数字电压表设计报告_卜霞森

合集下载

数字电压表设计报告

数字电压表设计报告

一、课程内容介绍:数字电压表是用来测量信号电压的装置。

它可以测量正弦波、方波、三角波和尖脉冲信号的电压。

在进行模拟、数字电路的设计、安装、调试过程中,经常要用到数字电压表。

本设计是设计一个三位直流数字电压表。

由于其用十进制数显示,测量迅速、精度高、显示直观,一次数字电压表得到广泛的使用。

二、总体设计1、实验目的设计制作一个具有数字显示功能的数字电压表。

该数字电压表能对日常电子线路中的电压进行方便的测量。

2、实验设计要求与内容1) 本设计要求从测试端输入0-51V的电压,经90K和10K电阻分压,送ADC0804输入端,所以实际输入电压是测试端的十分之一。

经89C2051处理,在D3、D2、D1三个七段显示。

2) 本电路ADC0804最大转换值为0FFH(255),对应输入电压是5.1V,对应测试端电压(显示电压)51V。

3) 若测试端输入为4V,实际进入ADC0804为0.4Va) 经A/D转换后为14Hb) 14H经十进制转换后为0020,则令R4=00,R5=20c) 将0020*2=0040,令R4=00,R5=40d) 将数字点设在D2上,D4 D3 D2 D1分别显示为0 0 4 04) 本电路省略D4,只显示D3 D2 D15)总体设计框图:3、实验技术指标1) 被测量信号电压范围:0-51V2) 测量精度:测量显示3为有效数字3) 分辨率:5.1V/2^8注意:在画PCB的时候要注意将晶振,即Y1,C4,C5,一起布置在芯片AT89C2051旁边,还有电容C2,C3也要靠近芯片AT89C2051,这样才能有效显示结果。

4、设计提示1) 本设计要求从测试端输入0-51V的电压,经90K和10K电阻分压,送ADC0804输入端,所以实际输入电压是测试端的十分之一。

经89C2051处理,在D3、D2、D1三个七段显示器显示。

2)本电路ADC0804最大转换值=0FFH(255),对应输入电压是5.1V,对应测试端电压(显示电压)是51V。

数字电压表设计课程设计报告方案一

数字电压表设计课程设计报告方案一

本科课程设计题目数字电压表设计目录一、课程设计目的 (3)二、方案一:XXXXXXXX (3)(一)原理框图......................................... 错误!未定义书签。

(二)电路原理总图................................. 错误!未定义书签。

(三)主要芯片原理及引脚图................. 错误!未定义书签。

(四)各部分电路原理分析..................... 错误!未定义书签。

三、设计与调试 (7)四、结论 (10)五、总结 (10)一、课程设计目的1.学习查阅文献资料,掌握设计方案的设计与书写;2.掌握双积分A/D转换器的工作原理;3.掌握各主要芯片的工作原理及使用方法;4.了解数码管显示原理;5.学会利用通用板实现电子元器件的手动连线及调试;6.掌握模拟电路、数字电路的基本调试方法;7.提高分析问题与解决问题的能力;8.对常见故障会分析原因,并排除故障。

性能指标1. 直流电源供电:+5,-5V2. 量程:-1.999V~+1.999V3. 精度:0.0014. 用五个数码管显示,显示稳定,允许最后一位跳动5. 输入负电压时,最高位显示“-”6. 最高位灭零二、方案一:通过双积分A/D转换器ICL7135实现四位半数字电压表方案简述;本系统所设计的4 1/2数字电压表由ICL7135-4 1/2位A/D转换器、三极管9013驱动阵列、74LS47BCD到七段锁存-译码-驱动器、共阳极LED发光数码管、基准电源、时钟及量程开关电路组成。

4 1/2位是指十进制数00000~1999,只有4位完整显示位,其数字范围为0~9,而其最高位只能显示0或1,故称为半位。

(一)原理框图模数转换ICL7135数 码 管驱动电路数 码 管显示电路时钟信号基准电压被测信号(二)电路原理总图(三)主要芯片原理及引脚图1.ICL7135原理:ICI7135是4位双积分A/D转换芯片,可以转换输出±20000个数字量,有STB选通控制的BCD码输出,与微机接口十分方便.ICL7135具有精度高(相当于14位A/D转换),价格低的优点.其转换速度与时钟频率相关,每个转换周期均有:自校准(调零),正向积分(被测模拟电压积分),反向积分(基准电压积分)和过零检测四个阶段组成,其中自校准时间为10001个脉冲,正向积分时间为10000个脉冲,反向积分直至电压到零为止(最大不超过20001个脉冲).故设计者可以采用从正向积分开始计数脉冲个数,到反向积分为零时停止计数.将计数的脉冲个数减10000,即得到对应的模拟量.图1给出了ICL7135时序,由图可见,当BUSY变高时开始正向积分,反向积分到零时BUSY变低,所以BUSY可以用于控制计数器的启动/停止.引脚图:2.74LS47芯片原理:74LS47译码器原理译码器原理(74LS47)译码器的逻辑功能是将每个输入的二进制代码译成对应的输出的高、低电平信号。

数字电压表设计报告(终结版)

