Gehaft Ergebniss 2019
Apigee Edge Pivotal Platform Solution 文件说明书
Apigee Edge - Pivotal Platform Solution PaperAnkur ShuklaDecember 2019This paper describes a few approaches on enabling API Management (using Apigee Edge) for your apps on Pivotal Application Service (PAS). The steps captured in this document have been validatedfor version 2.7 of PAS as of the publication date of this paper. You may have to make modifications as necessary for future versions. DefinitionsApigee EdgeApigee is a full lifecycle API management platform that enablesAPI providers to design, secure, deploy, monitor, and scale APIs. Apigee sits in-line with runtime API traffic and enforces a set ofout-of-the-box API policies, including key validation, quota manage-ment, transformation, authorization, and access control. API providers use the customizable developer portal to enable developers to con-sume APIs easily and securely as well as measure API performance and usage.Apigee MicrogatewayApigee Microgateway is a lightweight, secure, HTTP-based message processor designed especially for microservices. Its main job is to process requests and responses to and from backend services securely while asynchronously pushing valuable API execution data to Apigee Edge, where it’s consumed by the Edge analytics system.Apigee Microgateway depends on and interacts with Apigee Edge. Apigee Microgateway must communicate with an Apigee Edge organization to function. This Apigee Edge organization instance could be running on cloud as a managed service provided by Google/ Apigee, within your data center on premises, or on your own private/ public cloud.Apigee API ProxyYou expose APIs in Apigee Edge by implementing API proxies. API proxies decouple the app-facing API from your backend services, shielding those apps from backend code changes. An API proxy is essentially a message flow that is comprised of policies (XML con-figs) that execute in sequence when the API is invoked. These policies enable you to control the behavior of the underlying APIs. What are Route Services and how do they work?Cloud Foundry (CF) app developers may wish to apply security, trans-formation, or processing to requests before they reach an app. Common examples include authentication and rate limiting. RouteServices are a kind of Marketplace Service that developers can use to apply various transformations to application requests. This is typically done by binding an app’s route to a service instance. Through integra-tions with services, providers can offer these services to developers with an automated, self-service and on-demand user experience. In its current offerings, Cloud Foundry supports the following models for route-based services:1. Fully brokered service2. Static brokered service3. User-provided serviceFully brokered and static brokered require a service broker, which is typically deployed through Ops Manager as a Tile within your Cloud Foundry foundation. A user-provided service does not require a ser-vice broker and hence can be set up and configured completely by your developer. We will be using the user-provided service model as reference architecture pattern to demonstrate Apigee integrations. The following diagram illustrates the traffic flow for a typical route-based integration using the user-provided service discussed later in this document.PatternsThis section describes a few patterns/approaches that can provide API Management for applications deployed on PAS. The patterns differ depending on how the traffic flows and what components of Apigee (Edge vs Edge Microgateway) end up servicing traffic. Pattern: Apigee Edge Microgateway Service on PASApigee Edge Microgateway (EMG) can be hosted within the PAS platform as an application. This application can then be used to instantiate and provide a user-provided service. The user-provided service is then available for ‘binding’ to your applications and pro-vides services like API security using an API key or OAuth 2.0, support for CORS, rate limiting, and so on. This integration relies upon the Route Services-based integration pattern that is offered natively by the PAS platform.The following sequence diagram illustrates the typical flow of trafficwithin PAS:Apigee Edge Microgateway (EMG) Plan using User Provided Service (Route Services Integration) Setting up Microgateway as a User-ProvidedService (UPS)To use EMG as a user-provided service, we push EMG as an applica-tion to our CF environment. Once EMG is up and running as a CFapplication, we do the following:• Create an EMG-aware proxy within Apigee Edge to handleCF traffic.• Create a user-provided service by appending the CFapplication’s (EMG) URL to the EMG proxy's base path.Setting up an EMG application in CF, creating an EMG proxy defini-tion in Edge, and creating a UPS is only needed to be done once.After you create the UPS, you will only need to bind each (target)application that intends to use this service.PrerequisitePlease follow the Microgateway Operation and Configuration docu-mentation to ensure that you have a local copy of EMG set up tocommunicate with your Apigee Edge organization. The “config.yaml”file, key, and secret you'll create are required to push your EMG to CF.Create a User-Provided Servicea. Push EMG as an Application to CF:i. In a terminal, Git clone the EMG code repo and “cd” to the“microgateway” directory.ii. Edit the manifest.yml File and provide appropriate valuesfor the following environment variables:EDGEMICRO_KEY,EDGEMICRO_SECRET,EDGEMICRO_ENV,EDGEMICRO_ORGEDGEMICRO_CONFIG_DIR - hardcode this to valueto ‘./config’Note - To obtain key/secret, see the MicrogatewayOperation and Configuration documentation.iii. Copy your microcogateway’s config file from your homedirectory that was created during setup (seeprerequisites), and open the new file in an editor.iv. Optimize the config file created in the previous step for CFby changing the port to 8080 and adding plugins asshown in the following example: (Note - The OAuth pluginis disabled to limit the scope of this solution paper).v. Include the custom plugin cloud-foundry-emg-servicewithin the plugin sequence section (see previousexample). This plugin handles the routing aspect of thecalls to ensure that the handshake with the CF Routerhappens seamlessly. The sample code for this plugin isavailable here. (This is likely to be changed). Create aplugin directory and include the files (index.js & package.json) from the GitHub repo. For more information on howto use plugins with EMG, see Use plugins in the Apigeedocumentation.vi. In the Apigee EdgeUI, login to your Apigee organizationand create an EMG-aware proxy with the base path set tonet’. (Later, the ‘cloud-foundry-emg-service’ plugin willoverwrite this URL with the target CF application's URL).For reference on how to create an EMG-aware proxy, seeSetting up and configuring Edge Microgateway in theApigee documentation.Note - Since we have not enabled the OAuth plugin within our EMG service, we do not need to follow the rest of the above documenta-tion that details the process for creating API products, a developer, and a developer application. However, If you would like to use EMG's OAuth capabilities, you will need to create a product, developer, and application.vii. Your EMG application is now ready to be pushed to Cloud Foundry:b. Create the UPS using the cf create-user-provided-service com-mand, providing the URL for EMG from step vii appended with the basepath of the EMG-aware proxy from step vi) ‘/pcf’.This completes the UPS one-time setup steps. The service is ready to be used for binding by applications that require API management.Bind a Target Application to the EMG Provided Service Push your CF target application that requires API management capabilities from EMG and take note of App Name and Application’s URL.a. Now we are ready to bind our sample application to the UPS(EMG) using the bind-route-service command:b. Let's Test our binding by making cURL calls:Now repeat the cURL call in quick succession and you should see a spike arrest violation from EMG.Congratulations!! You have now secured your sample application with Apigee Edge Microgateway.Pattern: Apigee Edge Integration with PASSimilar to Apigee Edge Microgateway as a service (previous section),you can create a user-provided service (UPS) with your Apigee Edgeorganization to proxy your application hosted on PAS. The advantageof using an Apigee Edge organization as a UPS is that you can use allthe capabilities of the Apigee Edge platform (45+ out of box policies)and use advanced UI features like trace, since all your traffic will flowthrough Apigee Edge. This Apigee Edge ‘organization’ can be hostedin Apigee Cloud or your own on-premises datacenter (using Apigee onPremise Deployment Kit - OPDK).ORG Plan OverviewSimilar to the user-provided EMG service, the organization service isalso available for ‘binding’ to your applications and provides serviceslike API security using an API key or OAuth 2.0, support for CORS,rate limiting features, and more. The following sequence diagramillustrates the typical flow of traffic within PAS:Apigee Edge (ORG) Plan using User Provided Service (Route Services Integration)Setting up Apigee Edge Organization as aUser-Provided Service (UPS)To use the Apigee Edge organization (org) as a user-provided service, we will create and deploy a proxy within Apigee Edge to make it avail-able for API traffic. This proxy will handle CF traffic, and you'll use the proxy path to create a UPS within the PAS environment. Again, in this pattern too, creating a proxy in your Apigee org and UPS creation are only done once. After you configure the UPS, you will only need to bind each (target) application that intends to use this service. PrerequisiteSignup and register for a free Apigee Edge Evaluation Organization. See https:///apigee.Create a User-Provided Servicea. Create a proxy to act as a facade for your all applications on CF that require API management:i. Use the proxy bundle in this location to create a proxy withinyour Apigee Edge org by using the “Import a Proxy Bundle”dialog within the Apigee Edge UI. You can also import thisproxy using the Apigee Management API.ii. Ensure that your proxy is deployed to the desired environ-ment, illustrated by the following image. Be sure that yourvirtual host in Edge uses HTTPs, as CF requires an HTTPSendpoint for the route services integrations to work.Note - This proxy is a passthrough proxy and does not have any security built in. However, since this proxy is running on Apigee Cloud and will be picking up traffic from CF, you are free to use and implement the OAuth 2.0 or Verify API Key policies in addition to any of the other 45+ Apigee policies. The current implementation of this proxy handles the routing of the CF call to the correct CF target application that the original call was intended for.iii. Create the UPS using cf create-user-provided-servicecommand (provide the URL for the Org Plan Proxy wedeployed in Step ii).This completes the UPS one-time setup. The service is readyto be used for binding by applications that require APImanagement.Bind a Target Application to the Org UPSb. Push your CF target application that requires API managementcapabilities from the Apigee org and take note of App Name and Application’s URL.i. Now you are ready to bind the sample application to theuser provided service (org) using the b i nd-route-servicecommand:ii. Test the binding by making cURL calls:Now Turn on the trace feature within Apigee Edge and repeatthe cURL call. You should be able to see the API calltraversing through Apigee Edge.Note: If you are unfamiliar with how to use Apigee Trace tool, see Using the trace tool in the Apigee documentation.Congratulations!! You have now secured your sample application with and Apigee Edge org.Summary - Final thoughts…In this solution paper we discussed a couple of approaches on how Apigee could be used within PAS for API Management. In both the approaches we have relied on a single proxy creation within Apigee Edge to manage our runtime traffic for all CF Applications. This is an optimized approach as it induces less overhead by relying on one proxy / service for ‘N’ apps; in this scenario the analytics for the N apps, will be aggregated under the API proxy. Another approach obviously will be to create a separate proxy within Apigee Edge and then a new UPS using the proxy base paths. This will mean that you have one proxy and one UPS for each application. This approach induces extra overhead but has the side benefit of visualizing analyt-ics of each individual app.ResourcesMicrogateway custom plugin for the EMG pattern:https:///ankurshukla80/cloud-foundry-emg-service Proxy bundle for running the Apigee org pattern:https:///ankurshukla80/cloud-foundry-emg-service/blob/ master/Resources/Org-Plan-For-PCF_rev1_2019_12_05.zip。
2019ESMOASIA摘要出炉,肺癌会议重点内容抢先看!
