初中平面几何四个重要定理
初中数学竞赛重要定理公式(平面几何篇)
初中数学竞赛重要定理公式(平面几何篇)初中数学竞赛中,平面几何是一个重要的考点。
以下是一些重要的定理、公式和结论。
三角形面积公式(包括海伦公式):三角形的面积S可以用以下公式计算:$S=\sqrt{p(p-a)(p-b)(p-c)}$,其中$p=\frac{1}{2}(a+b+c)$,$a$,$b$,$c$分别为三角形的三条边长。
另外,三角形的面积也可以用以下公式计算:$S=\frac{1}{2}ab\sin C$,其中$a$,$b$为两边,$C$为两边之间的夹角。
还有一个海伦公式:$S=\frac{1}{2}ah_a$,其中$h_a$为三角形顶点$A$到边$BC$的垂线长度,$a$为边$BC$的长度。
XXX定理:对于三角形$\triangle ABC$及其底边上的一点$D$,有$AB^2\cdot DC+AC^2\cdot BD-AD^2\cdotBC=BC\cdot DC\cdot BD$。
XXX定理:对于一个内接四边形,其对角线之积等于两组对边乘积之和,即$AC\cdot BD=AB\cdot CD+AD\cdot BC$。
逆命题也成立。
同时还有广义托勒密定理:$AB\cdotCD+AD\cdot BC\geq AC\cdot BD$。
蝴蝶定理:如果$AB$是圆$O$的弦,$M$是$AB$的中点,弦$CD$,$EF$经过点$M$,$CF$,$DE$交$AB$于$P$,$Q$,则$MP=QM$。
勾股定理(毕达哥拉斯定理):对于一个直角三角形,锐角对边的平方等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍;钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍。
同时还有广义勾股定理。
中线定理(巴布斯定理):对于一个三角形$\triangleABC$,如果$BC$的中点为$P$,则有$AB^2+AC^2=2(AP^2+BP^2)$。
同时,中线的长度可以用以下公式计算:$m_a=\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$。
平面几何基本定理
.一.平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理)角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半)6. 正弦定理:R CcB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a ccos 2222-+=8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC.于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE (4)设G 为△ABC 的重心,则222222333GC AB GB CA GA BC +=+=+)(31222222CA BC AB GC GB GA ++=++22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C cy B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然 (2)设I为△ABC的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +=== (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (B A By AyC B A Cx Bx Ax O BA CB A +++++++外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子) (2))(21C A I I I C B A ∠+∠=∠ (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论)(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式C B A R Rabc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的.高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=29. 三角形中内切圆,旁切圆和外接圆半径的相互关系;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan rr r r B A r r C A r r C B r r c b a c b a =++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line )39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线. 46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点.50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,.如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切. 65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线. 68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.二.集合1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B==3.包含关系A B A A B B=⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 5.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;6.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.三.二次函数,二次方程1·二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 2·解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 3·方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条.件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k ,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 4·闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a =-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.5·一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ . 6·定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是00a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.四.简易逻辑1·真值表234·充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要.条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.五.函数1· 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2·如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.3·奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;4若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+. 5· 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 6·若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7 多项式函数110()n n n n P x a x a xa --=+++的奇偶性 多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 8函数()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线x a=对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9两个函数图象的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.13 几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠. (3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.14 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;.(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.六 指数与对数1·分数指数幂(1)m na=(0,,am n N *>∈,且1n >).(2)1mnm naa-=(0,,a m n N *>∈,且1n >).2·根式的性质(1)n a =.(2)当na =;当n 为,0||,0a a a a a ≥⎧==⎨-<⎩. 3·有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 4·指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.5·对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).6·对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N=+;(2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈. 