数字电压表设计报告(终结版)
关键词:MSC-51ADC0809 数字电压表 数模转换LCD
1.
1.1
数字电压表(Digital Voltmeter)简称DVM,目前采用单片机设计的数字电压表,由于精度高、抗干扰能力强、可扩展性强、集成方便,还可以与PC进行实时通信,所以以下方案均采用单片机设计。
1.1.1 方案设计
方案一:基于MSP430F448单片机的数字电压表设计。MSP430F44x系列单片机片内集成了8路12位A/D、串行通信接口、看门狗定时器、比较器、硬件乘法器等外围设备模块,从而降低了应用电路的复杂程度,提高了系统的可靠性。该芯片可以工作于2.5V和3.3V两种电压下,其功耗非常低。
数字电压表
摘要
在电子器件设计中,以单片机作为控制核心的系统得到了广泛的应用,尤其以MCS-51最为普遍。而数字电压表的基本原理是对直流电压进行模数转换,并将其结果用数字直接显示出来。为以单片机为控制核心实现数字电压表的设计,结合了模数转换技术,段码显示以及液晶显示,并结合ADC0809芯片及74HC573,进而实现了对5V以内的直流电压的准确测量,并在数码管以及液晶显示屏上同时显示。并进一步扩展,实现了最多可以对八路电压同时进行测量。而且对于超出测量范围的电压能够以LED灯的闪烁实现报警。
图1-2-3AT89C51引脚图
本电路通过单片机定时器给ADC0809芯片提供500KHz的时钟信号,用P3口来控制ADC芯片的工作和输入电压通道的选取。将数模转换后的数据通过P0端口送入74HC573芯片锁存,再由P1端口控制将其数值分别显示在数码管和液晶屏上。
1.2.4 电压显示电路设计
(1)LED显示
图1-2-2 ADC0809内部结构框图及引脚图
本设计通过输入电路将8路输入电压送入ADC0809。并通过单片机P3端口控制实现模数转换,并将转换后的数字信号送入单片机的P2口。ADC0809芯片的时钟信号由单片机产生,送入芯片clock端口。芯片的基准电压和电源电压均由单片机学习板提供。

实验五 数字电压表设计报告

实验五   数字电压表设计报告

实验五数字电压表设计报告一、设计目的通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法。

通过设计有助于复习、巩固以往的学习内容,达到灵活应用的目的。

设计完成后在实验室进行自行安装、调试,从而加强学生的动手能力。

在该过程中培养从事设计工作的整体概念。

二、设计要求1、利用所学的知识,通过上网或到图书馆查阅资料,设计三个实现数字万用表的方案;只要求写出实验原理,画出原理功能框图,描述其功能。

2、其中对将要实验方案3 1/2数字电压表,需采用中、小规模集成电路、MC14433 A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数。

3、技术指标:Ⅰ、测量直流电压1999-1V;199.9-0.1V;19.99-0.01V;1.999-0.001V;Ⅱ、测量交流电压1999-199V;Ⅲ、三位半显示;Ⅳ、比较设计方案与总体设计;Ⅴ、根据设计过程写出详细的课程设计报告;三、设计方案及原理数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。

该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。

本系统是三位半数字电压表,三位半是指十进制数0000~1999。

所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。

各部分的功能如下:三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。

译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。

数字电压表设计实验报告

数字电压表设计实验报告
MOV R7,#6
MOV DPTR,#CS8279D
MOV R0,#30H
DISPL1:
PUSH DPL
PUSH DPH
MOV A,@R0MOV 源自PTR,#TABMOVC A,@A+DPTR
POP DPH
POP DPL
MOVX @DPTR,A
INC R0
DJNZ R7,DISPL1
DSPEXIT:
SJMP CONB3
CONB2:
MOV R7,#4
SJMP CONB3
CONB1:
MOV R7,#3
CONB3:
MOV R0,#35H
MOV A,#0BH
CONBLP:
MOV @R0,A
DEC R0
DJNZ R7,CONBLP
RET
END ; program end
二、实验结果
通过调节可变电阻VR4的电阻大小,使得输入到ADC0809的第5引脚的电压从0V变到5V,转换相应的结果并通过数码显示器显示出来。实验结果与预测结果一置。
; function: initial 8279 as 8 digtal left in ALE/10
; input parameter : none
; output parameter: none
; others 8279 command port address 0FFE9H;8279 data port address 0FFE8H
ORG 0000H
MAIN:
MOV SP, #60H
ACALL INI8279
MOV ADRESULT, #00H
MOV ADBAK, #0FFH
MAINLP:

数字电压表的综合设计报告

数字电压表的综合设计报告

数字电压表的综合设计一、设计任务1、使用状态机实现对模数转换芯片TLC549的采样控制,实现一个简易的电压表。

并将硬件验证结果与测量电压值进行比较。

二、整体设计1、本次设计是利用FPGA控制 TLC549,将 AD转换后的电压值读出,并显示在数码管。

模块一为TLC549主控制模块,模块二为bcd1即一位BCD码加减模块,模块三为lookup即A/D转换BCD码模块,模块四为scan_led数码显示模块。

然后将模块生成为相应器件,按照原理图连接,得出相应波形及数据。

由FPGA构成的ASIC的三部分电路(如结构示意图所示):(1)用有限状态机设计的A/D转换控制电路;(2)将8位数字量DB0-DB7转换成3位BCD码电压值的转换路;(3)3位LED显示器的译码显示电路;结构示意图2、原理框图3、模数转换-TLC549 ADC的介绍(1)TLC549各引脚功能如下:●ANALOG IN,模拟量输入端;●sclk,串行时钟输入端;●cs,芯片选择,低有效;●DATA OUT,数字量输出端;●GND,模拟接地;●REF+,基准电压输入端;●REF-,基准电压负端;●VCC,正电源电压端。