整个人群的中位PFS为15.2个月,2年PFS率为27.7%。2年总生存率为76.1%。在阿法替尼(n = 36)病情恶化的患者中,对29例患者进行了活检,并在14例患者中证明了T790M阳性。在T790M阳 性的14例患者中,有12例接受了奥希替尼作为二线治疗。奥希替尼从入组到进展的中位时间为32.6 个月)。
2019年11月22-24日,ESMO亚洲大会将在新加坡举行,官网已经公布了摘要。这次会议又有不少 精彩热点将登上舞台,小编带大家提前观赏肺布,奥希替尼治疗T790M突变可带来生存时间延长(摘要号475O) AURA3研究是3代EGFR-TKI奥希替尼带给EGFR突变NSCLC的福音。该3期试验纳入了既往EGFR 靶向耐药后T790M阳性的患者,使用奥希替尼治疗,对照组为含铂双药化疗。之前公布的结果显示 奥希替尼可以延长主要研究终点PFS(10.1 vs 4.4个月),这次会议将由吴一龙教授报道OS结果。 研究共纳入419例患者(奥希替尼组279例,化疗组140例),其中化疗组有71%的患者在疾病进展 时交叉使用奥希替尼。结果显示,奥希替尼可以延长中位OS(26.8 vs 22.5个月),但未达到统计 学差异(P=0.277),两组3年生存率为37% vs 30%。奥希替尼从用药至第一次后续治疗的时间明 显比化疗组更长(HR=0.21,P<0.001)。奥希替尼组出现3级及以上AE的发生率更少(9% vs 34%)。这个OS结果虽然没统计学获益,但是我们要知道化疗组大部分后续治疗都使用了奥希替 尼,拉长了OS所致,说明奥希替尼还是T790M的克星。 呋喹替尼+吉非替尼双靶一线治疗EGFR突变晚期NSCLC,PFS达14.7个月(摘要号478O) 呋喹替尼是国内自主研发的靶向VEGFR抑制剂,目前已经获批用于结直肠癌的后线治疗。这项2期 多中心试验将呋喹替尼与吉非替尼联合一线治疗EGFR突变患者,研究中队列1患者在4周时未出现 ≥3级AE或≥2级肝功异常则将呋喹替尼剂量增加到5mg/天,队列2患者的呋喹替尼剂量为持续的 4mg/天。两队列吉非替尼用量都是250mg/天。 截至2019年7月,两队列分别纳入了26和24例患者,两队列的疗效相似。队列1的ORR为73.1%,中 位PFS为14.7个月;队列2的ORR为70.8%,中位PFS为14.7个月。队列1和2出现≥3级AE各占 65.4%和45.8%,严重AE发生率为23.1%和12.5%。
德语功能动词总结
1bringenzur Aufführung bringen上演Zum Schluss bringen结束Ums Leben bringen杀害Zur Sprache bringen讨论某事Zum Halten bringen使停住in Ordnung bringen把...整理成kommenzur Hilfe kommen帮助zum Entschluss kommen决定(sich entschliessen) gebenAntwort geben回答Rat geben给某人出主意Auftrag geben(erteilen)委托Erlaubnis geben允许Anregung geben倡议做某事Befehl geben命令Versprechen geben承诺Nachricht geben发布消息Garantie geben保证Unterricht geben授课Einwilligung geben赞同Kuss geben亲吻sich Mühe geben赞同Gastspiel geben客串演出erfahrenVervollkommung erfahren得以圆满Vereifachung erfahren 加以简化Veränderung erfahren发生变化Verbesserung erfahren得到改善findenAufnahme finden收到接待Berücksichtigung finden加以考虑Unterstützung finden 得到支持Beachtung finden受到重视Anerkennung finden得到承认Anwendung finden加以使用führenVorsitz führen担任主席2Protokoll führen作记录Beweis führen提出证据Kampf führen进行斗争Zu Ende führen进行到底Gespräch führen进行会话machenAngaben machen标明Ausführung machen进行论述Mitteilung machen报告Andeutung machen暗示Experiment machen进行试验Spaziergang machen散步leistenEid leisten宣誓Ersatz leisten进行论述Hilfe leisten进行帮助Verzicht leisten放弃Zahlung leisten付款Folge leisten跟随Gehorsam leisten服从nehmenin Anspruch nehmen要求Einsicht nehmen察觉Entwicklung nehmen得到发展Bad nehmen洗澡in Haft nehmen监禁Rache nehmen报仇In Schutz nehmen置。
新疆巩乃斯河枯、丰水期大型底栖动物群落结构与环境因子的关系
第41卷第5期生态科学41(5): 208–218 2022年9月Ecological Science Sep. 2022 王燕妮, 田伊林, 刘雨薇, 等. 新疆巩乃斯河枯、丰水期大型底栖动物群落结构与环境因子的关系[J]. 生态科学, 2022, 41(5): 208–218.WANG Yanni, TIAN Yilin, LIU Yuwei, et al. The relationship between macrobenthic community structure and environmental factors during dry and wet seasons in the Gongnaisi River, Xinjiang[J]. Ecological Science, 2022, 41(5): 208–218.新疆巩乃斯河枯、丰水期大型底栖动物群落结构与环境因子的关系王燕妮1,2, 田伊林1,2, 刘雨薇1,2, 崔东2, 尚天翠2, 姚付龙2, 张振兴1, 杨海军1,2,3,*1. 东北师范大学植被生态科学教育部重点实验室, 长春 1300242. 伊犁师范大学生物与地理科学学院, 伊宁 8350003. 云南大学生态与环境学院, 昆明 650091【摘要】为探究新疆巩乃斯河的生态状况, 团队先后在2018年10月(枯水期)和2019年6月(丰水期)对大型底栖动物群落和环境因子进行了调查, 分析大型底栖动物群落结构、功能摄食类群、生活类型组成及其与环境因子的关系。
研究河段共采集到大型底栖动物40种, 隶属3门4纲8目27科, 主要以节肢动物门为主, 其中直突摇蚊亚科(Orthocladiinae spp.)、长跗摇蚊族(Tanytansini sp.)、四节蜉属(Baeits sp.)、亚美蜉属(Ameletus sp.)和Cheilotrichia sp.是优势类群。
高压增强器[发明专利]
专利名称:高压增强器
专利类型:发明专利
发明人:P·J·达维,V·L·哈钦斯,H·R·科夫申请号:CN201080013582.7
申请日:20100210
公开号:CN102356242A
公开日:
20120215
专利内容由知识产权出版社提供
摘要:一种高压增强器系统包括:高压增强器(3),其用于从输入(1)接收液压流体并且提供该流体到处于比输入处更高的压力的输出(8);用于监控在输出处提供的液压流体的压力的装置(7);和控制装置(2,9),其用于控制来自输入的液压流体的供应,以将在输出处提供的液压流体的压力大致维持在预定值。
申请人:韦特柯格雷控制系统有限公司
地址:英国布里斯托尔
国籍:GB
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
2019勃林格殷格翰合作伙伴百济神州通过FDA新药临床试验申请精品教育.doc
勃林格殷格翰合作伙伴百济神州通过FDA新药临床试验申请百济神州(BeiGene)公司于2019年1月8日宣布,美国食品药品××局(FDA)已经通过了其候选药物BGB-A317进行新药临床试验的申请。
该药物是一种针对免疫抑制性受体PD-1的全人源单克隆抗体。
这将允许百济神州在美国进行临床试验并纳入其目前关于使用BGB-A317治疗复发性或难治性实体肿瘤患者的研究中。
自从该项目启动以来,勃林格殷格翰BioXcellence就一直在为BGB-A317的工艺开发和药品生产提供服务。
勃林格殷格翰公司位于德国比伯拉赫(Biberach)的研发部门负责开发相关的生产工艺和分析方法,然后成功地转移至其在中国上海新成立的生产基地,遵照药品生产质量管理规范(GMP)进行生产并进行全球产品供应。
2019年,勃林格殷格翰公司与百济神州公司达成战略合作协议,勃林格殷格翰BioXcellence在中国为百济神州开发的生物制药产品提供面向全球市场的高品质的工艺开发,生产以及质量相关服务。
关于勃林格殷格翰中国生物制药业务勃林格殷格翰作为世界上最大的生物制药生产商之一,将在中国打造旨在生产高质量产品的生物制药生产平台。
勃林格殷格翰在生物制药领域拥有超过30年的深厚经验,希望能够通过在上海建立的生产平台积极为患者和生物医药行业提供服务。
目前,勃林格殷格翰中国生物制药业务在上海的生物实验室(BioLab)分别运营100L和500L规模的生产线,面向全球提供GMP规格的临床研究用药品。
与此同时,勃林格殷格翰正在上海建设其新的生产基地“绿洲”(Oasis)。
其GMP生产运营将于2019年启动。
“绿洲”基地将拥有2019L规模的生产技术平台以及相应的制剂灌装加工的生产能力。
取决于业务的增长,“绿洲”的产能可进一步扩展。
ESM-Electronicsupplementarymaterial3fig
E S M-Electronic supplementary material 3/ Fig. 18-31Reproductive functions of wild fish as bioindicators of reproductive toxicants in the aquatic environmentBernhard Allner1, Sabine von der Gönna1, Eva-Maria Griebeler2, Nadia Nikutowski1, Annette Schaat1, Petra Stahlschmidt-Allner11 GOBIO Gm bH,Scheidertalstr.69a,D-65326Aarbergen,Germany,**************************2 Department of zoology, Johannes Gutenberg - University, Postbox 3980, D-55099 Mainz, GermanyFig. 18a Fig. 18bFig. 19aFig. 19bFig. 20aFig. 20c Fig. 20dFig. 21a Fig. 21b Fig. 22a Fig. 22b Fig. 22c Fig. 22dFig. 23a Fig. 23b10 µm Fig. 23c Fig. 23dFig. 23e Fig. 23fFig. 23hAT GDFig. 23g50 µmMOMOOCA 0CAROCAC100 µmFig. 23i AFMOCNFig. 23j40 µm50 µmOCATAFEFig. 23k ATLCME CGAPEFig. 24GPATGAPESWBME CPGDSGPE 20 µmFig. 28 20 µmFig. 30 10 µmlegendroach:Fig. 18a Cross-section through caudal bo dy cavity of roach larvae (2 cm total length, 0+ summers). The gonadal anlage comprises only a few cells attached to the dorsal peritoneal epithelium. Fig. 18b Higher magnification of gonadal anlage. AT: adipose tissue, BV: blood vessel, GA: gonadal anlage, G: gut, LC: lymphatic cell, PE: peritoneum, P: pancreas, SWB: swim bladder, TM: trunk musclesFig. 19 Roach fingerling (0+ summer). Fig. 19a Ovary with two attachments to the peritoneal wall (arrows). Germ cells persistin g on the oogonium stage are not visible indicating an immediate transformation to oocytes. Fig. 19b Higher magnification showing oocytes in chromatin- nucleolus stage; LC: lymphatic cell, MEC: mesenchymal cells, OCN: oocytes in chromatin -nucleolus stage, OPN: oocytes in perinucleolus stage, PE: peritoneum, PGD: prospective gonoductFig. 20 Roach ovary in second summer (1+ summer), transition from the auxocyte to early vitellogenic step of endogenous oogenesis, Fi g. 20a overview. Fig. 20b During the second summer a prominent mesenchymal tissue consisting of granulated lymphatic cells and undifferentiated motile cells appear in the gonadal interstitium. Fig. 20c Higher magnification (section of Fig. 20b). AT: adipose tissue, LC: lymphatic cell, MEC: mesenchymal cells, OPN: oocytes in perinucleolus stage, PCD: prospective gonoduct, Fig. 20d Cells originating from ex-vivo preparations of (1+ summer) roach ovarian tissue. Green arrow: undifferentiated mesenchymal cell, yellow arrow: eccentric nuc leus of granulated lymphatic cell, black arrow: hyaloplasm belonging to the granulated cells (enables motility of the cell type).Fig. 21a Roach ovarian tissue in second winter (1+winter), overview. During the second winter the oocyte cytoplasm becomes more eosinophilic. Fig. 21b Higher magnification, a single layered follicle epithelium becomes visible. AT: adipose tissue, FC: follicular cells, OCN: oocytes in chromatinnucleolus stage, OPN: oocytes in perinucleolus stage, PE: peritoneum, PGD: prospective gonoductFig. 22 Ovary in the third summer (2+ summer), Fig. 22a Ovary overview oocyte ripening starts in all females, Fig. 22b the gonad is colonized by undifferentiated cells contributing to the formation of a very tight packed bilayered follicle epithelium surroun ding the growing oocyte in cortical alveoli stage, many blood vessels become visible. Fig. 22c Oviduct epithelium. Oviduct epithelial cells become35404550%]isoprismatic during summer Fig. 22d Temporary ciliated oviduct epithelium in late summer/autumn. BV: blood vessel, CS: cilia seam, FC: follicular cells, MEC: mesenchymal cells, PE: peritoneum, PGD: prospective gonoduct.Fig. 23 a-e Roach ovary (1+ summer) originating from a highly polluted creek. Fig. 23a Seasonal and ontogenic precocious ripening of individual oocytes (cortical alveoli stage). Fig. 23b Immature blood cells. Fig. 23c Deviations in forming of bilayered follicular epithelium. Fig. 23d Individual ciliated cells appear between the oocytes. Fig. 23e Gonoduct epithelium is thickened and shows cilia. Fig. 23f Roach ovary (2+ winter): Disturbed oogenesis on Schwarzbach site. Fig. 23g Ligula intestinalis related suppression of oogenesis. Fig. 23h Degenerated ovary of roach (3+ summer) from Schwarzbach-site. Fig. 23i Roach 3+ summer caught in Sch warzbach asynchronous oogenesis comprising juvenile and adult winter and summer stages, Fig. 23j magnification of 22 e, Fig. 23k Roach 3+ summer caught in Sch warzbach sin gle growing oocyte with tumourous alteration of follicle epithelium, arrows: atypical inhomogeneous c ytoplasm staining in summer. AC: auxocyte, AFM: atypical female meioses, AT: adipose tissue, BV: blood vessel, CC: ciliated cells, CS: cilia seam, FC: fol licle cells, GD: Gonoduct, MO: mature ovule, OCA: oocyte in cortical alveoli stage, OCN:oocyte in chromatin-nucleolus stage, OPD: oocyte plasma degeneration, PGD: prospective gonoduct, pOCA: precocious oocyte in cortical alveoli stage, ROC: resorbtion of oocyte, TAFE: tumourous altered follicle epithelium.Fig. 24 Testes of roach in late spring (0+ summer); male gonads are characterized by the absence of oocytes. Spermatogonia showing typical germ cell features are also missing. AT: adipose tissue, GA: gonadal anlage, LC: lymphatic cell, PE: peritoneum, MEC: mesench ymal cells Fig. 25 Testes of roach in late summer (0+ summer); Differentiation of spermatogonia, a typical gonadal hilum showin g one attachment site to the peritoneum and a prospective sperm duct takes place until autumn of the first year, Fig. 25a Dorsolateral overview of the body cavity. Fig. 25b Higher magnification of the attachment site. AT: adipose tissue, GA: gonadal anlage, G: gut, M: mesenchymal cells, P: pancrea s, PE: peritoneum, PGD: prospective gonoduct, SG: spermatogonia, SWB: swim bladderFig. 26 Testes of roach in second summer (1+ summer). The number of gonia increased during the second summer. Gonia were arranged in groups, pronounced mitotic activity is not recognizable. SG: spermatogonia, SC: somatic cellsFig. 27 Testes of roach in second summer (1+ summer). Transition of primary spermatogonia to secondary spermatogonia starts in late summer and results in sphere like gonial aggregations. SG: (primary) spermatogonia, SG2: secondary spermatogoniaFig. 28 Testes of roach in second winter (1+ winter). Transition from secondary sperm atogonia to spermatocytes is completed during second winter. SC: somatic cells, SPC: spermatocytesFig. 29 (6+ autumn). Histological features of gonadal ripening are very similar in 1+ and elder fish during late summer and winter. S G: (primary) spermatogonia, SG2: secondary spermatogoniaFig. 30 Testes of adult roach (4+ late summer). Pronounced mitotic activity was only related to transition of spermatogonia to spermatocytes (meiosis). MP: metaphase plates, SG: spermatogonia, SPC: spermatocytesFig. 31 Prevalence of parasitical infects in roach.。
The Long and Short of Quality Ladders
NBER WORKING PAPER SERIESTHE LONG AND SHORT (OF) QUALITY LADDERSAmit KhandelwalWorking Paper 15178/papers/w15178NATIONAL BUREAU OF ECONOMIC RESEARCH1050 Massachusetts AvenueCambridge, MA 02138July 2009I am especially grateful to my dissertation committee, Irene Brambilla, Penny Goldberg and Peter Schott, for guidance and support. I have benefited from conversations with Steve Berry, Ray Fisman, Juan Carlos Hallak, David Hummels, Kala Krishna, Chris Ksoll, Frank Limbrock, Alex Mcquoid, Nina Pavcnik, Siddharth Sharma, Gustavo Soares, Robert Staiger, Catherine Thomas, Daniel Trefler, Chris Udry, Eric Verhoogen, David Weinstein, Jeffrey Weinstein, and various seminar participants. Special thanks also to Amalavoyal Chari. All errors are my own. The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.© 2009 by Amit Khandelwal. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.The Long and Short (of) Quality LaddersAmit KhandelwalNBER Working Paper No. 15178July 2009JEL No. F1,F15,F16ABSTRACTPrices are typically used as proxies for countries' export quality. I relax this strong assumption by exploiting both price and quantity information to estimate the quality of products exported to the U.S. Higher quality is assigned to products with higher market shares conditional on price. The estimated qualities reveal substantial heterogeneity in product markets' scope for quality differentiation, or their "quality ladders.'' I use this variation to explain the heterogeneous impact of low-wage competition on U.S. manufacturing employment and output. Markets characterized by relatively shorter quality ladders are associated with larger employment and output declines resulting from low-wage competition. Amit KhandelwalGraduate School of BusinessColumbia UniversityUris Hall 606, 3022 BroadwayNew York, NY 10027and NBERak2796@The Long and Short(of)Quality Ladders∗Amit Khandelwal†Columbia Business School&NBERFirst Draft:November2006This Version:July2009AbstractPrices are typically used as proxies for countries’export quality.I relax this strong assumption by exploiting both price and quantity information to estimate the quality of products exported to the U.S.Higher quality is assigned to products with higher market shares conditional on price.The estimatedqualities reveal substantial heterogeneity in product markets’scope for quality differentiation,or their“quality ladders.”I use this variation to explain the heterogeneous impact of low-wage competition onU.S.manufacturing employment and output.Markets characterized by relatively shorter quality laddersare associated with larger employment and output declines resulting from low-wage competition. Keywords:Quality Ladders;Low Wage Competition;Quality Specialization;Product DifferentiationJEL Classification:F1,F15,F161IntroductionThe quality of products manufactured by countries affects many economic outcomes in international and development economics.Past studies have consistently found that product quality influences cross-border trade;richer countries consume and export higher quality products than developing countries.1The ability ∗I am especially grateful to my dissertation committee,Irene Brambilla,Penny Goldberg and Peter Schott,for guidance and support.I have benefited from conversations with Steve Berry,Ray Fisman,Juan Carlos Hallak,David Hummels,Kala Krishna, Chris Ksoll,Frank Limbrock,Alex Mcquoid,Nina Pavcnik,Siddharth Sharma,Gustavo Soares,Robert Staiger,Catherine Thomas,Daniel Trefler,Chris Udry,Eric Verhoogen,David Weinstein,Jeffrey Weinstein,and various seminar participants. Special thanks also to Amalavoyal Chari.All errors are my own.