浙江省诸暨市2013届高三教学质检检测数学理含答案
2013年高考理科数学浙江卷word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+i B.-1+3iC.-3+3i D.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(R S)∪T=().A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg y B.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg y D.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“π2ϕ=”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若π2ϕ=,则f(x)=A cos(ωx+φ)=-A sin ωx,显然是奇函数.所以“f(x)是奇函数”是“π2ϕ=”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A .a =4B .a =5C .a =6D .a =7 答案:A解析:该程序框图的功能为计算1+112⨯+123⨯+…+11a a (+)=2-11a +的值,由已知输出的值为95,可知当a =4时2-11a +=95.故选A .6.(2013浙江,理6)已知α∈R ,sin α+2cos αtan 2α=( ). A .43 B .34 C .34- D .43- 答案:C解析:由sin α+2cos αsin α2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=10或10,当cos α=10sin α=10;当cos α时,sin α=.∴tan α=3或tan α=13-,∴tan 2α=34-.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB ·PC ≥0P B ·0P C,则( ). A .∠ABC =90° B .∠BAC =90°C .AB =ACD .AC =BC 答案:D解析:设PB =t AB(0≤t ≤1),∴PC =PB +BC =t AB +BC,∴PB ·PC =(t AB )·(t AB +BC )=t 22AB +t AB ·BC .由题意PB ·PC ≥0P B ·0P C, 即t 22AB +t AB ·BC ≥14AB 14AB BC ⎛⎫+ ⎪⎝⎭=214⎛⎫ ⎪⎝⎭2AB +14AB ·BC ,即当14t =时PB·PC 取得最小值. 由二次函数的性质可知:2142AB BC AB ⋅-=, 即:AB - ·BC=122AB , ∴AB ·12AB BC ⎛⎫+ ⎪⎝⎭=0.取AB 中点M ,则12AB +BC=MB +BC =MC ,∴AB ·MC=0,即AB ⊥MC . ∴AC =BC .故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ).A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案:C解析:当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x -1, ∵f ′(1)=e -1≠0,∴f (x )在x =1处不能取到极值;当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=(x -1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H ′(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x <1(x 0为H (x )的零点)时,f ′(x )<0,f (x )在(x 0,1)上为减函数. 当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数. ∴x =1是f (x )的极小值点,故选C .9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D 答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形, 所以∠F 1AF 2=90°.所以|AF 1|2+|AF |2=|F 1F 2|2,所以|AF 1|=2|AF 2|=2所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=2e ==,故选D . 10.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式5的展开式中常数项为A ,则A =__________. 答案:-10解析:T r +1=553255C C (1)rr rr r r r x x ---⎛⋅=⋅-⋅ ⎝=515523655(1)C (1)C r rr rrrr xx----=-.令15-5r =0,得r =3, 所以A =(-1)335C =25C -=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z =kx +y ,其中实数x ,y 满足20,240,240.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________.答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A (0,2)或C (4,4)处取得. 若在A (0,2)处取得不符合题意;若在C (4,4)处取得,则4k +4=12,解得k =2,此时符合题意.14.(2013浙江,理14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).答案:480解析:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ·33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ·33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ·33A 种排法;若C 在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.15.(2013浙江,理15)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于__________.答案:±1解析:设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由24,1y x y k x ⎧=⎨=(+)⎩联立,得k 2x 2+2(k 2-2)x+k 2=0,∴x 1+x 2=2222k k (-)-,∴212222212x x k k k +-=-=-+,1222y y k+=,即Q 2221,k k ⎛⎫-+ ⎪⎝⎭.又|FQ |=2,F (1,0),∴22222114k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得k =±1.16.(2013浙江,理16)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.答案:3解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a,0),则M ,02a ⎛⎫ ⎪⎝⎭,AB =(a ,-b ),AM =,2a b ⎛⎫- ⎪⎝⎭,cos ∠MAB =AB AMAB AM ⋅22a b +.又sin ∠MAB =13,∴cos ∠MAB=.∴22222222894a b aa b b ⎛⎫+ ⎪⎝⎭=⎛⎫(+)+ ⎪⎝⎭, 整理得a 4-4a 2b 2+4b 4=0,即a 2-2b 2=0,∴a 2=2b 2,sin ∠CAB3===. 17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2xy .∴||||x =b x =0时,||0||x =b ; 当x ≠0时,||2||x ==≤b .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c . 解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=331664⨯=⨯, P (ξ=3)=2321663⨯⨯=⨯,P (ξ=4)=2312256618⨯⨯+⨯=⨯,P (ξ=5)=2211669⨯⨯=⨯, P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为(2)由题意知η所以E (η)=3a a b c a b c a b c ++=++++++,D (η)=22255551233339a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭, 化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC ,连结OP ,OF ,FQ ,因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线, 所以OP ∥DM ,且OP =12DM .又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD . 从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .(2)解:作CG ⊥BD 于点G ,作CH ⊥BM 于点H ,连结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD , 所以AD ⊥CG ,又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD , 所以CG ⊥BM .又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH , 所以GH ⊥BM ,CH ⊥BM .所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ.在Rt △BCD 中,CD =BD cos θ=θ,CG =CD sin θ=θsin θ,BG =BC sin θ=2θ.在Rt △BDM 中,23BG DM HG BM θ⋅==.在Rt △CHG 中,tan ∠CHG =3cos sin CG HG θθ==所以tan θ从而θ=60°.即∠BDC =60°.方法二:(1)证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知A (0,2),B (0,0),D (00). 设点C 的坐标为(x 0,y 0,0).因为3AQ QC = ,所以Q 00331,,4442x y ⎛⎫+ ⎪ ⎪⎝⎭.因为M 为AD 的中点,故M (01). 又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,044x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量.由CM =(-x 00y ,1),BM=(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩取y =-1,得m=00,1,y x ⎛- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛= ⎝⎭① 又BC ⊥CD ,所以CB ·CD=0, 故(-x 0,0y ,0)·(-x 00y ,0)=0,即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或0022x y ⎧=±⎪⎪⎨⎪=⎪⎩所以tan ∠BDC=又∠BDC 是锐角,所以∠BDC =60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =,所以||AB==.又l2⊥l1,故直线l2的方程为x+ky+k=0.由220,44,x ky kx y++=⎧⎨+=⎩消去y,整理得(4+k2)x2+8kx=0,故0284kx=-.所以|PD|=24k+.设△ABD的面积为S,则S=12|AB|·|PD|=24k+,所以S=32=当且仅当k=时取等号.所以所求直线l1的方程为y=x-1.22.(2013浙江,理22)(本题满分14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.解:(1)由题意f′(x)=3x2-6x+3a,故f′(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4.(2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2,故①当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.②当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.③当0<a<1时,设x1=1-x2=1则0<x1<x2<2,f′(x)=3(x-x1)(x-x2).由于f(故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a0,从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<23时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a(2-3a)2>0,故|f(x)|max=f(x1)=1+2(1-a当23≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a(3a-2)2,所以当23≤a<34时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1. 综上所述,|f(x)|max=33,0,3 121,4331,.4a aa aa a⎧⎪-≤⎪⎪+(-<<⎨⎪⎪-≥⎪⎩。
2013年浙江高考数学理科试卷(带详解)
2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题1.已知i 是虚数单位,则(1i)(2i)-+-= ( ) A .3i -+ B. 13i -+ C. 33i -+ D.1i -+ 【测量目标】复数代数形式的四则运算. 【考查方式】求两个复数相乘的结果 【难易程度】容易 【参考答案】B【试题解析】(-1+i)(2-i)=- 2+i+2i+1=-1+3i ,故选B.2.设集合2{|2},{|340}S x x T x x x =>-=+-…,则()S T =R ð ( ) A .(2,1]- B.]4,(--∞ C.]1,(-∞ D.),1[+∞ 【测量目标】集合的基本运算.【考查方式】用描述法给出两个集合求补集的并. 【难易程度】容易 【参考答案】C【试题解析】∵集合S ={x |x >-2},∴S R ð={x |x …-2},由2x +3x -4…0得:T={x |-4…x …1},故(S R ð) T ={x |x …1},故选C.3.已知y x ,为正实数,则 ( )A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y += C.lg lg lg lg 222x yx y =+ D.lg()lg lg 222xy x y = 【测量目标】指数幂运算.【考查方式】给出指数型的函数,化简函数. 【难易程度】容易 【参考答案】D 【试题解析】因为s ta+=s a ta ,lg(xy )=lg x +lg y (x ,y 为正实数),所以()lg 2xy =lg +lg 2x y=lg 2xlg 2y ,满足上述两个公式,故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( )A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【测量目标】三角函数的性质,三角函数的诱导公式.【考查方式】给出含参量的三角函数表达式,由函数是奇函数判断命题条件. 【难易程度】中等 【参考答案】B【试题解析】若φ=π2,则f (x )=A cos(ωx +π2)⇒f (x )=-A sin(ωx )(A >0,ω>0,x ∈R )是奇函数;若f (x )是奇函数⇒f (0)=0,∴f (0)=A cos(ω×0+φ)=A cos φ=0.∴φ=k π+π2,k ∈Z ,不一定有φ=π2,“f (x )是奇函数”是“φ=π2”必要不充分条件.故选B.5.某程序框图如图所示,若该程序运行后输出的值是59,则 ( )A.4=aB.5=aC. 6=aD.7=a第5题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图的输出值求输入的值. 【难易程度】容易 【参考答案】A【试题解析】由已知可得该程序的功能是:计算并输出S =1+112⨯+…+1(1)a a +=1+1-11a +=2-11a +.若该程序运行后输出的值是95,则2-11a +=95.∴a =4,故选A.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ) A.34 B. 43 C.43- D.34-【测量目标】二倍角,三角函数的诱导公式.【考查方式】给出正弦和余弦的方程求解二倍角的正切. 【难易程度】中等 【参考答案】C【试题解析】∵sin α+2cos α,又2sin α+2cos α=1,联立解得sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩,故tan α=sin cos αα =13-或tan α=3,代入可得tan2α=22tan 1tan αα-=212()311()3⨯---=34-或tan2α=22tan 1tan αα-=22313⨯-=34-.故选C.7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC….则 ( ) A. 90ABC ∠= B. 90BAC ∠=C. AC AB =D.BC AC =【测量目标】平面向量的算量积运算,向量的坐标运算.【考查方式】在三角形中给出定点在三角形中的位置,求定点与各顶点所成向量数量积的大小.【难易程度】中等 【参考答案】D【试题解析】以AB 所在的直线为x 轴,以AB 的中垂线为y 轴建立直角坐标系,设AB =4,C (a ,b ),P (x ,0),则0BP =1,A (-2,0),B (2,0),0P (1,0),∴0P B =(1,0),PB =(2-x ,0),PC =(a -x ,b ),0PC =(a -1,b ),∵恒有PB PC ≥00P B PC ,∴(2-x )(a -x )≥a -1恒成立,整理可得2x - (a +2)x +a +1≥0恒成立,∴Δ=()22a +-4(a +1)≤0,即Δ=2a ≤0,∴a =0,即C 在AB 的垂直平分线上,∴AC =BC ,故△ABC 为等腰三角形,故选D.第7题图8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)x k f x x k =--=,则 ( ) A .当1=k 时,)(x f 在1=x 处取得极小值 B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【测量目标】利用导数求函数的极值.【考查方式】给出含未知量的函数表达式,判断函数何时取得极值. 【难易程度】中等 【参考答案】C【试题解析】当k =2时,函数f (x )=(e x-1)2(1)x -.求导函数可得()f x '=e x 2(1)x -+2(e x -1)(x -1)=(x -1)(x e x +e x -2),∴当x =1,()f x '=0,且当x >1时,()f x '>0,当12<x <1时,()f x '<0,故函数f (x )在(1,+∞)上是增函数;在(12,1)上是减函数,从而函数f (x )在x =1取得极小值.对照选项.故选C.第8题图9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是 ( )第9题图A.2 B.3 C.23 D.26【测量目标】椭圆和双曲线的简单几何性质.【考查方式】椭圆和双曲线相交焦点和交点构成矩形,求双曲线的离心率. 【难易程度】较难 【参考答案】D【试题解析】|1AF |=x ,|2AF |=y ,x y <∵点A 为椭圆1C :24x +2y =1上的点,∴2a =4,b =1,c|1AF |+|2AF |=2a =4,即x +y =4①;又四边形12AF BF 为矩形,∴21AF +22AF =212F F ,即2x +2y =()22c=(2=12②,由①②得:22412x y x y +=⎧⎨+=⎩,解得x =2-y2x y ==-,设双曲线2C 的实轴长为12a ,焦距为12c ,则12a =|2AF |-|1AF |=y -x12c=2C 的离心率e =11c a故选D. 10.在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( ) A .平面α与平面β垂直 B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60【测量目标】空间中点、线、面之间的位置关系,二面角. 【考查方式】给出两个平面判断面面之间的位置关系. 