(2)TCL549的工作时序图当片选 CS为低电平时,串行输人数据才能被移入移位寄存器。

当 CS为低电平时,在每一个SCLK时钟的上升沿将DIN的一位数据移入移寄存器。

注意,二进制最高有效位被导前移入。

接着, CS的上升沿才将移位寄存器的数据锁存,供DAC电路进行转换;当片选CS为高电平时,串行输人数据不能被移入移位寄存器。

注意.CS的上升和下降都必须发生在SCLK为低电平期间。

三、模块设计模块一module tcl549c(clk,cs,sdata,clk_ad,reset,dataout);input clk,reset,sdata;output cs,clk_ad;output[7:0]dataout;reg cs,clk_ad_r,clk_r;reg[7:0]dataout,dataout_r;reg[7:0]count;reg[2:0]temp;reg[3:0]cnt;reg mark;reg flag;parameter [2:0]s0=0,s1=1,s2=2;reg[2:0]c_st;always@(posedge clk)begin if(count<119)count<=count+1;else begin clk_r<=~clk_r;count=0;endendalways@(posedge clk)begin clk_ad_r<=~clk_r;endassign clk_ad=clk_ad_r;always@(posedge clk_r or negedge reset)begin if(!reset) c_st<=s0;else case(c_st)s0:begin cs<=1;mark<=0;if(temp==3)begin temp<=0;c_st<=s1;endelse begin temp<=temp+1;c_st<=s0;endends1:begin cs<=0;mark<=1;c_st=s2;ends2:begin cs<=0;mark<=1;if(flag==1)c_st<=s0;else c_st<=s2;enddefault:c_st<=s0;endcaseendalways@(posedge clk_ad_r)beginif(mark==1)if(cnt==8)begin cnt<=0;flag<=1;endelse begin cnt<=cnt+1;flag<=0;endendalways@(posedge clk_ad_r)beginif(mark==1)if(flag==1)dataout<=dataout_r;else dataout_r={dataout_r[6:0],sdata};//串转并endendmodule模块二/*功能:一位BCD码加减法模块输入参数:标准时钟clk,被减数/加数dataa,减数/加数datab,低位来的借位/进位cin输出参数:向高位的借位/进位cout,差/和result*/module bcd1(dataa, datab,cin, cout, result);input [3:0] dataa;input [3:0] datab;input cin;output reg cout;output [3:0]result;reg [4:0]result_r;assign result=result_r;always @(*)beginresult_r = dataa + datab + cin; // 二进制加法if((result_r > 4'd9 )) //||((result_r == 4'd0)&&(dataa != 0))||((result == 4'd1)&&(dataa != 0)&&(result_ab == 4'd0))/*当结果大于9时,补6,当结果由不同时为0的加数相加得0时,补6*/ beginresult_r = result_r + 4'd6;cout = 1;endelsebeginresult_r = result_r;cout =0;endendendmodule模块三module lookup(V,q);input [7:0]V;output [11:0]q;reg [11:0]q;reg [11:0]HB,LB;wire d1,d2,d3;always@(V)begin case(V[7:4]) //--A/D值的高4位转换成3位BCD码4'b1111: HB<=12'b001001000000; //--2.404'b1110: HB<=12'b001000100100; //--2.244'b1101: HB<=12'b001000001000; //--2.084'b1100: HB<=12'b000110010010; //--1.924'b1011: HB<=12'b000101110110; //--1.764'b1010: HB<=12'b000101100000; //--1.604'b1001: HB<=12'b000101000100; //--1.444'b1000: HB<=12'b000100101000; //--1.284'b0111: HB<=12'b000100010010; //--1.124'b0110: HB<=12'b000010010110; // --0.964'b0101: HB<=12'b000010000000; // --0.804'b0100: HB<=12'b000001100100; //--0.644'b0011: HB<=12'b000001001000; //--0.484'b0010: HB<=12'b000000110010; //--0.324'b0001: HB<=12'b000000010110; //--0.164'b0000: HB<=12'b000000000000; // --0.00default: HB<=12'b111111111111;endcasecase(V[3:0]) //--A/D值低4位变为3位BCD码4'b1111: LB<=12'b000000010101; // --0.154'b1110: LB<=12'b000000010100; // --0.144'b1101: LB<=12'b000000010011; // --0.134'b1100: LB<=12'b000000010010; // --0.124'b1011: LB<=12'b000000010001; // --0.114'b1010: LB<=12'b000000010000; // --0.104'b1001: LB<=12'b000000001001; // --0.094'b1000: LB<=12'b000000001000; // --0.084'b0111: LB<=12'b000000000111; // --0.074'b0110: LB<=12'b000000000110; // --0.064'b0101: LB<=12'b000000000101; // --0.054'b0100: LB<=12'b000000000100; // --0.044'b0011: LB<=12'b000000000011; // --0.034'b0010: LB<=12'b000000000010; // --0.024'b0001: LB<=12'b000000000001; // --0.014'b0000: LB<=12'b000000000000; // --0.00default: LB<=12'b111111111111;endcaseendbcd1u1(.dataa(LB[3:0]),.datab(HB[3:0]),.result(q[3:0]),.cin(1'b0),.cout(d 1));bcd1u2(.dataa(LB[7:4]),.datab(HB[7:4]),.result(q[7:4]),.cin(d1),.cout(d2) );bcd1u3(.dataa(LB[11:8]),.datab(HB[11:8]),.result(q[11:8]),.cin(d2),.cout( d3));endmodule模块四module scan_led(clk_1k,d,dig,seg); //模块名scan_ledinput clk_1k; //输入时钟input[11:0] d; //输入要显示的数据output[7:0] dig; //数码管选择输出引脚output[7:0] seg; //数码管段输出引脚reg[7:0] seg_r; //定义数码管输出寄存器reg[7:0] dig_r; //定义数码管选择输出寄存器reg[3:0] disp_dat; //定义显示数据寄存器reg[2:0]count; //定义计数寄存器assign dig = dig_r; //输出数码管选择assign seg = seg_r; //输出数码管译码结果always @(posedge clk_1k) //定义上升沿触发进程beginif(count<2)count <= count + 1'b1;else count<=0;endalways @(posedge clk_1k)begincase(count) //选择扫描显示数据3'd0:disp_dat = d[11:8]; //第一个数码管3'd1:disp_dat = d[7:4]; //第二个数码管3'd2:disp_dat = d[3:0]; //第三个数码管endcasecase(count) //选择数码管显示位3'd0:dig_r = 8'b01111111; //选择第一个数码管显示3'd1:dig_r = 8'b10111111; //选择第二个数码管显示3'd2:dig_r = 8'b11011111; //选择第三个数码管显示endcasecase(count)3'd0:seg_r[7]=0;3'd1:seg_r[7]=1;3'd2:seg_r[7]=1;endcaseendalways @(disp_dat)begincase(disp_dat) //七段译码4'h0:seg_r[6:0] = 7'b1000000; //显示04'h1:seg_r[6:0] = 7'b1111001; //显示14'h2:seg_r[6:0] = 7'b0100100; //显示24'h3:seg_r[6:0] = 7'b0110000; //显示34'h4:seg_r[6:0] = 7'b0011001; //显示44'h5:seg_r[6:0] = 7'b0010010; //显示54'h6:seg_r[6:0] = 7'b0000010; //显示64'h7:seg_r[6:0] = 7'b1111000; //显示74'h8:seg_r[6:0] = 7'b0000000; //显示84'h9:seg_r[6:0] = 7'b0010000; //显示9 default:seg_r[6:0] = 7'b1111111;endcaseendendmodule仿真波形如下:四、结论调节SPOC实验平台上的相应按钮,使显示管出现不同的电压数值,同时使用万用表测出对应的电压数值。