7·设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.8·对数换底不等式及其推广若0a>,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n++<.(2)2log log log 2a a a m nm n +<. 9·平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).七 数列1·等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 2·等比数列的通项公式1*11()n nna a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.3·等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩..八 三角函数1·常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2·同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.3·正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).5·半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+- 6·二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 7·最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈cos (||1)(2arccos ,2arccos ),x a a x k a k a k Zππ>≤⇔∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Zπππ<≤⇔∈++-∈tan ()(arctan ,),2x a a R x k a k k Zπππ>∈⇒∈++∈tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-8·三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-9·三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.10·正弦定理 2sin sin sin a b cR A B C===.11余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12·面积定理(1)111222a b c Sah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222Sab C bc A ca B ===. (3)OABS ∆=.13·在三角形中有下列恒等式:①sin()sin A B C +=② tan tan tan tan .tan .tan A B C A B C ++=.14·简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.15·三角形内角和定理在△ABC 中,有()A B CC A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+八 向量1·实数与向量的积的运算律设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb .2·向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b=λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c= a ·c +b ·c.3·平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 4·向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b≠0,则a b(b ≠0)12210x y x y ⇔-=.5·a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.6·a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7·平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.8·两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).9·平面两点间的距离公式,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).10·向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.11·线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 12·三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.13·点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)Px y ,且'PP 的坐标为(,)h k .14·“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-. (4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .15·三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=. (3)O 为ABC ∆的垂心.OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOAbOB cOC ⇔=+.九 不等式1·常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).ab c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.2·极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.3·一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2axbx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.4·含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.5·指数不等式与对数不等式(1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩十 直线方程1·斜率公式①2121y y kx x -=-(111(,)P x y 、222(,)P x y ).② k=tan α(α为直线倾斜角)2·直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).5·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②两直线垂直的充要条件是12120A A B B +=;即:12l l ⊥⇔12120A A B B +=.6·夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 7·1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.8·四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.9·点到直线的距离d =(点00(,)P x y ,直线l:0Ax By C ++=).10·0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
初中中平面几何重要定理汇总
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上。
29、塞瓦定理的逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F,如果(AF:FB)(BD:DC)(CE:EA)=1那么直线AD,BE,CF相交于同一点。
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接ቤተ መጻሕፍቲ ባይዱ的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
平面几何的几个重要的定理--梅涅劳斯定理
平面几何的几个重要的定理一、梅涅劳斯定理:定理1:若直线l 不经过 ABC 的顶点,并且与的延长线分别交于 P 、Q 、R,贝U BP CQ AR 1 PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线l 的垂线的长度,贝u :BP CQ AR h B h C hu 』 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;例1:若直角 ABC 中,CK 是斜边上的高, 在AK 上,D 是AC 的中点, F 是DE 与CK的交点,证明:KF BK ——=—— FC BE KF BK ——=一 KC KE FKB CKE BF //CECE 是 ACK 的平分线, E 点BF // CE 。
