚合中常见的反应类型之一。

在递交反应中,两个或多个不同单体交替添加,形成交错排列的聚合物结构。

递交反应通常需要有交联剂的存在,能够形成三维网络结构的高分子材料,具有较好的机械性能和热稳定性。

此外,酰胺化反应也是逐步聚合的重要方式之一。

在酰胺化反应中,胺基和酰氯(或酸酐)之间发生亲核加成反应,生成酰胺键。

许多合成纤维的制备都采用了酰胺化反应,例如聚酰胺纤维的合成就是通过这种方式进行的。

最后,环氧化开环反应也是一种常见的逐步聚合反应类型。

环氧化开环反应是环氧化合物在酸性或碱性条件下开环并与其他分子发生反应,形成环氧化合物。

这种反应可以用于制备环氧树脂等高分子材料,具有出色的粘接性能和耐化学腐蚀性。

总的来说,逐步聚合包括酯化反应、缩合反应、递交反应、酰胺化反应和环氧化开环反应等多种反应类型。

这些反应在高分子材料的合成和功能化过程中发挥着重要作用,推动了高分子化学领域的发展和应用。

希望通过对逐步聚合反应类型的了解,能够更好地应用于工业和科研领域,促进高分子材料的创新和发展。

高分子第2章逐步聚合反应答案

高分子第2章逐步聚合反应答案

第二章 逐步聚合反应1.要说明什么是均缩聚、混缩聚、共缩聚?各举一例。

答:只有一种单体进行的缩聚称为均缩聚,如ε-氨基己酸的缩聚反应;由两种皆不能独自缩聚的具有不同功能基的单体参加的缩聚反应称为混缩聚,如己二胺与己二酸的反应;如在均缩聚中加入另一单体进行缩聚或在混缩聚中加入第三单体混缩聚,则称为共缩聚,如苯二甲酸、乙二醇、丙三醇的缩聚反应。

2. 解释下列名词:官能团等活性理论;(2)凝胶点;(3)反应程度和转化率;(4)平均官能度。

答:(1)不同大小的分子上的官能基具有相同的反应能力,这就是官能团等活性理论;凝胶时的反应程度叫凝胶点;反应程度指反应了的官能团数与起始官能团数之比;转化率指反应了的单体分子数与起始单体分子数之比;平均官能度指体系中可能反应的官能团总数被体系分子总数所除而得。

3.胺和己二酸合成聚酰胺,分子量约15000,转化率99.5%,若己二胺过量,试计算原料比,产物端基是什么? 答: M 0 = (114 +112) / 2 =113, Xn =15000 /113 =132.7, P = 0.995 Xn = 1+r / (1+r-2rp ) r = 0.995 , 已知胺基过量,则己二胺和己二酸投料比为1:0.995, 端羧基数= Na (1-P ), 端胺基数= Nb- NaP =Na/r –NaP =Na(1/r-P ), 端胺基数/ 端羧基数= (1/r-P) / (1-P)= (1/0.995-0.995) /(1-0.995)=24.等摩尔比的二元醇和二元酸为原料于某温度下进行封管均相聚合,试问该产品最终的Xn 是多少?已知该温度下反应平衡常数为4。

答: K = p ×n / (1-p)2,在封管体系中,n = p , K = p 2 / (1-p)2 ,p = K 1/2 / (K 1/2+ 1)=0.67, Xn =1 / (1-p)=K 1/2 + 1 = 35.摩尔比的己二胺和己二酸于220℃下进行缩聚反应,已知该温度下K 为365。

