2015中考数学总复习 第1章 第1讲 实数及其运算考点集训

合集下载

初三数学知识点归纳之第一章实数

初三数学知识点归纳之第一章实数

初三数学知识点归纳之第一章实数除了课堂上的学习外,数学知识点也是先生提高数学效果的重要途径,本文为大家提供了初三数学知识点归结之第一章实数,希望对大家的学习有一定协助。

★重点★ 实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:分类的原那么:1)相称(不重、不漏)2)有规范2.非正数:正实数与零的统称。

(表为:x0)罕见的非正数有:性质:假定干个非正数的和为0,那么每个非担负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

4.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比拟实数的大小;B.明白表达相对值意义;C.树立点与实数的逐一对应关系。

6.奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.相对值:①定义(两种):代数定义:几何定义:数a的相对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│0,符号││是非正数的标志;③数a的相对值只要一个;④处置任何类型的标题,只需其中有││出现,其关键一步是去掉││符号。

二、实数的运算1. 运算法那么(加、减、乘、除、乘方、开方)2. 运算定律(五个加法[乘法]交流律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.初级运算到低级运算;B.(同级运算)从左到右(如5 C.(有括号时)由小到中到大。

三、运用举例(略)附:典型例题1. :a、b、x在数轴上的位置如以下图,求证:│x-a│+│x-b│=b-a.2.:a-b=-2且ab0,(a0,b0),判别a、b的符号。

小编为大家整理的初三数学知识点归结之第一章实数相关内容大家一定要牢记,以便不时提高自己的数学效果,祝大家学习愉快!。

初中数学复习实数的概念及运算(含答案)

初中数学复习实数的概念及运算(含答案)

第1讲实数概念与运算一、知识梳理实数的概念1、实数、有理数、无理数、绝对值、相反数、倒数的概念。

(1)_____________叫有理数,_____________________叫无理数;______________叫做实数。

(2)相反数:①定义:只有_____的两个数互为相反数。

实数a的相反数是______0的相反数是________②性质:若a+b=0 则a与b互为______, 反之,若a与b 互为相反数,则a+b= _______(3)倒数:①定义:1除以________________________叫做这个数的倒数。

②a 的倒数是________(a≠0)(4)绝对值:①定义:一般地数轴上表示数a的点到原点的_______, 叫数a的绝对值。

②2、平方根、算术平方根、立方根(1)平方根:一般地,如果_________________________,这个数叫a的平方根,a的平方根表示为_________.(a≥0)(2)算术平方根:正数a的____的平方根叫做a的算术平方根,数a的算术平方根表示为为_____(a≥0)(3)立方根:一般地,如果_________,这个数叫a的立方根,数a的立方根表示为______。

注意:负数_________平方根。

实数的运算1、有效数字、科学记数法(1)有效数字:从一个数的_____边第一个_____起到末位数字止,所有的数字都是这个数的有效数字。

(2)科学记数法:一个数M 可表示为a ⨯10n 或a ⨯10-n形式,其中1//10a ≤∠,n 为正整数,当/M/≥10时,可表示为__________形式,当/M/<1时,可表示为____________形式。

2、实数的运算:(1)运算顺序:在进行混合运算时,先算______,再算_______,在最后算_________;有括号时,先算括号里面的。

(2)零指数:0a =__________(a≠0),负指数:p a -=________(a≠0,p 是正整数)。

2015年北京中考数学总复习课件(第1课时_实数的有关概念)

2015年北京中考数学总复习课件(第1课时_实数的有关概念)