†Uris Hall,Room606,3022Broadway,New York,NY10027,email:ak2796@,website: /faculty/akhandelwal/.1Support for the demand-side explanation,initially posited by Linder(1961),has been shown by Hallak(2006)and Verhoogen (2008).Studies by Hummels and Klenow(2005)and Schott(2004)provide systematic evidence that richer countries exportof developing countries to transition from low-quality to high-quality products is therefore seen by some as a necessary(but certainly not a sufficient)condition for export success and,ultimately,economic development.2 In addition,quality upgrading features prominently in current debates about the role of international trade in driving wage inequality.But while this research suggests a positive association between quality upgrading and income per capita,Verhoogen(2008)and Goldberg and Pavcnik(2007)argue that quality upgrading also affects the variance of the income distribution through changes in the relative demand for skilled labor. Quality specialization may therefore partly explain why inequality has risen in developing countries following trade liberalizations,in contrast to Stolper-Samuelson predictions.Differences in the quality space may also affect how closely countries’products compete with one another and therefore have implications for the impact of trade on industry employment and output Leamer(2006).These studies stress the importance of understanding why product quality varies across countries and over time,and how it is influenced by policy.The challenge faced by this literature is that product quality is unobserved.Research in the international trade literature has attempted to deal with this problem by using prices(or unit values)to proxy for quality.This approach,while convenient,requires strong assumptions since prices could reflect not just quality,but also variations in manufacturing costs.For example,in1999, the U.S.imported Malaysian and Portuguese women’s trousers(HS6204624020)at unit values(inclusive of transportation and tariffduties)of$146and$371,respectively.If prices are assumed to proxy perfectly for quality,Malaysian trousers would possess about half the quality of Portuguese trousers.However,the annual wage in the apparel sector for Malaysia and Portugal was$3,100and$5,700,respectively(UNIDO, 2005).So the difference in unit values may instead be a reflection of these different factor prices.Why would a consumer ever purchase expensive Portuguese trousers if they,in fact,possess lower quality?One explanation is that a fraction of consumers have a preference for the horizontal attributes of Portuguese trousers(for instance,the cut or color patterns).Indeed,U.S.consumers imported more than82,000dozens of Malaysian trousers compared to only865dozens from Portugal.Idiosyncratic preferences for products’horizontal attributes can therefore break the direct mapping from prices to quality that has been traditionally assumed.This paper estimates the quality of U.S.imports using a procedure that relaxes the strong quality-equals-price assumption.The quality measures are derived from a nested logit demand system,based on Berry(1994),that embeds preferences for both horizontal and vertical attributes.3Quality is the vertical higher quality products.Baldwin and Harrigan(2007),Hallak and Sivadasan(2009),Kugler and Verhoogen(2008)and Johnson (2009)also document the role of product quality in influencing production and trade patterns.2Kremer(1993)provides microeconomic foundations for the quality production function and its implications for economic development(see also Verhoogen(2008)and Kugler and Verhoogen(2008)).Endogenous growth models that highlight the importance of product quality include Grossman and Helpman(1991).Hausmann and Rodrik(2003),Rodrik(2006)and Hidalgo et al.(2007)highlight the importance of export quality for economic performance.3Other studies within international trade that use a nested logit structure include Goldberg(1995)and Irwin and Pavcnikcomponent of the estimated model and captures the mean valuation that U.S.consumers attach to an im-ported product.The procedure utilizes both unit value and quantity information to infer quality and has a straightforward intuition:conditional on price,imports with higher market shares are assigned higher quality.Importantly,the procedure requires no special data beyond what is readily available in standard disaggregate trade data.It is also easy to implement;here,I estimate separate demand curves for approxi-mately hundreds of manufacturing industries.Moreover,the procedure recovers quality at thefinest level of product aggregation available(for the U.S.data,this is the ten-digit HS level).4The inferred qualities indicate that developed countries export higher quality products relative to developing countries.Thisfinding is consistent with Schott(2004)who uses unit values to proxy for quality.However,the estimates also reveal substantial heterogeneity in product markets’scope for quality differentiation,or quality ladders,which I measure as the range of qualities within the product market.In markets with a larger scope for quality differentiation,or a“long”quality ladder,unit values are relatively more correlated with the estimated qualities.In these markets,prices appear to be appropriate proxies for quality.In contrast,prices appear to be less appropriate proxies for quality in markets with a narrow range of estimated qualities(“short”ladder markets).This provides suggestive evidence that expensive imports in short-ladder markets coexist with cheaper rivals due to horizontal product differentiation.That is,although the average U.S.consumer attaches a low valuation to the expensive import,there is a fraction of consumers who still value the product.This heterogeneity underscores the drawback in invoking the quality-equals-price assumption,particularly for products characterized by short quality ladders.I use this heterogeneity in ladder lengths to demonstrate that quality specialization has important implications for the bor market.The public’s fear of globalization is often rooted in the vulnerability or, to use Edward Leamer’s terminology,the contestability of jobs.According to Leamer,the contestable jobs are those where“wages in Los Angeles are set in Shanghai”(Leamer(2006),p.5).A recent study by Bernard, Jensen,and Schott(2006)provides evidence that the probability of U.S.plant survival and employment growth are negatively associated with an industry’s exposure to import penetration,particularly from low-wage countries.5However,while low-wage competition negatively affects output and employment growth, the impact is heterogenous across industries.For instance,between1980and the mid-1990s,electronics (SIC36)experienced greater low-wage import penetration than fabricated metals(SIC34)but experienced (2004)although these papers do not focus on the quality of imported products.4An alternative procedure developed by Hallak and Schott(2007)relies on the similar intuition to infer countries’export quality to the U.S.,but their methodology prevents estimating quality at thefinest level of disaggregation due to data limitations.5Other studies studying the negative relationships between trade and employment include Sachs and Shatz(1994),Free-man and Katz(1991)and Revenga(1992).Bernard,Jensen,and Schott(2006)explicitly connect the relationship between employment and trade with low-wage countries,defined as nations with less than5percent of U.S.per capita GDP.I use their definition of low-wage countries in this paper(see Table1).a smaller employment decline.6Using a simple model developed in Section2,I demonstrate that the impact of low-wage competition on U.S.industries will vary with its quality ladder.My argument is related to a body of research that reject standard model predictions of factor price equalization(FPE).7These studies show that if countries inhabit different cones of(quality)diversification,with developing countries exporting low-quality products,then developed countries will be insulated from movements of wages in developing countries.However,if markets vary in their scope for quality differentiation,developed countries will experience heterogeneity in their exposure to developing countries.In long-ladder markets,developed countries can insulate themselves from the South by using comparative advantage factors(e.g.,skill,capital and/or technology)to specialize atop the quality ladder.In short-ladder markets,however,developed countries will be directly exposed to Southern competition because quality upgrading is infeasible.Thus,a market’s scope for vertical differentiation is important for understanding Leamer’s notion of contestable jobs.Ifind robust support for this hypothesis by matching U.S.industry data and import competition to quality ladders constructed from the estimated qualities.Consistent with Bernard et al.(2006),Ifind that industry employment is negatively associated with import penetration,particularly from low-wage countries. However,the empirical results confirm that import penetration has a weaker impact on employment in industries with long quality ladders:a ten percentage point increase in low-wage penetration is associated with a6percent employment decline in an industry characterized by an average quality ladder length.A similar increase in competition in a long-ladder industry(one standard deviation above the mean)results in only a1.4percent employment decline.Differential impacts on industry output are similar.Importantly,the impact of import competition on short and long-ladder industries is similar in magnitude to the differential impact on low and high capital-intensive industries.In other words,even after controlling for the differential impact through traditional channels,such as capital and skill intensities(see Sachs and Shatz(1994)and Bernard et al.(2006)),the quality ladder remains an important determinant of an industry’s vulnerability to low-wage competition.Moreover,the heterogenous effect is not precisely captured if one simply uses variations in unit values.These results complement the literature studying the relationship between quality specialization and labor markets.But while existing studies focus predominantly on developing countries(see Goldberg and Pavcnik(2007),Verhoogen(2008),Kaplan and Verhoogen(2005)),the evidence here suggests that quality specialization is also important for developed countries.Quality ladders may therefore help identify those markets that are likely to be contested by competition from low-wage countries.6One potential explanation is differences in capital intensity,but in1980,electronics was less capital intensive than fabricated metals.Indeed,this paper offers evidence that capital intensity only partly explains the heterogeneity in U.S.employment outcomes due to import competition.7For instance,see Leamer(1987)and Schott(2003).The remainder of the paper is organized as follows.Section2offers a simple model to illustrate that exposure to low-wage competition is greater in markets with short quality ladders.In Section3,I discuss the approach used to infer quality from trade data.The data and quality estimation results are presented in Section4.Section5applies the quality estimates to test the implications of quality specialization for U.S. employment.I conclude in Section6.2A Model of Contestable JobsThis section develops a simple model that delivers two comparative static results.First,the impact of foreign competition on domestic market shares is larger from low-wage countries.Second,the impact will depend on the market’s quality ladder length.I then use the empirical quality measures derived in Section3to assess the predictions of the model.The model is partial equilibrium and analyzesfirms in two regions,North(N)and South(S),where the Southernfirms freely export to the North.The wages in each country are determined by an outside sector and are therefore treated as exogenous:w N>w S.Each region has J homogenousfirms that compete by manufacturing horizontally and vertically distinct varieties.Following Krugman(1980)and Melitz(2003), horizontal differentiation is costless so in equilibrium,allfirms produce horizontally distinct varieties.But as in Flam and Helpman(1987),vertical(e.g.,quality)differentiation depends on a Ricardian-type comparative advantage given by region c’s technology,Z c.I assume that Northernfirms have access to better technology than the South:Z N>Z S.Firm j uses this technology to manufacture a variety subject to a marginal cost function that is increasing with quality(λj):w c+λ2j,for c∈{N,S}.82Z cThe consumers who live in the North have discrete choice preferences.Consumer n observes the domestic and Southern varieties and chooses the variety j that provides her with the highest indirect utility,V nj=θλj−αp j+ nj.