证:在 则:EBC 中,作 B"分线BH EBC ACK HBC ACEHBC HCB ACE HCB 90即:BH CEEBC 为等腰三角形作BC 上的高EP,则:对丁 ACK 和三点D 、 CK EPE 、F 依梅涅劳斯定理有:CD AE KF , 1 DA EK FC匚曰KF EK CK 『是——=一 一FC AE ACEP BP BK AC BC BE依分比定理有: ABC 的三边BC 、CA 、AB 或它们【练习1从点K 引四条直线,另两条直 -一 一 、…AC和 A 1、B 1、C 1、D 1,试证: ------- 1 1 1BC线分别交这四条直线丁 A 、B 、C 、DAD BD定理2:设P 、Q 、R 分别是 ABC 的三边 BC 、CA 、AB 上或它们的延长线上的 P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 既 PC 三点,并且 CQ AR QA RB 1, 求证:P 、Q 、R 三点共线; 证:设直线PQ 与直线AB 交丁 R ', 丁是由定理 BP CQ AR _ __ ' PC QA R B乂 BP CQ AR PC QA RB 由丁在同一直线上的 _ ' ____ AR AR1,则:^―=—— R B RB P 、Q 、R '三点中,位丁 ABC 边上的点的个数也为 0或2,因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上; 若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ', AR AR BR BR 这时AB AR AB AR ',即BR BR ',丁是可得 _ ____ ' 这与AR =竺 矛盾 BR BR 类似地可证得当 R 与R '同在AB 的延长线上时,综上可得:P 、Q 、R 三点共线; 注:此定理常用于证明三点共线的问题,且常需要多次使用 R 与R '也重合再相乘;例2点P 位丁 ABC 的外接圆上;A 1、B 1、C 1是从点P 向BC 、CA 、AB 引的垂线的垂足, 证明点A 1、B 1、 BA 1BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1AP cos PABBC 1 PB cos PBAC i 共线; 证:易得: 将上面三条式子相乘, 且 PAC PBC , PAB PCB , 十曰 BA 1 CB 1 AC 1可得 一111= 1 ,CA 1 AB 1 BC 1依梅涅劳斯定理可知 A 1、B 1、C 1三点共线;PCA PBA 180A 1C 1 A 1D 1B 1C ; :BD【练习2设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F,则EF 与BC , FD 与CA , DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习&已知直线 AA i, BB i, CC i 相交于O,直线AB 和A 1B 1的交点为C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;【练习M 在一条直线上取点 E 、C 、A,在另一条上取点 B 、F 、D,记直线AB 和ED , CD 和AF ,CD 和AF , EF 和BC 的交点依次为 L 、M 、N,证明:L 、M 、N 共线练习i 的证明练习2的证明乂 AE AF 代人上式可得:BXXC FB =—— CE CY DC AZ EA同理口」彳寸: — —YA AFZB BD将上面三条式子相乘可 得:乳CY J i XC YA ZB 乂 X 、Y 、Z 都不在 ABC 的边上,由定理 2可得X 、Y 、 证: ABC 被直线XFE 所截,由定理 Z 三点共线 证:若AD // A i D^,结论显然成立;若AD 与A i D i 相交与点 AD LD LD BD LD 〔 A i K A i D i AK BK BQ B i K LDi L,则把梅涅劳斯定理分 LC AK A 。
平面几何四大定理
梅涅劳斯定理简介梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二:过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
证明三:过ABC三点向三边引垂线AA'BB'CC',所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA'所以(AF/FB)×(BD/DC)×(CE/EA)=1证明四:连接BF。
(AD:DB)〃(BE:EC)〃(CF:FA) =(S△ADF:S△BDF)〃(S △BEF:S△CEF)〃(S△BCF:S△BAF) =(S△ADF:S△BDF)〃(S △BDF:S△CDF)〃(S△CDF:S△ADF) =1此外,用定比分点定义该定理可使其容易理解和记忆:在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
四个重要定理(梅涅劳斯_塞瓦_托勒密_西姆松)
B平面几何中的四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1=⋅⋅RBARQA CQ PC BP 。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1、设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF 2ED AE =。
【分析】CEF 截△ABD→1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2、过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM→1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3、D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △【分析】【评注】梅氏定理4、以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5、已知△ABC 中,∠B=2∠C 。
初中数学平面几何基本定理
1. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=2. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理) 3. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 4. 余弦定理:C ab b a c cos 2222-+=5. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边6. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD7. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,则有:MP =QM .8. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .重心性质:①设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ; ②设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31③设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).11. 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心, HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,12. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,219013. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和14.其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++= 1920·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.21·点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).。
初中平面几何重要定理汇总
初中平面几何重要定理汇总1、勾股定理(毕达哥拉斯定理)(直角三角形的两直角边分别是a、b,斜边是c;则a*a+b*b=c*c)2、射影定理(欧几里得定理)(直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC 中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC , (3)(AC)^2;=CD·BC 。
等积式(4)ABXAC=BCXAD(可用面积来证明))3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
平面几何四大定理
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏成)△ ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充妥条件是— = loPC QA RB室瓦(Ccva)定理(塞瓦点)A ABC 的三边BC、CA、AB 上有点P、Q、R,则AP、BQ、CR共点的充妥条件是BP CQ ARPC QA RBlo托勒密(Ptolemy)定理四边彩的两对边乘积之和等于其对角线乘积的充妾条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充妄条件是该点落在三角形的外接网上。
例题:1.设AD是二ABC的边BC上的中线,直线XF交AD于F。
a. AE 2AF求'正: LC = 0ED FB【分析】CEF —— = 1 (梅氏定理)ED CB FA【评注】也叮以添加辅助线证明:过A、B、D之一作CF的平行践。
2.过^ABC的重心G的直经分别交AB、AC于E、F,交CB word于Po求证: BE CF —+ —EA FA【分析】连结异延长AG交BC于M,则M为BC的中点Oc 止BE AG DEG 裁zlABM— --------------EA GMCF AGPGF^AACM^--—FA Of 黑=1 (梅氏定理)U D罪=1 (梅氏定理)DC.BE 十CF _GM (DB + DC)_GM 2MD_[ EA+ FA AGMD 2GM MD~ 【评注】梅氏定理3.D、E、F分别在A ABC的BC、CA、AB边上,RD AF CF= 人,AD、BE、CF 交成ALMNoDC FB EA求S_LM*【分析】【评注】梅氏定理4. 以AABC各边为底边向外作相似的等膝zLBCE、ACAF.AABGo求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知ZiABC 中,ZB=2ZCo 求证:AC2=AB2+AB - BCo【分析】过A作BC的平行线交A ABC的外接圆于D,连结BPo 则CD=DA=AB, AC=BDo由,七勒密定理,AC - BP=AD - BC+CD - ABo【评注】托勒密定理6.已知正七边形A|A2A5A4A S A6A7O求证:+—!—o (第21届全苏数学竞赛)A | A 2 A j A j A]Aq【分析】【评注】托勒密定理7. AABC的BC边上的商AD的延长线交外接阅于P,作PE1AB于E,延长ED交AC延长残于F。
平面几何中几个重要定理的证明
证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得
.
