2014年海南省高考数学压轴试卷(文科)

合集下载

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2014年海南高考数学(文科)试卷评析共5页word资料

2014年海南高考数学(文科)试卷评析共5页word资料

2014年海南高考数学(文科)试卷评析一、结构平稳,难度略深。

首先,2014年全国新课标Ⅱ卷的整体结构是比较稳定的。

从总体情况看,今年新课标Ⅱ的文科数学试卷,整体结构没有大变化,依然是延续传统的12道选择,4道填空,6道解答题,分值、知识分布与覆盖上保持相对稳定,坚持对基础知识、数学思想方法进行考查,体现了注重考查学生实际应用能力的指导思想;多视角、多层次地考查考生对数学基础知识、数学思想与方法的掌握和理解,着重考查学生的数学思维能力和素养。

其次,试题难度小幅度加深。

相对于2013年的试题,2014年试题的难度略有增大。

试卷在对知识的全面考查的基础上,特别注意突出重点,对空间想象能力、推理论证能力、数据处理能力、计算能力以及应用意识等考点,提出了比较高的要求。

二、着眼于基础,立意于能力。

从试卷命题实际来看,今年数学试题所涉及的知识内容几乎覆盖了高中所学知识的全部重要内容,而又仍然沿用去年的“重点知识重点考查”的原则。

在着眼于数学基础知识考查的同时,尤其注重知识综合方面的考查,在知识交汇点处出题。

因而大家普遍感到:入手容易完成较难,得分、得高分更是不容易。

这就对学生的数学能力提出了一定的要求,体现了高考数学合理的区分度和一定的选拔性。

下面结合部分题型,略加说明。

1选择填空题:大稳定,小创新,大小综合见难度。

选择题和填空题是考生的主要得分题,和往年一样,选择题和填空题主要考查考生对基础知识和基本能力的掌握程度。

今年试卷的选择与填空题稳中有变,其中立体几何、线性规划、函数的基本运算、圆锥曲线的简单的几何性质等问题中考查多个知识点,以小综合的形式出现,这有利于促进考生多元化分析以及创新解答,并充分发挥自己的水平。

2解答题:讲方法,重技巧,能力之中显高低。

高考数学解答题比较重视考查学生对数学基本方法、技巧的掌握情况,只要平时教学有方,学生掌握较好,这样的题就比较容易得分。

比如,在今年试卷中,第一个解答题依然考察的是解三角形问题中余弦定理的应用。

2014全国统一高考数学真题及 逐题详细解析(文科)—海南卷

2014全国统一高考数学真题及    逐题详细解析(文科)—海南卷

2014年普通高等学校招生全国统一考试海南数学文科(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 ,,则( )A. B. C. D.2.( )A. B. C. D.3.函数在 处导数存在,若 ,是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不是的充分条件,也不是的必要条件4.设向量满足,,则 ( )A.1B.2C.3D.55.等差数列的公差为2,若成等比数列,则的前项和( )A. B. C. D.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.B.C.D.7.正三棱柱的底面边长为2,侧棱长为,D为BC终点,则三棱锥的体积为(A)3 (B) (C)1 (D)8.执行右图程序框图,如果输入的 均为2,则输出的( )是否A.4 B.5 C.6 D.79.设满足的约束条件,则的最大值为( )(A)8 (B)7 (C)2 (D)110.设F为抛物线的焦点,过F且倾斜角为的直线交于C于两点,则(A) (B)6 (C)12 (D)11.若函数在区间单调递增,则的取值范围是(A) (B) (C) (D)12.设点,若在圆上存在点N,使得,则的取值范围是(A) (B) (C) (D)第Ⅱ卷二、填空题:本大概题共4小题,每小题5分。

13.甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.14.函数的最大值为_________.15.已知偶函数的图像关于直线对称,,则_______.16.数列 满足,,则_________.三、解答题(本大题共8小题)17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(I) 求C和BD;(II)求四边形ABCD的面积.18.(12分) 如图,四棱锥P-ABCD中,底面ABCD为矩形,,E为PD中点.(I)证明:PB平面AEC;(II)设AP=1,,三棱锥P-ABD的体积,求A到平面PBC的距离.19. (本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。

2014海南高考数学线性代数题及答案解析

2014海南高考数学线性代数题及答案解析

2014海南高考数学线性代数题及答案解析一、题目解析2014年海南高考数学试卷中,线性代数部分是其中的一个重要部分。

以下是针对该部分题目的解析和答案分析。

1.选择题题目一:已知方程组:\[ \begin{cases} x - y + 2z = 4 \\ 2x + y + kz = 7 \\ 3x + 4y + 5z = 15\end{cases} \]若方程组有唯一解,则实数$k$的取值范围是:解析:首先,我们需要判断方程组的解的情况。

通过计算可知,若行列式的值为零,则方程组无解;若值不为零,则方程组有唯一解。

计算行列式:\[ \begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & k \\ 3 & 4 & 5 \end{vmatrix} = 31k - 14 \]要使得行列式的值不为零,即解存在,使得\[ 31k - 14 \neq 0 \]所以,$k \neq \frac{14}{31}$。

因此,实数$k$的取值范围是$k \neq \frac{14}{31}$。

题目二:已知二次型\[ f(x,y,z) = 2x^2 + 2y^2 + 2z^2 - 2xy + 2xz - 4yz \]则对于任意的实数$a$,当且仅当$a \geqslant \frac{5}{3}$时,二次型$f(x,y,z)$正定。

解析:对于一个二次型,判断其正定还是负定,需要计算其特征值。

特征值公式为:\[ \begin{vmatrix} 2-\lambda & -1 & 1 \\ -1 & 2-\lambda & -2 \\ 1 & -2 & 2-\lambda \end{vmatrix} = 0 \]计算得到特征方程:\[ (\lambda-1)(\lambda-3)(\lambda-5) = 0 \]所以,该二次型的特征值为$1, 3, 5$。

(新课标Ⅱ)2014高考数学压轴卷 文(含解析)

(新课标Ⅱ)2014高考数学压轴卷 文(含解析)