考点聚焦 京考探究
第1课时┃ 实数的有关概念
考点3 非负数
考点聚焦
京考探究
第1课时┃ 实数的有关概念
京 考 探 究
考 情 分 析
考点聚焦
京考探究
第1课时┃ 实数的有关概念
热 考 京 讲
热考一 实数的有关概念及分类
例 1 [2014· 北京] 2 的相反数是( B ) 1 1 A.2 B.-2 C.- D. 2 2
考点2 实数的有关概念
正方向 和________ 单位长度 原点 、________ (1)数轴:数轴的三要素包括________ ;数轴上的 点与________ 实数 一一对应. (2)相反数:a的相反数是________ 0 -a ;即a,b互为相反数⇔a+b=________ . 1 0 没有倒数, (3)倒数:a的倒数为________ ;即a,b互为倒数⇔ab=_1(__ a 故ab≠________)0 .
方法点析
用科学记数法把数 m 一般写成“a×10n” 的形式, 当|m|≥10 时,n 为正整数,n 的值等于该数整数部分的位数减 1;当|m|<0 时, n 为负整数, n 的值等于该数左数第一个非零数字前所有 0(包 括小数点前面的 0)的个数.特别需注意以下两点:
考点聚焦 京考探究
第1课时┃ 实数的有关概念
1.注意在 a×10n 中,|a|必须是大于或等于 1 且 小于 10 的数,小数点向左移动的位数等于所记数的 整数位数减去 1. 2.注意在 a×10n 中,|n|是一个正整数,且比原 数的整数位数小 1.
考点聚焦
京考探究
第1课时┃ 实数的有关概念
热考三
非负数和为0
例 4 若(x+2)2+ y-3=0,则 xy 的值为( B ) A.-8 B.-6 C.5 D. 6

中考数学 第一章 第一讲 实数复习 新人教版

中考数学 第一章 第一讲 实数复习 新人教版

考点4:有理数的 运算
10.(2015湖州)计算:223×( 1/2) =___2______.
解析:先算乘方再计算乘法,即:1 原式 4
=8× =2.
考点5:实数 运算
11.(2015梅州)计算: 8223(1)1(2012)5 0 3
解:原式=2√2 +3﹣2√2 ﹣3﹣1=﹣1.
解析:科学记数法的表示形式为a×10n, 其中1≤|a|<10,n为整数,表示时关键 要正确确定a的值以及n的值.在确定n
的值时,看该数是大于或等于1还是小于
1.当该数大于或等于1时,n为它的整数 位数减1;当该数小于1时,-n为它第
一个有效数字前0的个数(含小数点前的1 个0).因此,∵13573000一共8位, ∴13573000=1.3573×107,故选B.
考点2:科学计 数法
5.(2015绥化)石墨烯是现在世界上最薄的纳米材料 ,
其理论厚度仅是0.00000000034m ,这个数用科学记数
法表示正确的是( ) C
A. 3.4×10
9
C. 3.4×10
10
B. 0.34×10
9
D. 3.4×10
11
解析:0.00000000034=3.4×10-10,故选 C.
例 题 讲 解
考点1:与实数有关的概 念 考点2:科学记数法 考点3:实数的大小比较 考点4:有理数的运算 考点5:实数运算
考点1:与实数有关 的概念
1.(2015南宁)3的绝对值是(A )
A.3
B.-3
1 3
C.
1 3
D.
解析:根据正数的绝对值等于 它本身,得|3|=3.故选A.
考点1:与实数有关 的概念

中考数学一轮复习 第一章 数与式 第一节 实数及其运算课件

中考数学一轮复习 第一章 数与式 第一节 实数及其运算课件

)D
A.95×10-6 B.9.5×10-6
C.95×10-7 D.9.5×10-7
第二十八页,共三十六页。
8.(2017·泰安)“2014年至2016年,中国同‘一带一路’ 沿线国家贸易总额超过3万亿美元”.将数据(shùjù)3万亿美元用科 学记数法表示为( C ) A.3×1014美元 B.3×1013美元 C.3×1012美元 D.3×1011美元
例3(2017·济南)2017年5月5日国产大型客机C919首飞成功
圆了中国人的“大飞机(fēijī)梦”,它颜值高性能好,全长近39米,
最大载客人数168人,最大航程约5 550公里.数字5 0用
科学记数法表示为( )
A.0.555×104
B.5.55×103
C.5.55×104
D.55.5×103
线叫做(jiàozuò)数轴,实数与数轴上的点是一一对应的.
2.相反数:如果两个数只有 _____符不号同,那么称其中一个
数为另一个数的相反数,也称这两个数互为相反数.特别地,
0的相反数还是0;a+b=0⇔a,b互为相反数;在数轴上,表
示相反数的两个点位于原点两侧,且到原点的距离 _____ . 相等
数没有平方根.
第八页,共三十六页。
(2)算术平方根:一般地,如果一个正数x的平方等于(děngyú)a,即 x2=a,那么这个正数x就叫做a的算术平方根,记作 .正a
数的算术平方根是正数,0的算术平方根是0.
(3)立方根:一般地,如果一个数x的立方等于a,即x3=a, 那么这个数x就叫做a的立方根(也叫做三次方根),记作 3 a .正数的立方根是正数,0的立方根是0,负数的立方根 是负数,每个实数有且只有一个立方根.