所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.
平面几何等几个重要定理
1.萊莫恩(Lemoine)線:設三角形ABC的∠A的外角平分線與BC的延長線交於P,∠B的平分線與AC交於Q,∠C的平分線和AB交於R。
求證P、Q、R三點共線。
註:直線PQR稱為三角形ABC的萊莫恩(Lemoine)線。
2.戴沙格定理:設三角形ABC和A'B'C'對應頂點的連線AA'、BB'、CC'交於一點S,這時如果對應邊BC和BC、CA和CA、AB和AB(或它們的延長線)相交,則它們的交點D、E、F在同直線上。
註:戴沙格定理是射影幾何中等一個重要定理。
3.牛頓定理:設四邊形ABCD的一組對邊AB和CD的延長線交於點E,另一組對邊AD和BC的延長線交於F,則AC中點L、BD中點M及EF中點N三點共線。
註:直線LMN稱為四方形ABCD的牛頓線。
4.斯特瓦爾特定理:設P為三角形ABC的邊BC上一點,且BP:PC=m:n,則有 nAB2 + m AC2 =(n+m)AP2 + mn BC2/(m+n)。
註:1.當m=n時,即P是BC的中點時,可得AB2 + m AC2 = 2( AP2 + BP2),此即三角形的中線定理,亦稱巴布斯定理。
2.當AP為三角形ABC中∠A的平分線時,則由角平線的性質得m/n=AB/AC。
此時BP =ac/(b+c),CP=ab/(b+c)。
所以AP2=4bcp(p-a)/(b+c)2。
這公式亦可用sinA/2,及三角形面積公式得到。
5.在三角形ABC中,設c>b,AD是∠A的平分線,E為BC上一點且BE=CD。
求證:AE2-AD2=(c-b)2。
6.設G為三角形的重心,M是平面上任意一點,求證:MA2+MB2+MC2=GA2+GB2+GC2+3MG2。
7.在三角形ABC的邊BC上任取一點D,設ADB和ADC的角平分線分別交AB、AC於E和E,求證AD、BE、CF交於一點。
8.已知AD是三角形ABC的邊BC上等高,P為AD上任意一點,直線BP、CP分別交AC、AB於E、F,求證∠FDA=∠ADE。
四个重要定理(梅涅劳斯-塞瓦-托勒密-西姆松)
P 、Q R ,则P 、Q R 共线的充要条件是聖CQ ARj 。
PC QA RBBP CQ AR PC QA RB _ °平面几何中的四个重要定理梅涅劳斯(Menelaus )定理(梅氏线)△ABC 的三边BC CA AB 或其延长线上有点塞瓦(Ceva )定理(塞瓦点)△ABC 的三边 BC CA AB 上有点 P 、Q R ,贝U AP 、BQ CR 共点的充要条件是 托勒密(Ptolemy )定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson )定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接 圆上。
例题:PA 1设AD是MBC的边BC上的中线,直线CF交AD于F。
求证:AE 2AFED。
AE DC RF【分析】CEF截△ARCH — .— .— =1 (梅氏定理)ED CR FA【评注】也可以添加辅助线证明:过A、R、D之一作CF的平行线。
2、过△ARC的重心G的直线分别交AB AC于E、F,交CR于D。
RE CF=1。
求证:EA FADEG截A ARM H REEAAGGMMDDR(梅氏定理)DGF截△ACM H =1 (梅氏定理)FA GM DCRE CF=GM (DR DC)=GM2MDEA FA AG MD 2GM MD【评注】梅氏定理3、D E、F分别在A ARC的RC CA AR边上,RD AFDC FRCEEAAD RE、CF交成△ LMN 求S A LM N O【分析】【评注】梅氏定理4、以A ARC各边为底边向外作相似的等腰A RCE A CAF A ARG 求证:AE、RF、CG相交【分析】连结并延长AG交RC于M,则M为RC的中点。
FLEM N【评注】塞瓦定理5、已知△ABC 中,/ B=2/ G 求证:AC^AB+ABBCo【分析】过A 作BC 的平行线交△ABC 的外接圆于D,连结BD 贝 U CD=DA=AB AC=BD由托勒密定理,AC BD=ADBC+CDAB【评注】托勒密定理求证:1 1 1A !A 2=A !A 3 A !A 4。
平面几何中的几个重要定理