2014新课标II 高考压轴卷文科数学选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.的共轭复数为(3. 由y=f (x )的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到y=2sin 的图象,则 f (x )为( ) 2sin4.已知函数,则的值是( )D5. 设随机变量~X N (3,1),若(4)P X p >=,,则P(2<X<4)= ( A)12p + ( B)l —p (C)l-2p (D)12p - 6. 6.运行右面框图输出的S 是254,则①应为(A) n ≤5 (B) n ≤6 (C)n ≤7 (D) n ≤8 7. 若曲线在点(a ,f (a ))处的切线与两条坐标轴围成的三角形的面积为18,则a=( )D. 88.已知A 、B 是圆22:1O x y +=上的两个点,P 是AB 线段上的动点,当AOB ∆的面积最大时,则AO AP ⋅-2AP 的最大值是( )A.1-B.0C.81D.21 9. 一个几何体的三视图如图所示,则该几何体的体积是( ) (A )64 (B )72 (C )80 (D )11210. .已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=A . 0B .100-C .100D .1020011.在约束条件121y x y x x y ≤⎧⎪⎪≥⎨⎪+≤⎪⎩下,目标函数12z x y =+的最大值为(A) 14 (B)34 (C) 56 (D) 5312.已知抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,抛物线的准 线与x 轴的交点为K ,点A在抛物线上且AK =,则A 点的横坐标为(A)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm 的概率为 .14.已知1cos21sin cos ααα-=,1tan()3βα-=-,则tan(2)βα-的值为 .15.函数43y x x =++(3)x >-的最小值是 . 16. 对大于或等于2的正整数的幂运算有如下分解方式: 22=1+3 32=1+3+5 42=1+3+5+7… 23=3=5 33=7+9+11 43=13+15+17+19…根据上述分解规律,若m 2=1+3+5+…+11,p 3分解中最小正整数是21,则m+p= 11 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知函数3cos 32cos sin 2)(2-+=x x x x f ,R ∈x . (Ⅰ)求函数(3)1y f x =-+的最小正周期和单调递减区间;(Ⅱ)已知ABC ∆中的三个内角,,A B C 所对的边分别为,,a b c ,若锐角A 满足()26A f π-=7a =,sin sinBC +=,求ABC ∆的面积. 18.随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:⑴根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?⑵从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数ξ的分布列及其均值(即数学期望).(注:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=为样本容量.)19. 三棱柱ABC ﹣A 1B 1C 1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB 1=2,M ,N 分别是AB ,A 1C 的中点.(Ⅰ)求证:MN ∥平面BCC 1B 1; (Ⅱ)求证:MN ⊥平面A 1B 1C .20.已知动圆P 与圆221:(3)81F x y ++=相切,且与圆222:(3)1F x y -+=相内切,记圆心P 的轨迹为曲线C ;设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ的平行线交曲线C 于,M N 两个不同的点. (Ⅰ)求曲线C 的方程;(Ⅱ)试探究||MN 和2||OQ 的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;(Ⅲ)记2QF M ∆的面积为1S ,2OF N ∆的面积为2S ,令12S S S =+,求S 的最大值. 21. 已知函数f (x )=x 3+2x 2+x ﹣4,g (x )=ax 2+x ﹣8. (Ⅰ)求函数f (x )的极值;(Ⅱ)若对任意的x ∈[0,+∞)都有f (x )≥g(x ),求实数a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.选修4﹣1:几何证明选讲如图,AB 是⊙O 的直径,AC 是弦,直线CE 和⊙O 切于点C ,AD 丄CE ,垂足为D . (I ) 求证:AC 平分∠BAD;(II ) 若AB=4AD ,求∠BAD 的大小.23.选修4﹣4:坐标系与参数方程将圆x 2+y 2=4上各点的纵坐标压缩至原来的,所得曲线记作C ;将直线3x ﹣2y ﹣8=0绕原点逆时针旋转90°所得直线记作l . (I )求直线l 与曲线C 的方程;(II )求C 上的点到直线l 的最大距离.24. 选修4﹣5:不等式选讲设函数,f (x )=|x ﹣1|+|x ﹣2|. (I )求证f (x )≥1; (II )若f (x )=成立,求x 的取值范围.2014新课标II 高考压轴卷 文科数学参考答案1. 【答案】A.【解析】由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A∩B={0,1,2}∩{0,2,4}={0,2}. 所以A∩B 中元素的个数为2. 故选C .2. 【答案】A.【解析】由z•i=2﹣i ,得,∴. 故选:A . 3. 【答案】B.【解析】由题意可得y=2sin 的图象上各个点的横坐标变为原来的,可得函数y=2sin (6x ﹣)的图象.再把函数y=2sin (6x ﹣)的图象向右平移个单位,即可得到f (x )=2sin[6(x ﹣)﹣)]=2sin (6x ﹣2π﹣)=2sin的图象,故选B .4. 【答案】C. 【解析】=f (log 2)=f (log 22﹣2)=f (﹣2)=3﹣2=,故选C .5. 【答案】C.【解析】因为(4)(2)P X P X p >=<=,所以P(2<X<4)= 1(4)(2)12P X P X p ->-<=-,选C. 6. 【答案】C.【解析】本程序计算的是212(12)2222212n nn S +-=+++==--,由122254n +-=,得12256n +=,解得7n =。

(新课标1)2014高考数学压轴卷 文(含解析)

(新课标1)2014高考数学压轴卷 文(含解析)

2014新课标1高考压轴卷文科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=2. 复数的共轭复数是a+bi(a,b∈R),i是虛数单位,则点(a,b)为()3. 的值为()22了掌握各超市的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型超市数是()A.4B.6C.7D.126.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π7. 已知函数的图象(部分)如图所示,则ω,φ分别为()B C D8. “”是“数列{a n}为等比数列”的()10. 等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为B C D11.定义域为R的偶函数f(x)满足∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18.若函数y=f(x)﹣log a(x+1)至少有三个零点,则a的取值范),),12. 设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λμ=,则该双曲线的离心率为()B C D13. 函数22631y x x =++的最小值是14.执行如图所示的程序框图,则输出的结果S 是________.15.已知平行四边形ABCD 中,点E 为CD 的中点,=m,=n(m•n≠0),若∥,则=___________________.16. 设不等式组表示的平面区域为M ,不等式组表示的平面区域为N .在M 内随机取一个点,这个点在N 内的概率的最大值是________________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知(3,cos())a x ω=-,(sin(b x ω=,其中0ω>,函数()f x a b =⋅的最小正周期为π.(1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .且()2A f =,a =,求角A 、B 、C 的大小.18. 下表给出了从某校500名12岁男生中用简单随机抽样得出的120人的身高资料(单位:(1)在这个问题中,总体是什么?并求出x 与y 的值;(2)求表中x 与y 的值,画出频率分布直方图及频率分布折线图; (3)试计算身高在146~154cm 的总人数约有多少?19.在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面PAD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面PAD ; (2)平面PBC ⊥平面PAB .20.在平面直角坐标系xOy 中,从曲线C 上一点P 做x 轴和y 轴的垂线,垂足分别为N M ,,点)0,(),0,(a B a A -(a a ,0>为常数),且02=+⋅λ(0≠λ) (1)求曲线C 的轨迹方程,并说明曲线C 是什么图形;(2)当0>λ且1≠λ时,将曲线C 绕原点逆时针旋转︒90得到曲线1C ,曲线C 与曲线1C 四个交点按逆时针依次为G F E D ,,,,且点D 在一象限①证明:四边形DEFG 为正方形; ②若D F AD ⊥,求λ值.21. 设函数3211()(0)32a f x x x ax a a -=+-->. (1)若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围; (2)当a =1时,求函数)(x f 在区间[t ,t +3]上的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.已知AB 是圆O 的直径,C 为圆O 上一点,CD ⊥AB 于点D , 弦BE 与CD 、AC 分别交于点M 、N ,且MN = MC(1)求证:MN = MB ; (2)求证:OC ⊥MN 。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