【难易程度】较难 【参考答案】A【试题解析】设1P =()f P α,则根据题意,得点1P 是过点P 作平面α垂线的垂足,∵1Q =()[]f f P βα=1()f P β,∴点1Q 是过点1P 作平面β垂线的垂足,同理,若2P =()f P β,得点2P 是过点P 作平面β垂线的垂足,因此2Q =()[]f f P αβ表示点2Q 是过点2P 作平面α垂线的垂足,∵对任意的点P ,恒有1PQ =2PQ ,∴点1Q 与2Q 重合于同一点,由此可得,四边形112PPQ P 为矩形,且∠112PQ P 是二面角α﹣l ﹣β的平面角,∵∠112PQ P 是直角,∴平面α与平面β垂直,故选A.第10 题图二、填空题 11.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【测量目标】二项式定理.【考查方式】给出含根式的二项式,求解展开式中常数项的系数. 【难易程度】容易 【参考答案】-10【试题解析】二项式5的展开式的通项公式为 1r T +=5325C (1)rr r rx x --- =15565(1)C r rr x-- .令1556r-=0,解得r =3,故展开式的常数项为-35C =-10.故答案为-10.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________3cm .第12题图【测量目标】由三视图求几何体的表面积和体积. 【考查方式】给出几何体的三视图,求几何体的体积. 【难易程度】中等 【参考答案】24【试题解析】几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,棱柱的高为5,被截取的棱锥的高为3.如图:V =V 棱柱-V 三棱锥=12×3×4×5-13×12×3×4×3=24(3cm ),故答案为:24.第12题图13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩………,若z 的最大值为12,则实数=k ________.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出可行域的不等式和目标函数的最大值,求目标函数中未知数的值. 【难易程度】中等 【参考答案】2【试题解析】可行域如图:由24=024=0x y x y -+⎧⎨--⎩得:A (4,4),同样地,得B (0,2),(步骤1)①当k >-12时,目标函数z =kx +y 在x =4,y =4时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=4k +4,故k =2. (步骤2) ②当k ≤-12时,目标函数z =kx +y 在x =0,y =2时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=0×k +2,故k 不存在.综上,k =2.故答案为:2. (步骤3)第13题图14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【测量目标】排列组合及其应用.【考查方式】给出六个字母和限定条件求排法的种数. 【难易程度】中等 【参考答案】480【试题解析】按C 的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可. (步骤1)当C 在左边第1个位置时,有55A =120种,当C 在左边第2个位置时2343A A =72种,(步骤2)当C 在左边第3个位置时,有2333A A +2323A A =48种,共为240种,乘以2,得480.则不同的排法共有 480种.故答案为:480. (步骤3)15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程和直线过的定点和直线与抛物线交线的长度求直线斜率. 【难易程度】较难 【参考答案】不存在【试题解析】由题意设直线l 的方程为my =x +1,联立214my x y x=+⎧⎨=⎩得到2y -4my +4=0,(步骤1)Δ=162m -16=16(2m -1)>0.设A (1x ,1y ),B (2x ,2y ),Q (0x ,0y ).∴1y +2y =4m ,∴0y =122y y +=2m ,(步骤2)∴0x =m 0y -1=22m -1.∴Q (22m -1,2m ),(步骤3)由抛物线C :2y =4x 得焦点F (1,0).∵|QF |=2=2,化为2m =1,解得m =±1,不满足Δ>0.故满足条件的直线l 不存在. (步骤4)故答案为不存在. 16.ABC △中,90C ∠= ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 【测量目标】正弦定理和余弦定理解三角形.【考查方式】直角三角形中直角边的中点,求三角形中角的正弦值. 【难易程度】较难【参考答案】3【试题解析】如图,设AC =b ,AB =c ,CM =MB =2a,∠MAC =β,在△ABM 中,由正弦定理可得2sin sin ac BAM AMB=∠∠,代入数据可得21sin 3a c AMB =∠,解得2sin 3c AMB a ∠=,(步骤1)故πcos cos 2AMC β⎛⎫=-∠ ⎪⎝⎭=sin AMC ∠=()2sin πsin 3c AMB AMB a -∠=∠=,而在Rt △ACM 中,cos β=AC AM =23ca =,化简可得a 4-4a 2b 2+4b 4=(a 2-2b 2)=0,解之可得a,(步骤2)再由勾股定理可得a 2+b 2=c 2,联立可得c,故在Rt △ABC 中,sin ∠BAC=BC a AB c ===骤3)第16题图17.设12,e e 为单位向量,非零向量12x y +b =e e ,,x y ∈R ,若12,e e 的夹角为π6,则||||x b 的最大值等于________.【测量目标】向量模的计算,向量的数量积,不等式性质. 【考查方式】给出单位向量和非零向量,求向量模的比值. 【难易程度】较难 【参考答案】2【试题解析】∵12,e e 为单位向量,1e 和2e 的夹角等于30°,(步骤1)∴12 e e =1×1×cos30°=2.∵非零向量12x y +b =e e ,(步骤2)∴===b (步骤3)∴x====b故当x y=x b取得最大值为2,故答案为 2. (步骤4) 三、解答题18.在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【测量目标】等差数列的通项公式和.【考查方式】给出等比数列的首相和三项成等比数列,求通项公式,和前n 项绝对值和. 【难易程度】容易【试题解析】(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或;(步骤1)(Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n剟时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--∴++++=++++==…(步骤2)②当12n …时,1231231112132123111230||||||||()11(2111)(21)2ln 2202()()2222n n n n a a a a a a a a a a a a n n n a a a a a a a a ∴++++=++++-+++---+=++++-++++=⨯-=…所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧⎪⎪++++=⎨-+⎪⎪⎩ 剟…;(步骤3)19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a 【测量目标】随机事件与概率,期望和方差.【考查方式】有放回取样的分布列和已知期望和方差求个数比. 【难易程度】中等【试题解析】(Ⅰ)由已知得到:当两次摸到的球分别是红红时2ξ=,此时331(2)664P ξ⨯===⨯;(步骤1)当两次摸到的球分别是黄黄,红蓝,蓝红时4ξ=,此时2231135(4)66666618P ξ⨯⨯⨯==++=⨯⨯⨯;(步骤2)当两次摸到的球分别是红黄,黄红时(3)P ξ=,此时32231(3)66663P ξ⨯⨯==+=⨯⨯;(步骤3)当两次摸到的球分别是黄蓝,蓝黄时(5)P ξ=,此时12211(5)66669P ξ⨯⨯==+=⨯⨯;(步骤4)当两次摸到的球分别是蓝蓝时P (6ξ=),此时111(6)P ξ⨯===;(步骤5)所以ξ的分布列是: 9所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b ca b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以2,3::3:2:1b c a c a b c ==∴=.(步骤6)20.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.第20题图【测量目标】空间直线与平面的位置关系,异面直线成角.【考查方式】给出四面体和直线间的位置和长度关系求解二面角大大小. 【难易程度】中等【试题解析】(Ⅰ)方法一:如图,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以PF BD ;(步骤1)又因为3AQ QC =且3AF FD =,所以QF CD ,所以面PQF 面BDC ,且PQ ⊂面PQF ,所以PQ 面BDC ;(步骤2)第20题图方法二:如图所示,第20题图取BD 中点O ,且P 是BM 中点,所以12PO MD ;取CD 的三等分点H ,使3DH C H =,且3AQ QC =,所以1142QH AD MD,(步骤1)所以PO QH 四边形PQHO 是平行四边形PQ OH ∴ ,且OH BCD ⊂面,所以PQ 面BDC ;(步骤2) (Ⅱ)如图所示,第20题图由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥面,过G 作GH BM ⊥于H ,连结CH ,所以CHG ∠就是C BM D --的二面角;(步骤3)由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在Rt BCG △中,2s i ns i n BG BCG BG BCααα∠=∴=∴=,(步骤4)所以在Rt BHG △中,13HG =∴=,所以在Rt CHG △中tan tan 603CG CHG HG ∠==== (步骤5)tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;(步骤6)21.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程; (2)求ABD △面积取最大值时直线1l 的方程.第21题图【测量目标】直线与椭圆的位置关系,直线与圆的位置关系.【考查方式】给出定点和圆的方程,由直线与椭圆、圆的位置关系求椭圆方程和直线方程. 【难易程度】较难【试题解析】(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(步骤1)(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,0)到直线1:110l yk x k x y =-⇒--=的距离为d =,(步骤2)所以直线1l 被圆224x y +=所截的弦AB ==;(步骤3)由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,(步骤4) 所以228||44D P k x x DP k k +=-∴==++,(步骤5)所以11||||22444313ABDS AB DP k k k ====++++△23232===…(步骤6)当2522k k =⇒=⇒=±时等号成立,此时直线1:1l y x =-(步骤7) 22.已知a ∈R ,函数.3333)(23+-+-=a ax x x x f(1)求曲线)(x f y =在点))1(,1(f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值. 【测量目标】利用导数求函数的最值问题.【考查方式】给出含有未知量的函数求函数的最大值. 【难易程度】较难【试题解析】(Ⅰ)由已知得:2()363(1)33f x x x a f a ''=-+∴=-,且(1)13333f a a =-++-=,所以所求切线方程为:1(33)(1)y a x -=--,即为:3(1)430a x y a --+-=;(步骤1)(Ⅱ)由已知得到:2()3633[(2)]f x x x a x x a '=-+=-+,其中44a ∆=-,当[0,2]x ∈时,(2)0x x -…,(步骤2)(1)当0a …时,()0f x '…,所以()f x 在[0,2]x ∈上递减,所以max |()|max{(0),(2)}f x f f =,(步骤3)因为max (0)3(1),(2)31(2)0(0)|()|(0)33f a f a f f f x f a =-=-∴<<∴==-;(步骤4) (2)当440a ∆=-…,即1a …时,()0f x '…恒成立,所以()f x 在[0,2]x ∈上递增,所以max |()|max{(0),(2)}f x f f =,(步骤5)因为max (0)3(1),(2)31(0)0(2)|()|(2)31f a f a f f f x f a =-=-∴<<∴==-;(步骤6) (3)当440a ∆=->,即01a <<时,212()363011f x x x a x x '=-+=∴==+,且1202x x <<<,即所以12()12(1()12(1f x a f x a =+-=--,且31212()()20,()()14(1)0,f x f x f x f x a ∴+=>=--<12()()4(1f x f x a -=-,所以12()|()|f x f x >,(步骤7)所以max 1|()|max{(0),(2),()}f x f f f x =;(步骤8) 由2(0)(2)3331003f f a a a -=--+>∴<<,所以 (ⅰ)当203a <<时,(0)(2)f f >,所以(,1][,)x a ∈-∞+∞ 时,()y f x =递增,(1,)x a ∈时,()y f x =递减,所以max 1|()|max{(0),()}f x f f x =,(步骤9)因为21()(0)12(1332(1(23f x f a a a a -=+-+=--=,又因为203a <<,所以230,340a a ->->,所以1()(0)0f x f ->,所以m a x 1|()|()12(1f x f x a ==+-10)(ⅱ)当213a <…时,(2)0,(0)0f f ><,所以max 1|()|max{(2),()}f x f f x =,因为21()(2)12(1312(1(32)f x f a a a a -=+-+=--=,此时320a ->,当213a <<时,34a -是大于零还是小于零不确定,所以 ① 当2334a <<时,340a->,所以1()|(2)|f x f >,所以此时max 1|()|()12(1f x f x a ==+-(步骤11) ② 当314a <…时,340a-<,所以1()|(2)|f x f …,所以此时m a x|()|(2)31f x f a ==-(步骤12)综上所述:max 33,(0)3|()|12(1)4331,()4a a f x a a a a ⎧-⎪⎪=+-<<⎨⎪⎪-⎩…….(步骤13)。
2013年浙江省高考理科数学试卷及答案(word解析版)
浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分. 1.已知i 是虚数单位,则(−1+i)(2−i)=A .−3+iB .−1+3iC .−3+3iD .−1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S ={x |x >−2},T ={x |x 2+3x −4≤0},则( R S )∪T =A .(−2,1]B .(−∞,−4]C .(−∞,1]D .[1,+∞) 【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为( R S )={x |x ≤−2},T ={x |−4≤x ≤1},所以( R S )∪T =(−∞,1]. 3.已知x ,y 为正实数,则A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ∙ 2lg yC .2lg x ∙ lg y =2lg x +2lg yD .2lg(xy )=2lg x ∙ 2lg y【命题意图】本题考查指数和对数的运算性质,属于容易题 【答案解析】D 由指数和对数的运算法则,易知选项D 正确4.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A .a =4B .a =5C .a =6D .a =7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A 6.已知α∈R ,sin α+2cos α=102,则tan2α= A .43B .34C .−34D .−43【命题意图】本题考查三角公式的应用,解法多样,属于中档题(第5题图)【答案解析】C 由(sin α+2cos α)2=⎝⎛⎭⎫1022可得sin 2α+4cos 2α+4sin αcos α sin 22=104,进一步整理可得3tan 2α−8tan α−3=0,解得tan α=3或tan α=−13,于是tan2α=2tan α1−tan 2α=−34.7.设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于AB 上任一点P ,恒有→PB ∙→PC ≥→P 0B∙→P 0C ,则A .∠ABC =90︒B .∠BAC =90︒ C .AB =ACD .AC =BC 【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设|→AB |=4,则|→P 0B |=1,过点C 作AB 的垂线,垂足为H ,在AB 上任取一点P ,设HP 0=a ,则由数量积的几何意义可得,→PB ∙→PC =|→PH ||→PB |=(|→PB |−(a +1))|→PB |,→P 0B ∙→P 0C =−|→P 0H ||→P 0B |=−a ,于是→PB ∙→PC ≥→P 0B ∙→P 0C恒成立,相当于(|→PB |−(a +1))|→PB |≥−a 恒成立,整理得|→PB|2−(a +1)|→PB |+a ≥0恒成立,只需∆=(a +1)2−4a =(a −1)2≤0即可,于是a =1,因此我们得到HB =2,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC =BC 8.已知e 为自然对数的底数,设函数f (x )=(e x −1)(x −1)k (k =1,2),则 A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k =1时,方程f (x )=0有两个解,x 1=0,x 2=1,由标根法可得f (x )的大致图象,于是选项A ,B 错误;当k =2时,方程f (x )=0有三个解,x 1=0,x 2=x 3=1,其中1是二重根,由标根法可得f (x )的大致图象,易知选项C 正确。
2013年高考理科数学浙江卷-答案
{|x xS=RS T=(){|x xR,再利用并集的定义求出结果.【提示】先根据一元二次不等式求出集合T,然后求得SR【考点】集合的基本运算.s tx y,满足上述两个a,lg(xy lg2【提示】直接利用指数与对数的运算性质,判断选项即可.的中垂线为y 轴建立直角坐标系,设AB =,,()C a b ,P ,∴01,0()P B =,2(,0B x P =,(,a C x P =,0(a P C =-00PB PC P B P C ≥,∴(20=,即C AB 的垂直平分线上,∴BC =,故△等腰三角形,故选D .然后由题意可写出0P B ,PB ,PC ,0PC ,然后由00PB PC P B P C ≥结合向量的数量积的()f x 在1x =取得极小值.对照选项.故选C .角,∴平面α与平面β垂直,故选A .155536255(1)(1)C r r r r r r r x x x ----=-.令1524.此时,120+2k =⨯,故k 不存在.综上,2k =.故答案为:2.(步骤3)32c2c 【答案】2【解析】∵1e ,2e 为单位向量,1e 和2e 的夹角等于∴12112e e =⨯⨯∵非零向量12+b xe ye =,(步骤22212||+2+b b x xye e y x ===222||||||+3+3+3+x x b x xy x x x xy y y y ==⎛⎫ ⎪⎝⎭故当3x =-||||x b 取得最大值为,故答案为2.(步骤【提示】由题意求得1232e e =,22212||+2+b b x xye e y x ===222|||||+3+3++x b x xy x x x x y y ==⎛⎫⎛ ⎪⎝⎭再利用二次函数的性质求得||||x b 的最大值.123(10+11++||++++2n n n a a a a a -==123111213++||++++(+++)n n a a a a a a a a =-1112311(21++)(++++)22n a a a a a --=⨯所以,综上所述:1232(21),(111)2||+||+||++||21n n n n a a a a n -⎧≤≤⎪⎪=⎨-⎪10,且1a ,2++||n a 的和.所以PQF BDC 面∥面,且PQ PQF ⊂面, 所以PQ BDC ∥面;(步骤2)方法二:如图所示,1PQOH ,且PQ BDC ∥面(Ⅱ)如图所示,,1][,)a+∞时,---1(2a。
2013学年高考理科数学年浙江卷答案
2
2
D.