高分子化学第2章逐步聚合反应分解

高分子化学第2章逐步聚合反应分解

缩聚: 官能团间的缩合反应,经多次缩合形成聚合物,同时 有小分子产生。 如聚酯,尼龙,酚醛树脂等的制备。 naAa + nbBb →a-(- Aa-Bb-)n-b + ab 聚加成:形式上是加成反应,但反应机理是逐步反应。 如聚氨酯的合成。 开环反应:部分开环反应为逐步反应,如水、酸引发的己内 酰胺的开环反应。 氧化-偶合:单体与氧气的缩合反应。 2,6-二甲基苯酚和氧气形成聚苯撑氧,也称聚苯醚。
体形缩聚(tridimensional polycondensation)
至少有一单体含两个以上的官能团,形成的大分子向 三个方向增长,得到体形结构缩聚物的反应。如酚醛 树脂、环氧树脂等。
17
3.2按参加反应的单体数分 均缩聚:只有一个单体参加的反应。 2官能度体系:aRb 杂缩聚:两种单体参加的反应。 2-2官能度体系:aAa+bBb 共缩聚:两种以上单体参加的反应。 aAa+bBb+aA’a(改性) 3. 3 按聚合物的特征基团分 - COOR
19
2. 线形缩聚单体的成环(cyclization) 倾向
5元、6元环最稳定,不易形成线形聚合物; 3元、4元环及8~11元环,不稳定,很难成环,
易形成线形聚合物;
7元环:有一定的稳定性,形成线形聚合物为主; 12元以上:成环倾向与7元环相近。
环的稳定性次序: 3,4,8~11 < 7,12 < 5,6
2 2 0
( X n ) 2 与t成线性关系,
即聚合度随 t 缓慢增加。
32
外加酸催化缩聚 为了缩短到达平衡的时间,往往加强酸作催化剂,
称外加催化缩聚。速率方程式如下:
dC 2 (kC k a [ H ]) C dt

高分子第7章——逐步聚合反应

高分子第7章——逐步聚合反应

第七章 缩合聚合1.聚酯化反应280℃时的平衡常数K =4.9,聚酰胺化反应260℃时平衡常数K =305,根据wn Pn KX =,作出水含量(摩尔分数表示)与数均聚合度的关系图,并讨论分析其结果。

解:根据 wn Pn KX =和P X n -=11联立求解得:2141-+=w n n K X (负值已经舍去) 所以对聚酯化反应有21419.4-+=w n n X 对聚酰胺反应有2141305-+=w n n X 对水含量赋值作图得:n w (%)聚酯 数均聚合 度100200300400500600聚酰 胺 数 均聚合 度从图上可知,缩聚反应中水含量对数均分子量影响很大,特别是当平衡常数较小时,水含量对聚合度影响非常严重。

要想获得较高的聚合度,例如200左右,就必须使残存的小分子副产物极低。

而对于平衡常数较大的缩聚反应,要达到同样的聚合度,小分子副产物含量可适当高一些,亦即,对小分子副产物的排除可适当放宽。

2.从对苯二甲酸(1mol)和乙二醇(1mol)聚酯化反应体系中,共分出水18克,求产物的平均分子量和反应程度,设平衡常数K =4。

解:设分离出20g 水后,反应达到平衡的反应程度为p ,此时分子量为 。

起始官能团数: N 0 N 0 0 0 t 时刻官能团数:N 0(1-P) N 0(1-P) PN 0 N W 残留水分子数=生成的水分子数-排出的水分子数18W P N N 水0w -=0.5P 21818=P 18N W P N N n 0水0w w -=⨯--==根据:wpn K n X =PX n -=11代入数据:)5.0(4-=P P n XPX n -=11解得:4.4771.0==n X P数均分子量 4.42221924.4=⨯=n M3.生产尼龙-66,想获得数均分子量为13500的产品,采用己二酸过量的办法, 若使反应程度P 达到0.994,试求己二胺和己二酸的配料比。

逐步聚合反应名词解释

逐步聚合反应名词解释

逐步聚合反应名词解释逐步聚合反应(Step-GrowthPolymerization)是一种特殊的聚合反应,常见的有加成聚合反应(addition polymerization)、删减聚合反应(condensation polymerization)和离子聚合反应(ionic polymerization)。

它可以用来合成有机高分子物质,例如高分子聚乙烯、聚丙烯和聚氨酯等。

它最初由R.C. Kondrat和G.L. Millar 在1951年发明,它利用双重活性端基(difunctional reactants)来产生聚合物,是一种自由基聚合反应的变种。

逐步聚合反应的特点是,在反应过程中产生的聚合物的链中,每个链只能有两种活性端基,因此使得一次反应只能合成一种特定的聚合物,而不能合成混合聚合物。

另外,聚合物的链很容易在反应过程中分解,所以也增加了反应的复杂性。

逐步聚合反应包括三个步骤:活性团间步骤、活性端基间步骤和活性端基与活性端基间步骤。

活性团间步骤是指将双环类化合物,如门多尔二氯化酸(MDL)、尿比汞聚氯乙烯(NPMVL)或二茂铁离子(Fe2+)等,作为原料,以相对较低的温度(100-150C)受热或放射照射进行反应,从而生成特定的活性中间体。