海南省2014届高三四校联考文科数学详解

海南省2014届高三四校联考文科数学详解

海南省2014届国兴中学、海师附中、嘉积中学、三亚一中高三四校联考文科数学解析1、解析:B 240,22,321,1,(1,2]x x x x A B -≤-≤≤->>⋂=集合问题关键是对于元素的性质化简2、解析:D 考察复数加法乘除法运算(关键是分母实数化,从而确定复数的实部虚部)2222(1)1zz i i z z z⋅+=++=+⋅ 3、解析:D 抓对于求目标函数的最值的线性规划选择填空问题可直接两两联立对应的直线方程组,求出交点即可一一代入验证,易知三个交点分别为(1,1),(0,1),(1,0-- 4、解析:B 考察向量加减法运算的平行四边形法则,通过23BA BC BP +=即可确定点D 为AC 边中点5、解析:A 考察等比数列的基本公式应用,2234121212()4a a q a a q a a a a ++===++然后整体代换即得2456783434()()80a a a a q a a q a a +++=+++=6、解析:D 考察双曲线及椭圆的定义(注意区分a,b,c 不同圆锥曲线中的具体含义,由于1212124,262FF AF AF AF AF a ===+==则,则椭圆中,a=3,c=27、解析:C 考察和差公式及正弦型函数的性质及平移变换,注意对称轴与对称中心的特点()sin 2cos 2)4f x x x x π=-=-,得周期为π,()44f ππ=不是最大值,则4x π=不是一条对称轴,()08f π=则点(,0)8π为对称中心,向左平移4π个单位得())])444f x x x πππ=+-=+(平移针对自变量X来说)8、解析:A 第一次:1,1S k ==第二次:3,2S k ==第三次:11,3S k ==第四次:C11112100,4S k =+>=不满足循环条件中止退出9、解析:A (限制M 在第一象限)根据抛物线定义有5MF MD ==(D 为过M 作准线垂线垂足)得4,82pp ==,即(4,0),(0,0),(1,4)A O M -采用待定系数法带入圆的方程220x y Dx Ey F ++++=解得214,,04D E F ===10、解析:A 考察基本不等式及对数运算,已知01,01a x y <<<≤<结合对数特点知log 0,log 0,log 0a a a x y xy >>> 22(log log )(log )log log 44a a a a a x y xy x y +⋅≤=则有log 2a xy >=又为减函数,则20xy a <≤11、解析:C 几何体是有一个半圆锥与四棱锥共面,注意椎体计算体积时候前面乘13,则1112233V =⋅⋅⋅=12、解析:B 可观察两个函数发现,在大于1的范围内二者都是单调递增,且明显()()g x f x >,因此二者的零点也是21x x <且(2)ln 20f =>则211x <<x <2数形结合 ()0f x =令,则lnx=-x+2同理2()01g x x x==-+-x+2令,则lnx=,分别在坐标系中作出21y =-+y=lnx,y=-x+2,图像,对应图像交点即为原函数的零点,关键(2)8240f =-⨯=因此根据点斜式有48y x =-14、解析:数列通项公式考察,基础题,关键是下标的转化,根据题目已知得数列123451,2,4,8,16b b b b b =====对应1248161,3,7,15,31a a a a a =====相加得57.15、解析:题目新颖,短小精悍,将茎叶图与概率问题综合考察,通过阅读茎叶图,得甲的平均分为188********905X ++++==,同时假设乙的平均分也为90,得污损部分为8,因此若要甲的平均成绩超过乙,乙污损部分只能取0,1,2,3,4,5,6,7共8种,而实际可取0-9共10种,因此概率为4516、解析:设三棱锥的高为h 则根据三角形外接圆圆心(中垂线交点)计算得外接圆半径为1因此111sin120332124ABC V S h h ∆=⋅=⋅⋅=== R=4则三棱锥外接球的表面积为2464S R ππ==17、解析:注意正余弦定理及三角形面积公式的应用(1)2cos cos cos )b A c A A C + 结合正弦定理边化角为2sin cos cos cos sin )C)B A C A C A B ∴+=+=即cos 6A A π== (2)根据余弦定理2222cos a b c bc A =+-代入已知得:2680,2(,4b b b b -+===舍去)则三角形面积为111=sin 4222S bc A =⨯⨯=18、解析:(1)解析:从6个月当中选取2组数据有2615C =(文科采用枚举(1,2),(1,3)...(5,6)注意做到不重不漏),其中相邻月份有(1,2)(2,3)(3,4)(4,5)(5,6)五钟,则概率为13(2)由数据求得11,24x y == 由公式求得187b = 再由307a y bx =-=- 所以y 关于x 的线性回归方程为183077y x =-. (3) 当15015010,22277x y ==-<时, 同样,当78786,22277x y ==-<时,, 所以,该小组所得线性回归方程是理想的.20、解析:(1) 由于2F (c,0),根据题意有22242222111,,222c b a b a b b a +===再有离心率得2212c c a a ==联立解得:222,1a b ==即椭圆标准方程为2212x y +=(2)设MN 中点为00(,)Q x y ,则222002(22,2)FM FN FQ x y +==-,根据已知得:2200104(22)(2)9x y -+=化简得:220026(1)9x y -+=又设直线方程为(1)y k x =+且 交椭圆于1122(,)(,)M x y N x y 两点,根据点差法得:002x k y =-同时001yk x =+联立解 得0021,,133x y k =-=±=±即直线方程为1010x y x y -+=++=或21、(1)解析:当21122,()2ln ,'()(0)a f x x f x x x x x ==+=-+>令1'()0,2f x x ==则当1,'()02x f x >>函数单调递增,当10,'()02x f x <<<函数单调递减(2)1()ln ln h x a x ax x x =++-()2h x ≥则转化为求()h x 的最小值21111111'()(1)(1)()(1)a h x a a a x x x x x x x x=-++-=-+++=-+令1'()0,1h x x a ==-则x=或(舍去)若0a <,'()0h x <函数单调递减,无最小值,当0a >且1x a >时函数单调递增,当10x a <<时函数单调递减,因此min 1()()1ln ln 2h x h a a a a a==+-+≥解得[1,]a e ∈(注意对于a 进行分类讨论)22.(1)根据割线定理有DT DM DB DA ⋅=⋅又12DB OB DO ==且2DA DC = 因此有DT DM DO DC ⋅=⋅(2)由(1)得,DT DCODT MDC DO DM=∠=∠则ODT MDC ∆∆ 得:60DOT DMC ∠=∠= 弦切角1302TMB DOT ∠=∠= ,则30BMC ∠=23.(1)已知参数方程2sin x y αα⎧=⎪⎨=⎪⎩化为普通方程为22184x y +=(椭圆)极坐标方程()22ρθθ-=20x y -+= (2)20x y -+=可知对应的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩带入椭圆方程得:2380t --=则有1283FA FB t t ==(注意参数方程中t 表示任意点到定点的24.(1)122222221a b c a b c a b c ++=∴++=∴++≥ (2)222222222222222122bc ac ab b c a c a b c ab b ac a bc a b c a b c abc abc++++++=≥=++=。