【提示】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除 B,然后利用区特值排除 A 和 C,
则答案可求.
【考点】函数图象的判断.
9.【答案】A 【解析】设 P(3,1), 圆心 C(1,0) ,切点为 A,B,则 P,A,C,B 四点共圆,且 PC 为圆的直径,四边形 PABC
的外接圆的方程为 (x
z
xyz
【考点】基本不等式最值.
第Ⅱ卷
二、填空题
13.【答案】3
【解析】第一次运行: F1
1 2 3,
F0
31
2,n
11
2,
1 F1
1 3
,
不满足要求,继续执行.第二次运行:
F1
2 3 5,
F0
52
3, n
2 1 3,
1 F1
1 5
,满足条件
结束运行,输出 n 3 .
ln (ab ) blna ;
当 a 1 时, ab 1,故 ln (ab ) 0 ,又 a 1 时 blna 0 ,所以此时亦有 ln (ab ) blna .由上判断知①正
确;
对于②,此命题不成立,可令 a 2 , b 1 ,则 ab 2 ,由定义 ln (ab ) 0, lna+lnb ln2 ,所以
2013 年普通高等学校招生全国统一考试(山东卷)
理科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】D
【解析】由
(z
3)(2
i)
5 ,得
z
5(2 i) (2 i)(2
浙江省诸暨市2013届高三教学质量检测数学理试题word版含答案
浙江省诸暨市2013届高三教学质量检测数学理试题第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.已知函数xy 1=的定义域为A ,函数)1lg(+=x y 的定义域为B ,则=⋂B A C R )(A . ]0,1(-B . ),0[+∞ C. ),1(+∞-D . Φ2.若“21<<-x ”是“m x <”的充分不必要条件,则A .1-≤mB . 1-≥m C. 2≤m D . 2≥m 3.已知i 是虚数单位,b a ,是实数,若bi ii a +=-+11,则=aA .-3B . -1 C. 1 D . 3 4.等差数列{}n a 的公差2-=d ,前n 项和n S ,且25S S =,则=1a A .10 B . 8 C. 6 D . 45.已知N M ,是圆422=+y x 上两点,若N M ,关于直线02=-y x 对称,32=MN,则直线MN 的方程是D . 012=±+y x6.已知0,0>>b a ,且⎪⎩⎪⎨⎧≥+-≥≤-02200y x x y x ,目标函数b y a x +的最大值为2,则b a +A . 有最大值4B . 有最大值 C. 有最小值4 D . 有最小值22 7.函数)2,0)(sin()(πϕωϕω<>+=x x f 的部分图象如图所示,将)(x f y =的图象向左平移3π个单位后得到函数)(x g y =的图象,则)0(g 等于C.-1 8.设定义R 在上的函数)(x f 满足=-)2(x f )2(x f +,且当2≤x 时,22)(2-+=x x x f 若关于x 的方程+)(2xf 0)(=+b x af 恰有5个实数根,则实数a 的取值范围是A .)24,(}6{--∞⋃-B . )12,(}3{--∞⋃- C. ),12(}3{+∞⋃ D . ),24(}6{+∞⋃ 9.如图,正方体1AC 中,E 是1BC 中点,F 是直线11C A 上的点,下列四个判断:①存在点F ,使得1//BD EF ;②存在点F ,使得//EF 平面1BDD ;③存在点F ,使得1BD EF ⊥;④存在点F ,使得⊥EF 平面1BDD .其中正确的有 A .1个 B . 2个 C. 3个 D . 4个10.已知双曲线12222=-by ax 的左焦点F ,右顶点A ,上、下虚轴端点C B ,,若FB 交CA 于D ,且DA DF 25=.则双曲线的离心率为332第Ⅱ卷二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置.11.在如图所示的程序框图中,输出的结果是=i _____.12.已知等比数列{}n a 的公比是正数,前n 项和为n S ,若231,21,2a a a 成等差数列,则=46S S _____.13.某三棱锥的三视图如图,则该三棱锥的六条棱中,最长棱的长度为__________.14.由数字0,1,2,3组成的没有重复数字的三位数,其中3的倍数有_____个.15.设66221056)2()2()2(2+++++++=+x a x a x a a x x ,则=3a _____.16.已知函数b ax x x f +-=2)(2的值域为),1[+∞-,且在),0[+∞上单调递增,则函数b x f x g +'=)()(的零点的取值范围是_____.17.设O 是∆ABC 的外接圆圆心,AC y AB x AO +=,24,64=+==y x ,则=⋅AC AB _____.三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18. (本小题满分14分)∆ABC 中,角C B A ,,的对边分别为c b a ,,,.2cos 2b c C a =+ (Ⅰ)求角A 的大小; (Ⅱ)若∆ABC 的面积等于23,3=a ,BC 边上的中线为AM ,求AM19. (本小题满分14分)甲、乙两名射击选手射击成绩(概率)如下表:现甲乙比赛二轮(即每轮甲、乙依次射击一次,共二轮).(Ⅰ)求甲乙二轮共4次射击中至少有1次得9环或10环的概率1P 及恰有一次得9环或10环的概率2P ;一轮比赛中甲获胜(甲的环数大于乙的环数)的概率3P ; (Ⅱ)记二轮比赛中甲获胜的轮数为ξ,求ξ的分布列与数学期望.20. (本小题满分14分)如图,三个边长为2的正三角形拼接成一个等腰梯形,E 是CD 中点,将∆DAE 沿AE 折起得到四面体ABCE D -,记D 在平面ABCE 上的射影为H ,BC 中点F(Ⅰ)求证://EF 平面DHB (Ⅱ)当二面角B AE D --大小为︒120,G 为线段CD 上的点,且CG CD 4=时,求FG 与平面DHB 所成角的余弦值.21. (本小题满分15分)椭圆)0(12222>>=+b a by ax 经过点)1,0(P ,离心率22=e ,直线m kx y l +=:交椭圆于不同两点.,B A (Ⅰ)求椭圆方程;(Ⅱ)若PB PA =,求∆ABP 面积的最大值.22. (本小题满分15分)已知x a x a xx f ln )1(21)(2---=,)0(,)()(>=a xx f x g(Ⅰ)若函数)(x f 在区间]4,1[内的最小值为2ln 2-,求a 的值; (Ⅱ)设)(x g 在0x x =处有极小值)(0x g m = ①求证:若0<m ,则1>a ; ②若2=a ,21+<<k m k ,其中k 为整数,求k 的值.2013年诸暨市高中毕业班教学质量检测试题理科数学答案一、选择题1~5:ADDCA ;6~10:CBBAC 二、填空题 11.4; 12.6321()155=;13. 14.10; 15.80-; 16.1,2⎛⎤-∞ ⎥⎝⎦ 17.4;由()AC yAB x AO 2222+⎪⎪⎭⎫⎝⎛=,由外心的性质可知AB 的中垂线经过O,61cos =∴A . 三、解答题18.(1)由正弦定理可以将.2cos 2b c C a =+化为B C C A sin 2sin cos sin 2=+(2分)()C A B +-=π ,()C A B +=∴sin sin ,(1分)而()C A C A C A sin cos cos sin sin +=+,(1分)则C A C A C C A sin cos 2cos sin 2sin cos sin 2+=+,即C A C sin cos 2sin =,(2分)0sin ≠C ,21cos =∴A ,060=A (1分)(2)由于△ABC的面积2,1sin 22b c A ∴=, (1分)23sin =A ,得到2bc =(1分)Ks5u由于a =A bc cbacos 2222-+= ,∴223b c b c +-=,22+7b c bc +=(2分)BC 边长的中线AM 满足:()2A M A B A C =+,(2分)()22242co s =7A Mb c b c A ∴=++;2A M =.(1分)或求出b ,c ,再求A M19.解答:说明:不书写文字,但算式能反映的同样给分(1)甲乙二轮共4次射击中至少有1次得9环或10环的对立事件是每次射击都是8环(2分)1=10.10.10.20.20.9996P -∙∙∙=(1分) 恰有一次得9环或10环即:甲恰一次超8环,乙都得8环或仅乙有一次超8环(2分)2=20.90.10.20.2+0.10.10.80.2=0.0104P ∙∙∙∙∙∙()(2分)甲获胜即:甲得10环乙得8环9环,或甲得9环乙得8环(2分) 3=0.80.6+0.10.2=0.5P ∙∙(1分) (2)由题意,ξ的取值为0,1,2(1分)则20.51E ξ=⨯=20.解答:(1)证明:作H O A E ⊥于点O ,则由AE AD =知O 为AE 中点,又A B E B =,B O A E ⊥,,,H O B 共线(3分)所以BO EF //,(2分)⊄EF 平面DHB ,⊆BO 平面DHB ,∴ EF ∥平面DHB ;(2分) (2)法1:由已知可证B C ⊥平面DHB ,所以平面⊥DBC 平面DHB , 所以FG 在平面DHB 上的射影在DB 上,(2分)过F 作DB FN //交DC 于点N ,则NFG ∠为FG 与平面DBH 所成角,(1分)由已知得G 是直角三角形NFC 斜边上的中线,N F G B D C ∠=∠,(1分)由二面角D-AE-B 大小为120°,即0120=∠DOB ,3==OB DO ,则3=DB,(1分)在DBC Rt ∆中2=BC ,13=∴DC ,co s F C G ∴∠=,即:FG 与平面DBH3(2分)法2:如图以为O 原点建立空间直角坐标系,则()()0,3,2,23,23,0,0,3,1-⎪⎪⎭⎫⎝⎛--C D F (2分)由4C D C G =得33,,)288G-((1分) 13,288FG ⎛⎫∴=-- ⎪ ⎪⎝⎭,而平面DBH 的法向量()1,00v = ,,(1分)则FG 与平面DBH所成角的正弦值128F G vF G v⋅===⨯,(2分)3=1分)21.解答:(1),1=b (2分)2211212222222=⇒=-⇒=⇒=aaaac ac ,(2分)椭圆方程1222=+y x(2)①当直线l 的斜率等于0时,设m y l =:,则交点A 、B 关于y 轴对称,此时,PAB ∆为等腰三角形,(1分)2221212m x y x my -±=⇒⎪⎩⎪⎨⎧=+=,,142m AB -=(1分)P 到边AB 的距离为m h -=1,2112mmS ABP --=∴∆,()1,1-∈m (1分)构造函数()()()2211mm m f --=,则()()()12122/+--=m m m f ,令()0/=m f 得到21-=m ,当⎪⎭⎫⎝⎛--∈21,1m 时()0/>m f ,当⎪⎭⎫⎝⎛-∈1,21m 时()0/<m f,()162721max =⎪⎭⎫⎝⎛-=∴f m f ,()433max=∴∆ABPS (3分)②当直线的斜率不为零时,可以设直线为m kx y l +=:,()()0124211222222=-+++⇒⎪⎩⎪⎨⎧=++=mkmx xk y x mkx y ,(1分)()22212212112,214kmx x kkm x x +-=+-=+,(1分)由于BP AP =,所以AB 的中垂线经过点P ,AB 的中点M ⎪⎭⎫⎝⎛++-2221,212km kkm ,()1,0PAB MP ⊥,∴121212122-=⨯+--+k kkm k m,化简得到:0122=++m k①(1分)又()()01218162222>-+-=∆mkm k ,即1222->mk②(1分)由①,②以及0≠k 得:⎩⎨⎧<+<+0012m m m ,⎩⎨⎧<<--<011m m 无解,所以,此时以P 为顶点的等腰三角形PAB ∆不存在。
2013年高考数学理(浙江卷)WORD版有答案
2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh = n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高()()()1,0,1,2,,n k k k n n P k C p p k n -=-= 球的表面积公式台体的体积公式 24πS R =()1213V h S S = 球的体积公式 其中12,S S 分别表示台体的上底、下底面积, 34π3V R = h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1, 已知i 是虚数单位,则()()12i i -+-=2, A ,3i -+ B ,13i -+ C ,33i -+ D ,1i -+3, 设集合{}{}22,340S x x T x x x =>-=+-≤,则()R C S T =U A ,(]2,1- B ,(],4-∞- C ,(],1-∞ D ,[)1,+∞3,已知,x y 为正实数,则A ,lg lg lg lg 222x y x y +=+ B ,()lg lg lg 222x y x y +=g C ,lg lg lg lg 222x yx y =+g D ,()lg lg lg 222xy x y =g 4,已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的A ,充分不必要条件B ,必要不充分条件C ,充分必要条件D ,既不充分也不必要条件5,某程序框图如图所示,若该程序运行后输出的值是95,则 A ,4a = B ,5a = C ,6a = D ,7a =6,已知,sin 2cos R ααα∈+=,则tan 2α= A ,43 B ,34 C ,34- D ,43- 7,设ABC V ,0P 是边AB 上一定点,满足014P B AB =,且对于边 AB 上任一点,恒有00PB PC P B PC ≥uu r uu u r uuu r uuu r g g ,则 A ,90ABC ∠=o B ,90BAC ∠=o C ,AB AC = D ,AC BC =8,已知e 为自然对数的底数,设函数()()()()111,2k x f x e x k =--=,则A ,当1k =时,()f x 在1x =处取到极小值B ,当1k =时,()f x 在1x =处取到极大值C ,当2k =时,()f x 在1x =处取到极小值D ,当2k =时,()f x 在1x =处取到极大值9,如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是A B C ,32 D ,210,在空间中,过点A 作平面π的垂线,垂足为B ,记().B f A π=设,αβ是两个不同的平面,对空间任意一点P ,()()12,Q f f P Q f f P βααβ⎡⎤==⎡⎤⎣⎦⎣⎦,恒有12PQ PQ =,则A ,平面α与平面β垂直B ,平面α与平面β所成的(锐)二面角为45oC ,平面α与平面β平行D ,平面α与平面β所成的(锐)二面角为60o2013年普通高等学校招生全国统一考试(浙江卷)数 学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.11,设二项式5的展开式中常数项为A ,则A = 12,某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm13,设z k x y =+,其中,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则实数k =14,将,,,,,A B C D E F六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种(用数字作答)15,设F 为抛物线2:4C y x =的焦点,过点()1,0P -的直线l 交抛物线C 于,A B 两点,点Q 为线段AB 的中点,若2FQ =,则直线l 的斜率等于 16,在ABC V 中,90C ∠=o ,M 是BC 的中点。
2013浙江高考数学理科试题及答案完美版
2013浙江高考数学理科试题及答案完美版D13.设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________。
14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 15.设F 为抛物线xyC 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于________。
16.ABC ∆中,090=∠C ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________。
17.设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈,若12,e e 的夹角为6π,则||||x b 的最大值等于________。
三、解答题18. 在公差为d 的等差数列}{na 中,已知101=a,且3215,22,a aa +成等比数列。
(1)求na d ,; (2)若0<d ,求.||||||||321n a a aa ++++43 233正视图侧视图俯视图(第12题图)19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分。
(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列; (2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a20.如图,在四面体BCDA -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.21.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.22.已知R a ∈,函数.3333)(23+-+-=a ax x xx fABCDPQM(第20题图)xOyBl 1l 2PDA(第21题图)(1)求曲线)(x fy=在点))1(,1(f处的切线方程;(2)当x时,求|)(|x f的最大值。
浙江省诸暨市2013届高三教学质量检测理科综合试题(扫描版).pdf
(1)运动员利用滑雪杖对雪面作用加速度
(2分)
撤除滑雪杖加速度
(2分)
滑雪运动员4s
(2分)
滑雪运动员4s末的速度为稳定运动后
(3分)
得:
(2分)
(3)滑雪运动员每个用力时间t内运动员时间t内每个用力时间t内每个用力时间t内消耗第2题参考答案:
(1)探测车
(2分)
电板充满电后的总电能
(1)否 (1分)
2Mg+CO2
2MgO+C (2分,不配平扣1分)
(2)①[H∶]-Mg2+[H∶]- (2分)
②26 (2分)
(3)①2MgCl2+Ca(OH)2=2Mg(OH)Cl+CaCl2 (2分,不配平扣1分)
[或MgCl2+Ca(OH)2=Mg(OH)Cl+Ca(OH)Cl]
圆运动方程为: (1分)
边界MN方程为:
(1分)
联立求解可:
(2分)
当时:
(1分)
当时:
(1分)
有电子射出来的边界长度:(1分)
(注:也可以用几何方法求得以上结果)
(3)磁场边界MN平移经过P点过P点作圆轨迹的切线,设切点的坐标为(x0,y0)。若此子在点进入无磁场区域
X染色体
(2)体 有丝
(3)①常脱氧核苷酸排列顺序不同
②81/5
③ P ♀TTXaXa
♂ttXAY
白眼雌果蝇
红眼雄果蝇
F1
TtXAXa
TtXaY
红眼雌果蝇
白眼雄果蝇
诸暨模考高三理综化学参考答案