(1) Quality is defined as an attribute whose valuation is agreed upon by all consumers:holding pricesfixed, all consumers would prefer higher quality objects.The vertical component can be interpreted as the clarity or sharpness of a television screen or it can reflect the perceived quality that results from advertising.In either case,quality represents any attribute that enhances consumers’willingness-to-pay for a variety.An alternative interpretation is thatλrepresents a shift parameter in the variety’s demand schedule:holding price p jfixed,demand shifts out when the quality improves(Sutton,1991).The empirical identification of quality relies on this latter intuition.The parameterθreflects the consumers’valuation for quality and,as shown below,represents a proxy for the market’s quality ladder in the model.8One can think of this marginal cost function as arising from afixed-proportions technology that combines labor and capital (with the rental rate on capital being implicitly treated as one).in the proportion1toλ22ZHorizontal product differentiation is introduced in(1)through the consumer-variety-specific term, nj.Following standard practice in the discrete choice literature, nj is assumed to be distributed i.i.d. type-I extreme value.Unlike the vertical attribute,the horizontal attribute has the property that some people prefer it while others do not and on average,it provides zero utility.9Denote the mean valuation for variety j asδj≡θλj−αp j.Under the distributional assumption,the market share of variety j is given by the familiar logit formulam j=eδjkeδk.(2)Afirm from region c maximizes profits in the Northern market by choosing price and quality bysolving the following problemmaxp j,λjp j−w c−λ2j2Z ceδjkeδk(3)The market is characterized by monopolistic competition with a sufficiently large number offirms that no onefirm can influence the market equilibrium prices and qualities.The optimal price charged by variety j is therefore10p∗j=1α+w c+λ∗2j2Z c,∀j∈c(4)Under this pricing rule,firms charge a markup(1α)over their marginal cost.The optimal quality choice equates the marginal benefit of choosing quality to its marginal cost:λ∗j=θZ cα,∀j∈c(5)Equations(4)and(5)indicate that allfirms within a region choose the same price and quality(but recall that allfirms differentiate their varieties in the(costless)horizontal dimension).I therefore drop the subscript j and index the representativefirm’s choice in each region by N or S.Note also that the market share in(2) simplifies to m c=eδcJ(eδN+eδS),c∈{N,S}and the aggregate market share in each region is M c=Jm c.The optimal price and quality choice imply that the mean valuation consumers attach to the representativefirm in region c isδ∗c≡θλ∗c−αp∗c=θ2Z c2α−αw c−1,c∈{N,S}.(6)The Northernfirms manufacture the higher quality varieties since Z N>Z S.11Below,I verify that more advanced countries indeed export higher quality products using the newly proposed quality measures 9For example,comfort is a quality attribute since,ceteris paribus,all consumers prefer more comfort to less.An article of clothing’s fashion or style is a horizontal attribute since at equal prices,not all consumers would purchase the same style(e.g., stripes versus solids).10If afirm takes into account the impact of its decision on the denominator in(2),the optimal price is given by p∗j=1α(1−m j)+w c+λ∗2j2Z c.As discussed in Anderson et al.(1992),monopolistic competition assumes there are a sufficiently largenumber of varieties so that the market share of any one variety is negligible.The optimal price is therefore given by(4).11Since quality is a monotonic function of technology,prices are sufficient statistics for quality in this model.However,if Z N=Z S,all qualities would be identical,but the North would charge higher prices because of higher manufacturing costs. Thus,empirically,prices alone may confound differences in quality and quality-adjusted manufacturing costs.which provides a justification for this assumption.These higher quality Northernfirms will also have larger market shares ifθ2(Z N−Z S)>α(w N−w S),(7)since this implies thatδ∗N >δ∗S.This condition in(7)holds if consumers’valuation for quality is sufficientlyhigh or the North’s technological prowess is sufficient to overcome its disadvantage in manufacturing costs. This assumption is consistent with substantial theoretical and empirical work arguing that higher quality, or more productive,firms have higher output(and market shares).12I define the market’s quality ladder as the difference between the highest and lowest quality(Gross-man and Helpman,1991).As discussed below,the empirical measures cannot separately identifyλfrom the consumers’valuation for quality(θ).I therefore define the market’s quality ladder asLadder(θ)≡θλ∗N−θλ∗S=θ2α(Z N−Z S).(8)The market’s quality ladder can be indexed byθand so as the valuation for quality increases,the quality ladder increases,or lengthens.The scope for quality differentiation will therefore vary according the con-sumers’valuations for quality in each market.13Moreover,as the quality ladder increases,the market sharegains are disproportionately distributed to the manufacturers of the higher quality(∂δ∗N∂θ>∂δ∗S∂θ).This simple model abstracts away from the endogenous“lengthening”of the ladder that may occur in a long-run equilibrium with technological progress or shifts in consumer preferences.Instead,I assume that the quality ladder isfixed which may be appropriate in the short to medium run and mitigate endogeneity concerns in the empirical analysis by assigning a market’s quality ladder its initial length.This assumption is consistent with the data which reports a persistence between a market’s initial ladder length and itsfinal period length.That is,on average,markets with initially“short”ladders are not“long”by the end of the sample,implying that the quality ladder length is an intrinsic attribute of a market characterizing its scope for quality differentiation.14I can now analyze how the aggregate Northern market share changes with Southern wages,and how this impact varies according to a market’s quality ladder length.Thefirst result shows that the North loses market share as Southern manufacturing wages decline:∂M NS =−M N M S∂δ∗SS>0(9)since∂δ∗SS=−α.(10)12For instance,see Melitz(2003)and Bernard et al.(2007).13The ladder length could also vary by changing Z N and the predictions of the model do not change.Hence,the contestable jobs hypothesis does not hinge on the source of the market’s scope for quality differentiation.14A market’s intrinsic scope for quality differentiation is closely related to escalation principle developed in Sutton(1998).Thus,Southernfirms become more competitive as its manufacturing costs falls and this gain comes at the expense of lower market shares for the Northernfirms.This comparative static is quite intuitive and is supported by existing empirical evidence.For instance,Bernard et al.(2006)show that output and employment for U.S.plants are negatively associated with import competition,but the impact is much larger when import competition originates from countries with less than5%of U.S.per capita GDP.Importantly,this model adds quality differentiation to show that the intensity of competition within a market depends on the quality ladder length.In particular,while(9)indicates that the North’s market share falls as Southern wages decline,it suffers a smaller loss in markets characterized by longer quality ladders(highθmarkets).This is seen by differentiating(9)with respect toθ:∂2M N ∂w S∂θ=−∂2δ∗S∂w S∂θM N M S+∂δ∗S∂w SM N∂M S∂θ+M S∂M N∂θ=−∂δ∗S∂w SM N M2S−M2N M S∂δ∗N∂θ−∂δ∗S∂θ=∂δ∗S∂w SM N M S(M N−M S)∂δ∗N∂θ−∂δ∗S∂θ=−θM N M S(M N−M S)(Z N−Z S)<0,(11)since M N>M S.This derivative shows that in long-ladder markets(highθ),the sensitivity of Northern market shares to Southern competitiveness is reduced.As a result,a decrease in the South’s wage results in a smaller decline of the North’s market share in long ladders.The model shows that trading with the South can generate a differential impact on two markets that are otherwise identical but vary according in their quality ladders.This result is related to more general models of international trade that predict a breakdown of FPE when countries are fully specialized in production.In contrast to a single-cone equilibrium,where endowments are such that all countries produce all goods,the conditions required for factor price equalization are not met in multi-cone equilibrium because countries specialize in varieties tailored to their endowments.15Schott(2004)has extended this analysis to within product specialization where endowment differences cause countries to specialize in different segments of a product’s quality ladder.The model here sharpens this analysis by arguing that the scope for quality specialization varies across markets.3Empirical ImplementationThis section describes the procedure that infers quality using price and quantity information from standard disaggregate trade data.The estimated qualities are then used to verify predictions from the model.15For evidence in favor of the hypothesis that countries inhabit multiple cones of diversification,see Leamer(1987),Davis and Weinstein(2001)and Schott(2003).The methodology is based on the nested logit framework by Berry(1994).The nested logit has the advantage over the logit in(1)because it partially relaxes the independence of irrelevant alternatives(IIA) property by allowing for more plausible correlation structures among consumer preferences.To understand why this is important,suppose a consumer is choosing between a Japanese wool shirt and an Italian cotton shirt.If a Chinese cotton shirt enters the market,a logit or CES framework would predict that the market shares for both imports would fall by the same percent.However,we might expect the Italian cotton shirt’s market share to adjust more than the Japanese shirt because the Chinese shirt is also cotton.The nested logit allows for more appropriate substitution patterns by placing varieties into appropriate nests.In order to delineate the nests,I rely on the structure of the U.S.trade data.Feenstra et al.(2002) have compiled U.S.import data which containfive-digit SITC industries that have been mapped to ten-digit HS products denoted by h.The products serve as the nests.An import from country c within a product is called a variety.I model consumer preferences for a single industry and therefore suppress industry subscripts.Fol-lowing Berry(1994),consumer n has preferences for country c’s import into HS product h(e.g.,variety ch) at time t.The consumer purchases the one variety that provides her with the highest indirect utility,given byV ncht=λ1,ch+λ2,t+λ3,cht−αp cht+Hh=1µnht d ch+(1−σ) ncht.(12)Quality is defined asλ1,ch+λ2,t+λ3,cht since it reflects the valuation for variety ch that is common across consumers(notice that these terms are not subscripted by n).This quality term is decomposed into three components.Thefirst term,λ1,ch,is the time-invariant valuation that the consumer attaches to variety ch. The second term,λ2,t,captures for secular time trends common across all varieties.Theλ3,cht term is a variety-time deviation from thefixed effect that is observed by the consumer but not the econometrician.This last term is potentially correlated with the variety’s c.i.f.unit value,p cht.The horizontal component of the model is captured by the random component, Hh=1µnht d ch+(1−σ) ncht.The logit error ncht is assumed to be distributed Type-I extreme value and explains why a variety that is expensive and has low quality is ever purchased.The former term interacts the common valuation that consumer n places on all varieties within product h,µnht,with a dummy variable d ch that takes a value of1if country c’s export lies in product h.This term generates the nest structure because if allows consumer n’s preferences to be more correlated for varieties within product h than for varieties across products.16 An“outside”variety completes the demand system.The purpose of the outside variety is to allow16As discussed in Berry(1994),Cardell(1997)has shown that the distribution of Hh=1µnht d ch is the unique distributionsuch that if is distributed extreme value,then the sum is also distributed type-I extreme value.The degree of within nest correlation is controlled byσ∈(0,1].Asσapproaches one,the correlation in consumer tastes for varieties within a nest approaches one and asσtends to zero,the nested logit converges to the standard logit model.。
grenzstand-messsystem liquiphant M S 及 FEL 52 安全手册