平面几何的著名定理1998 年,美国科学家和教育家在美国的科学年会上一致认为:21 世纪,几何学万岁. 除几何学理论广泛应用于CT 扫描、无线电、高清晰度电视等最新电子产品与最新医疗科学之外,其本身具有较强的直观效果,有助于提高学生认识事物的能力,有助于培养学生的逻辑推理能力有助于数形结合方法解题.用点、线、面可构成许许多多千姿百态的几何图形,直观的几何图形便于学生认识问题、思考问题、解决问题.如果能养成一个好习惯:“每做一道题都画一个几何图形或一幅几何示意图”,这对于理解、思考、解题都是大有益处的.在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO)的六道试题中,都至少有一道平面几何试题的存在.同样,在每年十月份进行的全国高中数学联赛加试的三道试题中,必有一道是平面几何题,占全国高中数学联赛总分300 分中的50 分,因此有人曾说:“得几何者,得一等奖”.除了在初中的课本中已经介绍的重要定理之外,在数学竞赛中,平面几何问题还要用到许多著名的定理,现择其应用较广的几个介绍如下.一.梅涅劳斯定理梅涅劳斯是古希腊的著名的几何学家,在他著名的几何著作《球论》中,他提出了“梅涅劳斯”这条著名的定理.梅涅劳斯定理:在的三边或其延长线上有点,则共线的充分必要条件是:①这里有几点需要向大家说明:1.不过顶点的直线与三角形3 边的关系有两种情况;(1)若直线与三角形的一边交于内点,则必与第二边交于内点,与第三边交于外点(延长线上的点);(2)直线与三角形的三边均交于外点,因而本题的图形有2 个.2.结论的结构是,三角形三边上6 条被截线段的比,首尾相连,组成一个比值为1 的等式3.这个结论反映了形与数的结合,是几何位置的定量描述:“三点共线”量化为比值等于“1”, 反过来式成立时,可证“ D,E,F 共线”(逆定理也成立).这里的“1”, 如果考虑到线段的方向,应为“-1 ”4.此题证明的基本想法是将6 条线段的比转化为3 条线段的连环比,能使分母相约,为此,可有多种作平行线的方法.下面提供一个不作辅助线的三角证法:证明:证法2:证法3:梅涅劳斯定理的逆定理:设分别是的边或其延长线上的点,且满足有奇数个点在延长线上,若, ②则三点共线。
平面几何中的几个重要定理
平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们,人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了几何学的历程.这里我们介绍几何学中的几个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G .Ceva 1647—1743),意大利著名数学家.塞瓦定理 设为三边所在直线外一点,连接分别和的边或三边的S ABC ∆CS BS AS ,,ABC ∆延长线交于(如图1),则.R Q P ,,1=⋅⋅RBARQA CQ PC BP 证明 (面积法)考虑到△ABS 与△ACS 有公共底边AS ,因此它们面积之比等于分别从顶点B 、C 向底边AS所引垂线长的比,而这个比又等于BP 与PC 之比,所以有P174同理可得三式相乘,即得··=··=1ABCSPQRBACSPQR1图与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设为的边或三边的延长线上的三点(都在三边R Q P ,,ABC ∆R Q P ,,上或只有其中之一在边上),如果有,则三直线交于一点或互相平行. 1=⋅⋅RBARQA CQ PC BP CR BQ AP ,, 证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S ,又设AS 和BC 的交点为P’,由塞瓦定理,应有··=1与已知条件中的式子比较,得=但由于点P 和P’同在BC 边上,所以P 和P ’重合,即三直线AP 、BQ 、CQ 交于一点。
P175若BQ 与CR 平行,则=.把它代入已知条件的式子中,**=1,RB AB QC AC PC BP QA CQ QCAC∴;BQ//PA 。
平面几何四大定理
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
初中平面几何四个重要定理
初中平⾯⼏何四个重要定理初中数学知识重点整理-平⾯⼏何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅⽒线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是。
塞⽡(Ceva)定理(塞⽡点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对⾓线乘积的充要条件是该四边形内接于⼀圆。
西姆松(Simson)定理(西姆松线)从⼀点向三⾓形的三边所引垂线的垂⾜共线的充要条件是该点落在三⾓形的外接圆上。
例题:1.设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅⽒定理)【评注】也可以添加辅助线证明:过A、B、D之⼀作CF的平⾏线。
2.过△ABC的重⼼G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅⽒定理)DGF截△ACM→(梅⽒定理)∴===1【评注】梅⽒定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅⽒定理4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于⼀点。