7.B 8.D 9.B 10.C 11.C 12.D 13.A
26.(共14分)
浙江省考试院2013届高三测试卷数学(理)试题
大家网,全球第一学习门户!无限精彩在大家测试卷数学(理科)姓名_____________ 准考证号__________________本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分 (共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={y | y =2x ,x ∈R },则 R A =A .∅B . (-∞,0]C .(0,+∞)D .R 2.已知a ,b 是实数,则“| a +b |=| a |+| b |”是“ab >0”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件大家网,全球第一学习门户!无限精彩在大家3.若函数f(x ) (x ∈R )是奇函数,函数g(x ) (x ∈R )是偶函数,则A .函数f [g (x )]是奇函数B .函数g [f (x )]是奇函数C .函数f (x )⋅g (x )是奇函数D .函数f (x )+g (x )是奇函数4.设函数f (x )=x 3-4x +a ,0<a <2.若f (x )的三个零点为x 1,x 2,x 3,且x 1<x 2<x 3,则A .x 1>-1B .x 2<0C .x 2>0D .x 3>25.如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥DC .若|AB |=a ,|AD |=b ,则AC BD ⋅=A .b 2-a 2B .a 2-b 2C .a 2+b 2 D .ab 6.设数列{a n }.A .若2n a =4n ,n ∈N *,则{a n }为等比数列B .若a n ⋅a n +2=21n a +,n ∈N *,则{a n }为等比数列C .若a m ⋅a n =2m +n ,m ,n ∈N *,则{a n }为等比数列D .若a n ⋅a n +3=a n +1⋅a n +2,n ∈N *,则{a n }为等比数列7.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图是 ABCD8.若整数x ,y 满足不等式组 0,2100,0,x y x y y ⎧->⎪--<⎨+- 则2x +y 的最大值是A .11B .23C .26D .30(第6题图)侧视图正视图俯视图侧视图俯视图侧视图正视图 俯视图侧视图俯视图C D大家网,全球第一学习门户!无限精彩在大家大家网,全球第一学习门户!无限精彩在大家非选择题部分 (共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2013年浙江省高考数学(理科)试题(教师版含解析)
2013年普通高等学校招生全国统一考试(浙江卷)数 学(理)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则(1i)(2i)-+-=( ).A .3i -+ B. 13i -+ C. 33i -+ D. 1i -+ 分析 直接利用复数的乘法法则运算求解.解析 ()()21i 2i 23i i 13i -+-=-+-=-+.故选B .2.设集合{}{}2|2,|340S x x T x x x =>-=+-,则()C S T =R ( ).A. ]1,2(-B. ]4,(--∞C. ]1,(-∞D. ),1[+∞ 分析 先求出集合S 的补集,同时把集合T 化简,再求它们的并集. 解析 因为{}2S x x =-,所以{}2S x x =-R ≤,而{}41T x x =-≤≤,所以(){}{}{}2411S T x x x x x x =--=R≤≤≤≤.故选C.3.已知y x ,为正实数,则( ).A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y +=⋅C.lg lg lg lg 222x yx y ⋅=+ D.lg()lg lg 222xy x y =⋅分析 利用指数幂及对数的运算性质逐项验证. 解析 A 项,lg lg lg lg 222x yx y +=⋅,故错误;B 项,()()lg lg lg lg lg lg 22222x y x y x y x y ⋅++⋅==≠,故错误;C 项,()lg lg lg lg 22yx yx ⋅=,故错误;D 项,()lg lg lg lg lg 2222xy x y x y +==⋅,正确. 故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件分析 先判断由()f x 是奇函数能否推出ϕπ=2,再判断由ϕπ=2能否推出()f x 是奇函数. 解析 若()f x 是奇函数,则()00f =,所以cos 0ϕ=,所以()k k ϕπ=+π∈2Z ,故ϕπ=2不成立;开始结束若ϕπ=2,则()()cos sin 2f x A x A x ωωπ⎛⎫=+=- ⎪⎝⎭,()f x 是奇函数.所以()f x 是奇函数ϕπ=2必要不充分条件.故B.5.某程序框图如图所示,若该程序运行后输出的值是59,则( ). A.4=a B.5=a C. 6=a D.7=a分析 可依次求出1,2,3,k =时S 的值进行验证,也可以先求出S 的表达式,通过解方程求出k 的值.解析 (方法一)由程序框图及最后输出的值是95可知:当1k =时, 1,S ka =不成立,故131,2122S k a =+==⨯不成立,故315,32233S k a =+==⨯不成立,故517,43344S k a =+==⨯不成立,故719,4455S =+=⨯此时5k a =成立,所以4a =.(方法二)由程序框图可知:()111111111111111212231223111S k k k k k k =++++=+-+-++-=+-=-⨯⨯++++, 由95S =,得19215k -=+,解得4k =,故由程序框图可知4k a =不成立,5k a =成立,所以4a =.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ). A.34 B. 43 C. 43- D. 34- 分析 先利用条件求出tan α,再利用倍角公式求tan 2α.解析 把条件中的式子两边平方,得225sin 4sin cos 4cos 2αααα++=,即233cos 4sin cos 2ααα+=,所以2223cos 4sin cos 3cos sin 2ααααα+=+,所以234tan 31tan 2αα+=+,即23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,所以22tan 3tan 2tan 4ααα==--.故选C. 7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅.则( ). A.90ABC ∠= B. 90BAC ∠= C. AC AB = D.BC AC =分析 根据向量投影的概念,对选项逐一验证排除不符合的选项.不妨设4AB =,则01P B =,03P A =.设点C 在直线AB 上的投影为点C '.解析 A 项,若90ABC ∠=︒,如图(1)所示,则2cos PB PC PB PC BPC PB ⋅=⋅∠=,2000P B P C P B ⋅=. 当点P 落在点0P 的右侧时,220PBP B ,即00PB PCP B PC ⋅⋅,不符合; B 项,若90BAC ∠=︒,如图(2)所示,则cos PB PC PB PC BPC PB PA ⋅=⋅∠=-,00003P B P A P B P A ⋅=-=-.当P 为AB 的中点时,4PB PC ⋅=-,00PB PCP B P C ⋅,不符合;C 项,若AB AC =,假设120BAC ∠=︒,如图(3)所示,则2AC '=,PB PC PB PC ⋅=⋅cos BPC PB PC ∠=-,0000000cos 5P B P C P B P C BP C P B P C ⋅=∠=-=-.当P 落在A 点时,8PB PC -=-,所以00PB PCP B PC ⋅⋅,不符合,故选D. 8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)xkf x x k =--=,则( ).A. 当1=k 时,)(x f 在1=x 处取得极小值B. 当1=k 时,)(x f 在1=x 处取得极大值C. 当2=k 时,)(x f 在1=x 处取得极小值D. 当2=k 时,)(x f 在1=x 处取得极大值分析 分别求出1,2k =时函数的导数,再判断()0f x '=是否成立及1x =两侧导数的符号, 进而确定极值.解析 当1k =时,()()()e 11x f x x =--,则()()()e 1e 1e 1x x xf x x x '=-+-=-,所以()1e 10f '=-≠,所以()1f 不是极值.图(1)P 0PB (C')CA图(2)BC A (C')P P 0A P 0(P )C'CB图(3)当2k =时,()()()2e 11x f x x =--,则()()()()2e 12e 11x xf x x x '=-+--= ()()()()2e 1211e 12x xx x x x ⎡⎤---=-+-⎣⎦,所以()10f '=,且当1x 时,()10f ';在1x =附近的左侧,()0f x ',所以()1f 是极小值.故选C.9. 如图所示,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( A.2 B. 3C. 23D.26分析 由椭圆可求出12AF AF +,由矩阵求出2212AF AF +,再求出21AF AF -即可求出双曲线方程中的a ,进而求得双曲线的离心率.解析 由椭圆可知124AF AF +=,12FF =因为四边形12AF BF 为矩形, 所以222121212AF AF F F +==,所以()()222121212216124AF AF AF AF AF AF =+-+=-=,所以()22221121221248AF AF AF AF AF AF -=+-=-=,所以21AF AF -=a =c =所以2C的离心率c e a ==.故选D. 10. 在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,[]12(),()Q f f P Q f f P βααβ⎡⎤==⎣⎦,恒有21PQ PQ =,则( ).A. 平面α与平面β垂直B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D. 平面α与平面β所成的(锐)二面角为60 分析 根据新定义及线面垂直知识进行推理.解析 设()1P f P α=,()2P f P β=,则1PP α⊥,11PQ β⊥,2PP β⊥,22P Q α⊥. 若//αβ,则1P 与2Q 重合、2P 与1Q 重合,所以12PQ PQ ≠,所以α与β相交.设al β=,由俯视图侧视图122//PP P Q ,所以122,,,P P P Q 四点共面.同理121,,,P P P Q 四点共面.所以1212,,,,P P P Q Q 五点共面.且α与β的交线l 垂直于此平面.又因为12PQ PQ =,所以12,Q Q 重合且在l 上,四边形112PPQ P 为矩形.那么112PQ P π∠=2为二面角--l αβ的平面角,所以αβ⊥.故选A . 二.填空题11.设二项式5的展开式中常数项为A ,则=A ________.分析 写出二项展开式的通项1r T +,令通项中x 的指数为零,求出r ,即可求出A . 解析()55526155C C 1rrrr rr r T x --+⎛==- ⎝,令55026r -=,得3r =,所以35C 10A =-=-. 12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2cm .分析 根据三视图还原出几何体,再根据几何体的具体形状及尺寸求体积.解析 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥, 如图所示.三棱术的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积()31134530cm 2V =⨯⨯⨯=,小三棱锥的底面与三棱柱的上底面相同, 高为3,故其体积()32113436cm 32V =⨯⨯⨯⨯=,所以所求几何体的体积为()330624cm -=.13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩,若z 的最大值为12,则实数=k ________.分析 画出可行域,分类讨论确定出最优解,代入最大值即可求出k 的值. 解析 作出可行域如图阴影部分所示:由图可知当102k-≤时, 直线y kx z =-+经过点()4,4M 时z 最大,所以4412k +=,解得2k =(舍去);当12k -≥时,直线y kx z =-+经过点()0,2时z 最大,此时z 的最大值为2,不合题意;当0k-时,直线y kx z=-+x 4MBCA经过点()4,4M 时z 最大,所以4412k +=,解得2k =,符合题意.综上可知,2k =.14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)分析 按C 的位置分类计算.解析 ①当C 在第一或第六位时,有55A 120=(种)排法;②当C 在第二或第五位时,有2343A A 72=(种)排法; ③当C 在第三或第四位时,有23232333A A A A 48+=(种)排法.所以共有()21207248480⨯++=(种)排法.15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 答案:1±(特别说明:根据已公布答案,斜率等于1±代入题干可得抛物线C 与直线l 相切,与题干中“直线l 交抛物线C 于,A B 两点”矛盾.——编者注)16.ABC △中,90C ∠=,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 分析 画出图形,确定已知量和待求量所在的三角形,利用正弦定理求解. 解析 因为1sin 3BAM ∠=,所以cos 3BAM ∠=.如图所示,在ABM △中,利用正弦定理,得sin sin BM AM BAM B =∠,所以sin sin BM BAM AM B ∠=113sin 3cos B BAC==∠. 在Rt ACM △中,有()sin sin CMCAM BAC BAM AM=∠=∠-∠.由题意知BM CM =,所以()1sin 3cos BAC BAM BAC=∠-∠∠.化简,得2cos cos 1BAC BAC BAC ∠∠-∠=.所以211tan 1BAC BAC ∠-=∠+,解得tan BAC ∠=. 再结合22sin cos 1BAC BAC ∠+∠=,BAC ∠为锐角可解得sin 3BAC ∠=.17. 设12,e e 为单位向量,非零向量12,,x y x y =+∈R b e e ,若12,e e 的夹角为π6, 则||||x b 的最大值等于________. 分析 为了便于计算可先求2x ⎛⎫ ⎪ ⎪⎝⎭b 的范围,再求xb 的最值.解析 根据题意,得()()()1222222212122x x x x y xy x y ⎛⎫=== ⎪ ⎪++⋅+⎝⎭b e e e e e e22222cos 6x x y xy =π++2114y x ==⎛+ ⎝⎭⎝⎭.因为211244y x ⎛++ ⎝⎭≥,所以204x ⎛⎫⎪ ⎪⎝⎭≤b ,所以02x ≤b.故x b的最大值为2.18.在公差为d 的等差数列{}n a 中,已知101=a ,且123,22,5a a a +成等比数列. (1)求,n d a ;(2)若0<d ,求.||||||||321n a a a a ++++分析 (1)用1,a d 把23,a a 表示出来,利用123,22,5a a a +成等比数列列方程即可解出d ,进而根据等差数列的通项公式写出n a .(2)根据(1)及0d确定数列的通项公式,确定n a 的符号,以去掉绝对值符号,这需要对n 的取值范围进行分类讨论.解析(1)由题意得,()2132522a a a ⋅=+,由110a =,{}n a 为公差为d 的等差数列得,2340d d --=,解得1d =-或4d =.所以()*11n a n n =-+∈N 或()*46n a n n =+∈N .设数列{}n a 的前n 项和为n S . 因为0d,由(1)得1d =-,11n a n =-+,所以当11n ≤时,123n a a a a ++++=212122n S n n =-+;当12n ≥时,212311121211022n n a a a a S S n n ++++=-+=-+.综上所述,123n a a a a ++++ 22121,11,22121110,12.22n n n n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩≤≥ 19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分, 取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a分析(1)对取出球的颜色进行分类以确定得分值,进而确定随机变量ξ的取值,计算相应的概率,再列出分布列;(2)先用,,a b c 表示出随机事件的概率,列出随机变量η的分布列,求出数学期望和方差,再把条件代入,列方程组求出,,a b c 的关系.解析(1)由题意得2,3,4,5,6ξ=.故()33124P ξ⨯===6⨯6, ()232133P ξ⨯⨯===6⨯6,()231225418P ξ⨯⨯+⨯===6⨯6,()221159P ξ⨯⨯===6⨯6,()111636P ξ⨯===6⨯6.所以ξ的分布列为(2QPMDBA所以2353a b c E a b c a b c a b c η=++=++++++,22255551233339a b c D a b c a b c a b c η⎛⎫⎛⎫⎛⎫=-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得3a c =,2b c =,故::3:2:1a b c =.20. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.分析 立体几何题目一般有两种思路:传统法和向量法.传统法是借助立体几何中的相关定义、定理,通过逻辑推理证明来完成.(1)要证明线面平行,根据判定定理可通过证明线线平行来实现;(2)求二面角要先找到或作出二面角的平面角,再通过解三角形求解.向量法则是通过建立空间直角坐标系,求出相关的坐标,利用向量的计算完成证明或求解.直线一般求其方向向量,平面一般求其法向量.(1)只要说明直线的方向向量与对应平面的法向量垂直即可;(2)二面角的大小即为两个平面的法向量的夹角或其补角. 解析 方法一:(1)如图(1)所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接,,OP OF FQ .因为3AQ QC =,所以//QF AD ,且14QF AD =. 因为,O P 分别为,BD BM 的中点,所以OP 是BDM △的中位线,所以//,OP DM 且12OP DM =.又点M 为AD 的中点,所以//OP AD ,且14OP AD =.从而//OP FQ ,且OP FQ =,所以四边形OPQF 为平行四边形,故//PQ OF .又PQ BCD ⊄平面,OF BCD ⊂平面,所以//PQ BCD 平面.