2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2014 年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12 小题,每小题5 分)1.(5 分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3 C.5 D.72.(5分)已知角α 的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5 分)不等式组的解集为()A.{x|﹣2<x<﹣1} B.{x|﹣1<x<0}C.{x|0<x<1} D.{x|x>1}4.(5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5 分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0 C.1 D.27.(5 分)有6 名男医生、5 名女医生,从中选出2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有()A.60 种B.70 种C.75 种D.150 种8.(5 分)设等比数列{a n}的前n 项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l 交C 于A、B 两点,若△AF1B 的周长为4,则C 的方程为()A.+=1 B.+y2=1 C.+=1 D.+=110.(5 分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5 分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2C.4 D.412.(5 分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1二、填空题(本大题共4 小题,每小题5 分)13.(5 分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5 分)函数y=cos2x+2sinx 的最大值是.15.(5 分)设x,y 满足约束条件,则z=x+4y 的最大值为.16.(5 分)直线l1 和l2 是圆x2+y2=2 的两条切线,若l1 与l2 的交点为(1,3),则l1 与l2 的夹角的正切值等于.三、解答题17.(10 分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(I)设b n=a n+1﹣a n,证明{b n}是等差数列;(II)求{a n}的通项公式.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(I)证明:AC1⊥A1B;(II)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C 的大小.20.(12 分)设每个工作日甲,乙,丙,丁4 人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3 人需使用设备的概率;(II)实验室计划购买k 台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.21.(12 分)函数f(x)=ax3+3x2+3x(a≠0).(I)讨论f(x)的单调性;(II)若f(x)在区间(1,2)是增函数,求a 的取值范围.22.(12 分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与y 轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(I)求C 的方程;(II)过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,且A、M、B、N 四点在同一圆上,求l 的方程.2014 年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12 小题,每小题5 分)1.(5 分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N 中元素的个数为()A.2 B.3 C.5 D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M 与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N 中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5 分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5 分)不等式组的解集为()A.{x|﹣2<x<﹣1} B.{x|﹣1<x<0} C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E 为AB 的中点,可取AD 中点F,连接EF,则∠CEF 为异面直线CE 与BD 所成角,设出正四面体的棱长,求出△CEF 的三边长,然后利用余弦定理求解异面直线CE 与BD 所成角的余弦值.【解答】解:如图,取AD 中点F,连接EF,CF,∵E 为AB 的中点,∴EF∥DB,则∠CEF 为异面直线BD 与CE 所成的角,∵ABCD 为正四面体,E,F 分别为AB,AD 的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF 中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y 的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,、 故选:D .【点评】本题考查反函数解析式的求解,属基础题.6.(5 分)已知,为单位向量,其夹角为 60°,则(2﹣)•=( )A .﹣1B .0C .1D .2【考点】9O :平面向量数量积的性质及其运算. 【专题】5A :平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得的值,可得(2﹣)•的值.【解答】解:由题意可得, =1×1×cos60°=, =1,∴(2﹣)•=2﹣=0,故选:B .【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5 分)有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有( ) A .60 种B .70 种C .75 种D .150 种【考点】D9:排列、组合及简单计数问题. 【专题】5O :排列组合.【分析】根据题意,分 2 步分析,先从 6 名男医生中选 2 人,再从 5 名女医生中 选出 1 人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从 6 名男医生中选 2 人,有 C 62=15 种选法,再从 5 名女医生中选出 1 人,有 C 51=5 种选法, 则不同的选法共有 15×5=75 种;故选:C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5 分)设等比数列{a n}的前n 项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64【考点】89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4 成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4 成等比数列,即3,12,S6﹣15 成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4 成等比数列是解决问题的关键,属基础题.9.(5 分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2 的直线l 交C 于A、B 两点,若△AF1B 的周长为4 ,则C 的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B 的周长为4 ,求出a= ,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B 的周长为4,∵△AF1B 的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C 的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5 分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD 的外接球的球心在它的高PO1 上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5 分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C 的焦距等于()A.2 B.2C.4 D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y= ,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0 的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5 分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4 小题,每小题5 分)13.(5 分)(x﹣2)6的展开式中x3的系数是﹣160 .(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x 的系数为3,可得r=3,将r=3 代入通项,计算可得T4=﹣160x3,即可得答案.66 r+1 6【解答】解:根据题意,(x﹣2)6的展开式的通项为T =C r x6﹣r(﹣2)r=(﹣1)r•2r•C r x6﹣r,令6﹣r=3 可得r=3,此时T4=(﹣1)3•23•C3x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5 分)函数y=cos2x+2sinx 的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1 ﹣2sin2x+2sinx= ,结合﹣1≤sinx≤1 及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1 的条件.15.(5 分)设x,y 满足约束条件,则z=x+4y 的最大值为 5 .【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y 为直线方程的斜截式,得.由图可知,当直线过C 点时,直线在y 轴上的截距最大,z 最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5 分)直线l1 和l2 是圆x2+y2=2 的两条切线,若l1 与l2 的交点为(1,3),则l1 与l2 的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1 与l2 的夹角为2θ,由于l1 与l2 的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l1 与l2 的夹角为2θ,由于l1 与l2 的交点A(1,3)在圆的外部,且点A 与圆心O 之间的距离为OA==,圆的半径为r=,∴sinθ== ,∴cosθ=,tanθ==,∴tan2θ== =,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10 分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(I)设b n=a n+1﹣a n,证明{b n}是等差数列;(II)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2 变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n 并令n 从1 开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n 项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2 得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n 得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2 的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n 得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12 分)如图,三棱柱ABC﹣A1B1C1 中,点A1 在平面ABC 内的射影D 在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(I)证明:AC1⊥A1B;(II)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD 为二面角A1﹣AB﹣C 的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C 为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E 为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E 为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C 为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F 为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD 为二面角A1﹣AB﹣C 的平面角,由AD==1 可知D 为AC 中点,∴DF==,∴tan∠A1FD== ,∴二面角A1﹣AB﹣C 的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12 分)设每个工作日甲,乙,丙,丁4 人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3 人需使用设备的概率;(II)实验室计划购买k 台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k 的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4 个人都需使用设备的概率、4 个人中有3 个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3 人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k 的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12 分)函数f(x)=ax3+3x2+3x(a≠0).(I)讨论f(x)的单调性;(II)若f(x)在区间(1,2)是增函数,求a 的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a 的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0 时,f(x)在区间(1,2)是增函数,当a<0 时,f(x)在区间(1,2)是增函数,推出f′(1)≥0 且f′(2)≥0,即可求a 的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1 时,则△≤0,f′(x)≥0,∴f(x)在R 上是增函数;②因为a≠0,∴a≤1 且a≠0 时,△>0,f′(x)=0 方程有两个根,x1=,x2=,当0<a<1 时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0 时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0 时,f′(x)=3ax2+6x+3>0 故a>0 时,f(x)在区间(1,2)是增函数,当a<0 时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0 且f′(2)≥0,解得﹣,a 的取值范围[ )∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12 分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与y 轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(I)求C 的方程;(II)过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,且A、M、B、N 四点在同一圆上,求l 的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q 的坐标为(x0,4),把点Q 的坐标代入抛物线C 的方程,求得x0=,根据|QF|=|PQ|求得p 的值,可得C 的方程.(Ⅱ)设l 的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN 垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m 的值,可得直线l 的方程.【解答】解:(Ⅰ)设点Q 的坐标为(x0,4),把点Q 的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C 的方程为y2=4x.(Ⅱ)由题意可得,直线l 和坐标轴不垂直,y2=4x 的焦点F(1,0),设l 的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB 的中点坐标为 D (2m2+1 ,2m ),弦长|AB|= |y1 ﹣y2|= =4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F 的直线l 与C 相交于A、B 两点,若AB 的垂直平分线l′与C 相交于M、N 两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN 的中点 E 的坐标为(+2m2+3,),∴|MN|=|y3 ﹣y4|=,∵MN 垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,∴+DE2= MN2,∴4(m2+1)2+ + =×,化简可得m2﹣1=0,∴m=±1,∴直线l 的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

海南2014高考数学卷(带解析)

海南2014高考数学卷(带解析)

海南2014高考数学卷(带解析)海南2014高考数学卷(带解析)导言:海南2014年高考数学卷是历年来高考数学卷中的一份,本文将对该数学卷进行解析,帮助考生们更好地理解和应对高考数学题型和解题方法。

一、选择题部分:选择题部分是高考数学卷中的必答题部分,共有25个小题,每题4分,总分100分。

该部分主要考察考生对基础数学概念和运算符号的理解能力,以及对数学思维和逻辑推理的运用。

1. 若二项式(x+1)^3的展开结果为ax^3+bx^2+cx+d,则abcd的和为多少?解析:根据二项式展开的公式,展开后的二项式共有4个项,分别为x^3、3x^2、3x、1。