Safety ManualSD 163F/00/de/10.0352018424Grenzstand-Messsystem liquiphant M/S mitElektronikeinsatz FEL 52Handbuch zur Funktionalen SicherheitAnwendungsbereichÜberfüllsicherung bzw. betriebliche Maximumdetektion von Flüssigkeiten aller Art in Behältern, welche den beson-deren Anforderungen der Sicherheits-technik nach IEC 61508/IEC 61511-1 genügen sollen.Die Messeinrichtung erfüllt die Anforde-rungen•für Sicherheitsfunktionen bis SIL 2•an Explosionsschutz durch Eigensi-cherheit oder druckfeste Kapselung •an elektromagnetische Verträglichkeit nach EN 61326 und NAMUR -Empfehlung NE 21.Ihre Vorteile•Für Überfüllsicherungen bis SIL 2–unabhängig beurteilt (Functional Assessment) durch nach IEC 61508/IEC 61511-1•Überwachung auf Korrosion an der Schwinggabel des Messaufnehmers •keinerlei Abgleich•Fremdvibrationssicher •einfache InbetriebnahmeLiquiphant M/S + FEL 52 InhaltsverzeichnisSIL Konformitätserklärung. . . . . . . . . . . . . . . . . . . .3Allgemeines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Allgemeine Darstellung eines Sicherheitssystems(Schutzfunktion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Aufbau des Messystems mit Liquiphant M/Smit FEL52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Einstellungen und Installationshinweise . . . . . . . .7Installationshinweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Verhalten im Betrieb und bei Störung. . . . . . . . . . .8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Wiederkehrende Prüfung des Messsystems . . . . .8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Anhang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Spezifische Werte und Verschaltungsartenfür das Messsystem Liquiphant M/S mit FEL 52 . . . . . . . . . 9Exida Management Summary . . . . . . . . . . . . . . . .10Ergänzende Dokumentation . . . . . . . . . . . . . . . . . . . . . . . 122Endress + HauserLiquiphant M/S + FEL 52Endress + Hauser 3SIL KonformitätserklärungL00-FEL52xxx-01-06-xx-a2-001Liquiphant M/S + FEL 524Endress + HauserAllgemeinesAllgemeine Darstellung eines Sicherheitssystems (Schutzfunktion)Auslegungstabellen zur Bestimmung des Safety Integrity Levels (SIL)Mit den nachfolgenden Tabellen werden•der erreichbare SIL•die Anforderungen bezüglich der “Durchschnittlichen gefährlichen Versagenswahrscheinlich-keit bei Anforderung” (PFD av )•die “Hardware Fehlertoleranz” (HFT)•der “Wahrscheinlichkeitsanteil sicherheitsgerichteter Fehler” (SFF)eines zur Sicherheitsfunktion geeigneten Messsystems definiert.Die spezifischen Werte für das Messsystem Liquiphant M/S mit FEL 52 (PNP-Version) finden Sie in der Tabelle im Anhang.Zulässige Versagenswahrscheinlichkeiten der gesamten Sicherheitsfunktion in Abhängigkeit vom SIL für "Low Demand Systeme", die auf Anforderungen (z.B. Überschreiten eines definierten max. Füllstandes/Schaltpunkts) reagieren müssen (Quelle: IEC 61508, Teil 1):Die nachfolgende Tabelle zeigt den erreichbaren Safety Integrity Level (SIL) abhängig vom Wahr-scheinlichkeitsanteil sicherheitsgerichteter Fehler und der "Hardware Fehlertoleranz" des gesam-ten Sicherheitssystems für Systeme vom Typ B (komplexe Bauelemente, nicht alle Fehler bekannt bzw. beschreibbar).SIL PFD av 4≥ 10−5...< 10−43≥ 10−4...< 10−32≥ 10−3...< 10−21≥ 10−2...< 10−1SFFHFT01 (0)11)Nach IEC 61511-1 (FDIS) (Kapitel 11.4.4) kann die HFT um eins reduziert werden (Werte in Klammern)wenn die eingesetzten Geräte folgende Bedingungen erfüllen:- das Gerät ist betriebsbewährt,- es können am Gerät nur prozessrelevante Parameter geändert werden (z.B. Messbereich, ... ),- die Veränderung der prozessrelevanten Parameter ist geschützt (z.B. Passwort, Jumper, ... ),- die Sicherheitsfunktion erfordert weniger als SIL 4.Alle Bedingungen treffen für den Liquiphant M/S mit FEL 52 zu.2 (1)1< 60 %not allowed SIL 1SIL 260 % ... < 90 %SIL 1SIL 2SIL 390 % ... < 99 %SIL 2SIL 3≥ 99 %SIL 3Liquiphant M/S + FEL 52Endress + Hauser 5Aufbau des Messystems mit Liquiphant M/S mit FEL 52Grenzstand-MesssystemIn der folgenden Abbildung ist das Messsystems dargestellt (beispielhaft).SicherheitsfunktionDie Sicherheitsfunktion gilt nur für MAX-Sicherheit (Überfüllsicherung).Für die Sicherheitsfunktion sind folgende Einstellungen zugelassen:Der Transistorausgang ist gesperrt, wenn:•der Schaltpunkt überschritten wird (Füllstand übersteigt die Ansprechhöhe)•eine Störung eintritt•die Netzspannung ausfälltZusätzlich zum Transistorausgang zeigt eine rote LED folgendes an:•Füllstandalarm (Gabel bedeckt) - rote LED leuchtet•Korrosionsalarm oder erkannte elektrische Störung - rote LED blinkt (1 Hz)GerätEinstellungAuslieferzustandLiquiphant M/SDichteschalter-Stellung: 0,5Dichteschalter-Stellung: 0,7Dichteschalter-Stellung: 0,7Sicherheitsschaltung "MAX"Sicherheitsschaltung "MAX"Liquiphant M/S + FEL 526Endress + HauserZulässige Varianten des Liquiphant M/S mit FEL 52 für die Sicherheitsfunktion Folgende Kombinationen sind für das Messsystem zulässig:Zulässige Gerätetypen (# = alle Geräteausprägungen zulässig); * 2 = FEL 52Angaben für die SicherheitsfunktionDie verbindlichen Einstellungen und Angaben für die Sicherheitsfunktion gehen aus dem Anhang (Seite 9) hervor.Die Reaktionszeit des Messsystems beträgt ≤ 0,9 s.!Hinweis!MTTR wird mit 8 Stunden angesetzt.Sicherheitssysteme ohne selbstverriegelnde Funktion müssen nach Ausführung der Sicher-heitsfunktion innerhalb MTTR in einen überwachten oder anderweitig sicheren Zustand gebracht werden.Mitgeltende GerätedokumentationFür das Messsystem müssen folgende Dokumentationen vorhanden sein:Liquiphant M mit FEL 52Liquiphant S mit FEL 52FTL 50-######2###*FTL 51-######2###*FTL 50 H-######2###*FTL 51 H-######2###*FTL 51 C-######2####*FTL 70-######2####*FTL 71-######2####*Technische InformationBetriebsanleitungLiquiphant MTypen FTL 50, FTL 51, FTL 50 H, FTL 51 H:TI 328FTypen FTL 50, FTL 51: KA 143FTypen FTL 50, FTL 51: KA 163F(mit Alu-Gehäuse/separatem Anschlussraum)Typen FTL 50 H, FTL 51 H: KA 144FTypen FTL 50 H, FTL 51 H: KA 164F(mit Alu-Gehäuse/separatem Anschlussraum)Typ FTL 51 C:TI 347FTyp FTL 51 C: KA 162FTyp FTL 51 C: KA 165F(mit Alu-Gehäuse/separatem Anschlussraum)Liquiphant SFür alle Gerätetypen: TI 354FTypen FTL 70, FTL 71: KA 172FTypen FTL 70, FTL 71: KA 173F(mit Alu-Gehäuse/separatem Anschlussraum)Relevanter InhaltAnschlusswerte,InstallationshinweiseEinstellung, Konfiguration, Hinweise, FunktionstestsLiquiphant M/S + FEL 52Endress + Hauser 7Einstellungen und InstallationshinweiseInstallationshinweiseDie Hinweise zur korrekten Installation des Liquiphant M/S mit FEL 52 sind der Kompaktanleitung (KA) zu entnehmen.Da die Anwendungsbedingungen Einfluss auf die Sicherheit der Messung haben, sind die entsprechenden Hinweise in der Technischen Information (TI) und Kompaktanleitung (KA) zu beachten.Die Anleitungen zu den Einstellungen der Geräte finden Sie in den folgenden Dokumentationen:(* abhängig vom Typ, siehe Tabelle: Mitgeltende Gerätedokumentation, Seite 6)Einstellungen Liquiphant M/S mit FEL 52:•Die Einstellung am Dichteschalter ist dem Dichtebereich des Mediums entsprechendeinzustellen.•Die Einstellung der Sicherheitsschaltung hat Einfluss auf die Funktion. Der DIL-Schalter muss bei einer SIL Anwendung in Stellung MAX stehen."Achtung!Bürde (anschließbare Last)Last über Transistor und separaten PNP-Anschluß geschaltet.Kurzzeitig (1 s) max. 1 A, max. 55 V (getakteter Überlast- und Kurzschlußschutz);dauernd max. 350 mA;max, 0,5 µF bei 55 V, max. 1,0 µF bei 24 V;Restspannung < 3 V (bei durchgeschaltetem Transistor);Reststrom < 100 mA (bei gesperrtem Transistor)"Achtung!Nach Inbetriebnahme des Messsystems können Änderungen der Einstellungen am Elektronikein-satz FEL 52 die Schutzfunktion beeinträchtigen!GerätBeschreibung der Einstellung in Dokumentation:Liquiphant M/S mit FEL 52KA 143F, KA 163F, KA 144F, KA 164F, KA 162F, KA 165F, KA 172F, KA 173F, *Liquiphant M/S + FEL 528Endress + HauserVerhalten im Betrieb und bei StörungDas Verhalten im Betrieb und bei Störung wird in den folgenden Dokumentationen beschrieben.(* abhängig vom Typ, siehe Tabelle: Mitgeltende Gerätedokumentation, Seite 6)Wiederkehrende Prüfung des MesssystemsDie Funktionsfähigkeit der Überfüllsicherung ist jährlich zu prüfen, wenn die im Anhang genann-ten PFD av -Werte verwendet werden.Die Prüfung ist so durchzuführen, dass die einwandfreie Funktion der Überfüllsicherung im Zusammenwirken aller Komponenten nachgewiesen wird. Dies ist bei einem Anfahren derAnsprechhöhe im Rahmen einer Befüllung gewährleistet. Wenn eine Befüllung bis zur Ansprech-höhe nicht praktikabel ist, so ist der Standaufnehmer durch geeignete Simulation des Füllstandes oder des physikalischen Messeffekts zum Ansprechen zu bringen. Falls die Funktionsfähigkeit des Standaufnehmers/Messumformers anderweitig erkennbar ist (Ausschluss funktionshemmen-der Fehler), kann die Prüfung auch durch Simulieren des entsprechenden Ausgangssignals durchgeführt werden."Achtung!Für den Funktionstest sind folgende Punkte zu beachten:•Das Schalten des Transistorausgangs kann z.B. mit Handmultimeter an den Klemmen oder durch beobachten der nachfolgenden Überfüllsicherungsteile (z.B. Hupe, Stellglied) geprüft werden.•Als positives Prüfergebnis muss eine Bedeckung der Schwinggabel erkannt werden und zum Alarm der Überfüllsicherung führen.•Wenn bei der Wiederkehrenden Prüfung eine Gabelbedeckung nicht erkannt wird, muss der überwachte Prozess durch zusätzliche oder andere Maßnahmen in einen sicheren Zustand gebracht und/oder im sicheren Zustand gehalten werden, bis eine Instandset-zung des Sicherheitssystems erfolgt ist.GerätBeschreibung der Einstellung in Dokumentation:Liquiphant M/S mit FEL 52KA 143F , KA 163F , KA 144F , KA 164F , KA 162F , KA 165F , KA 172F , KA 173F , *Liquiphant M/S + FEL 52Endress + Hauser 9AnhangSpezifische Werte und Verschaltungsarten für das MesssystemLiquiphant M/S mit FEL 52Die Tabellen zeigt sicherheitsrelevante Werte und Verschaltungsarten für das Messsystem.Hinweis!Zu der nachfolgenden Tabelle sind folgende Punkte zu beachten:•Der PFD av Wert gilt für Alarme mit gesperrter Transistorschaltung (hochohmig). Die Verwen-dung der offenen Transistorschaltung (niederohmig) bedarf einer erweiterten Betrachtung.Liquiphant M/S + FEL 5210Endress + HauserExida Management SummaryL00-FEL52xxx-01-06-xx-en-003.tifL00-FEL52xxx-01-06-xx-en-002.tifLiquiphant M/S + FEL 52Endress + Hauser 11L00-FEL52xxx-01-06-xx-en-004.tifLiquiphant M/S + FEL 52Ergänzende Dokumentation Funktionale Sicherheit in der Prozess-Instrumentierung zur Risikoreduzierung PK 002Z/11DeutschlandÖsterreich SchweizVertrieb:Service:Endress+HauserMesstechnikGmbH+Co. KGColmarer Straße 6D-79576 Weil am Rhein Endress+HauserMesstechnik Ges.m.b.H.Lehnergasse 4A-1230 WienT el. (01) 8 80 56-0Fax (01) 8 80 56-335E-Mail:***************.comEndress+HauserMetso AGSternenhofstraße 21CH-4153 Reinach/BL1Tel. (0 61) 7 15 75 75Fax (0 61) 7 11 16 50E-Mail:***************.com•Beratung •Information •Auftrag •Bestellung •Help-Desk •Feldservice •Ersatzteile/Reparatur •KalibrierungTelefon:Telefon:Telefax:0 800 EHVERTRIEB ***********0 800 EHSERVICE***********0 800 EHFAXEN***********E-Mail:E-Mail:Internet:Internet:***************.com******************.com Internet: Technische Büros in: Hamburg . Hannover . Ratingen . Frankfurt . Stuttgart . München . Teltow08.02SD163F/00/de/10.0352018424FM+SGML 6.0 ProMoDo。
杀微生物剂[发明专利]
专利名称:杀微生物剂
专利类型:发明专利
发明人:R·泽恩,G·克诺夫贝特,R·B·库恩格申请号:CN94107244.4
申请日:19940627
公开号:CN1099220A
公开日:
19950301
专利内容由知识产权出版社提供
摘要:一种具有协同作用、含有至少两种有效成分的杀 植物微生物组合物,其中成分I选自IA),IB),IC), ID)和IE)的化合物,这些化合物的命名或结构式详 见说明书。
成分II是式II的2-苯胺基嘧啶(式II结 构见说明书),4-环丙基-6-甲基-N-苯基-2-嘧啶 胺,或其盐或金属复合物。
申请人:希巴-盖吉股份公司
地址:瑞士巴塞尔
国籍:CH
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:李瑛
更多信息请下载全文后查看。
2019beers标准中文表
2019年Beers标准中文表是一份详尽的标准化文档,旨在规范和统一中文表的格式和用法。
该表格的发布,对于标准化企业和个人的中文表格使用具有重要意义。
在接下来的文章中,我们将深入探讨2019年Beers标准中文表的内容和重要性。
一、标准中文表的格式及用法2019年Beers标准中文表的格式主要包括表头、行列标题、数据区域和注释等部分。
在表头部分,应包括表格的名称、制表日期、版本号等信息,以便于管理和查询。
行列标题应清晰准确,能准确描述数据的含义和分类。
数据区域是表格的主体部分,不同分类的数据应分布在相应的位置上。
在编制和使用标准中文表时,还需注意添加必要的注释以便他人理解。
使用2019年Beers标准中文表的时候,应注意合理使用表格的格式功能,如合并单元格、调整行高列宽、添加底纹等。
也需要规范使用公式和函数,确保数据计算的准确性和稳定性。
二、标准中文表的重要性1. 促进信息交流:标准中文表规范了数据的格式和用法,使得不同企业和个人之间的数据交流更加便捷和高效。
在数据共享和对接时,能够避免因表格格式不标准而造成的解析错误和数据错误。
2. 统一标准规范:有了明确的标准中文表格式和用法,可以避免因为格式不一致而造成的混乱和错误。
这对于企业内部和外部数据管理都具有重要意义,提高了数据管理的规范性和准确性。
3. 提高工作效率:规范的中文表格能够提高数据的可读性和可操作性,使得数据处理更加高效。
还能减少因为格式错误而产生的纠错工作,提高工作效率和数据质量。
三、如何应用2019年Beers标准中文表1. 学习和理解标准中文表的格式和用法,培养规范化的表格编制习惯。
2. 在实际工作和研究中,尽量采用标准中文表格的格式和用法,提高数据的规范性和可读性。
3. 在数据交流和对接时,鼓励对方也使用标准中文表格进行数据共享和对接,确保数据的规范和准确。
总结:2019年Beers标准中文表的发布,对于规范中文表使用具有重要的意义。
2019年9—10月FDA批准新药概况
2019年9—10月FDA批准新药概况2019年9-10月,FDA批准了11种新药,其中有六种是第一次获批上市的新药,四种续发产品(软胶囊,滴眼液,乳膏和乳膏),还有一种小分子抑制剂。
新药主要针对恶性肿瘤、血液系统肿瘤及慢性炎症。
其中,Sklice配备了第一次获得美国批准的洗头用小虫卵呵氏虫(人线虫)药物,治疗头皮病毒性头皮油,被FDA认定为适用于6 – 11月大小儿童的“第一药”。
Bempedoic酸是一种新的结构性抗高血脂药物,它可以通过与脂肪酸酯酶结合来抑制血清胆固醇的生物合成,有助于改善血脂水平,降低心血管疾病的发病率。
Xeljanz(Tofacitinib)是一种口服的小分子抑制剂,经过调节炎症反应而获得批准,用于治疗慢性活动性脊柱炎和关节病,以及有自身免疫性背景的溃疡性结肠炎和自发性脊柱炎。
布维拉司(Bevacizumab)是一种抗血管生成物质,可以拮抗VEGF,用于治疗多种恶性肿瘤,包括膀胱癌,直肠癌,乳腺癌,非小细胞肺癌,实体瘤,卵巢癌等。
Sumtuzumab govitecan是一种新型抗癌免疫抗原配置免疫靶点抗体结合抗酶剂,可以直接抑制宿主抗原而不致毒于正常细胞,用于治疗转移性肿瘤,例如乳腺癌,多发性骨髓瘤,大肠癌等。
Fostamatinib(Tavalisse)是一种新型增强型抗细胞因子治疗药物,旨在抑制各种抗细胞因子的活性,用于治疗慢性血小板减少性紫癜,它比传统药物更有效。
还有许多其他新药获得了FDA的批准,包括Fulphila(重组人甲状腺激素)、立苔兰(静脉注射)、Osimertinib、Estradiol Emotionalc、Tardobrutinib、Tepotinib和Rucaparib。
全部新药,在不同患者群中可以改善症状,治疗性能显著提高。
用于将病原体和或过敏原去活的过滤介质[发明专利]
专利名称:用于将病原体和/或过敏原去活的过滤介质专利类型:发明专利
发明人:U·施塔尔,U·黑夫纳,H·沙赫特
申请号:CN202111367082.X
申请日:20211118
公开号:CN114588711A
公开日:
20220607
专利内容由知识产权出版社提供
摘要:本发明涉及一种过滤介质,一种包含此类过滤介质的用于过滤气体‑颗粒体系的过滤组件,一种用于借助于此类过滤介质从空气和其他气体中贫化病原体和/或过敏原的方法,以及所述过滤介质用于从空气和其他气体中贫化病原体和/或过敏原的用途。
申请人:卡尔·弗罗伊登伯格公司
地址:德国魏恩海姆
国籍:DE
代理机构:中国贸促会专利商标事务所有限公司
代理人:宓霞
更多信息请下载全文后查看。
RESIDENT’S PERCEPTIONS OF THE CULTURAL BENEFITS OF TOURISM
Application Note Agilent 4150 TapeStation DNA Qua