(2)如图(1)所示,作CG BD ⊥于点G ,作GH BM ⊥于点H ,连接CH . 因为AD BCD ⊥平面,CG BCD ⊂平面,所以AD CG ⊥.又CG BD ⊥,AD BD D =,故CG ABD ⊥平面.又BM ABD ⊂平面,所以CG BM ⊥.又,GH BM CG GH G ⊥=,故BM CGH ⊥,所以,GH BM CH BM ⊥⊥.O图(1)QGMH PF DC BAx图(2)所以CHG ∠为二面角--C BM D 的平面角,即60CHG ∠=︒.设BDC θ∠=,在Rt BCD △中,cos ,sin sin CD BD CG CD θθθθθ====,2sin ,sin BC BD BG BC θθθθ====.在BGM △中,BG DM HG BM ⋅==.因为CG ABD ⊥平面,GH ABD ⊂平面,所以CG GH ⊥. 在Rt CHG △中,3cos tan sin CG CHG HG θθ∠===.所以tan θ=.从而60θ=︒.即60BDC ∠=︒.方法二:(1)如图(2)所示,取BD 的中点O ,以O 为原点,,OD OP 所在的射线为,y z 轴的正半轴,建立空间直角坐标系-O xyz .由题意知()()(),0,,A B D . 设点C 的坐标为()00,,0x y ,因为3AQ QC =,所以0031,42Q x y ⎛⎫+⎪ ⎪⎝⎭. 因为点M 为AD的中点,故()M .又点P 为BM 的中点,故10,0,2P ⎛⎫ ⎪⎝⎭,所以0033,,0444PQ x y ⎛⎫=+⎪ ⎪⎝⎭.又平面BCD 的一个法向量为()0,0,1=a ,故0PQ ⋅=a .又PQ BCD ⊄平面,所示//PQ BCD 平面.(2)设(),,x y z =m 为平面BMC 的一个法向量.由()()00,2,1,0,2CMx y BM =--=,知)000,0.x x y y z z ⎧-++=⎪⎨⎪+=⎩取1y =-,得00,1,y m x ⎛=- ⎝.又平面BDM 的一个法向量为()1,0,0=n ,于是1cos ,2⋅===m nm n m n,即2003y x ⎛+= ⎝⎭. ①又BC CD ⊥,所以0CB CD ⋅=,故()()0000,,0,00x y x y -⋅-=,即22002x y +=. ②联立①②,解得000,x y=⎧⎪⎨=⎪⎩002x y ⎧=⎪⎪⎨⎪=⎪⎩所以tan BDC ∠==又BDC ∠是锐角,所以60BDC ∠=︒.21. 如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.12,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D . (1)求椭圆1C 的方程;(2)求ABD ∆面积取最大值时直线1l 的方程.分析(1)根据椭圆的几何性质易求出,a b 的值,从而写出椭圆的方程;(2)要求ABD △的面积,需要求出,AB PD 的长,AB 是圆的弦,考虑用圆的知识来求,PD 应当考虑用椭圆的相当知识来求.求出,AB PD 的长后,表示出ABD △的面积,再根据式子的形式选择适当的方法求最值.解析(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为2214x y +=. (2)设()11,A x y ,()22,B x y ,()00,D x y .由题意知直线1l 的斜率存在,不妨设其为k ,则直线1l的方程为1y kx =-.又圆222:4C x y +=,故点O 到直线1l的距离d =,所以AB ==又21l l ⊥,故直线2l 的方程为0x kx k ++=. 由220,44x ky k x y ++=⎧⎨+=⎩消去y ,整理得()22480k x kx ++=,故0284kx k =-+,所以24PD k =+.设ABD △的面积为S,则2124S AB PD k=⋅=+,所以3213S ==当且仅当2k =±时取等号.所以所求直线1l的方程为12y x =±-. 22. 已知a ∈R ,函数.3333)(23+-+-=a ax x x x f (1)求曲线)(x f y =在点()1,(1)f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值.分析 (1)切点处的导数值即为切线的斜率,求导后计算出斜率,写出切线方程即可;(2)要确定()f x 的最大值,首先要确定()f x 的最值. ()f x 的最值又是由其单调性决定的,所以要先利用导数确定()f x 的单调性,在确定函数单调性时,要注意考虑极值点是否在所给区间内,不确定时需要分类讨论.解析 (1)由题意()2363f x x x a '=-+,故()133f a '=-.又()11f =,所以所求的切线方程为()3334y a x a =--+.(2)由于()()()23131,02f x x a x '=-+-≤≤,故①当0a ≤时,有()0f x '≤,此时()f x 在[]0,2上单调递减,故()()(){}max max 0,233f x f f a ==-.②当1a ≥时,有()0f x '≥,此时()f x 在[]0,2上单调递增, 故()()(){}maxmax 0,231f x f f a ==-.③当01a 时,设11x =21x =则1202x x ,()()()123f x x x x x '=--.由于()(1121f x a =+-()(2121f x a =--. 故()()1220f x f x +=,()()(12410f x f x a -=-,从而()()12f x f x .所以()()()(){}1maxmax 0,2,f x f f f x =.①当23a时,()()02f f .又()()(()2134021220a a f x f a a--=--=,故()()(1max121f x f x a ==+-.②当213a ≤时,()()22f f =,且()()20f f ≥.又()()(()213422132a a f x f a a --=--=,所以ⅰ.当2334a ≤时,()()12f x f .故()()(1max 121f x f x a ==+-ⅱ.当314a ≤时,()()12f x f ≤.故()()max 231f x f a ==-.综上所述,()(max33,00,31210,4331,.4a f x a aa a ⎧⎪-⎪⎪=+-⎨⎪⎪-⎪⎩≤≥。
2013年浙江省高考数学试卷(理科)答案与解析
2013年浙江省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.解答:解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选B.点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)考点:交、并、补集的混合运算;全集及其运算.专题:集合.分析:先根据一元二次不等式求出集合T,然后求得∁R S,再利用并集的定义求出结果.解答:解:∵集合S={x|x>﹣2},∴∁R S={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁R S)∪T={x|x≤1}故选C.点评:此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围.3.(5分)(2013•浙江)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:直接利用指数与对数的运算性质,判断选项即可.解答:解:因为a s+t=a s•a t,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.点评:本题考查指数与对数的运算性质,基本知识的考查.4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:φ=⇒f(x)=Acos(ωx+)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f (x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.解答:解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选B.点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=7考点:程序框图.专题:算法和程序框图.分析:根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.解答:解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选A.点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.(5分)(2013•浙江)已知,则tan2α=()A.B.C.D.考点:二倍角的正切;同角三角函数间的基本关系.专题:三角函数的求值.分析:由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.解答:解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选C点评:本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题.7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB 上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.A B=AC D.A C=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||﹣(a+1))||,•=﹣a,于是•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.故选:D.点评:本题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(e x﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f (x)在x=1处取得极小值还是极大值即可得结论.解答:解:当k=1时,函数f(x)=(e x﹣1)(x﹣1).求导函数可得f'(x)=e x(x﹣1)+(e x﹣1)=(xe x﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(e x﹣1)(x﹣1)2.求导函数可得f'(x)=e x(x﹣1)2+2(e x﹣1)(x﹣1)=(x﹣1)(xe x+e x﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选C.点评:本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系;二面角的平面角及求法.专题:空间位置关系与距离.分析:设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.解答:解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A点评:本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)设二项式的展开式中常数项为A,则A=﹣10.考点:二项式系数的性质.专题:排列组合.分析:先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.解答:解:二项式的展开式的通项公式为T r+1=••(﹣1)r•=(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.(4分)(2013•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24cm3.考点:由三视图求面积、体积.专题:立体几何.分析:先根据三视图判断几何体的形状,再利用体积公式计算即可.解答:解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)故答案为:24.点评:本题考查几何体的三视图及几何体的体积计算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.(4分)(2013•浙江)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.解答:解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.故答案为:2.点评:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.14.(4分)(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)考点:排列、组合及简单计数问题.专题:排列组合.分析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.解答:解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.点评:本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.15.(4分)(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.考点:直线与圆锥曲线的关系;直线的斜率.专题:圆锥曲线的定义、性质与方程.分析:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.解答:解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.点评:本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.16.(4分)(2013•浙江)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.考点:正弦定理.专题:解三角形.分析:作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.解答:解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,故答案为:点评: 本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x 、y ∈R .若、的夹角为30°,则的最大值等于 2 .考点:数量积表示两个向量的夹角. 专题: 平面向量及应用. 分析:由题意求得 =,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、 为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x +y,∴||===,∴====, 故当=﹣时,取得最大值为2,故答案为 2.点评: 本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.(14分)(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.解答:解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为ξ 2 3 4 5 6P(2)由题意知η的分布列为η 1 2 3PEη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(15分)(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.解答:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠BDC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°点评:本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.(15分)(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.解答:解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD 的面积S △==,令4+k 2=t >4,则k 2=t ﹣4, f (t )===,∴S △=,当且仅,即,当时取等号,故所求直线l 1的方程为.点评:本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力. 22.(14分)(2013•浙江)已知a ∈R ,函数f (x )=x 3﹣3x 2+3ax ﹣3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值. 专题:导数的综合应用. 分析: (1)求出原函数的导函数,求出函数取x=1时的导数值及f (1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a ≤0,0<a <1,a ≥1三种情况求|f (x )|的最大值.特别当0<a <1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a 的范围分析区间端点值与极值绝对值的大小. 解答: 解:(1)因为f (x )=x 3﹣3x 2+3ax ﹣3a+3,所以f ′(x )=3x 2﹣6x+3a , 故f ′(1)=3a ﹣3,又f (1)=1,所以所求的切线方程为y=(3a ﹣3)x ﹣3a+4;(2)由于f ′(x )=3(x ﹣1)2+3(a ﹣1),0≤x ≤2.故当a ≤0时,有f ′(x )≤0,此时f (x )在[0,2]上单调递减,故 |f (x )|max =max{|f (0)|,|f (2)|}=3﹣3a .当a ≥1时,有f ′(x )≥0,此时f (x )在[0,2]上单调递增,故 |f (x )|max =max{|f (0)|,|f (2)|}=3a ﹣1.当0<a <1时,由3(x ﹣1)2+3(a ﹣1)=0,得,.所以,当x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,2)时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的极大值,极小值.故f (x 1)+f (x 2)=2>0,.从而f (x 1)>|f (x 2)|. 所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. 当0<a <时,f (0)>|f (2)|. 又=故.当时,|f (2)|=f (2),且f (2)≥f (0).又=.所以当时,f (x 1)>|f (2)|.故.当时,f (x 1)≤|f (2)|.故f (x )max =|f (2)|=3a ﹣1.综上所述|f (x )|max =.点评: 本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答(2)的关键,此题属于难题.。
2013年高考理科数学浙江卷试题与答案word解析版-推荐下载
x
1 3x
5
的展开式中常数项为
12.(2013 浙江,理 12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm3.