【分析】【评注】塞⽡定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平⾏线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A 1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC的BC边上的⾼AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识重点整理-平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是。
塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1.设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A 1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
【分析】【评注】西姆松定理(西姆松线)8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比为AM:AC=CN:CE=k,且B、M、N共线。
求k。
(23-IMO-5)【分析】【评注】面积法9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。
求证:(1)a·R a≥b·d b+c·d c;(2) a·R a≥c·d b+b·d c;(3) R a+R b+R c≥2(d a+d b+d c)。
【分析】【评注】面积法10.△ABC中,H、G、O分别为垂心、重心、外心。
求证:H、G、O三点共线,且HG=2GO。
(欧拉线)【分析】【评注】同一法11.△ABC中,AB=AC,AD⊥BC于D,BM、BN三等分∠ABC,与AD相交于M、N,延长CM交AB于E。
求证:MB//NE。
【分析】【评注】对称变换12.G是△ABC的重心,以AG为弦作圆切BG于G,延长CG交圆于D。
求证:AG2=GC·GD。
【分析】【评注】平移变换13.C是直径AB=2的⊙O上一点,P在△ABC内,若PA+PB+PC的最小值是,求此时△ABC的面积S。
【分析】【评注】旋转变换费马点:已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。
(O为费马点)【分析】将C C‘,O O’, P P‘,连结OO’、PP‘。
则△B OO’、△B PP‘都是正三角形。
∴OO’=OB,PP‘=PB。
显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。
由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。
∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。
14.(95全国竞赛) 菱形ABCD的内切圆O与各边分别交于E、F、G、H,在弧EF和弧GH上分别作⊙O的切线交AB、BC、CD、DA分别于M、N、P、Q。
求证:MQ//NP。
【分析】由AB∥CD知:要证MQ∥NP,只需证∠AMQ=∠CPN,结合∠A=∠C知,只需证△AMQ∽△CPN←,AM·CN=AQ·CP。
连结AC、BD,其交点为内切圆心O。
设MN与⊙O切于K,连结OE、OM、OK、ON、OF。
记∠ABO=φ,∠MOK=α,∠KON=β,则∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。
∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM又∠OCN=∠MAO,∴△OCN∽△MAO,于是,∴AM·CN=AO·CO同理,AQ·CP=AO·CO。
【评注】15.(96全国竞赛)⊙O1和⊙O2与ΔABC的三边所在直线都相切,E、F、G、H为切点,EG、FH的延长线交于P。
求证:PA⊥BC。
【分析】【评注】16.(99全国竞赛)如图,在四边形ABCD中,对角线AC平分∠BAD。
在CD上取一点E,BE与AC相交于F,延长DF交BC于G。
求证:∠GAC=∠EAC。
证明:连结BD交AC于H。
对△BCD用塞瓦定理,可得因为AH是∠BAD的角平分线,由角平分线定理,可得,故。
过C作AB的平行线交AG的延长线于I,过C作AD的平行线交AE的延长线于J。
则,所以,从而CI=CJ。
又因为CI//AB,CJ//AD,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ。
因此,△ACI≌△ACJ,从而∠IAC=∠JAC,即∠GAC=∠EAC。
已知AB=AD,BC=DC,AC与BD交于O,过O的任意两条直线EF和GH与四边形ABCD的四边交于E、F、G、H。