根据对应项之间的系数,将abcd的值代入进去,可得:a=1,b=3,c=3,d=1。

所以,abcd的和为1+3+3+1=8。

2. 设集合A={x | -1 ≤ x ≤ 4},集合B={x | 1 ≤ x ≤ 6},则集合A∪B的区间表示为()。

解析:根据集合并运算的定义,集合A∪B表示的是同时属于集合A或属于集合B的元素的集合。

根据题目给出的区间表示,集合A中的元素为[-1, 4],集合B中的元素为[1, 6]。

将两个区间合并,得到集合A∪B的区间表示为[-1, 6]。

3. 已知a,b是锐角三角形ABC的两个内角的正弦值,且a>b,则下列结论错误的是()。

A. sinA>sinBB. cosA>cosBC. tanA>tanBD. cotA>cotB解析:由题目可知,a,b是锐角三角形ABC两个内角的正弦值,且a>b。

根据正弦函数的性质,可得sinA>sinB。

所以,选项A是正确的。

根据余弦函数和正切函数的性质,cosA>cosB,tanA>tanB,cotA>cotB。

所以,选项B、C、D均是正确的。

因此,下列结论错误的选项为A。

二、解答题部分:解答题部分是高考数学卷中的开放性问题部分,共有5个小题,每题12分,总分60分。

该部分主要考察考生的数学应用能力,解决实际问题的能力。

2014年高考文科数学全国卷2(含详细答案)

2014年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b |10=,|a -b |6=,则a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .328.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8 B .7 C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( )A .303B .6C .12D .7311.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]22-C .[2,2]-D .22[,]22-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= .16.数列{}n a 满足111n n a a +=-,82a =,则1a = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分) 设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选(1+3i)(1+i)-2+4i ==-1+2ii)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

最新2014海南省海口市高考模拟文科数学试题及答案

最新2014海南省海口市高考模拟文科数学试题及答案

1.CR A ={x |x ≤1},B ∩R A ={x |0<x ≤1}.2.B ∵z =i ·i (1-i )i=-1-i ,所以z 的共轭复数为-1+i ,所表示的点在第二象限.3.B f (log 241)=f (-2)=-f (2)=-3.4.C 若A 、B 、C 三点共线,则→AB 、→AC 共线,于是1λ1=λ21,即λ1λ2=1,反之亦然.5.D 在程序执行过程中,m ,n ,r 的值依次为m =42,n =30,r =12;m =30,n =12,r =6;m =12,n =6,r =0,所以输出m =12.10.B 当--2a<1时,显然满足条件,即a <2;当a ≥2时,则-1+a >2a -5,即2≤a <4.综上a <4.11.D 过P 作PE ∥AB 交球面于E ,连结BE 、CE ,则BE ∥AP ,CE ∥DP , ∴三棱柱APD -BEC 为正三棱柱,∵△PAD 为正三角形,∴△PAD 外接圆的半径为33,即有球O 的半径R =)23=34,∴球O 的表面积S =4πR 2=364π.12.B 用(t ,s )表示2t +2s ,下表的规律为 第一行3(0,1) 第二行5(0,2) 6(1,2)第三行9(0,3) 10(1,3) 12(2,3)第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)……因为99=(1+2+3+4+…+13)+8,所以a 99=(7,14)=27+214=16512.16.4 当n =1时,2a 1=S 1+1,得a 1=1,当n ≥2时,2(a n - a n -1)=S n -S n -1=a n ,所以an -1an =2,所以a n =2n -1,又∵a 1=1适合上式,∴a n =2n -1,∴a n 2=4n -1.∴数列{a n 2}是以a 12=1为首项,以4为公比的等比数列.∴a 12+a 22+…+a n 2=1-41·(1-4n )=31(4n -1).所以31(4n -1)<5×2n +1,即2n (2n -30)<1,易知n 的最大值为4.17.解:(1)因为2cos(A +2C )=2cos(π-B +C )=-2cos(B -C ), 所以2(cos B cos C +sin B sin C )-4sin B sin C =-1, 即2(cos B cos C -sin B sin C )=-1cos(B +C )=-21,因为0<B +C <π,所以B +C =32πA =3π.(6分)(2)由0<B <π,所以sin 2B =31cos 2B =91=32,所以sin B =2sin 2B cos 2B =92,所以sin B b =sin Aab =sin A asin B =96.(12分)18.解:(1)由有题意可知,a =0.08×5×500=200,b =0.02×5×500=50.(2分) (2)因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为: 第1组的人数为6×30050=1,第2组的人数为6×30050=1,第3组的人数为6×300200=4,所以第1,2,3组分别抽取1人,1人,4人.(6分)(3)设第1 组的1位同学为A ,第2 组的1位同学为B ,第3组的4位同学为C 1,C 2,C 3,C 4,则从6位同学中抽2位同学有:(A ,B ),(A ,C 1),(A ,C 2),(A ,C 3),(A ,C 4),(B ,C 1),(B ,C 2),(B ,C 3),(B ,C 4),(C 1,C 2),(C 1,C 3),(C 1,C 4),(C 2,C 3),(C 2,C 4),(C 3,C 4),共15种可能,(10分)其中2人年龄都不在第3组的有(A ,B )1种可能, 所以至少有1人年龄在第3组的概率为1-151=1514.(12分) 19.解:(1) ∵AA 1⊥面ABC ,BC ⊂面ABC , ∴BC ⊥AA 1.又∵BC ⊥AC ,AA 1,AC ⊂面AA 1C 1C ,AA 1∩AC =A ,∴BC ⊥面AA 1C 1C , 又AC 1⊂面AA 1C 1C ,∴BC ⊥AC 1.(5分) (2)(法一)当AF =3FC 时,FE ∥平面A 1ABB 1.理由如下:在平面A 1B 1C 1内过E 作EG ∥A 1C 1交A 1B 1于G ,连结AG . ∵B 1E =3EC 1,∴EG =43A 1C 1, 又AF ∥A 1C 1且AF =43A 1C 1, ∴AF ∥EG 且AF =EG ,∴四边形AFEG 为平行四边形,∴EF ∥AG ,又EF ⊄面A 1ABB 1,AG ⊂面A 1ABB 1,∴EF ∥平面A 1ABB 1.(12分) (法二)当AF =3FC 时,FE ∥平面A 1ABB 1.理由如下: 在平面BCC 1B 1内过E 作EG ∥BB 1交BC 于G ,连结FG . ∵EG ∥BB 1,EG ⊄面A 1ABB 1,BB 1⊂面A 1ABB 1, ∴EG ∥平面A 1ABB 1.∵B 1E =3EC 1,∴BG =3GC , ∴FG ∥A B ,又AB ⊂面A 1ABB 1,FG ⊄面A 1ABB 1, ∴FG ∥平面A 1ABB 1.又EG ⊂面EFG ,FG ⊂面EFG ,EG ∩FG =G , ∴平面EFG ∥平面A 1ABB 1.∵EF ⊂面EFG ,∴EF ∥平面A 1ABB 1.(12分)20.解:(1)f ′(x )=(x2+a )2ex (x2+a -2x )=(x2+a )2ex[(x -1)2+a -1]=)25.(3分)令f ′(x )>0, 即(x -1)2-94>0, 解得x <31或x >35.因此,函数f (x )在区间(-∞,31),(35,+∞)内单调递增.令f ′(x )<0,解得31<x <35.因此,函数f (x )在区间(31,35)内单调递减.(6分)(2)当x =21时,函数f (x )取得极值, 即f ′(21)=0,∴(21)2+a -2×21=0,∴ a =43.同理(1)易知,f (x )在(-∞,21),(23,+∞)上单调递增,在(21,23)上单调递减.∴f (x )在x =21时取得极大值f (21)=. 在x =23时取得极小值f (23)=3e,∴在[21,23]上,f (x )的最大值是f (21)=,最小值是f (23)=3e .∴对于任意的x 1,x 2∈[21,23],|f (x 1)-f (x 2)|≤-3e, 即|f (x 1)-f (x 2)|≤33-e.(12分)21.解:(1)由题意知点(3,-1)在椭圆C 上,即a29+b21=1, ①又椭圆的离心率为36,所以a2c2=a2a2-b2=(36)2=32,②联立①②可解得a 2=12,b 2=4,所以椭圆C 的方程为12x2+4y2=1.(5分) (2)因为直线l 的方程为x =-2,设P (-2,y 0),y 0∈(-33,33), 当y 0≠0时,设M (x 1,y 1),N (x 2,y 2),显然x 1≠x 2, 联立121222222则12222+12222=0,即x1-x2y1-y2=-31·y1+y2x1+x2, 又PM =PN ,即P 为线段MN 的中点, 故直线MN 的斜率为-31·y02=3y02,又l ′⊥MN ,所以直线l ′的方程为y -y 0=-23y0(x +2),即y =-23y0(x +32), 显然l ′恒过定点(-32,0);当y 0=0时,直线MN 即x =-2,此时l ′为x 轴亦过点(-32,0).综上所述,l ′恒过定点(-32,0).(12分)22.解:(1)如图,连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 是圆的半径,∴AB 是圆的切线.(4分)(2)∵ED 是直径,∴∠ECD =90°,∴∠E +∠EDC =90°,又∠BCD +∠OCD =90°,∠OCD =∠EDC ,∴∠BCD =∠E ,又∠CBD =∠EBC , ∴△BCD ∽△BEC ,∴BE BC =BC BD⇒BC 2=BD ·BE ,∵tan ∠CED =EC CD =21,△BCD ∽△BEC ,∴BC BD =EC CD =21,设BD =x ,则BC =2x ,∵BC 2=BD ·BE, ∴(2x )2=x (x +6),∴BD =2, ∴OA =OB =BD +OD =2+3=5.(10分)23.解:(1)∵ρ=4sin θ,∴ρ2=4ρsin θ,则x 2+y 2-4y =0.(2分) 即圆C 的直角坐标方程为x 2+y 2-4y =0.(4分) (2)由题意,得直线l 的参数方程为2(t 为参数).(6分) 将该方程代入圆C 方程x 2+y 2-4y =0,得(1+22t )2+(1+22t )2-4(1+22t )=0,即t 2=2,∴t 1=,t 2=-.(8分) 则|PA |·|PB |=|t 1t 2|=2.(10分)。