数字电压表设计报告 (2) 精品

数字电压表设计报告 (2) 精品

课程设计报告1 设计总体方案1.1设计要求⑴以MCS-51系列单片机为核心器件,组成一个简单的直流数字电压表。

⑵采用1路模拟量输入,能够测量0-5V之间的直流电压值。

⑶电压显示用4位一体的LED数码管显示,至少能够显示两位小数。

⑷尽量使用较少的元器件。

1.2 设计思路⑴根据设计要求,选择AT89C51单片机为核心控制器件。

⑵A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。

⑶电压显示采用4位一体的LED数码管。

⑷LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。

1.3 设计方案硬件电路设计由6个部分组成; A/D转换电路,AT89C51单片机系统,LED 显示系统、时钟电路、复位电路以及测量电压输入电路。

硬件电路设计框图如图1所示。

图1 数字电压表系统硬件设计框图2 硬件电路设计2.1 A/D转换模块现实世界的物理量都是模拟量,能把模拟量转化成数字量的器件称为模/数转换器(A/D转换器),A/D转换器是单片机数据采集系统的关键接口电路,按照各种A/D芯片的转化原理可分为逐次逼近型,双重积分型等等。

双积分式A/D 转换器具有抗干扰能力强、转换精度高、价格便宜等优点。

与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0809、ADC0808等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送到单片机进行分析和显示。

一个n位的逐次逼近型A/D转换器只需要比较n次,转换时间只取决于位数和时钟周期,逐次逼近型A/D转换器转换速度快,因而在实际中广泛使用[1]。

2.1.1 逐次逼近型A/D转换器原理逐次逼近型A/D转换器是由一个比较器、A/D转换器、存储器及控制电路组成。

它利用内部的寄存器从高位到低位一次开始逐位试探比较。

转换过程如下:开始时,寄存器各位清零,转换时,先将最高位置1,把数据送入A/D转换器转换,转换结果与输入的模拟量比较,如果转换的模拟量比输入的模拟量小,则1保留,如果转换的模拟量比输入的模拟量大,则1不保留,然后从第二位依次重复上述过程直至最低位,最后寄存器中的内容就是输入模拟量对应的二进制数字量[5]。

数字电压表的设计与制作报告

数字电压表的设计与制作报告

1课题名称数字电压表的设计与制作2设计指标及要求3位的数字电压表电路,技术指标要求是:设计并制作一个通用液晶显示211)直流电压测量范围(0-200V):共分5档200mV、2V、20V、200V;2)基本量程:200mV,测量速率(2-5)次任选;3)分辨率0.1mV;γ4)测量误差:%1.0±≤5)具有正、负电压极性显示,小数点显示和超量程显示。

3方案论证方案一:采用AT89S52单片机为核心、以AD0809数模转换芯片采样、以1602液晶屏显示制作具有电压测量功能的具有一定精度的数字电压表。

AT89S52是一个低功耗,高性能CMOS 8位单片机;8位AD转换器ADC0809,编程简单方便,价格便宜;采用液晶1602做为显示电路,功能强大,适合做各类扩展。

但该方案涉及的编程复杂,同时硬件电路也颇复杂。

方案二:采用ICL7106A/D转换器,液晶显示器EDS801A配以外围电路进行设计。

ICL7106是美国Intersil公司专为数字仪表生产的数字仪,满幅输入电压一般取200mV或2V。

该芯片集成度高,转换精度高,抗干扰能力强,输出可直接驱动LCD液晶数码管,只需要很少的外部元件,就可以构成数字仪表模块,硬件电路简单,而且精度高,完全可以实现要求。

综合分析,同时结合到软硬件实际,选择方案二,原理简单,仅涉及硬件电路。

4系统框图4.1 系统框图5单元电路设计及参数计算5.1AD转换器及外围电路设计电路图如下图5.1所示。

图5.1 AD转换器及外围电路图其中液晶显示采用EDS801,将其各数码的字段及公共端与ICL7106相应端联接。

OSC1、OSC2和OSC3是内部时钟的外接电阻和电容引脚;TEST是数字逻辑地端;VRH和VRL是参考电压的输入端,参考电压决定着AD转换器的灵敏度,它是由U DD分压而来,调节P R分压比可调节灵敏度(调满);两个CR脚是基准电容的外接引脚;COM端是模拟信号公共端;AZ、BUF和INT分别是自动调零端、缓冲控制端和积分器输出端;U+和U-为电源端;IN+和IN-为待测信号输入端。