连结GF、EH,分别交BD于M、N。
求证:OM=ON。
(5届CMO)证明:作△EOH△E’OH‘,则只需证E’、M、H‘共线,即E’H‘、BO、GF三线共点。
记∠BOG=α,∠GOE’=β。
连结E‘F交BO于K。
只需证=1(Ceva逆定理)。
===1注:筝形:一条对角线垂直平分另一条对角线的四边形。
对应于99联赛2:∠E’OB=∠FOB,且E‘H’、GF、BO三线共点。
求证:∠GOB=∠H‘OB。
事实上,上述条件是充要条件,且M在OB延长线上时结论仍然成立。
证明方法为:同一法。
蝴蝶定理:P是⊙O的弦AB的中点,过P点引⊙O的两弦CD、EF,连结DE交AB于M,连结CF 交AB 于N 。
求证:MP=NP 。
【分析】设GH 为过P 的直径,FF’F,显然‘∈⊙O。
又P∈GH,∴PF’=PF。
∵PF PF‘,PA PB ,∴∠FPN=∠F’PM,PF=PF‘。
又FF’⊥GH,AN⊥GH,∴FF‘∥AB。
∴∠F’PM+∠MDF‘=∠FPN+∠EDF’=∠EFF‘+∠EDF’=180°,∴P、M 、D 、F‘四点共圆。
∴∠PF’M=∠PDE=∠PFN。
∴△PFN≌△PF‘M,PN=PM 。
【评注】一般结论为:已知半径为R 的⊙O 内一弦AB 上的一点P ,过P 作两条相交弦CD 、EF ,连CF 、ED 交AB 于M 、N ,已知OP=r ,P 到AB 中点的距离为a ,则。
(解析法证明:利用二次曲线系知识)--面积问题和面积方法基础知识1.面积公式由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.设△ABC ,c b a ,,分别为角C B A ,,的对边,a h 为a 的高,R 、r 分别为△ABC 外接圆、内切圆的半径,)(21c b a p ++=.则△ABC 的面积有如下公式: (1)a ABC ah S 21=∆; (2)A bc S ABC sin 21=∆ (3)))()((c p b p a p p S ABC ---=∆ (4)pr c b a r S ABC =++=∆)(21 (5)Rabc S ABC 4=∆ (6)C B A R S ABC sin sin sin 22=∆(7))sin(2sin sin 2C B C B a S ABC +=∆(8))(21a c b r S a ABC -+=∆ (9))2sin 2sin 2(sin 212C B A R S ABC ++=∆ 2.面积定理(1)一个图形的面积等于它的各部分面积这和;(2)两个全等形的面积相等;(3)等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;(5)两个相似三角形的面积的比等于相似比的平方;(6)共边比例定理:若△PAB 和△QAB 的公共边AB 所在直线与直线PQ 交于M ,则QM PM S S QAB PAB ::=∆∆;(7)共角比例定理:在△ABC 和△C B A '''中,若A A '∠=∠或︒='∠+∠180A A ,则C A B A AC AB S S C B A ABC ''⋅''⋅='''∆∆. 3.张角定理:如图,由P 点出发的三条射线PC PB PA ,,,设α=∠APC ,β=∠CPB ,︒<+=∠180βαAPB ,则C B A ,,三点共线的充要条件是:PCPA PB )sin(sin sin βαβα+=+. 例题分析例1.梯形ABCD 的对角线BD AC ,相交于O ,且m S AOB =∆,n S COD =∆,求ABCD S 例2.在凸五边形ABCDE 中,设1=====∆∆∆∆∆EAB DEA CDE BCD ABC S S S S S ,求此五边形的面积.例3.G 是△ABC 内一点,连结CG BG AG ,,并延长与AB CA BC ,,分别交于F E D ,,,△AGF 、△BGF 、△BGD 的面积分别为40,30,35,求△ABC 的面积.例4.R Q P ,,分别是△ABC 的边BC AB ,和CA 上的点,且1====RC QR PQ BP ,求△ABC 的面积的最大值.例5.过△ABC 内一点引三边的平行线DE ∥BC ,FG ∥CA ,HI ∥AB ,点I H G F E D ,,,,,都在△ABC 的边上,1S 表示六边形DGHEFI 的面积,2S 表示 △ABC 的面积.求证:2132S S ≥. 例6.在直角△ABC 中,AD 是斜边BC 上的高,过△ABD 的内心与△ACD 的内心的直线分别交边AB 和AC 于K 和L ,△ABC 和△AKL 的面积分别记为S 和T .求证:T S 2≥.例7.锐角三角形ABC 中,角A 等分线与三角形的外接圆交于一点1A ,点1B 、1C 与此类似,直线1AA 与B 、C 两角的外角平分线将于一点0A ,点0B 、0C 与此类似.求证:(1)三角形000C B A 的面积是六边形111CB BA AC 的面积的二倍;(2)三角形000C B A 的面积至少是三角形ABC 的四倍.