海南省海口市2014届高三高考调研测试(二)数学(文)(24题不全)4

海南省海口市2014届高三高考调研测试(二)数学(文)(24题不全)4

B
A1
D1
C1
A
D
E C
( 2)若 AB 2 ,求平面 AB1E 把长方体 ABCD A1B1C1D1 分成 的两部分几何体的体积的比值.
20. ( 本小题满分 12 分 )
已知过曲线 C1 : x2
4 y 上点 (2, 1) 的切线为 l ,圆 C2 圆心为曲线 C1 的焦点, 圆 C2 在直线 l 上截得的弦
A. 1
B. 10
4. 已知 是第二象限角,且 sin(
)
4
A.
5 5. 抛物线 y2
23
B.
7 x2
12x 的准线与双曲线 9
C.1 或 10
D.无法确定
3
,则
tan 2
的值为
5
24
C.
7
8
D.
3
y2 1 的两条渐近线所围成的三角形的面积等于
3
A. 3 3
B. 2 3
C.2
D. 3
6.运行如图所示的程序,若结束时输出的结果不小于
3
A.
3
5
B.
3
30
C.
6
6
D.
3
12. 设 f x 是定义在 R 上的奇函数, 且 f 2 x2 f (x) 0 的解集是
0 , 当x
0 时,有 xf (x) f ( x) x2
0 恒成立, 则不等式
A. 2,0 2,
B. 2,0 0,2 C. , 2 2,
D. , 2 0,2
第Ⅱ卷 非选择题
二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分,把答案填在答题卷中的横线上 ) .
③ CD 平面 A BD ;