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结
例:
21000用科学记数法表示为2.1×104;
19万用科学记数法表示为1.9×105;0.0007用科学记数法表示为7×10-4.
7.近似数
(1)定义:一个与实际数值很接近的数.
(2)精确度:由四舍五入到哪一位,就说这个近似数精确到哪一位.
例:
3.14159精确到百分位是3.14;精确到0.001是3.142.
使问题简单化
第2讲整式与因式分解
一、知识清单梳理
知识点一:代数式及相关概念
关键点拨及对应举例
1.代数式
(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.
(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值.
(2)由基本性质可推理出变号法则为:
; .
由分式的基本性质可将分式进行化简:
例:化简: = .
知识点三:分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即 ;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
第4讲二次根式
三、知识清单梳理
知识点一:二次根式
关键点拨及对应举例
1.有关概念
(1)二次根式的概念:形如 (a≥0)的式子.
(2)二次根式有意义的条件:被开方数大于或等于0.
(3)最简二次根式:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式
失分点警示:当判断分式、二次根式组成的复合代数式有意义的条件时,注意确保各部分都有意义,即分母不为0,被开方数大于等于0等.例:若代数式 有意义,则x的取值范围是x>1.

完整版)实数知识点总结

完整版)实数知识点总结

完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。

8.正整数又称自然数。

9.有理数包括正整数、零、负整数、正分数和负分数。

10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。

考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。

2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

6.如果a与b互为倒数,则有ab=1,反之亦成立。

7.倒数等于本身的数是1和-1,零没有倒数。

考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

3.正数a的正的平方根叫做a的算术平方根,记作“a”。

4.正数和零的算术平方根都只有一个,零的算术平方根是零。

5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。

考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。

中考数学知识点复习总复习资料大全(精华版)

中考数学知识点复习总复习资料大全(精华版)

中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。

4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。

5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。

②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。

2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念

2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念

思路分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法 保留有效数字,要在标准形式 a × 10n中 a 的部分保留,从左边第一个不为 0 的 数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.
答案:B。 39 360=3.936×104≈3.94×104
方法指导:用科学记数法表示的数必须满足a×10n(1≤|a|<10,n为整数,表示时 关键要正确确定a的值以及n的值。)的形式;求近似数时注意看清题目要求和单位 的换算;查有效数字时,要从左边第一个不是0的数开始数起,到精确到的数位 为止,所有的数字都叫做这个数的有效数字。

D. -a-2.5
思路分析: ( 1 )因为绝对值符号里面的 a - 2.5 是负 数,去掉绝对值之后,结果为它的相反数, 所以答案为 2.5 - a ,故答案选 B . ( 2 )由题中的图可知, |a - 2.5| 表示的意义是数 a 与数 2.5 所表示的两点 之间的距离,而这两点之间的距离为 2.5 - a ,故答案选 B . 答案: B. 方法指导:解决绝对值的问题通常有两种思路,一是根据绝对值的计算法则去掉 绝对值;二是根据绝对值的几何意义直接计算.
4.绝对值:数轴上表示数 a的点与 原点 的距离叫做数a 的绝对值。即一个正数的
绝对值是它 本身 ;0的绝对值是 0 ;一个负数的绝对值是它的 相反数 。
a ( a>0 ) 即│a│= 0 ( a=0 ) -a ( a<0 )
n a 10 5.科学记数法:把一个数表示成 的形式,其中1≤ │a│ <10的数,n是
考点即时练 3.如图,数轴上表示数-2的相反数的点是( A.点P B.点Q C.点M D.点N )
答案: A 4.(2013张家界)﹣2013的绝对值是( A.﹣2013 B. 2013 C. ) D.﹣