13.(2013
数 k=__________.
浙江,理
13)设
z=kx+y,其中实数
x,y
14.(2013 浙江,理 14)将 A,B,C,D,E,F 六个字母排成一排,且 A,B 均在 C 的同侧,则不同的
B.当 k=1 时,f(x)在 x=1 处取到极大值
C.当 k=2 时,f(x)在 x=1 处取到极小值
D.当 k=2 时,f(x)在 x=1 处取到极大值
x2 9.(2013 浙江,理 9)如图,F1,F2 是椭圆 C1: +y2=1 与双曲线 C2 的
4
公共焦点,A,B 分别是 C1,C2 在第二、四象限的公共点.若四边形 AF1BF2 为矩形,则 C2 的离心率是( ).
BCD,BC⊥CD,AD=2,BD= 2 2 .M 是 AD 的中点,P 是 BM 的中点,点 Q 在线 段 AC 上,且 AQ=3QC. (1)证明:PQ∥平面 BCD; (2)若二面角 C-BM-D 的大小为 60°,求∠BDC 的大小.
2013 浙江理科数学 第 3 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
浙江省考试院2013届高三数学上学期测试试题 理(含解析)新人教A版
2013年浙江省考试院高考数学测试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江模拟)已知集合A={y|y=2x,x∈R},则 C R A=()A.∅B.(﹣∞,0] C.(0,+∞)D.R考点:补集及其运算.专题:计算题.分析:根据指数函数的值域化简集合A,则其补集可求.解答:解:因为集合A={y|y=2x,x∈R}={y|y>0},所以C R A={y|y≤0}.故选B.点评:本题考查了补集及其运算,考查了指数函数的值域的求法,是基础题.2.(5分)(2013•浙江模拟)已知a,b是实数,则“|a+b|=|a|+|b|”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为“|a+b|=|a|+|b|”,说明ab同号,但是有时a=b=0也可以,从而进行判断;解答:解:若ab>0,说明a与b全大于0或者全部小于0,∴可得“|a+b|=|a|+|b|”,若“|a+b|=|a|+|b|”,可以取a=b=0,此时也满足“|a+b|=|a|+|b|”,∴“ab>0”⇒“|a+b|=|a|+|b|”;∴“|a+b|=|a|+|b|”是“ab>0”必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题;3.(5分)(2013•浙江模拟)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,则()A.函数f[g(x)]是奇函数B.函数g[f(x)]是奇函数C.函数f(x)•g(x)是奇函数D.函数f(x)+g(x)是奇函数考点:奇偶性与单调性的综合.专题:计算题.分析:令h(x)=f(x).g(x),由已知可知f(﹣x)=﹣f(x),g(﹣x)=g(x),然后检验h(﹣x)与h(x)的关系即可判断解答:解:令h(x)=f(x).g(x)∵函数f(x)是奇函数,函数g(x)是偶函数∴f(﹣x)=﹣f(x),g(﹣x)=g(x)∴h(﹣x)=f(﹣x)g(﹣x)=﹣f(x).g(x)=﹣h(x)∴h(x)=f(x).g(x)是奇函数故选C点评:本题主要考查了函数的奇偶性的性质的简单应用,属于基础试题4.(5分)(2013•浙江模拟)设函数f(x)=x3﹣4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则()A.x1>﹣1 B.x2<0 C.x2>0 D.x3>2考点:利用导数研究函数的极值;函数的零点.专题:函数的性质及应用.分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.解答:解:∵函数f (x)=x3﹣4x+a,0<a<2,∴f′(x)=3x2﹣4.令f′(x)=0可得 x=.∵当x<﹣时,f′(x)>0;在(﹣,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(∞,﹣)上是增函数,在(﹣,)上是减函数,在(,+∞)上是增函数.故f(﹣)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,可得 x1<﹣,﹣<x2<,x3>.根据f(0)=a>0,且f()=a﹣<0,可得>x2>0.故选C.点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.5.(5分)(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()A.a2﹣b2B.b2﹣a2C.a2+b2D.a b考点:向量在几何中的应用.专题:计算题;平面向量及应用.分析:利用向量的线性运算及向量的数量积公式,即可得到结论.解答:解:∵AD⊥DC,∴=0,∴==﹣=﹣∵AB⊥BC,∴=0,∴﹣=﹣∵||=a,||=b,∴﹣=b2﹣a2∴=b2﹣a2,故选B.点评:本题考查向量在几何中的应用,考查向量的线性运算及向量的数量积公式,属于中档题.6.(5分)(2013•浙江模拟)设数列{a n}()A.若=4n,n∈N*,则{an}为等比数列B.若an•a n+2=,n∈N *,则{an}为等比数列C.若a m•a n=2m+n,m,n∈N*,则{a n}为等比数列D.若a n•a n+3=a n+1•a n+2,n∈N*,则{a n}为等比数列考点:等比数列的性质;等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用等比数列的概念,通过特例法对A,B,C,D四个选项逐一判断排除即可.解答:解:A中,=4n,n∈N*,∴a n=±2n,例如2,22,﹣23,﹣24,25,26,﹣27,﹣28,…不是等比数列,故A错误;B中,若a n=0,满足a n•a n+2=,n∈N*,但{a n}不是等比数列,故B错误;同理也排除D;对于C,∵a m•a n=2m+n,m,n∈N*,∴==2,即=2,∴{a n}为等比数列,故C正确.故选C.点评:本题考查等比数列的概念与性质,考查举例排除法的应用,考查分析问题与解决问题的能力,属于中档题.7.(5分)(2013•浙江模拟)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的四个三视图,可知四个三视图,分别表示从前、后、左、右四个方向观察同一个棱锥,但其中有一个是错误的,根据A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,可得A,C均正确,而根据AC可判断B正确,D错误.解答:解:三棱锥的三视图均为三角形,四个答案均满足;且四个三视图均表示一个高为3,底面为两直角边分别为1,2的棱锥A与C中俯视图正好旋转180°,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故A,C表示同一棱锥设A中观察的正方向为标准正方向,以C表示从后面观察该棱锥B与D中俯视图正好旋转180°,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故B,D中有一个不与其它三个一样表示同一个棱锥,根据B中正视图与A中侧视图相同,侧视图与C中正视图相同,可判断B是从左边观察该棱锥故选D点评:本题考查的知识点是空间几何体的三视图,本题要求具有超强的空间想像能力,难度较大.(2013•浙江模拟)若整数x,y满足不等式组则2x+y的最大值是()(5分)8.A.11 B.23 C.26 D.30考点:简单线性规划.分析:由已知中的约束条件,画出可行域,结合x,y均为整数,分析可行域内的整点,比较后可得目标函数的最优解.解答:解:满足不等式组的可行域如下图所示又∵x,y均为整数故当x=8,y=7时,2x+y的最大值为23故选B点评:本题考查的知识点是简单的线性规划,本题易忽略约束条件中的不等式均不带等号,可行域不含角点,而错选D9.(5分)(2013•南开区二模)如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()A.B.C.2D.考点:双曲线的简单性质.专题:计算题.分析:根据双曲线的定义可求得a=1,∠ABF2=90°,再利用勾股定理可求得2c=|F1F2|,从而可求得双曲线的离心率.解答:解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,∵|AB|2+=,∴∠ABF2=90°,又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.∴|BF1|﹣|BF2|=3+3﹣4=2a,∴a=1.在Rt△BF1F2中,=+=62+42=52,又=4c2,∴4c2=52,∴c=.∴双曲线的离心率e==.故选A.点评:本题考查双曲线的简单性质,求得a与c的值是关键,考查转化思想与运算能力,属于中档题.10.(5分)(2013•浙江模拟)如图,函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1(x)=f[f n(x)],n∈N*,则函数y=f4(x)的图象为()A.B.C.D.考点:函数的图象.分析:已知函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1(x)=f[f n(x)],可以根据图象与x轴的交点进行判断,求出f1(x)的解析式,可得与x轴有两个交点,f2(x)与x 轴有4个交点,以此来进行判断;解答:解:函数y=f(x)的图象为折线ABC,设f1(x)=f(x),f n+1(x)=f[f n(x)],由图象可知f(x)为偶函数,关于y轴对称,所以只需考虑x≥0的情况即可:由图f1(x)是分段函数,f1(x)=f(x)=,是分段函数,∵f2(x)=f(f(x)),当0≤x≤,f1(x)=4x﹣1,可得﹣1≤f(x)≤1,仍然需要进行分类讨论:①0≤f(x )≤,可得0<x≤,此时f2(x)=f(f1(x))=4(4x﹣1)=16x﹣4,②≤f(x)≤1,可得<x≤,此时f2(x)=f(f1(x))=﹣4(4x﹣1)=﹣16x+4,可得与x轴有2个交点;当≤x≤1,时,也分两种情况,此时也与x轴有两个交点;∴f2(x)在[0,1]上与x轴有4个交点;那么f3(x)在[0,1]上与x轴有6个交点;∴f4(x)在[0,1]上与x轴有8个交点,同理在[﹣1.0]上也有8个交点;故选D;点评:此题主要考查函数的图象问题,以及分段函数的性质及其图象,是一道好题;二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江模拟)已知i是虚数单位,a∈R.若复数的虚部为1,则a= 2 .考点:复数代数形式的乘除运算.专题:计算题.分析:把已知复数的分子分母同乘以分母的共轭复数,再进行化简即可求出复数的虚部.解答:解:∵==,可知复数的虚部为=1,解得a=2故答案为:2点评:本题考查复数的除法运算及基本概念,熟练掌握运算法则及理解基本概念是做好本题的关键.12.(4分)(2013•浙江模拟)设公差不为零的等差数列{a n}的前n项和为S n.若a22+a32=a42+a52,则S6= 0 .考点:等差数列的前n项和;等差数列的性质.专题:计算题;等差数列与等比数列.分析:设等差数列的公差为d,可得a1+a6=a4+a3=0,而S6=代入可得答案.解答:解:设等差数列的公差为d,(d≠0),由a22+a32=a42+a52可得,即2d(a5+a3)+2d(a4+a2)=0,即a5+a3+a4+a2=0,由等差数列的性质可得2a4+2a3=0,即a4+a3=0,又a1+a6=a4+a3=0,故S6==0故答案为:0点评:本题为等差数列的性质的应用,熟练利用性质是解决问题的关键,属基础题.13.(4分)(2013•浙江模拟)若(n为正偶数)的展开式中第5项的二项式系数最大,则第5项是x6.考点:二项式定理的应用.专题:计算题.分析:由二项式系数的性质可得n=8,利用其通项公式即可求得第5项.解答:解:∵的展开式中第5项的二项式系数最大,∴+1=5,∴n=8.∴T5=••=•x6=x6.故答案为:x6.点评:本题考查二项式定理的应用,着重考查项式系数的性质与其通项公式,属于基础题.14.(4分)(2013•浙江模拟)若某程序框图如图所示,则该程序运行后输出的值是 3 .考点:循环结构.专题:压轴题;图表型.分析:根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.解答:解:当输入的值为n=12时,n不满足判断框中的条件,n=6,n不满足判断框中的条件,n=3,n满足判断框中的条件,n=10,i=2,n不满足判断框中的条件,n=5,n满足判断框中的条件,n=16,i=3,n不满足判断框中的条件,n=8,n不满足判断框中的条件,n=4,n不满足判断框中的条件,n=2,n不满足判断框中的条件,n=1,n满足下面一个判断框中的条件,退出循环,即输出的结果为i=3,故答案为:3.点评:本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.15.(4分)(2013•浙江模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA=,b=5,则△ABC的面积为.考点:正弦定理.专题:计算题;解三角形.分析:由题意可求得sin2A,sin3A,再利用正弦定理==可求得c,从而可求得△ABC的面积.解答:解;∵在△ABC中,C=2A,∴B=π﹣A﹣C=π﹣3A,又cos A=,∴sinA=,sin2A=2sinAcosA=,sinB=sin(π﹣3A)=sin3A=3sinA﹣4sin3A,又b=5,∴由正弦定理=得:=,∴c=====6,∴S△ABC=bcsinA=×5×6×=.故答案为:点评:本题考查正弦定理,考查二倍角的正弦与三倍角的正弦公式,考查转化分析与运算能力,属于中档题.16.(4分)(2013•浙江模拟)在△ABC中,B(10,0),直线BC与圆Γ:x2+(y﹣5)2=25相切,切点为线段BC的中点.若△ABC的重心恰好为圆Γ的圆心,则点A的坐标为(0,15)或(﹣8,﹣1).考点:直线与圆的位置关系.专题:直线与圆.分析:设BC的中点为D,设点A和C的坐标,根据圆心Γ(0,5)到直线AB的距离等于半径5求出AB的斜率k的值.再由斜率公式以及ΓD⊥BC,求出C的坐标,再利用三角形的重心公式求得A的坐标.解答:解:设BC的中点为D,设点A(x1,y1)、C(x2,y2),则由题意可得ΓD⊥BC,且D(,).故有圆心Γ(0,5)到直线AB的距离ΓD=r=5.设BC的方程为y﹣0=k(x﹣10),即 kx﹣y﹣10k=0.则有=5,解得 k=0或 k=﹣.当k=0时,有,当k=﹣时,有.解得,或.再由三角形的重心公式可得,由此求得或,故点A的坐标为(0,15)或(﹣8,﹣1),故答案为(0,15)或(﹣8,﹣1).点评:本题主要考查直线和圆的位置关系的应用,点到直线的距离公式、斜率公式、三角形的重心公式,属于中档题.17.(4分)(2013•浙江模拟)在长方体ABCD﹣A1B1C1D1中,AB=1,AD=2.若存在各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则此长方体的体积为 4 .考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:根据正四面体是由正方体截掉四个角得到的,可得若各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则棱AB,A1B1,C1D1,CD所在的直线应为某正四棱柱的四条侧棱所在的直线,进而得到A1A=AD,代入长方体体积公式可得答案.解答:解:若各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则棱AB,A1B1,C1D1,CD所在的直线应为某正四棱柱的四条侧棱所在的直线∵AD=2,∴A1A=2故此长方体的体积V=2×2×1=4故答案为:4点评:本题考查的知识点是棱柱的几何特征,棱锥的几何特征,其中根据正四面体是由正方体截掉四个角得到的,分析出A1A=AD,是解答的关键.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江模拟)已知函数f (x)=3sin2ax+sinaxcosax+2cos2ax的周期为π,其中a>0.(Ⅰ)求a的值;(Ⅱ)求f(x)的值域.考点:三角函数的恒等变换及化简求值.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)利用两角和与差的三角函数间的关系式将f(x)化为f(x)=sin(2ax﹣)+,利用其周期公式即可求得a的值;(Ⅱ)由(Ⅰ)得f(x)=sin(2x﹣)+,利用正弦函数的性质即可求得其值域.解答:解:(Ⅰ)由题意得f(x)=(1﹣cos2ax)+sin2ax+(1+cos2ax)=sin2ax﹣cos2ax+=sin(2ax﹣)+.