海南省2014高考数学压轴卷 文

海南省2014高考数学压轴卷 文

绝密★启用前2014海南省高考压轴卷 文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:S 圆台侧面积=L R r )(+π第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R ,集合A={x |2x>1},B={x |-4<x <1},则A∩B 等于 A.(0,1) B.(1,+∞) C.(一4,1) D.(一∞,一4) 2.已知i 为虚数单位,复数z =i (2一i )的模|z |=A. 1 C D.33.进入互联网时代,经常发送电子邮件,一般而言,发送电子邮件要分成以下几个步骤:A .打开电子邮件;(b)输入发送地址;(c)输入主题;(d)输入信件内容;(e)点击“写邮件”;(f )点击“发送邮件”;正确的步骤是A. a b c d e f →→→→→B. a c d f e b →→→→→C. a e b c d f →→→→→D. b a c d f e →→→→→4.已知m 是两个正数2,8的等比中项,则圆锥曲线x 2+2y m=1的离心率为A B C D5.设z=2x+5y,其中实数x,y满足6≤x+y≤8且-2≤x-y≤0,则z的最大值是A.2 1 B.24C.28 D.3 16.如图所示是用模拟方法估计圆周率π值的程序框图,P表示估计的结果,则图中空白框内应填入A.1000MB.1000MC.41000MD.10004M7.一个几何体的三视图如图所示,则该几何体的表面积是A.4+2 6 B.4+ 6C.4+2 2 D.4+ 28.一平面截一球得到直径为的圆面,球心到这个平面的距离是2 cm,则该球的体积是A.12cm3 B. 36cm3C.cm3 D.108πcm39.如图,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得50AC=m,45ACB∠=,105CAB∠=,则A、B两点的距离为A..C..10.设P是双曲线2214yx-=上除顶点外的任意一点,1F、2F分别是双曲线的左、右焦点,△12PF F的内切圆与边12F F相切于点M,则12F M MF⋅=A.5 B.4 C.2 D.111.已知偶函数)(xfy=满足条件f(x+1)=f(x-1),且当]0,1[-∈x时,f(x)=,943+x则=)5(log31fA1.- B.5029C.45101D. 112.已知数列{}n a满足:1a m=(m为正整数),16(1231nnnn naaa aa a+⎧⎪==⎨⎪+⎩当为偶数时)若(当为奇数时)则m的所有可能值为A. 2或4或8B. 4或5或8C. 4或5或32D. 4或5或16第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若曲线3y x ax =+在原点处的切线方程是20x y -=,则实数a = . 14.在Rt△ABC 中,2C π=,6B π=,1CA =,则|2|AC AB -=________.15. 设n S 为等差数列}{n a 的前n 项和,2,4738-==a a S ,则=9a ______.16. 已知|log |)(2x x f =,正实数n m ,满足n m <,且)()(n f m f =,若)(x f 在区间[]n m ,2上的最大值为2,则n m +=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年海南省高考数学压轴试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知全集U=R,集合A={x|2x>1},B={x|-4<x<1},则A∩B等于()A.(0,1)B.(1,+∞)C.(-4,1)D.(-∞,-4)【答案】A【解析】解:由A中的不等式变形得:2x>1=20,解得:x>0,即A=(0,+∞),∵B=(-4,1),∴A∩B=(0,1).故选:A.求出A中不等式的解集确定出A,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知i为虚数单位,复数z=i(2-i)的模|z|=()A.1B.C.D.3【答案】C【解析】解:∵z=i(2-i)=2i+1,∴|z|=,故选:C.根据复数的有关概念直接进行计算即可得到结论.本题主要考查复数的有关概念的计算,比较基础.3.进入互联网时代,发电子邮件是必不可少的.一般而言,发电子邮件要分以下几个步骤:a..打开电子信箱;b.输入发送地址;c.输主主题;d.输入信件内容;e.点击“写邮件”;f.点击“发送邮件”,则正确的流程是()A.a→b→c→d→e→fB.a→c→d→f→e→bC.a→e→b→c→d→fD.b→a→c→d→f→e【答案】C【解析】解:发电子邮件的操作步骤:第一步a..打开电子信箱;第二步:e.点击“写邮件”;等.依次操作,不能颠倒.则正确顺序为:a→e→b→c→d→f故选C.发电子邮件的操作步骤:第一步a..打开电子信箱;第二步:e.点击“写邮件”;等.依次操作,不能颠倒.本题主要考查绘制简单实际问题的流程图,注意发电子邮件的步骤,步骤不能颠倒.4.若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A. B. C.或 D.或【答案】D【解析】解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=-4时,曲线为双曲线,a=1,b=2,c=则,e=故选D先根据等比中项的性质求得m的值,分别看当m大于0时,曲线为椭圆,进而根据标准方程求得a和b,则c可求得,继而求得离心率.当m<0,曲线为双曲线,求得a,b和c,则离心率可得.最后综合答案即可.本题主要考查了圆锥曲线的问题,考查了学生对圆锥曲线基础知识的综合运用,对基础的把握程度.5.设z=2x+5y,其中实数x,y满足6≤x+y≤8且-2≤x-y≤0,则z的最大值是()A.21B.24C.28D.31【答案】D【解析】解:作出不等式组对应的平面区域如图:由z=2x+5y,得y=x+表示,平移直线y=x+,当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由得,即A(3,5),此时z max=2×3+5×5=31.故选:D.作出不等式组对应的平面区域,利用z的几何意义进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.6.如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A. B. C. D.【答案】D【解析】解:法一:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是.故选D.法二:随机输入xi∈(0,1),yi∈(0,1)那么点P(xi,yi)构成的区域为以O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形.判断框内x2i+y2i≤1,若是,说说明点P(x i,y i)在单位圆内部(圆)内,并累计记录点的个数M若否,则说明点P(x i,y i)在单位圆内部(圆)外,并累计记录点的个数N第2个判断框i>1000,是进入计算此时落在单位圆内的点的个数为M,一共判断了1000个点那么圆的面积/正方形的面积=,即π12÷1=∴π=(π的估计值)即执行框内计算的是.故选D.由题意以及框图的作用,直接推断空白框内应填入的表达式.本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力.7.一个几何体的三视图如图所示,则该几何体的表面积是()A.4+2B.4+C.4+2D.4+【答案】A【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面SAC⊥面ABC,△SAC,△ABC都是底边长为2,高为2的等腰三角形,过D作AB的垂线交AB于E,连SE,则SE⊥AB,在直角三角形ABD中,DE==,在直角三角形SDE中,SE===,于是此几何体的表面积S=S△SAC+S△ABC+2S△SAB=×2×2+×2×2+2×××=4+2.故选A.由三视图可知:该几何体是如图所示的三棱锥,其中侧面SAC⊥面ABC,△SAC,△ABC 都是底边长为2,高为2的等腰三角形.据此可计算出表面积.由三视图正确恢复原几何体是解决问题的关键,属于基础题.8.一平面截一球得到直径为2cm的圆面,球心到这个平面的距离是2cm,则该球的体积是()A.12πcm3B.36πcm3C.64πcm3D.108πcm3【答案】B【解析】解:球的半径为=3(cm),球的体积为33=36π(cm3)故选:B.由勾股定理求出球的半径,再利用球的体积公式求球的体积.本题考查球的体积公式,注意球心距,圆的半径,球的半径,三条线段构成直角三角形,可用勾股定理.9.如图,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50m,∠ACB=45°,∠CAB=105°,则A、B两点的距离为()A.mB.mC.mD.m【答案】D【解析】,解:由正弦定理得∠∠==50,∴AB=∠∠∴A,B两点的距离为50m,故选:D.依题意在A,B,C三点构成的三角形中利用正弦定理,根据AC,∠ACB,B的值求得AB本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.10.设P是双曲线x2-=1上除顶点外的任意一点,F1、F2分别是双曲线的左、右焦点,△PF1F2的内切圆与边F1F2相切于点M,则•=()A.5B.4C.2D.1【答案】B【解析】解:不妨设P是双曲线x2-=1右支上一点,则|PF1|-|PF2|=2,∵△PF1F2的内切圆与边F1F2相切于点M,∴|F1M|-|F2M|=2,∵|F1M|+|F2M|=2,∴|F1M|=+1,|F2M|=-1,∴•=|F1M||F2M|=4,故选:B.利用双曲线的定义,结合△PF1F2的内切圆与边F1F2相切于点M,可得|F1M|-|F2M|=2,利用|F1M|+|F2M|=2,求出|F1M|=+1,|F2M|=-1,即可求出•.本题考查直线与圆的位置关系,考查向量知识的运用,考查双曲线的定义,正确运用圆的性质是关键.11.已知偶函数y=f(x)满足条件f(x+1)=f(x-1),且当x∈[-1,0]时,f(x)=3x+,则f(lo5)的值等于()A.-1B.C.D.1【答案】D【解析】解:∵偶函数y=f(x)满足条件f(x+1)=f(x-1),∴f(x+2)=f(x),周期为:2,∵当x∈[-1,0]时,f(x)=3x+,∴lo5=-∈(-2,-1),2-∈(0,1)f(lo5)=f(2-)=f(-2)===1.故选D.通过已知条件判断求出函数的周期,判断对数值的范围,利用偶函数与周期转化自变量的值满足已知函数表达式,求出函数值即可.