AuthorsTanja Heimberger1,Steffi Sandke1, Tanja Weis1, and Eva Graf21Heidelberg CardioBiobank, Department of Internal Medicine III, University Hospital, Heidelberg Germany2Agilent Technologies AbstractThis Application Note demonstrates the use of the Agilent 4150 TapeStation system as a quality control (QC) tool to analyze DNA samples stored at the Heidelberg CardioBiobank (HCB). An important quality control step is performed immediately after DNA extraction from blood samples to ensure the storage of only high-quality DNA samples. Subsequently, the QC step can be repeated for previously frozen DNA samples before using them for research purposes. This Application Note focuses on a retrospective analysis of the quality and quantity of stored DNA samples. Analysis of a subset of samples was taken as representative of the DNA quality after nine years of storage at –80 °C without any freeze thaw cycles.Within this timeframe, different DNA extraction methods were used at the HCB, and resulted in varied sample quality levels. Post QC analysis was able to verify the efficiency of the sample extraction and handling processes previously implemented. Retrospective Quality Analysis of DNA Samples from the Heidelberg CardioBiobank2IntroductionThe HCB is one of the largest biobanks in Germany, with a strong focus on Cardiovascular Diseases. It operates as a hospital-integrated biobank as well as a core biobank for several national and international clinical trials andresearch projects (Figure 1). The Biobank started with a cluster of standard –80 °C freezers in which biologicalsamples (predominantly liquid samples) were stored in a study-specific way.Therefore, the collection of the biological samples was performed according to study-specific guidelines. In 2014, the HCB was restructured to establish a large, fully automated –80 °C-storage system with a capacity of up to1.2 million samples (custom-built by Liconic AG, Liechtenstein). To ensure that biosamples are “fit for purpose”, we evaluated and optimized theentire workflow for sample collection,Figure 1.Scheme Heidelberg CardioBiobank (HCB).Core Biobank:National/International Studies Core Biobank:University Hospital HeidelbergStandardized shipping/storage Human and animal sampling/storageFigure 2. Workflow of whole blood sample processes including DNA extraction. For all pre-analytical processes, SOPs weredeveloped and time standards were set. The SOPs are related to the collection process of biological samples, its transportation, and, if applicable, the automated DNA extraction (Tecan/Promega Freedom EVO HSM workstation). The liquid samples are aliquoted automatically (Tecan Freedom EVO system) and stored in an automated –80 °C freezer system (customized Liconic STC store).Precise documentation of each processing step is done with the LIMS software CentraXX (Kairos) which records not only the sample data, but also the time stamps of each process.Research Study Whole blood sample Automated DNA extractionQuality and quantity controlAutomated aliquotingDocumentationLIMS Automated storage Research interestSOP SOPSOPSOPprocessing, logistics, and storage. It was then possible to develop and implement additional and specificstandard operating processes (SOPs) for all pre-analytical processes to achieve the highest quality of samples, which ismandatory for cutting-edge translational research (Figure 2). To investigate the impact of these processes in biobanks, we analyzed the quality and quantity of DNA samples from a series of randomly selected samples from the3nine consecutive years between 2010 and 2018 with other established quality management (QM) analysis tools. Additionally, the 4150 TapeStation system was evaluated as a QC tool for quantification and integrity assessment for genomic DNA by automatedelectrophoresis, and the results were compared.ExperimentalDNA extractionFor the analysis of long-term stored DNA, a random selection of 20 samples per year, from 2010 until 2018, was performed. Before 2015, the blood sampling processes were operatedpartly under slightly different conditions, for example, in some studies there was no time specification for storage of blood samples at 4 °C before DNA extraction. The following DNA extraction was performed manually with the NucleoSpin Blood XL column kit (Macherey-Nagel, Düren, Germany) using a silica membrane columnsystem for the extraction of DNA from EDTA whole blood (volume 9 mL). As of 2015, the DNA extraction was executed by an automated extraction system (Tecan/Promega Freedom EVO HSM workstation, Tecan, Männedorf, Switzerland) using the ReliaPrep Large Volume HT gDNA Isolation system,which uses a resin bead based extraction technology. The EDTA whole blood samples (volume 9 mL) were stored at 4 °C until sample processing, with a maximum storage time of seven days before starting the automatic extraction of DNA samples. Due to the switch to automated hardware systems, it was also necessary to switch to labware (storage tubes for biological samples) optimized for the automated processes starting in 2014. To exclude possible effects of storage tubes on the quality of the stored samples, we analyzedFigure 3. Workflow of DNA quality and quantity analysis.Analysis •Agilent 4150 TapeStation system•Application of Agilent Genomic DNA Screen Tape assay •Analyses of 20 samples per year from 2010–2018•Three replicates per sampletwo groups of samples from the year 2014. Samples of group 1 from 2014 were stored in tubes from Micronic, and group 2 from 2014 represents samples stored in FluidX tubes. In parallel with the implementation of automated systems, improved SOPs were developed and implemented for all processes related to the handling, processing, and logistics of biological samples.DNA analysisThe selected DNA samples underwent an identical thawing procedure (18 hours at 4 °C) before an aliquot from each sample was taken for further processing. First, the sample concentration was measured by NanoDrop spectrophotometer (Thermo Fisher, Waltham, USA) tocompare the value of the concentration with the measurement taken before freezing in 2010 to 2018. An additional measurement was performed with the Quantus fluorometer (Promega, Madison, USA), which is a fluorescence-based nucleic acid quantification method.The results from Quantus were used to adjust the final concentration of the DNA samples to the quantitative range of the Agilent Genomic DNA ScreenTape assay of the 4150 TapeStation system (10 to 100 ng/µL). In general, the process was in concordance with the instruction manual. Therefore, all kit components were equilibrated at room temperature for 30 minutes. After dilution of the selected DNA, 10 μL genomic DNA sample buffer and 1 μL genomic DNA sample were carefully aliquoted, vortexed for 1 minute, spun down, and then loaded on the genomic DNA ScreenTape 1.Typically, all available sample positions on 4150 TapeStation controller software were selected. The experiments were performed in triplicates, as displayed with the whole workflow in Figure 3. The Agilent TapeStation analysis software was used to evaluate the DNA sample concentration and the DNA integrity number (DIN).4Results and DiscussionQualityThe DIN algorithm is included in the TapeStation analysis software and provides a quality assessment of the DNA sample by assigning a numerical score from 1 to 10. A high DIN indicates intact gDNA, and a low DIN degraded gDNA 2. The DNA analysis revealed that the tested DNA samples are of high and consistent quality (DIN >9) from 2014 to the present when automated processes and improved SOPs were in place. By contrast, samples collected before 2014 show higher variation of DNA integrity (Figure 4). Figure 5 shows the comparison of representative samples taken between 2010 and2018 with the TapeStation gel view and electropherogram overlay. In 2014, the20105YearsDNA QualityDI N6789102011201220132014/12014/22015201620172018Figure 4. Comparison of sample quality over a period of nine years. For each year, 20 DNA samples were analyzed with the Agilent Genomic DNA ScreenTape assay. In 2014, two groups were analyzed due to the change of labware.ABSize (bp)(L)20102011201220132014/12014/2201520162017201820102011201220132014/12014/22015201620172018100DIN 8.1DIN 8.6DIN 8.2DIN 9.0DIN 8.8DIN 8.9DIN 9.4DIN 9.7DIN 9.6DIN 9.52504006009001,2001,5002,0002,5003,0004,0007,00015,00048,50010S a m p l e i n t e n s i t y (n o r m a l i z e d F U )254060901,201,502,002,503,004,007,0015,0048,50Figure 5. Comparison of representative samples harvested between 2010 and 2018. The DNA sample 2014/1 represent tubes from Micronic and sample 2014/2 tubes from FluidX. The sample integrity increased after 2015, reflected by higher DIN values. A) TapeStation gel view B) Overlay of the electropherograms of 10 samples. Both views enable visual comparison of the sample integrity.type of storage tubes was changed due to the implementation of the automated storage and robotics handling systems and their respective requirements. Accordingly, two different sets ofsamples (2014/1 and 2014/2) were analyzed. The change from the tube manufacturer Micronic to FluidX had no influence on the quality of the DNA samples.5QuantityThe concentration of DNA was routinely measured by a NanoDrop spectrophotometer directly after DNA extraction at the HCB. DNA samples from the years 2010 to 2014 had been extracted manually (see material and methods) and obtained an average DNA concentration of approximately 120 ng/µL. The implementation of improved SOPs and the automatedDNA extraction method in 2015 resulted in a significant increase of average DNA yield to about 300 ng/µL. In this study, after thawing the samples, the DNA quantification by NanoDrop was repeated. The storage at –80 °C did not lead to altered sample concentration independent of the storage time (Figure 6). The samples were also measured by Quantus, which fluorometrically evaluates the DNA quantity, as the TapeStation system uses a fluorescence-based approach to determine DNA concentration. All tested samples showed an equivalent DNA concentration on both systems (Figure 7).Figure 7. Determination of DNA quantity by Quantus fluorometer and the Agilent 4150 TapeStation system. The increase of the DNA concentration between 2014 and 2015 is a result of the conversion from manual to automated DNA extraction.Figure 6. Overview of DNA concentration as measured by NanoDrop spectrophotometer. Theincrease of DNA concentration was a result of the change from manual to automated DNA extraction methods from 2014 to 2015. All DNA concentrations (conc.) remained stable throughout the years of storage at –80 °C.Yearsn g /µLYearsn g /µL/genomics/ tapestationFor Research Use Only. Not for use in diagnostic procedures.This information is subject to change without notice.© Agilent Technologies, Inc. 2019 Printed in the USA, April 9, 2019 5994-0811ENConclusionFrom 2010 to 2014, the collection of biological samples at the HCB was performed in some studies under less stringent SOPs compared to 2015 to 2018 (for example, the storage timeuntil processing of blood samples varied from two hours up to several days study dependently). As a result, the quality of the analyzed DNA samples differed from 2010 to 2014.Because of significant improvements made to processes in 2015, we evaluated workflows such ascollection, transportation, and sample preparation procedures. The influence of preprocessing parameters likeincubation time and storage modalities on DNA quality was investigated and resulted in the development and implementation of advanced SOPs. In addition to the standardized processes, we implemented automated hardware systems for DNA extraction, which also improved the outcome of the performedwork. Hence, by automating the DNA extraction process, the quantity, quality, and variability of quality of extracted DNA could be significantly increased. The analysis with the Agilent Genomic DNA ScreenTape assay enablescomparison of DNA quality by using DIN. The improvements to sample handling and extraction are also reflected in the DNA integrity, leading to DIN values being more consistent at a significantly higher level. Nowadays, the need for personalized and precision medicine is highly apparent, requiring translational research according to best practices (“garbage in equals garbage out”). We showed that the implementation ofstandardized and almost fully automated sample processing systems leads to the highest quality of biological samples. The use of the Genomic DNA ScreenTape assay with the Agilent 4150 TapeStation system could be smoothly integrated into our workflow as a reliable QC tool in biobanking processes to verify the quality of DNA samples important for downstream applications.References1. Agilent Genomic DNA ScreenTapeSystem Quick Guide for 4200 TapeStation System, AgilentTechnologies , publication number G2991-90040, 2015. 2. Gassman, M.; McHoull, B. DNAIntegrity Number (DIN) with the Agilent 2200 TapeStation System and the Agilent Genomic DNA ScreenTape Assay, Agilent Technologies Technical Overview , publication number 5991-5258EN, 2015.。
GO-IDCategoryDescription
Table S3. Significantly over-popoulated GO terms (Benjamini and Hochberg false discovery rate < 1.0E-03).GO-ID Category De scription Correctedp-valueNumber oftarget proteinsselectedTotalnumber ofproteins incategoryFraction ofpopulationas targetsMolecular Function3824 catalytic activity 1.45E-19 115 5085 0.023 16491 oxidoreductase activity 2.76E-12 40 916 0.044 16209 antioxidant activity 2.93E-09 11 57 0.193 51920 peroxiredoxin activity9.34E-08 5 6 0.83316862 intramolecular oxidoreductase activity,interconverting keto- and enol-groups 5.71E-07 5 8 0.6254601 peroxidase activity 5.71E-07 8 40 0.20016684 oxidoreductase activity, acting onperoxide as acceptor 5.71E-07 8 40 0.2004364 glutathione transferase activity 3.30E-06 7 34 0.206 9031 thioredoxin peroxidase activity 3.30E-06 4 5 0.800 16860 intramolecular oxidoreductase activity 3.51E-06 8 52 0.15416614 oxidoreductase activity, acting on CH-OHgroup of donors 1.34E-05 10 111 0.09016864 intramolecular oxidoreductase activity,transposing S-S bonds 1.57E-05 4 7 0.5713756 protein disulfide isomerase activity 1.57E-05 4 7 0.57116765 transferase activity, transferring alkyl oraryl (other than methyl) groups 1.68E-05 8 66 0.1214029 aldehyde dehydrogenase (NAD) activity 2.58E-05 4 8 0.500 16853 isomerase activity 2.58E-05 10 124 0.08116616 oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP asacceptor 4.09E-05 9 102 0.0884028 3-chloroallyl aldehyde dehydrogenaseactivity 6.65E-05 4 10 0.40016829 lyase activity8.82E-05 10 145 0.069 48037 cofactor binding 8.82E-05 13 255 0.051 51082 unfolded protein binding 9.02E-05 9 115 0.078 5504 fatty acid binding 9.42E-04 5 37 0.135Biological process19752 carboxylic acid metabolic process 1.10E-14 35 524 0.067 6082 organic acid metabolic process 1.10E-14 35 526 0.0676519 amino acid and derivative metabolicprocess 1.02E-08 23 362 0.0649308 amine metabolic process 1.53E-08 24 414 0.058 9056 catabolic process 1.53E-08 30 652 0.046 6807 nitrogen compound metabolic process 4.10E-08 24 439 0.055 8152 metabolic process 4.82E-08 125 7527 0.017 6950 response to stress 4.82E-08 36 978 0.037 44248 cellular catabolic process 9.68E-08 26 548 0.0476805 xenobiotic metabolic process 2.31E-07 8 32 0.250 9410 response to xenobiotic stimulus 2.74E-07 8 33 0.242 6979 response to oxidative stress 4.38E-07 12 110 0.109 6520 amino acid metabolic process 1.28E-06 17 271 0.063 6457 protein folding 1.28E-06 15 