在活性端基间步骤中,双重活性端基分子通过水分解或放射照射的作用而形成多种活性侧链,如芳香族侧链,凡士林侧链等。

最后,活性端基与活性端基间步骤,两种活性侧链可通过自由基聚合或离子聚合等加成反应来合成特定的高分子物质。

在有机高分子材料的合成中,逐步聚合反应具有重要的意义,它是合成多种有机高分子的重要手段,特别是在合成高分子整体结构复杂的情况下,它尤为重要。

而且,由于它所合成的聚合物分子量较低,所以可以用在微纳米尺寸的超分子结构中,为其赋予更好的物理性能和力学结构。

因此,逐步聚合反应被广泛用于有机高分子材料的合成,有着广阔的前景。

为了获得更高质量的聚合物,需要科学家们研究出更好的反应参数,提高反应温度,优化搅拌速度和控制反应过程的PH值,并找出更合适的活性团和活性化合物,以使反应更加有效和高效。

逐步聚合和连锁聚合的定义

逐步聚合和连锁聚合的定义

逐步聚合(Stepwise polymerization)和连锁聚合(Chain polymerization)是高分子化学中的两种重要的聚合反应。

以下是这两种聚合反应的定义及详细解释:逐步聚合(Stepwise polymerization):逐步聚合是一种通过逐步增加单体分子数量,从而逐步形成聚合物分子的过程。

这个过程中,每一步的聚合反应都是相对较慢的,因此整个聚合过程可以分成多个步骤进行。

在每个步骤中,一种单体分子与一个或多个预聚合物分子反应,从而增加聚合物的分子量。

这种聚合反应通常发生在相对较低的温度下。

逐步聚合可以分为两种主要类型:缩聚反应和加聚反应。

缩聚反应是指两个或多个单体分子在聚合过程中发生缩合反应,从而减少水分或其它小分子的生成。

这种反应常用于合成高聚物,如尼龙、聚酯等。

加聚反应是指单体分子在聚合过程中不断与预聚物分子反应,从而增加聚合物分子量。

这种反应通常用于合成低聚物,如聚乙烯、聚丙烯等。

逐步聚合的特点是聚合反应速率较慢,但可以得到分子结构明确、分子量分布较窄的聚合物。

此外,逐步聚合可以通过控制反应条件和单体比例,实现定制化的聚合物合成。

连锁聚合(Chain polymerization):连锁聚合是一种通过不断添加单体分子到预聚物或已形成的聚合物链上,从而迅速增加聚合物分子量的过程。

这个过程中,引发剂首先引发单体分子的聚合反应,生成一个活性中心(如自由基)。

这个活性中心会迅速与周围的单体分子反应,生成新的活性中心,并迅速传递下去。

随着聚合反应的进行,新的单体分子不断加入到已形成的聚合物链上,使聚合物分子量迅速增加。

连锁聚合可以分为自由基聚合、离子聚合和配位聚合等类型。

自由基聚合是最常见的一种连锁聚合,它通常发生在高温或引发剂作用下,通过自由基引发和传递实现聚合。

离子聚合则是在低温下通过离子引发和传递实现聚合。

配位聚合则是通过金属催化剂引发和传递实现聚合。

连锁聚合的特点是聚合反应速率快,可以在短时间内生成大量聚合物。

高分子化学第02章 缩合和逐步聚合反应

高分子化学第02章 缩合和逐步聚合反应

2020/2/2
16
3). 反应程度
在缩聚反应中,常用反应程度来描述反应的深度。
反应程度:是参加反应的官能团数占起始官能团数的分 数,用P表示。 反应程度可以对任何一种参加反应的官能团而言,以等 物质量的二元酸和二元醇的缩聚反应为例:
2020/2/2
17
假定:
体系中起始二元酸和二元醇的分子总数为N0 t 时的聚酯分子数为N
反应程度和平衡常数对缩聚物聚合度有影响,但通常不 利用它们调控聚合度。
2020/2/2
47
例:对苯二甲酸(NAmol)和乙二醇(NBmol)反应得到聚酯,试求: (1)NA=NB=1mol,数均聚合度为100时的反应程度p (2)当平衡常数K=4时,要求生成的数均聚合度为100,体系中的水量(mol)
即对于聚酯合成,若反应体系封闭,因K≈4,则
在密闭 体系
聚酯化反应,K = 4, p = 0.67,X n 只能达到 3 聚酰胺反应,K = 400, p = 0.95,X n 只能达到21 不可逆反应 K = 104, p = 0.99,X n 只能达到101
2020/2/2
43
非密闭体系 在实际操作中,要采取措施排出小分子
解:(1)当NA=NB=1mol时,