中考数学总复习知识点总结第一章实数优选版

中考数学总复习知识点总结第一章实数优选版

章实数优选版专题一 实数及其运算考点一、实数的概念及分类 (3分) 1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数2、绝对值(如何去绝对值号)3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数 (3—6分) 1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较 (3分) 1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2015年初中数学知识点中考总复习总结归纳

2015年初中数学知识点中考总复习总结归纳

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。

中考数学总复习 基础知识梳理 第1单元 数与式 1.1 实数及其运算课件

中考数学总复习 基础知识梳理 第1单元 数与式 1.1 实数及其运算课件
实数的大小比较常用以下五种方法: (1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点 表示的数大. (2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负 数,绝对值大的数反而小.
(3)差值比较法:设a、b是两个任意实数,则:a-b>0
a-b=0
a=b;a-b<0
a<b.
第一单元 数与式
第1课时 实数及其运算
考纲考点
1、理解有理数的意
知识体系图
概念
实数及其运算
分类 运算
数轴 相反数 绝对值 科学记数法 近似数
按正负数分
按定义分 加减法 乘除法 乘方 运算律
正实数 零 负实数
有理数 无理数
1.1 实数的有关概念
1、数轴:规定了原点,正方向和单位长度 的直线叫做数轴,数轴上所有的点与全体实 数一一对应. 2、相反数:只有符号不同,而绝对值相同 的两个数称为互为相反数.a,b互为相反数 ⇔a+b=0.
【解析】(相反数,0的绝对值
是0; (3)两个非负数的和为0,则这两个数分别等于0.
【答案】(1)B (2)2或0 (3)-8
【例5】(2017年扬州)若数轴上表示-1和3的两点分别是点A 和点B,则 点A 和点B之间的距离是 ( )
A.1.5×108 B.1.5×109 C.0.15×109 D.15×107
【解析】解:将150000000用科学记数法表示为:1.5×108. 【答案】A
【例4】(1)-2是2的
()
A.倒数 B.相反数 C.绝对值 D.平方根
(2)已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=▁.
A.-4
B.-2
C.2
D.4

中考数学复习第一节 实数 知识点

中考数学复习第一节  实数  知识点

第一章 数与式第一节 实数(含二次根式)一、实数的分类1、按定义分: 正有理数⎩⎨⎧正分数正整数有理数 0 有限小数或无限循环小数 实数 负有理数⎩⎨⎧负分数负整数 无理数 正无理数 无限不循环小数负无理数常见无理数:①有规律但不循环的无限小数:0.1010010001…; ②π及含π的数 :-π+3;2π ③开方开不尽的数:2;34-④含有根号的三角函数值:2、按正负性分:正实数 正有理数↑大于0 正无理数实数 0(既不是正数也不是负数,是正负数的分界)表示具有相反意义的量 ↓小于0 负有理数负实数 负无理数正负数的意义:如:规定盈为“+”,则亏为“-”;胜为“+”,则败为“-”;增加为“+”,则减少为“-”;收入为“+”,则支出为“-”;零上为“+”,则零下为“-”等。

二、相关概念(1)三要素: 1、数轴 (2)实数与数轴上的点的关系:一一对应原点单位长度(3)数轴上两点A 、B 表示的数分别为m 、n ,两点间距离为∣m-n ∣ (1)定义:只有符号不同的两个数叫做互为相反数。

(2)表示:非零实数a 的相反数是-a ;0的相反数是0。

2、相反数: ①实数a 、b 互为相反数 a+b=0(3)性质: ②在数轴上,互为相反数的两个数位于原点两侧,且与原点距离相等。

(1)定义:在数轴上表示数a 的点与原点的距离叫做a的绝对值,记作a .3、绝对值 正数 它本身 a (a>0)(2)性质 0 0 ∣a ∣ 0(a=0)负数 相反数 -a (a<0)(3)数轴上,一个数所对应的点离原点越远,数的绝对值越大。