207 0.072 44237 cellular metabolic process 1.56E-06 112 6683 0.017 6732 coenzyme metabolic process 1.72E-06 14 183 0.077 44249 cellular biosynthetic process 1.79E-06 25 605 0.041 51186 cofactor metabolic process 3.03E-06 15 225 0.067 9063 amino acid catabolic process 2.56E-05 8 61 0.131 10038 response to metal ion 3.54E-05 8 64 0.125 32787 monocarboxylic acid metabolic process 4.34E-05 14 243 0.058 10035 response to inorganic substance 7.23E-05 8 71 0.113 9310 amine catabolic process 7.70E-05 8 72 0.111 44270 nitrogen compound catabolic process 9.11E-05 8 74 0.108 6749 glutathione metabolic process 1.07E-04 5 20 0.250 6725 aromatic compound metabolic process 1.29E-04 10 133 0.075 42743 hydrogen peroxide metabolic process 1.29E-04 4 10 0.4009064 glutamine family amino acid metabolicprocess 1.62E-04 6 38 0.1589991 response to extracellular stimulus 2.43E-04 9 114 0.079 6790 sulfur metabolic process 2.49E-04 8 87 0.092 42542 response to hydrogen peroxide 2.82E-04 5 25 0.200 6066 alcohol metabolic process 2.90E-04 15 338 0.044 6525 arginine metabolic process 3.49E-04 4 13 0.308 51 urea cycle intermediate metabolic process 4.71E-04 4 14 0.2866091 generation of precursor metabolites andenergy 4.84E-04 20 591 0.0349605 response to external stimulus 5.70E-04 21 650 0.0329065 glutamine family amino acid catabolicprocess7.72E-04 4 16 0.2506096 glycolysis 8.41E-04 8 106 0.075Celluar component44444 cytoplasmic part 3.71E-23 91 2969 0.031 5739 mitochondrion 2.31E-16 41 750 0.055 44424 intracellular part 1.16E-14 121 6666 0.018 43231 intracellular membrane-bound organelle 8.43E-13 97 4687 0.021 43227 membrane-bound organelle 8.43E-13 97 4692 0.021 5622 intracellular 1.49E-11 122 7339 0.017 5788 endoplasmic reticulum lumen 4.95E-10 8 20 0.400 43229 intracellular organelle 2.61E-09 101 5667 0.018 43226 organelle 2.66E-09 101 5677 0.018 5829 cytosol 2.95E-09 25 494 0.051 5783 endoplasmic reticulum 9.68E-09 25 525 0.048 5793 ER-Golgi intermediate compartment 2.07E-06 6 23 0.261 5625 soluble fraction 2.56E-06 15 260 0.058 44432 endoplasmic reticulum part 2.53E-05 10 132 0.076 19866 organelle inner membrane 3.87E-05 13 245 0.0535615 extracellular space 9.09E-05 38 1663 0.023 5743 mitochondrial inner membrane 1.08E-04 12 232 0.052 31967 organelle envelope 1.71E-04 16 421 0.038 31975 envelope 1.73E-04 16 423 0.038 5740 mitochondrial envelope 2.02E-04 13 293 0.044 44421 extracellular region part 2.51E-04 38 1758 0.022 31966 mitochondrial membrane 3.65E-04 12 269 0.045 44429 mitochondrial part 3.65E-04 14 360 0.039。
Phenyl Sepharose High Performance
GE HealthcareData File 18-1172-87 ACHydrophobic interaction chromatographyPhenyl Sepharose High Performance Butyl Sepharose High PerformanceFig 1. Phenyl Sepharose High Performance and Butyl Sepharose High Performance, available in a variety of formats, allow high-resolution, high-capacity purification of biomolecules.im at workPhenyl Sepharose ™ High Performance and Butyl Sepharose High Performance are hydrophobic interaction chromatography (HIC) media. Their performance is characterized by:• High-resolution, high-capacity separations with high recovery • Reliable and reproducible• High chemical stability for effective CIP and sanitization • Available in laboratory and BioProcess ™ scale quantities • Easy to scale upThe media occupy a key position in the intermediate and final purification stages of a wide variety of proteins and peptides. Their availability in prepacked columns, such as, HiLoad ™ and HiTrap ™ plus laboratory and BioProcess pack sizes makes purification at all scales simple and convenient (Fig 1).Hydrophobic interaction chromatographyHydrophobic interaction chromatography separates and purifies biomolecules based on differences in their surface hydrophobicity. The technique is versatile and offersspecific selectivity. Many proteins and peptides, as well as other hydrophobic biomolecules have sufficient numbers of exposed hydrophobic groups to allow interaction with hydrophobic ligands coupled to chromatographic matrices. Compared with Reversed Phase Chromatography (RPC) adsorbents, HIC media display milder elution conditionsand consequently better retention of biological activity after separation. HIC is well suited for use in the middle or end of protein purification strategies that also employ other chromatographic techniques such as ion exchange andgel filtration. For example, HIC makes an ideal “next step” when purifying material that has been precipitated with ammonium sulfate or eluted in high salt concentrations during ion exchange.HIC is usually performed in moderate to high concentrations of salts in the start buffer, which promotes binding and helps to stabilize the protein structure. The bound molecule is eluted by decreasing the salt concentration in a linear or stepwise manner. Continuous gradient elution is most frequently used when high resolution is needed and stepwise gradient elution is recommended for sample preparation and concentration. Several factors influence the behavior of proteins and peptides on HIC media. These include sample characteristics, flow rate, temperature, type and concentration of salt, and pH.2 Data File 18-1172-87 ACMedia characteristicsPhenyl Sepharose High Performance and ButylSepharose High Performance are high-resolution, high-capacity media based on highly cross-linked, 34-µm agarose beads modified with phenyl or butyl groups via uncharged, chemically stable ether linkages. They are truly hydrophobic media displaying a minimum of ionic interactions. In addition, they tolerate detergents, polar organic solvents, and chaotropic agents, as well as agents for cleaning-in-place and sanitization. Table 1 lists the main characteristics of the two media.Laboratory and BioProcess pack sizesPhenyl Sepharose High Performance and Butyl Sepharose High Performance are supplied in laboratory pack sizes as well as BioProcess pack sizes for flexible scale-up and process development. The laboratory packs are for those who prefer packing columns of their choice and include straightforward instructions and tips for packing, operation, and maintenance. Empty high-resolution columns from theTricorn ™ and XK ranges are available in a variety of sizes for users who want to pack their own columns. For a complete overview of the HIC High Performance product line, refer to the Ordering information.Prepacked columnsBy providing added speed, convenience, and reproducibility, prepacked columns extend the usefulness of Phenyl Sepharose High Performance and Butyl Sepharose High Performance. The columns can be used with simple pump configurations or a wide variety of systems. ÄKTAdesign™ include preset method templates based on these prepacked columns, which further improves separation results,particularly reproducibility, and the speed at which they are achieved. Phenyl Sepharose High Performance is supplied in four types of prepacked columns, HiLoad 16/10 Phenyl Sepharose High Performance (20 ml), HiLoad 26/10 Phenyl Sepharose High Performance (53 ml) and HiTrap Phenyl HP, 1 ml and 5 ml. Butyl Sepharose High Performance is supplied in prepacked HiTrap Butyl HP, 1 ml and 5 ml.Table 1. Main characteristics of Phenyl Sepharose High Performance and Butyl Sepharose High PerformancePhenyl Sepharose Butyl SepharoseHigh PerformanceHigh PerformanceFunctional group Average particle size 34 µm34 µmExclusion limit (M r ) 4 × 106 (globular proteins) 4 × 106 (globular proteins)Ligand concentration (µmol/ml medium) 25 µmol/ml medium 50 µmol/ml medium Binding capacity 45 mg a -chymotrypsinogen 38 mg b -lactoglobulin/ml medium /ml medium Rec. linear flow rate Up to 150 cm/h Up to 150 cm/h Chemical stability 1 M sodium hydroxide 1 M sodium hydroxide 1 M acetic acid 1 M acetic acid 6 M guanidine hydrochloride 6 M guanidine hydrochloride 30% acetonitrile 30% acetonitrile 70% ethanol 70% ethanol 3 M (NH 4)SO 4 3 M (NH 4)SO 4 1 mM HCl 1 mM HCl 30% isopropanol 30% isopropanol2% SDS 2% SDS short term 12 to 14 2 to 14 long term and working 23 to 13 3 to 13Storage20% ethanol20% ethanol1Short term pH stability: the pH interval to which the medium can be subjected for cleaning- or sanitization-in-place (accumulated 90–100 h at room temperature) without significant change in function.2Long term pH stability: the pH interval where the medium is stable over a long period of time without adverse effects on its subsequent chromatographic performance.Phenyl —O—Butyl —O—(CH 2)3—CH 3Data File 18-1172-87 AC 3HiLoad 16/10 and 26/10 Phenyl Sepharose High PerformanceHiLoad prepacked columns are XK laboratory columns prepacked with Phenyl Sepharose High Performance. The columns are constructed from precision bore borosilicate glass. Dead volumes are less than 0.1% of the total column volume. A thermostatic jacket is fitted as standard. HiLoad Phenyl Sepharose High Performance is available in two sizes, 16- or 26-mm diameter, both with a bed height of 10 cm and giving column volumes of 20 ml and 53 ml, respectively. In addition to the built-in benefits of high-resolution, high capacity preparative separations, HiLoad columns offer great reproducibility and convenience. Every HiLoad column is packed under stringent control and tested individually for bed volume, efficiency (theoretical plates/m), asymmetry factor, and flow characteristics. They can be used in a wide variety of systems, such as ÄKTAdesign. Flanged tubing and M6 connectors for connection to FPLC ™ are supplied as standard, as are connectors for ÄKTAdesign systems. Table 2 lists the key characteristics of HiLoad 16/10 and 26/10 Phenyl Sepharose High Performance columns.HiTrap Phenyl HP and HiTrap Butyl HP columnsHiTrap Phenyl HP and HiTrap Butyl HP are small, prepacked columns made of biocompatible polypropylene. The columns are delivered with stoppers on the inlets and a snap-off ends on the outlets. All necessary connectorsTable 2. HiLoad Phenyl Sepharose High Performance characteristicsBed diameter 16 or 26 mm Bed height 10 cm Bed volume 20 ml (16/10)53 ml (26/10) Theoretical plates >12 000/mRec. flow rate Up to 150 cm/h (5 ml/min for16/10, 13 ml/min for 26/10) Max. back pressure over the packed bed during operation 3 bar (43 psi, 0.3 MPa) HiLoad column hardware pressure limit 5 bar (73 psi, 0.5 MPa) Storage20% ethanolare included for connection to different systems as well as to a laboratory pump and a simple syringe. Note that HiTrap columns cannot be opened or repacked. Two sizes are available: 1 ml and 5 ml. The 1-ml column is often used for method screening to quickly establish optimal binding and elution conditions for specific applications. Its fast and simple operation is well-suited to this role, as well as to small-scale purifications. The larger 5-ml column is an excellent choice when the purification method has been established and larger amounts of protein need to be purified. Two or three columns can be connected in series for easy scale-up. Table 3 lists key characteristics of HiTrap Phenyl HP and HiTrap Butyl HP columns.Operating HiTrap Phenyl HP and HiTrap Butyl HPUsing HiTrap Phenyl HP and HiTrap Butyl HP columns is easy. Complete, easy-to-follow instructions are included for fast start-up and method optimization. Whether you use a syringe and the provided Luer adapter, a peristaltic pump, or a chromatography system such as ÄKTAdesign, operation is straightforward.HIC Selection KitHiTrap Phenyl HP and HiTrap Butyl HP are two components of the HiTrap HIC Selection Kit. This kit comprises seven HIC media with different hydrophobic characteristics, each prepacked in a 1-ml HiTrap column. The remaining five media are: Phenyl Sepharose 6 Fast Flow (low sub), Phenyl Sepharose 6 Fast Flow (high sub), Butyl Sepharose 4 Fast Flow, Butyl-S Sepharose 6 Fast Flow, and Octyl Sepharose 4 Fast Flow. The kit helps users screen factors that have an influence on the behavior of proteins and peptides, and select the most appropriate HIC medium to use for a specific separation. The HiTrap HIC Selection Kit is well suited to this task (Fig 2). More information about the kit is available in Data File 18-1143-21.Chemical stabilityGood chemical stability (Table 1) allows the use of effective cleaning-in-place (CIP) schemes that result in highrecoveries over many purification cycles. Regular CIP and sanitization hinders microbial growth and maintains a high level of hygiene to promote good economy. For CIP, regular washing with 0.5 to 1.0 M sodium hydroxide should be sufficient to remove most contaminating material,although very hydrophobic molecules may bind so tightly that they must be eluted with organic solvents agents like 70% ethanol or 30% isopropanol, or strong detergents. CIP and sanitization protocols for Phenyl Sepharose High Performance and Butyl Sepharose High Performance are included in their respective packages. Note that specific protocols should be developed according to the nature and condition of the starting material.Table 3. Characteristics of HiTrap Phenyl HP and HiTrap Butyl HPColumn dimensions 0.7 × 2.5 cm (1 ml), 1.6 × 2.5 cm (5 ml)Column volumes 1 ml and 5 mlRec. flow rate 1.0 ml/min (1 ml), 5 ml/min (5 ml) Max. flow rate 14.0 ml/min (1 ml), 20 ml/min (5 ml) Max. back pressure 3 bar (43 psi, 0.3 MPa) Storage20% ethanol1Room temperature, aqueous buffers.4 Data File 18-1172-87 AC200400 600 800mAU 050100150200mS/cm 0.05.010.015.020.025.0ml2.3318.2714.8420.42Phenyl Sepharose High Performance200400 600 800mAU 050100150200mS/cm 0.05.010.015.020.025.0ml2.0517.4014.7719.29Butyl Sepharose 4 Fast Flow200 400 600 800mAU 050100150200mS/cm 0.05.010.015.020.025.0ml2.1117.48Octyl Sepharose 4 Fast FlowButyl Sepharose High Performance200400600 800mAU 050100150200mS/cm 0.05.010.015.020.025.0ml2.5416.4321.21Phenyl Sepharose 6 Fast Flow (high sub)200 400 600 800mAU 050100150200mS/cm 0.05.010.015.020.025.0ml1.9716.61Butyl-S Sepharose 6 Fast Flow200 400 600800mAU 050100150200mS/cm 