n

1 1-p
100, p

0.99
(2)当平衡常数K=4,X n 100 ,体系中生成的水nw为:
X n K 100 pnw
nw K 2 4 104 mol Xn
2020/2/2
48
2.5.3 基团数比对聚合度的影响
HOCH2
CH2OH C CH2OH CH2OH
季戊四醇

高分子物理与化学 第6章 逐步聚合反应

高分子物理与化学 第6章 逐步聚合反应

2、反应类型 ①缩聚,是缩合聚合的简称。 聚合过程有小分子产生。 一个反应单体含有能参与反应的官能团数 目称为官能度。 缩聚反应包含线型缩聚和体型缩聚。线型 缩聚的必要条件是需要一种或两种双官能 度的单体。
⑶官能团a与b不能反应的a-R-b型单体 它们虽带有不同官能团,但a与b不能反 应,这种单体只能和其他单体进行共聚合。 ⑷a-R-a和b-R′-b型单体 它们本身不能聚合,但相互之间能反应, 这类反应称为混缩聚,此类单体体系记为 “2-2”型单体体系
②单体上能参与反应的官能团数目大于2的 情况 如果反应单体体系中有一种单体带有二个以 上能参与反应的官能团,如甘油带有三个羟基, 一缩二乙二胺有五个活泼氢,则这种单体和另外 的单体反应得到的聚合物产生支链或是三维网状 聚合物。 单体的反应活性对聚合过程和聚合度有影响, 单体的反应活性由官能团的活性确定。如聚酯可 通过羟基化合物和不同官能团的单体反应取得, 这些单体的活性次序依次由强到弱;酰氯>酸酐 >羧酸>酯。
1、逐步聚合的单体 一般逐步聚合反应的单体都是带有可反 应的官能团的,这些官能团有: -OH、-NH2、-COOH、-OC-O-CO-(酸 酐)、-COOR、-COCl、-CHO、-H(酚类 化合物的活泼H)、-SO3、-SO2Cl、 -Cl、 -NCO等。 要发生聚合反应,一个单体上至少要有 二个可反应的为以下 几类: ①单体上能参与反应的官能团数目等于2 的情况 ⑴官能团a可相互反应的a-R-a型单体 带有同一种官能团,且官能团之间可相 互反应,这种聚合称为均缩聚反应。如a为 羟基,二个羟基可缩合为醚键。此类单体 体系记为“2”型单体体系。
⑵官能团a与b可反应的a-R-b型单体 a与a及b与b之间不能反应,a与b可反 应,这种聚合也称为均缩聚反应。如羟基 和羧基生成酯键,氨基和羧基连接成酰胺 键,释放出水。此类单体体系也记为“2” 型单体体系。

高分子化学第3讲 第二章 逐步聚合反应(1)

高分子化学第3讲  第二章 逐步聚合反应(1)

(2)单体通式:a–R–a + b–R'–b
反应通式: n a—R—a + nb—R'—b a—R—R'— b + (2n -1) ab n
反应类型混缩聚反应,产物混缩聚物。 如二元酸–二元醇[HOOCC6H4COOH + HO(CH2) 2OH]、二元 酸–二元胺[HOOC(CH2) 4COOH + H2N(CH2) 6NH2 ]等单体。
2.2.1 线型缩聚反应单体的类型
第 三 讲
1. 线性缩聚反应的单体必须具备的两个基本条件: (1)带有两个不同或相同的官能团; (2)这两个官能团之间或者与别的单体的官能团之间可以进 行化学反应并生成稳定的共价键。 2. 有机类线型缩聚反应单体的三种类型: (1)单体通式:a–R–b a—R— 反应通式: n a—R—b nb + (n -1) ab 反应类型均缩聚反应,产物均缩聚物。 如–羟基酸[HO(CH2)5COOH]、–氨基酸[H2N(CH2) 5COOH]、 –氨基酰氯[H2N(CH2) 5COCl] 等单体。
_ _ HO [OC(CH2)4CONH(CH2)6NH] H
_ [OC(CH ) CONH(CH ) NH]_ OC(CH ) COOH HO 24 2 6 2 4 -H2O +己二胺 _ [OC(CH ) CONH(CH ) NH] _ H HO 24 26 2 -H O
2
+己二酸?
_ [OC(CH ) CONH(CH ) NH] _ HO 2 4 2 6 2 OC(CH2)4COOH -H2O
第 三 讲
(n+2) HCl +
反应过程:
例9. 聚碳酸酯 (聚2,2双[4,4′羟基苯基]丙烷碳酸酯):