∵f (x)的周期为π,a>0,∴a=1.…(7分)(Ⅱ)由(Ⅰ)得f(x)=sin(2x﹣)+,∴f(x)的值域为[,].…(14分)点评:本题主要考查三角函数的图象与性质、三角变换等基础知识,同时考查运算求解能力,属于中档题.19.(14分)(2013•浙江模拟)已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.(Ⅰ)求概率P (X=);(Ⅱ)求数学期望E (X ).考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;概率与统计.分析:(Ⅰ)取出的三角形的面积是的三角形有6种情况,由此可得结论;(Ⅱ)确定X的取值,求出相应的概率,从而可求数学期望.解答:解:(Ⅰ)由题意得取出的三角形的面积是的概率P(X=)==.…(7分)(Ⅱ)随机变量X的分布列为XP所以E(X)=×+×+×=.…(14分)点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算求解能力和应用意识.20.(15分)(2013•浙江模拟)如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.(Ⅰ)求异面直线EF与BC所成角的大小;(Ⅱ)若二面角A﹣BF﹣D的平面角的余弦值为,求AB的长.考点:异面直线及其所成的角;二面角的平面角及求法.专题:空间角.分析:(Ⅰ)延长AD,FE交于Q,根据异面直线夹角的定义,根据BC∥AD,得∠AQF是异面直线EF与BC所成的角,解△AQF可得答案.(II)几何法:取AF的中点G,过G作GH⊥BF,垂足为H,连接DH,可证得∠DHG为二面角A﹣BF﹣D的平面角,解三角形DGH可得答案.(II)向量法:以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.求出二面角A﹣BF﹣D中两个半平面的法向量,进而构造AB长的方程,解方程可得答案.解答:解:(Ⅰ)延长AD,FE交于Q.∵ABCD是矩形,∴BC∥AD,∴∠AQF是异面直线EF与BC所成的角.在梯形ADEF中,由DE∥AF,AF⊥FE,AF=2,DE=1得∠AQF=30°.即异面直线EF与BC所成角为30°…(7分)(Ⅱ)方法一:设AB=x.取AF的中点G.由题意得DG⊥AF.∵平面ABCD⊥平面ADEF,AB⊥AD,∴AB⊥平面ADEF,∴AB⊥DG.∴DG⊥平面ABF.过G作GH⊥BF,垂足为H,连接DH,则DH⊥BF,∴∠DHG为二面角A﹣BF﹣D的平面角.在直角△AGD中,AD=2,AG=1,得DG=.在直角△BAF中,由=sin∠AFB=,得=,∴GH=.在直角△DGH中,DG=,GH=,得DH=.∵cos∠DHG==,得x=,∴AB=.…(15分)方法二:设AB=x.以F为原点,AF,FQ所在的直线分别为x轴,y轴建立空间直角坐标系Fxyz.则F(0,0,0),A(﹣2,0,0),E(0,,0),D(﹣1,,0),B(﹣2,0,x),∴=(1,﹣,0),=(2,0,﹣x).∵EF⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).设=(x1,y1,z1)为平面BFD的法向量,则∴可取=(,1,).∵cos<,>==,得x=,∴AB=.…(15分)点评:本题考查的知识点是异面直线及其所成的角,二面角的平面角及求法,其中(1)的关键是利用平移求出异面直线夹角的几何角,(2)中几何的关键是找出二面角的平面角,向量法的关键是构造空间坐标系,求出二面角A﹣BF﹣D中两个半平面的法向量21.(15分)(2013•浙江模拟)如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.考点:椭圆的标准方程;直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)椭圆离心率为,线l:x=﹣将线段F1F2分成两段,其长度之比为1:3,可确定几何量,从而可得椭圆C的方程;(Ⅱ)分类讨论,直线与椭圆方程联立,利用韦达定理及向量知识,即可求得结论.解答:解:(Ⅰ)设F2(c,0),则=,所以c=1.因为离心率e=,所以a=,所以b=1所以椭圆C的方程为.…(6分)(Ⅱ)当直线AB垂直于x轴时,直线AB方程为x=﹣,此时P(,0)、Q(,0),.当直线AB不垂直于x轴时,设直线AB的斜率为k,M(﹣,m)(m≠0),A(x1,y1),B (x2,y2).由得(x1+x2)+2(y1+y2)=0,则﹣1+4mk=0,∴k=.此时,直线PQ斜率为k1=﹣4m,PQ的直线方程为,即y=﹣4mx﹣m.联立消去y,整理得(32m2+1)x2+16m2x+2m2﹣2=0.所以,.于是=(x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+(4mx1+m)(4mx2+m)===.令t=1+32m2,1<t<29,则.又1<t<29,所以.综上,的取值范围为[﹣1,).…(15分)点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.22.(14分)(2013•浙江模拟)已知函数f (x)=x3+(1﹣a)x2﹣3ax+1,a>0.(Ⅰ)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f (x)≤1;(Ⅱ)设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)对f(x)进行求导,利用导数研究函数f(x)的单调性,求得极值点,从而求出f(x)的值域;(Ⅱ)由(Ⅰ)知f (x)在[0,+∞)上的最小值为f (a),需要分类讨论:0<a≤1或a>1,对于g(a)的表达式,对其进行求导研究其最值问题;解答:解:(Ⅰ)由于f′(x)=3x2+3(1﹣a)x﹣3a=3(x+1)(x﹣a),且a>0,故f (x)在[0,a]上单调递减,在[a,+∞)上单调递增.又f (0)=1,f (a)=﹣a3﹣a2+1=(1﹣a)(a+2)2﹣1.当f (a)≥﹣1时,取p=a.此时,当x∈[0,p]时有﹣1≤f (x)≤1成立.当f (a)<﹣1时,由于f (0)+1=2>0,f (a)+1<0,故存在p∈(0,a)使得f (p)+1=0.此时,当x∈[0,p]时有﹣1≤f (x)≤1成立.综上,对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f (x)≤1.…(7分)(Ⅱ)由(Ⅰ)知f (x)在[0,+∞)上的最小值为f (a).当0<a≤1时,f (a)≥﹣1,则g(a)是方程f (p)=1满足p>a的实根,即2p2+3(1﹣a)p﹣6a=0满足p>a的实根,所以g(a)=.又g(a)在(0,1]上单调递增,故g(a)max=g(1)=.当a>1时,f (a)<﹣1.由于f (0)=1,f (1)=(1﹣a)﹣1<﹣1,故[0,p]⊂[0,1].此时,g(a)≤1.综上所述,g(a)的最大值为.…(14分)点评:本题主要考查利用导数研究函数的性质等基础知识,同时考查推理论证能力,分类讨论等综合解题能力和创新意识,是一道中档题,也是高考的热点问题;。
2013年普通高等学校招生全国统一考试 理数(浙江卷)word版(含答案)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知i 是虚数单位,则(1)(2)i i -+-=( )A. i +-3B. i 31+-C. i 33+-D.i +-1【答案】B2.设集合}043|{},2|{2≤-+=->=x x x T x x S ,则()R C S T =U ( )A. ]1,2(-B. ]4,(--∞C. ]1,(-∞D.),1[+∞(2)已知y x ,为正实数,则( )A.y x y x lg lg lg lg 222+=+ B. lg()lg lg 222x y x y +=g C.y x yx lg lg lg lg 222+=• D. lg()lg lg 222xy x y =g(3)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的( )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件(4).某程序框图如图所示,若该程序运行后输出的值是59,则( )A.4=aB.5=aC. 6=aD.7=a(5).已知210cos 2sin ,=+∈αααR ,则=α2tan ( )A.34B. 43C.43-D.34-的应用,考查学生的运算求解能力.(6).设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B P C ≥u u u r u u u r u u u u r u u u u r g g ,则( )A. 090=∠ABCB. 090=∠BACC. AC AB =D.BC AC =(7)已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则( ) A. 当1=k 时,)(x f 在1=x 处取得极小值B. 当1=k 时,)(x f 在1=x 处取得极大值C. 当2=k 时,)(x f 在1=x 处取得极小值D. 当2=k 时,)(x f 在1=x 处取得极大值【考点定位】此题考查导数的运算及利用导数研究函数的单调性求函数的极值.(8).如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。
2013年浙江省高考数学试卷及答案(理科)word版
绝密★考试结束前20XX 普通高等学校招生全国统一考试〔XX 卷〕数学〔理科〕本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分〔共50分〕注意事项:1.答题前,考生务必将自己的XX 、XX 号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积公式343V R π=其中R 表示球的半径选择题部分〔共50分〕一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,则(1)(2)i i -+-=( )A .3i -+B .13i -+C .33i -+D .1i -+ 2.设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则=T S C R )( ( ) A .(21]-, B .(4]-∞-, C .(1]-∞, D .[1)+∞, 3.已知x ,y 为正实数,则( ) A .lg lg lg lg 222x yx y +=+ B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x yxy⋅=+ D .lg()lg lg 222xy x y=⋅4.已知函数()cos()(0f x A x A ωϕ=+>,0ω>,)R ϕ∈,则“()f x 是奇函数〞是“2πϕ=〞的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.某程序框图如图所示,若该程序运行后输出的值是95,则 A .4a = B .5a = C .6a = D .7a = 6.已知R α∈,sin 2cos 2αα+=,则tan 2α= A .43 B .34 C .34- D .43- 7.设ABC ∆,0P 是边AB 上一定点,满足014P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅.则A .90ABC ∠=︒B .30BAC ∠=︒ C .AB AC =D .AC BC =8.已知e 为自然对数的底数,设函数()(1)(1)(12)x kf x e x k =--=,,则 A .当1k =时,()f x 在1x =处取到极小值 B .当1k =时,()f x 在1x =处取到极大值 C .当2k =时,()f x 在1x =处取到极小值 D .当2k =时,()f x 在1x =处取到极大值〔第5题图〕9.如图,1F ,2F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率是( )ABC .32D10.在空间中,过点A 作平面π的垂线,垂直为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,1[()]Q f f P βα=,2[()]Q f f P αβ=,恒有12PQ PQ =,则( ) A .平面α与平面β垂直 B .平面α与平面β所成的〔锐〕二面角为45︒ C .平面α与平面β平行 D .平面α与平面β所成的〔锐〕二面角为60︒非选择题部分〔共100分〕二、填空题:本大题共7小题,每小题4分,共28分。
2013届浙江省诸暨中学高三上学期期中考试数学(理)试卷
诸暨中学2012学年第一学期期中考试高三数学(理科)试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.函数2,231,1x x y x x ⎧>=⎨-+<⎩定义域为A. (,1)-∞B. (2,)+∞C. (1,2)D. (,1)(2,)-∞+∞ 3.“2a =”是 “函数()2x f x ax =-有零点”的.A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.对两条不相交的空间直线a 和b ,则 A .必定存在平面α,使得,a b αα⊂⊂ B .必定存在平面α,使得,//a b αα⊂C .必定存在直线c ,使得//,//a c b cD .必定存在直线c ,使得//,a c b c ⊥5.函数|sin tan |sin tan x x x x y -++=在区间(2π,23π)内的图象大致是 A B C D6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角. 若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.已知,1,=>ab b a 则ba b a -+22的最小值是( ).A 22B 2C 2D 1 8.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则8967a a a a ++等于 A .21+B. 21-C. 223+D. 223-9.抛物线24y x =的焦点为F ,准线l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB l ⊥,垂足为B ,则四边形ABEF 的面积等于A. B. C. D.10.设函数)2,(1)(≥∈-+=+n N n x x x f n.则)(x f 在区间1,12⎛⎫⎪⎝⎭内FC B AEDA .不存在零点B .存在唯一的零点n x ,且数列23,,,n x x x 单调递增C .存在唯一的零点n x ,且数列23,,,n x x x 单调递减D .存在唯一的零点n x ,且数列23,,,nx x x 非单调数列二、填空题:本大题共7小题,每小题4分,共28分11.正三棱柱的三视图如图所示, 则这个三棱柱的体积为 ▲12.如图,已知ABCDEF 是边长为1的正六边形, 则()BA BC CF ⋅+的值为 ▲13.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减, 则ω的取值范围是 ▲14.若点P 在直线1:30l x my ++=上,过点P 的直线2l 与圆22:(5)16C x y -+=只有一个公共点M ,且||PM 的最小值为4,则m = ▲15.按如右图所示的程序框图运算,若输入2x =,则输出k 的值是 ▲16.设()g x 是定义在R 上以1为周期的函数,若()()f x x g x =+在区间[0,1]上的值域 为[2,5]-,则()f x 在区间[0,3]上的值域为 ▲17.设双曲线22221(0,0)x y a b a b-=>>的右顶点A ,x 轴上有一点(2,0)Q a ,若双曲线上存在点P ,使AP PQ ⊥,则双曲线的离心率的取值范围是 ▲第11题第12题第15题三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18. (本小题满分14分)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c,且(2)cos cos b A C =. (Ⅰ)求角A 的大小; (Ⅱ)若54cos ,1==B a ,求ABC ∆的面积.19. (本小题满分14分)已知公差不为零的等差数列{}n a 与等比数列{}n b 中,1122351,,b a b a b a ====。
数学(理)卷.2013届浙江省绍兴市高三教学质量调测(2013.04)(word版)