0.05.010.015.020.025.0ml2.1318.52Phenyl Sepharose 6 Fast Flow (low sub)Sample: Cytochrome C, Ribonuclease A, Lysozyme, α-chymotrypsinogen6 mg protein/ml, (1:3:1:1) in start buffer Column volume: 1 ml, HiTrap HIC Selection Kit Sample volume: 1 mlSample load: 6 mg protein/ml medium Flow rate:1.0 ml/min, (150 cm/h)Start buffer (A): 0.1 M Na 2HPO 4, 1.7 M (NH 4)2SO 4,pH 7.0Elution buffer (B): 0.1 M Na 2HPO 4, pH 7.0Gradient: 0%–100% Elution buffer in 10 ml System: ÄKTA FPLC ™ApplicationsScreeningThe separation result shown in Figure 2 demonstrates how important method screening is when working with HIC.Model proteins were separated using the same method and buffers. After sample injection, the bound proteins were eluted with a decreasing gradient over 10 ml.Partial purification of HIV reverse transcriptaseHigh resolution at high sample loads and flow rates, plus first class chemical and physical stability, make Phenyl Sepharose High Performance and Butyl Sepharose High Performance natural choices for preparative separations during the intermediate and final steps of a proteinpurification scheme. As pointed out previously, HIC is an ideal technique to further purify material that has been precipitated with ammonium sulfate or eluted in high salt concentrations during ion exchange.Figure 3 shows HiLoad 16/10 Phenyl Sepharose HighPerformance used to concentrate and purify recombinant HIV reverse transcriptase (rHIV RT). This step, which follows ammonium sulfate precipitation and ion exchange, is used prior to final purification on a Mono Q™ column.Fig 2. Comparison of the selectivity characters of the different media in HiTrap HIC Selection Kit. Elution volumes are shown at each peak.Fig 3. Concentration and purification of recombinant HIV reversetranscriptase on HiLoad 16/10 Phenyl Sepharose HP. Work by T. Unge, B. Strandberg, K. Brobäck and S. Lövgren (Inst. for Molecular Biology, Uppsala University, Sweden), and R. Bhikhabhai (GE Healthcare, Uppsala, Sweden).0.5A 280 nm 700750800 (ml)0.25Column: HiLoad 16/10 Phenyl Sepharose High Performance (V T : 20 ml)Sample: 400 ml (10 mg protein) from previous steps diluted to 600 ml with 3 M ammonium sulfate. The starting material for the wholeprocedure was lysed E. coli (90 g cells) containing rHIV RT Start buffer: 10 mM Tris-HCl, 1 M ammonium sulfate, 10% glycerol,1 mM DTT, pH 8.0Elution buffer: 10 mM Tris-HCl, 10% glycerol, 1 mM DTT, pH 8.0Flow rate: 3 ml/min (90 cm/h)Data File 18-1172-87 AC 5MAb PurificationButyl Sepharose High Performance is an effective second or third step in a MAb purification process due to its ability to separate monomeric MAb from aggregates and other impurities. In this case, a partly purified IgG 1 antibody eluted from MabSelect SuRe ™ was purified on ButylSepharose High Performance and Phenyl Sepharose High Performance. Both media were packed in Tricorn 5/100 and tested under similar conditions. Figure 4 shows that Butyl Sepharose High Performance and Phenyl Sepharose High Performance remove impurities equally well but with slightly different elution volumes.Process development and scale-upThe excellent performance of Phenyl Sepharose High Performance and Butyl Sepharose High Performance for laboratory-scale preparative applications can be extended to process development and scale-up of HIC separations. The media are well supported for these tasks, with special services and documentation to facilitate the development, scale-up, and routine operation of production applications. Validated manufacture, secure supply, and regulatory support comprise just part of this package. For more information, please contact your GE Healthcare representative.100806040200Time (min)Column: Tricorn 5/100Sample: IgG 1 purified by affinity (protein A) and anion exchangechromatography Sample volume: 1 mlSample load: 1.37 mg/mlStart buffer: 50 mM sodium phosphate, 3 M sodium chloride, pH 6.8Elution buffer: 50 mM sodium phosphate, pH 6.8Flow rate: 0.6 ml/min (180 cm/h)Gradient: 0–100% elution buffer, linear gradient in 20 CV System: ÄKTAexplorer ™ 100Fig 4. Separation of monomeric MAb from truncated MAb and other impurities on Butyl Sepharose High Performance and Phenyl Sepharose High Performance.Ordering informationPrepacked columnsProductQuantityCode no.HiTrap Butyl HP 5 × 1 ml 28-4110-015 × 5 ml 28-4110-05HiTrap Phenyl HP 5 × 1 ml 17-1351-015 × 5 ml 17-5195-01HiLoad16/10 Phenyl Sepharose HP 1 (20 ml) 17-1085-01HiLoad 26/10 Phenyl Sepharose HP1 (53 ml)17-1086-01Bulk MediaProductQuantityCode no.Butyl Sepharose 25 ml 17-5432-01 High Performance 200 ml 17-5432-02 1 l 17-5432-035 l 17-5432-04Phenyl Sepharose 75 ml 17-1082-01 High Performance 1 l 17-1082-035 l17-1082-04Related productsProductQuantityCode no.HiTrap HIC Selection Kit, seven different HIC media 7 × 1 ml 28-4110-07HiTrap Desalting5 × 5 ml 17-1408-01HiPrep 26/10 Desalting 1 (53 ml) 17-5087-014 (53 ml)17-5087-02Related LiteratureHydrophobic Interaction and Reversed Phase Chromatography Handbook: Principles & Methods 11-0012-69HiTrap Column Guide18-1129-81HiLoad accessoriesProductQuantityCode no.Union M6 female/1/16” male 1 5 18-3858-01 (To connect HiLoad columns with M6 connections to ÄKTAdesign)Transport syringe 1 18-1017-61Domed nut418-2450-011Two unions are included in HiLoad packagesHiTrap accessories1/16” male/Luer female 1 2 18-1112-51Tubing connector flangeless/ M6 female 12 18-1003-68Tubing connector flangeless/ M6 male 12 18-1017-98Union 1/16” female/ M6 male 16 18-1112-57Union M6 female / 1/16” male 15 18-3858-01Union Luerlock female/ M6 female2 18-1027-12HiTrap/HiPrep, 1/16” male connector for ÄKTAdesign 8 28-4010-81Stop plug female, 1/16”2 5 11-0004-64Fingertight stop plug, 1/16”3511-0003-551 One connector included in each HiTrap package.2Two, five, or seven female stop plugs included in HiTrap packages depending on the product.3One fingertight stop plug is connected to the top of each HiTrap column on delivery./bioprocess/protein-purification GE Healthcare Bio-Sciences AB Björkgatan 30751 84 Uppsala Sweden18-1172-87 AC 02/2007imagination at workGE, imagination at work and GE Monogram are trademarks of General Electric Company.ÄKTAdesign, ÄKTAexplorer, ÄKTAFPLC, BioProcess, FPLC, HiLoad, HiTrap, MabSelect SuRe, Mono Q,Sepharose, Tricorn, and Drop Design are trademarks of GE Healthcare companies.All third party trademarks are the property of their respective owners.The Tricorn column and components are protected by US design patents USD500856, USD506261, USD500555,USD495060 and their equivalents in other countries.© 2003–2007 General Electric Company – All rights reserved. First published Jun. 2003All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.GE Healthcare Europe GmbHMunzinger Strasse 5, D-79111 Freiburg, GermanyGE Healthcare UK LtdAmersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK GE Healthcare Bio-Sciences Corp800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USAGE Healthcare Bio-Sciences KKSanken Bldg. 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, JapanAsia Pacific T +85 65 62751830 F +85 65 62751829 • Australasia T +61 2 8820 8299 F +61 2 8820 8200 • Austria T 01 /57606 1613 F 01 /57606 1614 • Belgium T 0800 73 890 F 02 416 8206 • Canada T 1 800 463 5800 F 1 800 567 1008 • Central & East Europe T +43 1 972 720 F +43 1 972 722 750 • Denmark T +45 70 25 24 50 F +45 45 16 2424 • Eire T 1 800 709992 F +44 1494 542010 • Finland & Baltics T +358 9 512 3940 F +358 9 512 39439 • France T 01 69 35 67 00 F 01 69 41 98 77Germany T 0800 9080 711 F 0800 9080 712 • Greater China T +852 2100 6300 F +852 2100 6338 • Italy T 02 26001 320 F 02 26001 399 • Japan T 81 3 5331 9336 F 81 3 5331 9370 • Korea T 82 2 6201 3700 F 82 2 6201 3803 • Latin America T +55 11 3933 7300 F +55 11 3933 7304 • Middle East & Africa T +30 210 96 00 687 F +30 210 96 00 693 • Netherlands T 0800-82 82 82 1 F 0800-82 82 82 4 • Norway T +47 815 65 777 F +47 815 65 666 • Portugal T 21 417 7035 F 21 417 3184 • Russia, CIS & NIS T +7 495 956 5177 F +7 495 956 5176 • Spain T 902 11 72 65 F 935 94 49 65 • Sweden T 018 612 1900 F 018 612 1910 • Switzerland T 0848 8028 10 F 0848 8028 11 • UK T 0800 515 313 F 0800 616 927 • USA T +1 800 526 3593 F +1 877 295 8102。
鸟苷酸交换因子研究——GEF活性检测试剂盒方案
鸟苷酸交换因子研究——GEF活性检测试剂盒方案今天我们就主要来聊一聊小G蛋白活性增强剂——鸟苷酸交换因子(GEF),GEF 是通过催化其目标GTPase上的核苷酸交换来发挥作用,GEF与核苷酸结合的GTPase 结合,这会导致结合的核苷酸被释放,从而产生不含核苷酸的GEF-GTPase 反应中间体。
这种不含核苷酸的复合物随后将结合新的核苷酸,然后GEF再从GTPase 中释放出来。
由于GEFs对GDP-GTPases的亲和力高于对相应GTP-GTPases的亲和力,在正常细胞中GTP 和GDP比率约为10:1,GEFs将推动从GDP-GTPases到GTP-GTPases的转换。
艾美捷GEF活性检测试剂盒是一款基于荧光法的检测GTP酶上的核苷酸转换的试剂盒,可适用于常规的96孔格式或高通量384孔格式。
GEF活性检测试剂盒包含检测所需的所有试剂:1.Exchange Buffer2.His标签Cdc42蛋白3.His标签Rac1 蛋白4.His标签RhoA 蛋白5.His标签hDbs 蛋白(作为Cdc42 和RhoA 的GEF的阳性对照)6.黑色384孔板7.黑色96孔板检测原理:该试剂盒是通过检测荧光核苷酸类似物N-甲基邻氨基苯甲酰-GTP(mant-GTP)对GTPase 的结合情况来检测GEF的活性的。
一旦mant-GTP与GTPase 结合,mant-GTP 的荧光强度(Ex:360 nm,Em:440 nm)显著增加,通过检测游离的mant-GTP和GTPase 结合的mant-GTP 之间的荧光值差异,即可检测样本中GEF的活性。
GEF活性检测试剂盒的主要用途和应用:1.测定未知GEFs活性;2.小GTPases及其相关GEFs的生化特性表征;3.研究不同辅助因子或蛋白结构域对GEF活性的调控;4.筛选GEFs或GTPases突变蛋白的活性和底物特异性;5.HTS(高通量筛选)筛选鉴定GEF抑制剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PressemitteilungH&R WASAG gibt vorläufige Ergebnisse für das H&R WASAG AGGeschäftsjahr 2005 bekannt Neuenkirchener Str. 848499 Salzbergen+++ Ergebnis in schwierigem Umfeld auf 19,6 Mio. € verdoppelt +++ +++ Umsatz auf 650,5 Mio. € angestiegen ++++++ Weiteres deutliches Gewinnwachstum in 2006 erwartet +++Salzbergen, 28. Februar 2006: Die H&R WASAG AG hat auf der heutigen Bilanzpressekonferenz die vorläufigen Ergebnisse für das Geschäftsjahr2005 präsentiert. Der Umsatz stieg um 31% auf 650,5 Mio. € (2004:497,1) und das operative Ergebnis (EBITDA) erreichte 44,5 Mio. € (2004:32,9). Das Ergebnis vor Ertragsteuern konnte auf 19,6 Mio. € (2004: 9,8)sogar verdoppelt werden. Damit erreichte der H&R WASAG-Konzern dasbeste Ergebnis in der Unternehmensgeschichte.…Vor dem Hintergrund des extrem schwierigen Umfelds auf demRohölmarkt sind wir mit dem Ergebnis mehr als zufrieden“, erläutert Dr.Horst Hollstein, Vorstandsvorsitzender der H&R WASAG AG, den anwesenden Pressevertretern in Hamburg.Der größte Geschäftsbereich Chemisch-pharmazeutische Rohstoffe musste hohe Belastungen aus steigenden Rohstoffpreisen verkraften. Diedurch die extrem erhöhten Rohölpreise bedingten Mehraufwendungen konnten dabei nur zeitverzögert an den Markt weitergegeben werden. Trotzdem hat der Geschäftsbereich sein Ergebnis mehr als verdoppelt.Grund dafür waren vor allem die umgesetzten Maßnahmen aus der Optimierung der Raffinerieaktivitäten (sog. Projekt 18) sowie darüber hinausgehende Kostenreduzierungen. Daneben hat auch dasÜberseegeschäft des Konzerns ein erfreuliches Ergebnis erwirtschaft. Dieser Bereich zeichnete sich durch eine hohe Resistenz gegenüber dem volatilen Rohölmarkt aus.Auch der Geschäftsbereich Explosivstoffe hat seinen Ergebnisbeitrag deutlich gesteigert. Getrieben wurde diese Entwicklung insbesondere durch die erfolgreiche Ausweitung der Aktivitäten in den osteuropäischen Wachstumsmärkten. Die bereits in 2004 akquirierten Sprengstoffwerke Gnaschwitz wurden nach Erfüllung der Auflagen des Bundeskartellamts erst zum Jahresende konsolidiert.Die Aktivitäten im Geschäftsbereich Kunststoffe weisen einen deutlichen Ergebnisrückgang aus. Hintergrund sind erhöhte Anlaufkosten am neuen Produktionsstandort in China sowie der anhaltende Preisdruck am Markt.Weiteres deutliches Ergebniswachstum in 2006 erwartetIm laufenden Geschäftsjahr will die Gesellschaft den Konzernumsatz aufüber 700 Mio. € steigern. Das Ergebnis vor Ertragsteuern soll überproportional auf 30 Mio. € wachsen. Diese Erwartungen basieren auf den Annahmen, dass sich der Rohölpreis im Rahmen einer ausgleichenden Volatilität stabil entwickelt und auch die Währungsrelation US$/Euro keine großen Schwankungen aufweist.…Unsere Raffineriekapazitäten sind erstmals seit Übernahme der BP-Aktivitäten voll ausgelastet und wir erwarten auch in 2006 einen positiven Ergebnisbeitrag aus dem Projekt 18“, kommentiert Dr. Hollstein die Aussichten. Darüber hinaus sollen auch die Überseeaktivitäten und das Dienstleistungsgeschäft im Mischen und Abfüllen von Schmierstoffen weiter ausgebaut werden.…An dem für 2006 erwarteten Ergebniswachstum werden wir auch unsere Aktionäre beteiligen“, kündigt der Vorstandsvorsitzende an. Für das abgelaufene Geschäftsjahr wird der Vorstand dem Aufsichtsrat eine Dividendenzahlung von 0,30 € pro Aktie vorschlagen. Aufgrund des mit dem Rohölpreisanstieg erhöhten Liquiditätsbedarfs des Konzerns soll die Ausschüttung damit auf dem Niveau des Vorjahres liegen.Die nächsten Termine:31. März: Veröffentlichung des Geschäftsberichts 200512. Mai: Veröffentlichung des Berichts zum 1. Quartal 2006 Kontakt:H&R WASAG AG, Investor Relations / Kommunikation, Oliver König Neuenkirchener Str. 8, 48499 SalzbergenTel.: 05976 – 945-300, Fax: -308, oliver.koenig@hur-wasag.de, www.hur-wasag.deVorläufige Kennzahlen des H&R WASAG-Konzerns zum Geschäftsjahr 2005 (nach IFRS)Kennzahlen Konzern(in Mio. €) 20052004Umsatz 650,5497,1EBITDA 44,532,9Ergebnis v. Ertragst. 19,69,8in % vom Umsatz 3,02,00,300,30Dividende *Eigenkapitalquote (in %) 2426Netto-Verschuldung 121,599,5Kennzahlen Geschäftsbereiche(in Mio. €) 20052004Chem.-pharm. Rohstoffe 557,3409,1Kunststoffe 38,034,9Explosivstoffe 55,153,1Chem.-pharm. Rohstoffe 35,023,4Kunststoffe 4,25,2Explosivstoffe 9,06,4Ergänzendes zur H&R WASAG AGDie im SDAX notierte H&R WASAG AG ist als Unternehmen der Spezialchemie in der Entwicklung und Herstellung chemisch-pharmazeutischer Spezialprodukte auf Rohölbasis, in der Produktion von Präzisions-Kunststoffteilen und in der Fabrikation von Industriesprengstoffen tätig. In den einzelnen Geschäftsfeldern sind die Konzernunternehmen in Deutschland und Europa als Markt- und/oder Technologieführer aussichtsreich positioniert. Zum 31. Dezember 2005 waren konzernweit 1.811 Mitarbeiter beschäftigt, davon 502 außerhalb Deutschlands.。