数字电压表设计报告

数字电压表设计报告

31/2数字电压表一.设计目的课程设计的主要目的是通过某一模拟、数字电路的综合设计,熟悉一般模拟、数字电路综合设计过程,设计要求,应完成的工作内容和具体的设计方法。

通过设计也有助于复习、巩固以往的学习内容,达到灵活应用的目的。

在设计完成后还要将设计的电路安装,调试以加强动手能力,在此过程中培养从事设计工作的整体观念。

课程设计以培养能力为主,在独立完成设计任务的同时注重多方面能力的培养与提高,主要包括一下几方面:1.独立工作能力和创造力;2.综合运用专业以及基础知识,解决实际工程技术问题的能力;3.查阅图书资料、产品手册和各种工具书的能力;4.工程绘图能力;5.写技术报告和编制技术资料的能力。

二.设计指标1.能测量0-1.999V、0-19.99V、0-199.9V值;2.三位半数码显示;3.测量交直流电压;4.使用元器件越少越好。

三.设计方案及选择讨论数字电压表的主要内容可归纳为电压测量的数字化方法。

其关键是如何把连续的随时间变化的模拟量转化为数字量。

5.电路总体框图如图1-3所示图1-3 电路总体框图此方案所用器材:⒈数字逻辑试验箱万用表、直流电压源、双踪示波器、配线安装工具⒊集成电路及元器件的名称、型号及数量。

见表1-1:序号名称 型号 数量 1 双积分单片ADC MC14433 1块 2 BCD 七段译码器驱动器 CD4511 1块 3 达林顿反相驱动器 MC1413 1块 4 LED 七段显示数码管LG5011AH4只 5电阻、电容若干四、 单元电路设计⒈ 桥式整流电路:整流电路的任务是将交流点变换成直流电,完成这一任务主要是靠二极管单向导电作用,故二极管是构成整流电路的关键元件。

电路如图4-1-1:⒉ 量程控制电路:采用多量程选择的分压电阻网络,可按整机输入电阻为100M Ω标准经计算得4个分压电阻分别为9M Ω、900K Ω、90K Ω、10K Ω,可用四个双刀双掷开关进行控制切换,实现多量程扩展电压测量功能。

数字电压表设计实验报告

数字电压表设计实验报告

《数字电路》课程设计报告课题:数字电压表专业:电子信息工程班级:姓名:学号:指导老师:日期:2013年12月10日目录一、摘要 (2)二、设计任务及要求 (2)三、设计总体方案 (2)四、单元电路的设计 (3)五、调试过程及结果分析 (6)六、心得感悟 (7)七、参考文献 (7)八、附录(整机逻辑电路图、实物图、PCB板图) (8)一、摘要本文主要介绍的是基于ICL7107数字电压表的设计的设计,ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器位驱动器于一体的大规模集成电路,ICL7107是目前广泛应用于数字测量系统的一种3位半A/D转换器,能够直接驱动共阳极数字显示器,够成数字电压表,此电路简洁完整,稍加改造就可以够成其他电路,如数字电子秤、数字温度计的等专门传感器的测量工具。

ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器、位驱动器于一体的大规模集成电路,官地方官方主要用于对不同电压的测量和许多工程上的应用,调频接口电路,它采用的是双积分原理完成A/D转换,全部转换电路用CMOS大规模集成电路设计。

应用了ICL7107芯片数码管显示器等,芯片第一脚是供电,正确电压时DC5V,连接好电源把所需要测量的物品连接在表的两个端口,从而可以在显示器上看到所需要的结果。

在软件设计上,主要编写了实现计数频率的调节和单片机功能的相关程序,,最后把软件设计和硬件设计结合到一起,然后进行调试。

二、设计任务及要求1. 设计一个数字电压表电路,能够实验电压测量;2.测量范围:通过小数点驱动电路,直流电压0V到1.999V,0V到19.99V,0V 到199.9V,0V到1999V.3.画出数字电压表电路原理图,并作出PCB图;4.利用芯片ICL7107来实现电路功能;5.选择合适的电阻、电容、液晶显示器等器件;6.完成全电路理论设计、制作、调试,制板锡焊;7.上交制作产品一件。

数字电压表课程设计实验报告

数字电压表课程设计实验报告

自动化与电气工程学院电子技术课程设计报告题目数字电压表的制作专业班级学号学生指导教师二○一三年七月一、课程设计的目的与意义1.课程设计的主要目的,是通过电子技术综合设计,熟悉一般电子电路综合设计过程、设计要求、完成的工作容和具体的设计方法。

2.同时了解双积分式A/D转换器ICL7107的性能及其引脚功能,熟悉集成电路ICL7107构成直流数字电压表的使用方法,并掌握其在电路中的工作原理。

3.通过设计也有助于复习和巩固以往的模电、数电容,达到灵活应用的目的。

在完成设计后还要将设计的电路进行安、调试以加强学生的动手能力。

在此过过程中培养从事设计工作的整体观念。

4.利用双积分式A/D转换器ICL7107设计一数字电压表,量程为-1.99—+1.99,通过七段数码管显示。

二、电路原理图数字电压表原理图三、课程设计的元器件1.课程设计所使用的元器件清单:2.主要元器件介绍(1)芯片ICL7107:ICL7107的工作原理双积分型A/D转换器ICL7107是一种间接A/D转换器。

它通过对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变换成与之成正比的时间间隔,然后利用脉冲时间间隔,进而得出相应的数字性输出。