高分子化学2逐步聚合反应

高分子化学2逐步聚合反应
*
第二章 逐步聚合反应
2—2官能度体系聚合得到线型聚合物; 2—f(f>2)官能度体系聚合得到支链型
1
或体型聚合物。
2
*
第二章 逐步聚合反应
单体转化率
产物聚合度
反应时间
缩聚反应的单体转化率、产物聚合度与反应时间关系 示意图:
*
第二章 逐步聚合反应
3 线形缩聚反应机理 3.1 线形缩聚与成环倾向 缩聚反应过程中常常存在两种环化反应:分子内环化与 单体单元内环化。 3.1.1 分子内环化 分子内环化是 AB 或 AA/BB 型单体线形缩聚反应中重 要的副反应,环的形成由A和B功能基间的平均距离控制。 ★ 浓度很高且分子链很长时,A功能基旁其他分子链上的B 功能基,相互反应生成线形高分子;
聚合过程的逐步特性
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与可逆。
பைடு நூலகம்
*
第二章 逐步聚合反应
在缩聚反应早期,单体之间两两反应,转化率很高,但 分子量很低,因此转化率无实际意义。用反应程度p来表示 聚合深度。 反应程度p定义为参与反应的基团数(N0-N)占起始 基团数的分率, 对等摩尔二元酸与二元醇的缩聚反应来说,初始的羧基 数或羟基数N0等于二元酸和二元醇的分子总数,t 时刻的羧 基数或羟基数N等于 t 时刻的聚酯分子数。
逐步聚合
线形逐步聚合
非线形逐步聚合
平衡线形逐步聚合
不平衡线形逐步聚合
*
第二章 逐步聚合反应
a. 两功能基相同并可相互反应:如二元醇聚合生成聚醚 n HO-R-OH H-(OR)n-OH + (n-1) H2O b. 两功能基相同, 但相互不能反应,聚合反应只能在不同单 体间进行:如二元胺和二元羧酸聚合生成聚酰胺 n H2N-R-NH2 + n HOOC-R’-COOH H-(HNRNH-OCR’CO)n-OH + (2n-1) H2O c. 两功能基不同并可相互反应:如羟基酸聚合生成聚酯 n HO-R-COOH H-(ORCO)n-OH + (n-1) H2O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单 体 转 化 率
19
第六章逐步聚合反应
3 线形缩聚反应机理
3.1 线形缩聚与成环反应
缩聚反应过程中常常存在两种环化反应:分子内环化与 单体单元内环化。 3.1.1 分子内环化 分子内环化是 AB 或 AA/BB 型单体线形缩聚反应中重 要的副反应,环的形成由A和B功能基间的平均距离控制。 ★ 浓度很高且分子链很长时,A功能基旁其他分子链上的B 功能基,相互反应生成线形高分子;
12
第六章逐步聚合反应
单官能度的丁醇和二官能度的邻苯二甲酸酐进行酯化反 应,产物为低分子邻苯二甲酸二丁酯,副产物为水。 单官能度的醋酸与三官能度的甘油进行酯化反应,产物 为低分子的三醋酸甘油酯,副产物为水。
只要反应体系中有一种原料是单官能度 物质,无论其他原料的官能度为多少,都只 能得到低分子产物。
7—1
对二元酸与二元醇(等摩尔配比)的缩聚反应来说,初 始的羧基数或羟基数N0等于二元酸和二元醇的分子总数, 等于反应时间t时醇和酸的结构单元数, t 时刻的羧基数 或羟基数N等于 t 时刻的聚酯分子数。
25
第六章逐步聚合反应
定义大分子中结构单元数为聚合度 X n ,则:
结构单元总数 N 0 Xn 大分子数 N
k1 [OCO ][H 2 O] K k 1 [OH][ COOH]
7—4
27
第六章逐步聚合反应
根据平衡常数的大小,可将缩聚反应分为三类: ① 平衡常数很小,如聚酯化反应,K≈4,低分子副产物对 分子量有很大影响; ② 平衡常数中等,如聚酰胺化反应,K≈300~400,低分 子副产物对分子量有一定影响; ③ 平衡常数很大,K>1000,实际上可看作不可逆反应, 如光气法制备聚碳酸酯。