(1)定义:乘积是1的两个数互为倒数。

4、倒数 (0没有倒数,倒数等于它本身的数是±1)(2)性质:实数a 、b 互为倒数 ab=1三、比较大小1、利用数轴:将比较大小的数表示在数轴上,右边的数总比左边的数大。

(多个数比较)2、利用数的性质:正数﹥0﹥负数。

(异号两数比较)3、利用绝对值:两个负数比较大小,绝对值大的反而小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数及其运算
一、选择题
1.(2014·安徽)(-2)×3的结果是( C )
A .-5
B .1
C .-6
D .6 2.(2014·呼和浩特)下列实数是无理数的是( C ) A .-1 B .0 C .π D.1
3
3.(2014·武汉)在实数-2,0,2,3中,最小的实数是( A ) A .-2 B .0 C .2 D .3
4.(2014·滨州)估计5在( C ) A .0~1之间 B .1~2之间 C .2~3之间 D .3~4之间
5.(2013·菏泽)如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( D
)
A .点A 的左边
B .点A 与点B 之间
C .点B 与点C 之间
D .点B 与点C 之间或点C 的右边
6.(2013·淮安)如图,数轴上A ,B 两点表示的数分别为2和5.1,则A ,B 两点之间表示整数的点共有( C
)
A .6个
B .5个
C .4个
D .3个 二、填空题
7.(2014·珠海)比较大小:-2__>__-3. 8.(2014·玉林)3的倒数是__1
3
__.
9.(2013·鄂州)若|p +3|=0,则p =__-3__.
10.(2014·湘潭)如图,按此规律,第6行最后一个数字是__16__,第__672__行最后一个数是2014.
12 3 43 4 5 6 74 5 6 7 8 9 10

11.计算:21
-1=1,22
-1=3,23
-1=7,24
-1=15,25
-1=31,….归纳各计算结
果中的个位数字规律,猜测266
-1的个位数字是__3__.
12.(2013·咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a -b|=2013,且AO =2BO ,则a +b 的值为__-671__.
三、解答题
13.(2014·扬州)计算:(3.14-π)0
+(-12)-2-2sin 30°.
原式=1+4-1=4
14.(2014·温州)计算:12+2×(-5)+(-3)2
+20140
. 原式=23-10+9+1=23
15.某公路规定汽车行驶速度不得超过70千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦因数.经测量d =20 米,f =1.2,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度.
当d =20米,f =1.2时,v =16df ≈78.4>70,肇事汽车当时已经超速
16.(2014·滨州)计算下列各式的值:
92
+19;992
+199;9992
+1999;99992
+19999. 观察所得结果,总结存在的规律,应用得到的规律求99 (9)
2
2014个9
+199…9,2014个9) )的值.
∵92
+19=10=101
,992
+199=100=102
,9992
+1999=1000=103
,99992
+19999=10000=104
,∴99 (9)
2
2014个9
+199…9,2014个9) )=102014
17.(2013·台州)任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1,现对72进行如下操作:
72――→第1次[72]=8――→第2次[8]=2――→第3次[2]=1,这样对72只需进行3次操作后变为1,类似地.
(1)对81只需进行几次操作后变为1?
(2)只需进行3次操作后变为1的所有正整数中,最大的是多少?
(1)∵根据定义,81――→第1次[81]=9――→第2次[9]=3――→第3次
[3]=1,∴对81只需进行3次操作后变为1 (2)设[x ]=1,x 为正整数,则1≤x <2,∴1≤x <4,即最大正整数是3.设[y ]=3,y 为正整数,则3≤y <4,∴9≤y <16,即最大正整数是15.设[z ]=15,z 为正整数,则15≤z <16,∴225≤z <256,即最大正整数是255.只需进行3次操作后变为1的所有正整数中,最大的是255。

相关文档
最新文档