它的原理性框图如图所示,它包括积分器、比较器、计数器,控制逻辑和时钟信号源。

积分器是A/D转换器的心脏,在一个测量周期,积分器先后对输入信号电压和基准电压进行两次积分。

比较器将积分器的输出信号与零电平进行比较,比较的结果作为数字电路的控制信一号。

时钟信号源的标准周期Tc 作为测量时间间隔的标准时间。

它是由部的两个反向器以及外部的RC组成的。

其振荡周期Tc=2RCIn1.5=2.2RC 。

ICL7106A/D转换器原理图计数器对反向积分过程的时钟脉冲进行计数。

控制逻辑包括分频器、译码器、相位驱动器、控制器和锁存器。

分频器用来对时钟脉冲逐渐分频,得到所需的计数脉冲fc和共阳极LED数码管公共电极所需的方波信号fc。

数字电压表课程设计报告

数字电压表课程设计报告

数字电压表课程设计报告一、实验目的本实验旨在使学生掌握数字电压表的基本原理、构成和使用方法,通过实践锻炼学生的动手操作能力和实际问题解决能力。

二、实验器材数字电压表、直流稳压电源、电阻箱、待测电路板等。

三、实验内容1.数字电压表的基本原理、构成和使用方法的介绍;2.根据实验要求搭建待测电路;3.调节直流稳压电源输出电压为所需值;4.连接数字电压表到待测电路上并测量电压值;5.对测得的电压值进行分析、处理和讨论。

四、实验流程及步骤1.实验器材准备:数字电压表、直流稳压电源、电阻箱、待测电路板等器材;2.理解数字电压表的基本原理与构成,并熟练掌握使用方法;3.根据实验所需,找到相应的电路板,搭建待测电路,并连接好直流稳压电源;4.调节直流稳压电源的输出电压为所需值,并连接数字电压表到待测电路上;5.测量待测电路的电压值,并在数字电压表上进行记录;6.对测得的电压值进行分析、处理和讨论,并得出实验结论。

五、实验注意事项1.在操作实验器材时,务必严格按照使用说明书和教师的要求进行操作;2.实验器材保持完好无损,任何破损的器材均不能使用;3.实验前需仔细了解实验内容,规划实验流程;4.在操作实验时,要认真记录实验数据,并进行及时分析处理;5.实验结束后,将实验器材妥善归位,保持实验室整洁干净。

六、实验结果及结论通过实验,我们得到了待测电路的电压值,并对其进行了分析、处理和讨论。

根据实验结果和所给数据,我们得出了结论:数字电压表可准确测量待测电路的电压值,为后续研究和实践提供重要依据。

七、实验心得体会通过本次实验,我对数字电压表的原理及其使用方法有了更深入的了解,并通过实践掌握了一定的动手操作能力和实际问题解决能力。

同时,我认识到在实验中必须注重细节和注意安全,仔细完成每一个实验步骤,及时记录和分析实验数据,才能使实验结果更加准确和可靠。

数字电压表实验报告

数字电压表实验报告

简易数字电压表目录摘要及关键词 (2)一、实现方案 (3)1.硬件选择方案 (4)2.程序设计 (12)二、系统的测试与结果 (17)三、调试过程及问题解决方法 (18)四、课题设计的收获及心得 (18)参考文献 (18)摘要:本课题实验主要采用AT89S51芯片和ADC0809芯片来完成一个简易的数字电压表,能够对输入的0~5 V的模拟直流电压进行测量,并通过一个4位一体的7段LED数码管进行显示,测量误差约为0.02 V。

该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。

A/D转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。

数据处理则由芯片AT89S51来完成,其负责把ADC0809传送来的数字量经一定的数据处理,产生相应的显示码送到显示模块进行显示;另外它还控制着ADC0809芯片的工作。

显示模块主要由7段数码管及相应的驱动芯片(74HC245)组成,显示测量到的电压值。

关键词:简易数字电压表、ADC0809、AT89S51。

实现方案:本实验采用AT89S51单片机芯片配合ADC0809模/数转换芯片构成一个简易的数字电压表,原理电路如图1-1所示。

该电路通过ADC0809芯片采样输入口IN0输入的0~5 V的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道D0~D7传送给AT89S51芯片的P0口。

AT89S51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口经驱动芯片74HC245驱动,再传送给数码管。

同时它还通过其三位I/O口P3.0、P3.1、P3.2产生位选信号,控制数码管的亮灭。

另外,AT89S51还控制着ADC0809的工作。

其ALE管脚为ADC0809提供了1MHz工作的时钟脉冲;P2.3控制ADC0809的地址锁存端(ALE);P2.4控制ADC0809的启动端(START);P2.5控制ADC0809的输出允许端(OE);P3.7控制ADC0809的转换结束信号(EOC)。

数字电压表报告

数字电压表报告

《单片机课程设计》设计报告设计题目:数字电压表班级学号: 5081016姓名:刘正设计时间: 2010-12-30备注:目录第1章绪论 (3)第2章设计任务与要求设计任务 (4)设计要求 (4)第3章方案设计方法选择 (5)方案设计 (5)第4章硬件设计模块设计电路 (6)4.1.1 电路时钟 (6)4.1.2 控制电路 (7)逐次逼近式A/D转换模块设计 (7)4.2.1 ADC0808简介 (7)4.2.2 ADC0808内部结构图 (8)4.2.3 A/D转换电路设计 (9)8255端口扩展模块 (9)LED显示模块 (10)Protues仿真电路设计4.5.1 电路仿真图 (10)4.5.2 电路工作原理 (11)第5章系统软件设计系统主程序设计 (12)系统源程序说明 (13)第6章调试与测试结果分析 (15)第7章结论 (16)附录1 源程序代码 (17)附录2 设计原理图 (18)第1章绪论数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。