例8.在△ABC 中,R Q P ,,将其周长三等分,且Q P ,在边AB 上,求证:92>∆∆ABC PQRS S . 例9.在锐角△ABC 的边BC 边上有两点E 、F ,满足CAF BAE ∠=∠,作AB FM ⊥,AC FM ⊥(N M ,是垂足),延长AE 交△ABC 的外接圆于点D ,证明四边形AMDN 与△ABC 的面积相等.三.面积的等积变换等积变换是处理有关面积问题的重要方法之一,它的特点是利用间面积相等而进行相互转换证(解)题.例10.凸六边形ABCDEF 内接于⊙O ,且13+===DC BC AB ,1===FA EF DE ,求此六边形的面积.例11.已知ABC ∆的三边c b a >>,现在AC 上取AB B A =',在BA 延长线上截取BC C B =',在CB 上截取CA A C =',求证:C B A ABC S S '''∆∆>.例12.C B A '''∆在ABC ∆内,且ABC ∆∽C B A '''∆,求征:ABC AB C CA B BC A S S S S ∆'∆'∆'∆=++ 例13.在ABC ∆的三边AB CA BC ,,上分别取点F E D ,,,使EA CE DC BD 3,3==,FB AF 3=,连CF BE AD ,,相交得三角形PQR ,已知三角形ABC 的面积为13,求三角形PQR 的面积.例14.E 为圆内接四边形ABCD 的AB 边的中点,AD EF ⊥于F ,BC EH ⊥于H ,CD EG ⊥于G ,求证:EF 平分FH .例15.已知边长为,,,c b a 的ABC ∆,过其内心I 任作一直线分别交AC AB ,于N M ,点,求证:bc a IN MI +≤. 例16.正△PQR ≅正△R Q P ''',1a AB =,1b BC =,2a CD =,2b DE =, 3a EF =,3b FA =.求证:232221232221b b b a a a ++=++.例17.在正ABC ∆内任取一点O ,设O 点关于三边AB CA BC ,,的对称点分别为C B A ''',,,则C C B B A A ''',,相交于一点P .例18.已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别内分ACCE ,且使k CECN AC AM ==,如果N M B ,,三点共线,试求k 的值. 例19.设在凸四边形ABCD 中,直线CD 以AB 为直径的圆相切,求证:当且仅当BC ∥AD 时,直线AB 与以CD 为直径的圆相切. 训练题1.设ABC ∆的面积为102cm ,F E D ,,分别是CA BC AB ,,边上的点,且,3,2cm DB cm AD ==若DBEF ABE S S =∆,求ABE ∆的面积.2.过ABC ∆内一点作三条平行于三边的直线,这三条直线将ABC ∆分成六部份,其中,三部份为三角形,其面积为321,,S S S ,求三角形ABC ∆的面积.3.在ABC ∆的三边CA BC AB ,,上分别取不与端点重合的三点L K M ,,,求证:AML ∆,CLK BKM ∆∆,中至少有一个的面积不大于ABC ∆的面积的41. 4.锐角ABC ∆的顶角A 的平分线交BC 边于L ,又交三角形的外接圆于N ,过L 作AB 和AC 边的垂线LK 和LM ,垂足是M K ,,求证:四边形AKNM 的面积等于ABC ∆的 面积. 5.在等腰直角三角形ABC 的斜边BC 上取一点D ,使BC DC 31=,作AD BE ⊥交AC 于E ,求证:EC AE =.6.三条直线n m l ,,互相平行,n l ,在m 的两侧,且m l ,间的距离为2,n m ,间的距离为1,若正ABC ∆的三个顶点分别在n m l ,,上,求正ABC ∆的边长.7.已知321P P P ∆及其内任一点P ,直线P P i 分别交对边于i Q (3,2,1=i ),证明:在332211,,PQ P P PQ P P PQ P P 这三个值中,至少有一个不大于2,并且至少有一个不小于2. 8.点D 和E 分别在ABC ∆的边AB 和BC 上,点K 和M 将线段DE 分为三等分,直线BK 和BM 分别与边AC 相交于点T 和P ,证明:AC TP 31≤. 9.已知P 是ABC ∆内一点,延长CP BP AP ,,分别交对边于C B A ''',,,其中x AP =,w C P B P A P z CP y BP ='='='==,,,且3,23==++w z y x ,求xyz 之值.10.过点P 作四条射线与直线l l ',分别交于D C B A ,,,和D C B A '''',,,,求证:C BD A D C B A BC AD CD AB ''⋅''''⋅''=⋅⋅. 11.四边形ABCD 的两对对边的延长线分别交L K ,,过L K ,作直线与对角线BD AC ,的延长线分别F G ,,求证:KGLG KF LF =. 12.G 为ABC ∆的重心,过G 作直线交AC AB ,于F E ,,求证:GF EG 2≤.。