[ CH2
CH2 ] n
聚对二次甲基苯
CH2N2
重氮甲烷
N2
[ CH2 ] n
聚乙烯
2
第六章逐步聚合反应
1.2 逐步聚合的类型
逐步聚合反应主要有两大类:缩合聚合和逐步加成聚合 (1)缩聚反应 例:聚酯反应:二元醇与二元羧酸、二元酯、二元酰氯 等之间的反应。
n HO-R-OH + n HOOC-R’-COOH H-(ORO-OCR’CO)n-OH + (2n-1) H2O
2 HOOC-R-COO-R'-OH
HOOC-R-COO-R'-OOC-R-COO-R'-OH + H2O 四聚体
。 。 。
n HOOC-R-COOH + n HO-R'-OH
。 。 。
O O HO ( C R C OR'O ) H + (2n-1) H2O n
15
第六章逐步聚合反应
例: 对苯二甲酸与乙二醇反应得到涤纶树脂; 己二胺与己二酸反应得到聚酰胺—6,6; 双酚A与光气反应得到聚碳酸酯; 氨基酸自身聚合得到聚酰胺。
只会向两个方向增长,生成线形高分子。
7
第六章逐步聚合反应
a. 两功能基相同并可相互反应:如二元醇聚合生成聚醚 n HO-R-OH H-(OR)n-OH + (n-1) H2O b. 两功能基相同, 但相互不能反应,聚合反应只能在不同单 体间进行:如二元胺和二元羧酸聚合生成聚酰胺 n H2N-R-NH2 + n HOOC-R’-COOH H-(HNRNH-OCR’CO)n-OH + (2n-1) H2O
聚醚化反应:二元醇与二元醇反应,
n HO-R-OH + n HO-R’-OH
H-(OR-OR’)n-OH + (2n-1) H2O
3
第六章逐步聚合反应
聚酰胺反应:二元胺与二元羧酸、二元酯、二元酰 氯等反应,
n H2N-R-NH2 + n ClOC-R’-COCl H-(HNRNH-OCR’CO)n-Cl + (2n-1) HCl
13
第六章逐步聚合反应
2.2 缩聚反应
若参与反应的物质均为二官能度的,则缩合反应转化 为缩聚反应。 以二元羧酸与二元醇的聚合反应为例。当一分子二元 酸与一分子二元醇反应时,形成一端为羟基,一端为羧基 的二聚物;二聚物可再与二元酸或二元醇反应,得到两端 均为羟基或均为羧基的三聚体,也可与二聚体反应,得到 四聚体;三聚体既可与单体反应,也可与二聚体或另一种 三聚体反应,如此不断进行,得到高分子量的聚酯。
HO(CH2)3COOH C O CH2 CH2 CH2 HO(CH2)4COOH CH2 CH2 CH2
23
O C O
第六章逐步聚合反应
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与平衡。 1)聚合过程的逐步性 以二元酸和二元醇的缩聚为例。在缩聚反应中,含羟基 的任何聚体与含羧基的任何聚体之间都可以相互缩合。随 着反应的进行,分子量逐步增大,达到高分子量聚酯。通 式如下:
可逆反应;
10
第六章逐步聚合反应
b.聚合方法不平衡反应:即聚合反应本身是平衡反应,但
在实施聚合反应时,人为地使聚合产物从反应体系中迅
速析出或随时除去聚合反应伴生的小分子,使可逆反应 失去条件。 (2)非线形逐步聚合反应 聚合产物的分子链形态不是线形的,而是支化或交联型 的。聚合体系中必须含有带两个以上功能基的单体。
第六章逐步聚合反应
1 概述
1. 1 逐步聚合的基本概念
逐步聚合是高分子合成最基本的类型之一。逐步聚合 的基本特征官能团之间的反应。聚合度随时间逐步增长, 而转化率在聚合初期即可达到很高,因此表现出与连锁聚 合完全不同的规律。 缩聚反应是最常见的逐步聚合反应。聚酰胺、聚酯、 聚碳酸酯、酚醛树脂、脲醛树脂、醇酸树脂等均为重要的 缩聚产物。 许多特殊结构的聚合物也都是通过缩聚反应制得的。 缩聚反应的基本特征是平衡和反应中脱出小分子。