较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优点。

电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。

数字电压表的核心部件就是A/D 转换器,由于各种不同的A/D转换原理构成了各种不同类型的数字电压表。

一般说来,A/D转换的方式可分为两类:积分式和逐次逼近式。

积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。

根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。

逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。

斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。

在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D 转换器。

数字电压表课程设计报告

数字电压表课程设计报告

湖南科技大学信息与电气工程学院课程设计报告课程单片机原理及应用题目:数字电压表专业:班级:姓名:学号:任务书1数字电压表的概述数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

数字电压表的诞生打破了传统电子测量仪器的模式和格局。

它显示清晰直观、读数准确,采用了先进的数显技术,大大地减少了因人为因素所造成的测量误差事件。

数字电压表是把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式,并加以显示的仪表。

数字电压表把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起,成为仪器、仪表领域中独立而完整的一个分支,数字电压表标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。

本设计采用了以单片机为开发平台,控制系采用AT89C52单片机,A/D转换采用ADC0809。

系统除能确保实现要求的功能外,还可以方便进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。

简易数字电压测量电路由A/D转换、数据处理、显示控制等组成。

模拟式电压表具有电路简单、成本低、测量方便等特点,但测量精度较差,特别是受表头精度的限制,即使采用0.5级的高灵敏度表头,读测时的分辨力也只能达到半格。

再者,模拟式电压表的输入阻抗不高,测高内阻源时精度明显下降。

数字电压表设计与制作报告

数字电压表设计与制作报告

江阴职业技术学院项目设计报告项目:数字电压表设计与制作摘要本文介绍了一种基于单片机的简易数字电压表的设计。

该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。

A/D转换主要由芯片ADC0832来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。

数据处理则由芯片AT89C51来完成,其负责把ADC0832传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0832芯片工作。

该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。

此数字电压表可以测量0-5V的1路模拟直流输入电压值,并通过一个四位一体的7段数码管显示出来。

关键词单片机;数字电压表;A/D转换;AT89C51;ADC0832.AbstractThis paper which introduces a kind of simple digital voltmeter is based on single-chip microcontroller design. The circuit of the voltage meter is mainly consisted of three mould pieces: A/D converting mould piece, A/D converting is mainly completed by the ADC0832, it converts the collected analog data into the digital data and transmits the outcome to the manifestation controlling mould piece. Data processing is mainly completed by the AT89C51 chip, it processes the data produced by the ADC0832 chip and generates the right manifestation codes, also transmits the codes to the manifestation controlling mould piece. Also, the AT89C51 chip controls the ADC0832 chip to work.The voltmeter features in simple electrical circuit, lower use of elements, low cost, moreover, its measuring precision and reliability. The voltmeter is capable of measuring voltage inputs from 1 route ranging from 0 to 5 volt, and displaying the measurements though a digital code tube of 7 pieces of LED.Keywords Single-chip microcontroller; Digital voltmeter; A/Dconverter; AT89C51; ADC0832目录摘要 (II)Abstract (II)目录 (III)第一章绪论 (1)1.1 课题的应用场合 (1)1.2 系统的功能和性能指标 (1)第二章总体方案 (2)2.1 方案设计与选择 (2)2.2 系统的总体结构 (3)第三章硬件电路设计 (5)3.1 硬件电路框图 (5)3.2 主要器件选择与应用 (5)3.3 单片机小系统设计 (5)3.4 键盘与显示电路设计 (6)第四章软件设计 (9)4.1 软件组成框图 (9)4.2 软件流程图设计 (9)4.3 主要程序设计 (10)第五章系统调试 (12)5.1 调试的方法与工具 (13)5.2 Proteus仿真调试及效果 (13)5.3 软硬件联合调试 (13)5.4 系统运行 (14)5.5 调试心得 (14)第六章展望与拓展 (16)致谢 (16)参考资料 (16)附录 (17)附录Ⅰ系统电原理图 (17)附录Ⅱ系统仿真效果图 (18)附录Ⅲ样机实物图 (18)附录Ⅳ软件流程图 (19)附录Ⅴ源程序清单 (20)第一章绪论1.1 课题的应用场合在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

数字电压表设计报告.doc

数字电压表设计报告.doc

s南湖学院《数字电路课程设计》设计报告项目名称:数字电压表课程设计专业年级:10级电信1班所在院系:湖南理工学院南湖学院学生姓名:戴思学号:24102200123完成时间:2012年11月12日目录一、设计任务二、硬件设计三、软件设计四、系统调试五、实验数据处理六、设计安装及调试中的体会七、参考文献附录:源程序代码2一、设计任务基于51单片机,以ADC0804芯片实现模数转换,由1602液晶屏显示,具有量程变换功能。

二、硬件设计2.1主控芯片本电压表采用STC89C52为主控芯片,电路如下图所接:晶振电路和复位电路略去,端口和上面各图的接口是一致的。

2.2模拟转换部分该电压表采用的ADC0804,此芯片优点是并行输出,速率快,缺点是只有8位,精度不高。

下来ADC0804芯片图:为了方便,将数字地和模拟地都直接接到了一起,DB0~DB7为并行输出口,CS,RD,WR为控制芯片模数转换及读取芯片数据和写数据的引脚,ADC0804可以自己产生时钟,只要在CLKR和CLKIN端接入电阻(10K)和电容(理论为150pf本人接的220pf),可产生脉冲信号。

VREF为参考电压端,VIN+和VIN-为电压输入端。

当电压加在VIN+和VIN -端时,在DB0~DB7可输出八位到单片机,本处参考电压为5V,则当输入电压U时,输出数据为temp,则U/temp=5/255.在自然状态下,最多也只能测5V电压,为了扩大量程,4本人加了衰减网络,见下图:接到ADC芯片上面的始终是VIN和地之前的电压,为了调精度,在上面加了滑动变阻器。