2013年绍兴市高三教学质量调测数 学(理)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式: 如果事件A ,B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+V S h =如果事件A ,B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 ()()()P A B P A P B ⋅=⋅ 锥体的体积公式如果事件A在一次试验中发生的概率是p,那13V Sh =么n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高 ()n P k =(1)k kn k n C p p --(0,1,2,,)k n =⋅⋅⋅台体的体积公式球的表面积公式 121()3V h S S =+ 24RS π=其中12,S S 分别表示台体的上、下底面积,h 球的体积公式表示台体的高334R V π=其中R 表示球的半径第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1.设全集}0|{>=x x U ,集合}03|{>-=x x M ,则U M =ðA .}30|{≤<x xB .}3|{<x xC .}3|{≤x xD .}30|{<<x x2.设等差数列{}n a 前n 项和为n S ,若234a S +=-,43a =,则公差为 A .1-B .1C .2D .33.若a ,∈b R ,则“0,0>>b a ”是“0>+b a ”的 理科数学一模试题卷 第1页(共6页)俯视图侧视图正视图A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.某四棱锥的底面为正方形,其三视图如图所示, 则该四棱锥的体积等于A .1B .2C .3D .45.函数()s i n 2c o s 2fx x x =-在下列哪个区间上 单调递增A .5ππ[,]44--B .π3π[,]88-C .3π7π[,]88D .3π7π[,]446.已知实数y x 满足210,330,1,x y x y x ++≥⎧⎪-+≥⎨⎪≤⎩则4z x y =-的最小值为A .5B .2-C .4-D . 5-7.已知n m ,是两条不同的直线,βα⊥ 的是A .βα//,,n m n m ⊥⊥B .βα⊥⊥n m n m ,,//C .βα//,//,n m n m ⊥D .βα⊥n m n m ,//,//8.已知双曲线22221x y a b-=(F ,O 为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于AOF 的面积为b,则双曲线的离心率等于A .3BC .D .9.已知函数22log ,()12x f x x ⎧⎪=⎨-⎪⎩若方程()(=∈f x t t )R 有四个不同的实数(第4题)αOABCD根,,,,则1x x x x 的取值范围为A .(30,34)C .(32,34)D .(32,36)10.α,顶A 与A .12236+ B .2215+C .426+ D .12225+第Ⅱ卷(共100分)二、填空题 (本大题共7小题,每小题4分,共28分)11.已知i 为虚数单位,则13i1i+-= ▲ . 12.某程序框图如图所示,若输入16x =,则运行后输出的值 是 ▲ .13.1-展开式的常数项是 ▲ . 14.34,a a 依次构成公差不为零的等差数列.若数列,则此等比数列的公比为 ▲ .15. 有 ▲ 种.16.已知a ,b 为平面内两个互相垂直的单位向量,若向量c 满足()λc+a =c +b (λ∈)R , 则|c |的最小值为 ▲ .17.已知a 为[0,1]上的任意实数,函数1()f x x a =-,22()1f x x =-+,323()f x x x =-+. (第12题)(第10题)理科数学一模试题卷 第3页(共6页)21.(本小题满分15分)已知A 是圆422=+yx上的一个动点,过点A 作两条直线,它们与椭圆13=+yx 都只有一个公共点,且分别交圆于点N M ,.(Ⅰ)若)0,2(-A ,求直线的方程;(Ⅱ)(i )求证:对于圆上的任一点A ,都有21l l ⊥(ii )求△AMN 面积的取值范围.22.(本小题满分15分)已知函数()2f x x =+2(3)(1)l n p x p x-+-(∈p )R . (Ⅰ)若()x 无极值点,求p 的取值范围;(Ⅱ)设为函数()x 的一个极值点,问在直线0x x =的右侧,函数()y f x =的图象上是否存在点11(,())Ax f x ,B ))(,(22x f x )(21x x <,使得p x x x f x f -=--3)()(1212成立?若存在,求出的取值范围;若不存在,请说明理由.(第21题)(第20题)理科数学一模试题卷 第5页(共6页)2013年绍兴市高三教学质量调测数学(理)参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.C 3.A 4.B 5.B 6.C 7.D 8.D 9.C 10.A 二、填空题 (本大题共7小题,每小题4分,共28分)11.12i -+ 12.7 13.1514.或2 15.2116.17.①④三、解答题 (本大题共5小题,共72分.解答应写出文字说明、证明过程或演算过程) 18.(本小题满分14分) 解:(Ⅰ)由已知得BCDS ∆=13s i n 23B C B D B ⋅⋅=, 又2BC =,3sin 2B =得23B D =.……………………3分在△BCD 中,由余弦定理得CD =22221222332⎛⎫=+-⨯⨯⨯ ⎪⎝⎭273=, 所以CD 的长为273. ……………………7分(Ⅱ)方法1:因为6s i n 2s i n D E C D A D A A===. ……………………10分在△BCD 中,由正弦定理得s i n s i n B C C DB DC B=∠,又2B D C A∠=, 得26s i n 22s i n s i n 60A A =︒, ……………………12分 解得2cos 2A =,所以4A π=即为所求. ……………………14分方法2:在△ABC 中,由正弦定理得2sin sin =ACA B,又由已知得,E 为AC 中点,2∴=AC AE ,所以3s i n s i n 2AE A B ⋅==. ……………………10分 又s i n t a n D E A A ==,所以s i n c o s A E A D E A⋅=⋅6co s A =,……12分则0,0,⎧⋅=⎪⎨⋅=⎪⎩u u u r r u r r PA n m n 即2220,0,x y z y --=⎧⎨=⎩ 取(1,0,1)n =r . ……………………5分∴直线A O 与平面PAB 所成角θ满足 sin 12,…………7分 所以直线O A 与平面PAB 所成角为30. ……………………8分方法2:过O 点作O H A B ⊥,垂足为H ,连接P H . 过O 作O K P H ⊥,垂足为K ,连接A K . PO ⊥Q 平面ABCD ,∴P O A B ⊥.O H A B ⊥Q ,∴AB ⊥平面POH . 又OK ⊂平面POH , ∴A B O K ⊥,又O K P H ⊥,∴OK ⊥平面PAB ∴OAK ∠就是O A 与平面PAB 所成角.……3分 ∵P A P D =,∴P 点在平面ABCD 上的射影O 在线 段A D 的中垂线上,设A D 的中点为E ,连接,EP EO ∴AD EP AD EO ⊥⊥,,∴PEO ∠为二面角P - 在等腰△PAD 中,∵4AD =,∴2==ED EA ∴22=PE.在Rt △PEO 中,得2O P O E == 又2OH AE ==,2PO =,在Rt △POH ∴1s i n 2O K O A K O A ∠==,∴30O A K ∠=o. 所以直线O A 与平面PAB 所成角为30o . ……………………8分 (Ⅱ)设AB x =,则8P B x =-,连接O B .在Rt △POB 中,222OB PO PB +=,又由(Ⅰ)得OE AE ⊥,OE AE =,∴45O A E ∠=o ,∴45O A B ∠=o. ……………………9分 在△OAB 中,222OB AO AB =+-2cos AO AB OAB ⋅∠284x x =+-,又22)8(x PB -=,∴22)8()48(4x x x -=-++,得313=,即133A B =. ……………………11分∴三棱锥P A B D -的体积13-∆=⋅P ABD ABD V S OP 111352423239=⨯⨯⨯⨯=. ……14分 21.(本小题满分15分) 解:(Ⅰ)设)2(+=x k y ,代入13=+yx 消去y,得222(13)12k x k x ++21230k +-=.………………2分由0=∆得,012=-k ,设的斜率分别为k k ,得1,121=-=k k .所以直线的方程分别为2,2+=--=x y x y . ………………4分(Ⅱ)(i )证明:①当中有一条斜率不存在时,不妨设无斜率,因为与椭圆只有一个公共点,所以其方程为3±=x.当方程为3=x时,此时与E②当31<<p 时,1-=p x,此时,2)1(2121-<<-p x p .……………………14分综上,存在满足条件的点A ,且当1p <-时,1x 的取值范围为1(,2p+-当13p <<时,1x 的取值范围为(1,p -. ……………………15分理科数学一模答案 第5页(共5页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省诸暨市2013届高三教学质检检测数学理
理科数学答案
一、选择题
1~5:ADDCA ;6~10:CBBAC 二、填空题
11.4; 12.
6321()155=;
13. 14.10; 15.80-; 16.1,2⎛
⎤-∞ ⎥⎝
⎦ 17.4;由()
AC y
x AO 2222+⎪⎪⎭
⎫ ⎝⎛=,由外心的性质可知AB 的中垂线经过O,61cos =∴A . 三、解答题
18.(1)由正弦定理可以将.2cos 2b c C a =+化为B C C A sin 2sin cos sin 2=+(2分) ()C A B +-=π ,()C A B +=∴sin sin ,(1分) 而()C A C A C A sin cos cos sin sin +=+,(1分)
则C A C A C C A sin cos 2cos sin 2sin cos sin 2+=+,即C A C sin cos 2sin =,(2分)
0sin ≠C ,2
1cos =
∴A ,0
60=A (1分) (2)由于△ABC
1sin 2bc A ∴= (1分)
2
3
sin =
A ,得到2bc =(1分)
由于a =A bc c b a cos 22
2
2
-+= ,
∴223b c bc +-=,22+7b c bc +=(2分)
BC 边长的中线AM 满足:()
2AM AB AC =+
,(2分)
()222
42cos =7AM b c bc A ∴=++
;AM = .(1分) 或求出b ,c ,再求AM 19.解答:说明:不书写文字,但算式能反映的同样给分
(1)甲乙二轮共4次射击中至少有1次得9环或10环的对立事件是每次射击都是8环(2分)
1=10.10.10.20.20.9996P -∙∙∙=(1分) 恰有一次得9环或10环即:甲恰一次超8环,乙都得8环或仅乙有一次超8环(2分) 2=2
0.90.10.20.2+0.10.10.80.2=0.0104P ∙∙∙∙∙∙()(2分) 甲获胜即:甲得10环乙得8环9环,或甲得9环乙得8环(2分) 3=0.80.6+0.10.2=0.5P ∙∙(1分) (2)由题意,ξ的取值为0,1,2(1分)
则20.51E ξ=⨯=(2+1分)
20.解答:(1)证明:作HO AE ⊥于点O ,则由AE AD =知O 为AE 中点,又A B E B =,BO AE ⊥,,,H O B 共线(3分)
所以BO EF //,(2分)
⊄EF 平面DHB ,⊆BO 平面DHB , ∴ EF ∥平面DHB ;(2分)
(2)法1:由已知可证BC ⊥平面DHB ,所以平面⊥DBC 平面DHB , 所以FG 在平面DHB 上的射影在DB 上,(2分)
过F 作DB FN //交DC 于点N ,则NFG ∠为FG 与平面DBH 所成角,(1分) 由已知得G 是直角三角形NFC 斜边上的中线,NFG BDC ∠=∠,(1分) 由二面角D-AE-B 大小为120°,即0
120=∠DOB ,3==OB DO ,则3=
DB ,
(1分) 在DBC Rt ∆中2=BC ,
13=∴DC ,cos FCG ∴∠=
,即:FG 与平面DBH (2分)
法2:如图以为O 原点建立空间直角坐标系,则
()()
0,3,2,23,23,0,0,3,1-⎪⎪
⎭
⎫ ⎝⎛--C D F (2分) 由4CD CG =
得33
)28
G -((1分)
13,288FG ⎛⎫∴=-- ⎪ ⎪⎝⎭
,而平面DBH 的法向量()1,0
0v = ,,
(1分) 则FG 与平面DBH 所成角的正弦值1
FG v FG v
⋅=
=
=⨯ (2分) =
1分) 21.解答:(1),1=b (2分) 221121222
2
222=⇒=-⇒=⇒=a a a a c a c ,(2分) 椭圆方程12
22
=+y x (2)①当直线l 的斜率等于0时,设m y l =:,
则交点A 、B 关于y 轴对称,此时,PAB ∆为等腰三角形,(1分)
2
2
21212
m x y x m
y -±=⇒⎪⎩⎪⎨⎧=+=,,142m AB -=(1分) P 到边AB 的距离为m h -=1,2112m m S ABP --=∴∆,()1,1-∈m (1分)
构造函数()()()
22
11m m m f --=, 则()()()12122/
+--=m m m f
,
令()0
/
=m f
得到21-
=m ,当⎪⎭⎫ ⎝⎛--∈21,1m 时()0/>m f ,当⎪⎭
⎫
⎝⎛-∈1,21m 时()0/<m f ,()1627
21max =
⎪⎭
⎫ ⎝⎛-=∴f m f ,()433max =∴∆ABP S (3分) ②当直线的斜率不为零时,可以设直线为m kx y l +=:,
()()
01242112
2
222
2=-+++⇒⎪⎩⎪⎨⎧=++=m kmx x k y x m
kx y ,(1分) ()
2
221221211
2,214k
m x x k km x x +-=+-=+,(1分) 由于BP AP =,所以AB 的中垂线经过点P ,AB 的中点M ⎪
⎭
⎫
⎝⎛++-2221,212k m k km
,()1,0P AB MP ⊥,∴12121212
2
-=⨯+--+k k km k
m
,化简得到:0122=++m k ①(1分) 又()()
01218162222>-+-=∆m k m k ,即122
2->m k ②(1分) 由①,②以及0≠k 得:⎩⎨⎧<+<+0
12
m m m ,⎩⎨
⎧<<--<0
11
m m 无解,所以,此时以P 为顶点的等腰三角形PAB ∆不存在。
(1分)
22.解:(1)2
1()(1)ln 2
f x x a x a x =
--- ()()x a a x x f ---=1/
()()()2
11x a x a x x a x x ---+-==,0>x (2分) 当0>a 时,)(x f 的单调减区间()a ,0,)(x f 的单调增区间()+∞,a
若4>a ,则()x f 在[1,4]上单调递减,则()()4min f x f =,得到42
ln 242
ln 26<++=
a ,舍去;(1分)
若41≤<a ,则()x f 在()a ,1上单调递减,()4,a 单调递增,则()()a f x f =min ,
得到:2ln 22ln 212-=-+-
a a a ,令()=a h 2ln 2
1
2a a a -+-,
则()02ln 1/<--=a a h ,()a h ∴为减函数,又()2ln 22-=h ,所以2=a 。
(2分) 若10≤<a ,则()x f 在[1,4]上单调递增,则()()1min f x f =,12ln 22
3
>+=
a 矛盾(1分) 综上所述:2=a
(2)()ln ()1)2f x x a x g x a x x ==---(,2/
22
1ln 2ln 2()22a a x x a x a g x x x -+-=-=(1分) 令()22ln 2h x x a x a =+-,则()x h 在(0,+∞)上单调增加
(
)112,2ln 2h a h
a =-=
,所以01x 介于之间,使得()00=x h (2分)
即()x g 在()0,0x x ∈单调递减,()x g 在()+∞∈,0x x 单调递增,所以
()00
00
ln (1)2x a x m g x a x ==---
,其中()2
00020ln 2a x h x a x -=⇒= 00
1a
m x a x ∴=-
-+ 该函数为增函数
,12
a -+m 介于2-2a 之间(1分) ①当1a ≤
时,12
a -+2-2a 都不小于00m ∴≥,
与已知矛盾,1a >(2分) ②当=2a 时,2/
2
4ln 4
()2x x g x x
+-=
,/0,g
</0,g >(2分) (1分) k=-1
002111112
m x x ∴-<=-
-<-<-。