逐步特性是所有缩聚反应共有的,可逆平衡的 程度则各类缩聚反应有明显差别。
28
第六章逐步聚合反应
3.3 缩聚过程中的副反应
1)基团消去反应 二元酸受热会发生脱羧反应,引起原料官能团数量的变 化,最终影响分子量。
20
第六章逐步聚合反应
★ 浓度很低时,A功能基旁同一分子链上的B功能基浓度较 高,相互反应生成环状高分子,即分子内环化。 分子内环化反应经常被用来合成环状低聚物与环状高分 子。环化低聚物可用做开环聚合的单体,具有以下的优点: (1)没有小分子副产物生成; (2)聚合反应速率高; (3)所得聚合物的分子量分布窄。 环状高分子则由于不含未反应的末端功能基,其分子量 和性能不会因末端功能基间的反应而不稳定。
n HOOC R COOH + n HO R' OH 聚合 水解 HO ( OC-R-CO O-R'-O ) H + (2n-1) H2O n
9
第六章逐步聚合反应
(ii)不平衡线形逐步聚合反应
聚合反应过程中生成的聚合物分子之间不会发生交换
反应,单体分子与聚合物分子之间不存在可逆平衡,即不 存在化学平衡。 不平衡逐步聚合反应概括起来有两种: a.热力学不平衡反应:聚合反应的基本化学反应本身为不
nO C N R N C [ C O O + n HO N H R N R' C OH O R' O ] n
H O
含活泼氢的功能基:-NH2, -NH, -OH, -SH, -SO2H, -COOH, -SiH等 亲电不饱和功能基:主要为连二双键和三键,如:-C=C=O, -N=C=O,-N=C=S,-C≡C-,-C≡N等
聚硅氧烷化反应:硅醇之间聚合,
n HO-SiR1R2-OH + n HO-SiR1’R2’-OH
H-(OSiR1’R2’-OSiR1R2)n-OH + (2n-1) H2O
共同特点:在生成聚合物分子的同时,伴随 有小分子副产物的生成,如H2O, HCl, ROH等。
4
第六章逐步聚合反应
(2)逐步加成聚合 重键加成聚合:含活泼氢功能基的亲核化合物与含亲电 不饱和功能基的亲电化合物间的聚合。如聚氨酯的制备。
21
第六章逐步聚合反应
分子内环化通常利用局部的极稀浓度来实现,如:环状 双酚A型聚碳酸酯的合成。
H3C n O O Cl Cl O O + 2n NaOH -(2n NaOH + n CO2 + n H2O) H3C CH 3 O O O O O O n-1 CH 3 H3C CH 3
具体操作时,将双酚A的氯甲酸酯逐滴滴入大量过量溶 剂中,从而达到局部极稀,产生分子内环化。
c. 两功能基不同并可相互反应:如羟基酸聚合生成聚酯 n HO-R-COOH H-(ORCO)n-OH + (n-1) H2O
8
第六章逐步聚合反应
(i)平衡线形逐步聚合反应 指聚合过程中生成的聚合物分子可被反应中伴生的小分 子降解,单体分子与聚合物分子之间存在可逆平衡的逐步
聚合反应。 如聚酯化反应:
14
第六章逐步聚合反应
HOOC-R-COOH + HO-R'-OH HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OOC-R-COOH + H2O 三聚体 HO-R'-OH HO-R'-OOC-R-COO-R'-OH + H2O
HOOC-R-COOH HOOC-R-COO-R'-OH +
n 聚体 + m 聚体 (n + m) 聚体 + 水
24
第六章逐步聚合反应
在缩聚反应早期,单体之间两两反应,转化率很高,但 分子量很低,因此转化率无实际意义。用反应程度P来表示 聚合深度。 反应程度P定义为参与反应的基团数(N0-N)占起始 基团数的分率,
N0 N N P 1 N0 N0
相关文档
最新文档