此处R22选用的是470K欧的,首先选的10K,因为内阻过小,导致在5V以下的电压测量不准确,choice和GND两端为外加的电压,这样,有部分电压会在R20或者R21上分压,只在保证在R22两端不超过5V,就可实现多量程电压测量。

2.3显示模块本处用1602液晶显示,1602优点是价格便宜,可显示基本字符,对于做电压表这样的东西已足够。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

University of South China电子技术课程设计说明书设计课题简易数字电压表学院电气工程学院姓名卜霞森学号***********专业班级10级电卓03班指导教师陈文光设计时间2012年8-9月【摘要】随着电子科学技术的进步和提高,电子测量这一块越来越收到人们的重视,也在电子系统的设计中起着越来越重要的作用。

作为电气工程学院电子信息工程专业的学生,有必要就电子测量这一块有一定的了解。

本设计主要应用MC14433、MC1413 、CD4511实现所需功能。

以达到平时日常简单的测量所需。

【关键词】MC14433、四位LED数码管、电子测量、CD4511目录1 系统方案设计................................................................................................................ - 4 -1.1 设计目的............................................................................................................... - 4 -1.2 设计要求............................................................................................................... - 4 -1.3 系统框图............................................................................................................... - 5 -.4 设计方案................................................................................................................. - 5 -方案Ⅰ:.............................................................................................................. - 5 -方案Ⅱ:.............................................................................................................. - 6 -1.5 两种方案作简单的比较....................................................................................... - 6 -2 单元电路设计................................................................................................................ - 7 -2.1 工作原理............................................................................................................. - 7 -2.2 硬件电路设计..................................................................................................... - 8 -2.2.1 整体电路概况.......................................................................................... - 8 -2.2.2 双电源的处理.......................................................................................... - 8 -2.2.3 量程的处理................................................................................................ - 9 -2.2.4 小数点的处理........................................................................................ - 11 -2.2.5 MC14433的其他电路........................................................................... - 11 -2.2.6 模块的衔接............................................................................................ - 12 -2.4 PCB设计制作与成品展示 ................................................................................. - 13 -2.4.1 原理图设计............................................................................................ - 13 -2.4.2PCB制作 ............................................................................................... - 14 -2.5实物图.................................................................................................................. - 15 -4 结论与心得体会.......................................................................................................... - 17 -5 参考文献...................................................................................................................... - 17 -6 附录................................................................................................................................ - 18 -附录1 元器件清单................................................................................................. - 18 -1 系统方案设计1.1 设计目的1)掌握数字电压表的设计、组装与调试方法;2)熟悉集成电路MC14433,MC1413,CD4511和MC1403的使用方法,并掌握其工作原理。

1.2 设计要求根据设计要求如下:1)设计数字电压表电路2)测量范围:直流电压0V - 1.999V , 0V – 19.99V , 0V- 199.9V , 0V – 1999V。

3)组装调试4)画出数字电压表电路图,写出总结报告5)选作内容:自动切换量程。

1.3 系统框图本系统框图如下:.4 设计方案根据以下以上要求, 有如下两种方案:方案Ⅰ:采用纯数字逻辑电路搭建时序逻辑电路产生对映的控制信号以达到设计要求。

优点:成本低,电路查错简单。

缺点:MC14433 处理输入电压MC1413 数码管位选CD4511处理输出BCD 码4位数码管显示电压输入量程处理电路 控制衰减和小数点设计难度略大,电路设计和搭建过程中容易出现误差。

方案Ⅱ:采用各类单片机进行处理中间的过程。

优点:设计相对简单,成功率高。

硬件电路搭建也比较轻松缺点:使用单片机提高设计成本,同时此电路应用单片机不能尽其用1.5 两种方案作简单的比较比较上述两种方案分析后可知,方案Ⅱ比较简单,一般情况下采用此方法,但是本设计中本着节省和练习的原则,并未使用方案Ⅱ,采用方案Ⅰ完成本设计。

2 单元电路设计2.1 工作原理数字电压表将被测模拟量转换为数字量,并进行实时数字显示,该系统(如图2-1所示)采用MC14433一213位A/D 器、MC 1413七路达林顿驱动器阵列、CD4511——BCD 到七段锁存一译码一驱动器、能隙基准电源MC1403和共阴极LED 发光数码管组成。

本系统是321位数字电压表,213位是指十进制数0000~1999。

所谓三位是指个位数、十位、百位其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能从0变化到1,即二值状态,所以称半位。

图2-1. 213位数字电压表2.2 硬件电路设计2.2.1 整体电路概况核心的测量部分在图2-1中已经标示出,下图为Altium Designer中的整体SCH文件图图2-2 Altium Designer 概况图考虑到实际设计要求,除了核心部分的测量,还需要一些外部电路才能达到要求。

2.2.2 双电源的处理本次设计中主要芯片MC14433需要用到-5V电源,在本设计中直接采取使用排针接入-5V电源。

+5V电源同理。

图2-3 双电源的处理2.2.3 量程的处理如图2-4所示,在考虑到最大量程与最小量程之间差距过大并且量程只有四个挡位,在本设计中采用四个六角开关作为四个挡位的选择。

利用电阻分压加射级跟随器作为量程的选择与控制,同时六角开关的另一个脚则作为小数点位置的控制。

图2-4 四个量程处理图2-5 射级跟随器实际使用中因为没有用到第三挡和第四挡,所以取消了设计跟随器部分,有需要的时候用杜邦线可以直接接上跟随器。

相关文档
最新文档