本题考查函数的周期奇偶性以及函数的解析式的应用,考查计算能力.12.已知数列{a n}满足:a1=m(m为正整数),a n+1=当为偶数时当为奇数时,若a6=1,则m的所有可能值为()A.2或4或8B.4或5或8C.4或5或32D.4或5或16 【答案】C【解析】解:a6=1,由a n+1=当为偶数时当为奇数时,得a5=2或a5=0,a5=0是由第二段函数解出的,与a n为奇数矛盾;由a5=2,得a4=4或,是由第二段函数解出的,不符合整数要求;由a4=4,得a3=8或a3=1.以下分两种情况:a3=1时,a2=2或a2=0(舍),则a1=4;a3=8时,a2=16或,不符合整数要求;由a2=16得a1=5或a1=32.∴m的所有可能值为4或5或32.故选:C.由已知给出的a6=1,利用递推式逆推逐次求出前一项的值,符合题意的保留,不符合题意得舍掉,最后可求得m的所有可能取值.本题考查了数列递推式,考查了逆向思维方法,考查了学生的计算能力,是中档题.二、填空题(本大题共4小题,共20.0分)13.若曲线y=x3+ax在原点处的切线方程是2x-y=0,则实数a= ______ .【答案】2【解析】解:函数的导数为f′(x)=3x2+a,因为在原点处的切线方程是2x-y=0,所以切线的斜率k=2,即f′(0)=2,即a=2.故答案为:2.根据切线是2x-y=0,得到切线的斜率k=2,然后利用导数得a的数值.本题主要考查导数的几何意义,利用切线方程得到切线斜率是解决本题的关键.14.在R t△ABC中,C=,B=,CA=1,则|2-|= ______ .【答案】2【解析】解:∵在R t△ABC中,C=,B=,CA=1,∴=1,=2,<,>=,∴2=1,2=4,•=1,∴|2-|2=(2-)2=42+2-4•=4,∴|2-|=2,故答案为:2由已知可得=1,=2,<,>=,进而利用平方法,可得|2-|2=4,开方可得答案.本题考查的知识点是平面向量数量积的运算,当已知中没有坐标时,经常采用平方法进行计算.15.设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9= ______ .【答案】-6【解析】解:设等差数列{a n}的公差为d,∵S8=4a3,a7=-2,∴8a1+d=4(a1+2d),a7=a1+6d=-2,解得a1=10,d=-2,∴a9=10+8(-2)=-6故答案为:-6设等差数列{a n}的公差为d,代入已知可解得a1和d,代入通项公式可得答案.本题考查等差数列的通项公式和求和公式,属基础题.16.已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则n+m= ______ .【答案】【解析】解:∵f(x)=|log2x|,且f(m)=f(n),∴mn=1∵若f(x)在区间[m2,n]上的最大值为2∴|log2m2|=2∵m<n,∴m=∴n=2∴n+m=故答案为:先结合函数f(x)=|log2x|的图象和性质,再由f(m)=f(n),得到m,n的倒数关系,再由“若f(x)在区间[m2,n]上的最大值为2”,求得m.n的值得到结果.本题主要考查对数函数的图象和性质,特别是取绝对值后考查的特别多,解决的方法多数用数形结合法.三、解答题(本大题共8小题,共94.0分)17.设平面向量=(cos2,sinx),=(2,1),函数f(x)=•.(Ⅰ)当x∈[-,]时,求函数f(x)的取值范围;(Ⅱ)当f(α)=,且-<α<时,求sin(2α+)的值.【答案】解析:(Ⅰ)∵=(cos2,sinx),=(2,1),∴,,==.当,时,,,则,,∴f(x)的取值范围是[0,3];(Ⅱ)由,得,∵<<,∴<<,得,∴==.【解析】(Ⅰ)由向量数量积的坐标运算求得函数f(x)并化简,然后结合x的范围求得函数f (x)的取值范围;(Ⅱ)由f(α)=,且-<α<求得,的值,再由倍角公式求得sin(2α+)的值.本题考查平面向量数量积的运算,考查了三角函数中的恒等变换的应用,训练了由已知三角函数的值求其它三角函数值,是中档题.18.如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是线段AE上的动点.(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.【答案】解析:(Ⅰ)当M是线段AE的中点时,AC∥平面MDF.证明如下:连结CE,交DF于N,连结MN,由于M、N分别是AE、CE的中点,所以MN∥AC,由于MN⊂平面MDF,又AC⊈平面MDF,所以AC∥平面MDF.(Ⅱ)如图,将几何体ADE-BCF补成三棱柱ADE-B′CF,三棱柱ADE-B′CF的体积为,则几何体ADE-BCF的体积V ADE-BCF=V三棱柱ADE-BCF-V F-BB'C=.三棱锥F-DEM的体积V三棱锥M-DEF=,故两部分的体积之比为:(答1:4,4,4:1均可).【解析】(Ⅰ)首先,根据所给图形,得到当M是线段AE的中点时,AC∥平面MDF.然后,根据线面平行的判定定理进行证明即可;(Ⅱ)利用补图法,将几何体ADE-BCF补成三棱柱ADE-B′CF,然后,借助于柱体和椎体的体积公式进行求解即可.本题综合考查了线面平行的判定定理、柱体和椎体的体积公式等知识,属于中档题,在解题中,如果求解不规则几何体的体积时,一般用割补法进行运算和求解,这就是转化思想在解题中的应用.19.某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元;(1)试写出是S(ω)的表达式:(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:K2=【答案】解:(1)根据在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元,可得S(ω)=,,,,,,∞;(2)设“在本年内随机抽取一天,该天经济损失S大于200元且不超过600元”为事件A;由200<S≤600,得150<ω≤250,频数为39,∴P(A)=;(2)根据以上数据得到如表:K2的观测值K2=≈4.575>3.841所以有95%的把握认为空气重度污染与供暖有关.【解析】(1)根据在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的经济损失为2000元,可得函数关系式;(2)由200<S≤600,得150<ω≤250,频数为39,即可求出概率;(3)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论.本题考查概率知识,考查列联表,观测值的求法,是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关.20.设F1、F2分别是椭圆+y2=1的左、右焦点.(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.【答案】解:(Ⅰ)由题意易知,,所以,,,,设P(x,y),则,,=因为x∈[-2,2],故当x=0,即点P为椭圆短轴端点时,有最小值-2当x=±2,即点P为椭圆长轴端点时,有最大值1(Ⅱ)显然直线x=0不满足题设条件,可设直线l:y=kx+2,A(x1,y1),B(x2,y2),联立,消去y,整理得:∴,由>得:<或>,…①又°<∠<°∠>>∴>又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4==∵>,即k2<4,∴-2<k<2…②故由①、②得:<<或<<.【解析】(Ⅰ)根据题意,求出a,b,c的值,然后设P的坐标,根据PF1•PF2的表达式,按照一元二次函数求最值方法求解.(Ⅱ)设出直线方程,与已知椭圆联立方程组,运用设而不求韦达定理求出根的关系,求出k的取值范围.本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力.本题为中档题,需要熟练运用设而不求韦达定理.21.已知函数f(x)=e x+2x2-3x(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3).【答案】解:(1)∵f(x)=e x+2x2-3x,∴f′(x)=e x+4x-3,∴f′(1)=e+1,∵f(1)=e-1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y-e+1=(e+1)(x-1),即(e+1)x-y-2=0;(2)x≥1时,不等式f(x)≥ax,可得a≤,令g(x)=,∴g′(x)=,∵x≥1,∴g′(x)>0,∴g(x)在[1,+∞)上是增函数,∴g(x)min=g(1)=e-1,∴a≤e-1;(3)∵f'(0)=e0-3=-2<0,f'(1)=e+1>0,∴f'(0)•f'(1)<0令h(x)=f'(x)=e x+4x-3,则h'(x)=e x+4>0,f'(x)在[0,1]上单调递增,∴f'(x)在[0,1]上存在唯一零点,f(x)在[0,1]上存在唯一的极值点.取区间[0,1]作为起始区间,用二分法逐次计算如下由上表可知区间[0.3,0.6]的长度为0.3,所以该区间的中点x2=0.45,到区间端点的距离小于0.2,因此可作为误差不超过0.2一个极值点的相应x的值∴函数y=f(x)取得极值时,相应x≈0.45.【解析】(1)求导数,可得切线斜率,求出切点的坐标,即可得出切线方程;(2)分离参数,构造函数求最值,即可求实数a的取值范围;(3)证明f'(0)•f'(1)<0,f'(x)在[0,1]上单调递增,可得f'(x)在[0,1]上存在唯一零点,f(x)在[0,1]上存在唯一的极值点,再利用二分法求出x的近似值.本题考查导数知识的运用,考查导数的几何意义,考查函数的最值与零点,正确分离参数求最值是关键.22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【答案】解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12【解析】(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.23.圆的直径AB上有两点C,D,且|AB|=10,|AC|=|BD|=4,P为圆上一点,求|PC|+|PD|的最大值.【答案】解:如图建立平面直角坐标系,∵|AB|=10,∴圆的参数方程为(θ为参数),∵|AC|=|BD|=4,∴C(-1,0),D(1,0),∵点P在圆上,∴P坐标为(5cosθ,5sinθ),∴(|PC|+|PD|)2=(+)2=52+2,当cosθ=0时,(|PC|+|PD|)2max=104,则(|PC|+|PD|)max=2.【解析】如图建立平面直角坐标系,根据|AB|的长,表示出圆的参数方程,由|AC|=|BD|=4,求出C与D坐标,根据P在圆上,表示出P坐标,利用两点间的距离公式表示出|PC|+|PD|,利用余弦函数的值域即可求出最大值.此题考查了圆的参数方程,两点间的距离公式,余弦函数的值域,表示出圆的参数方程是解本题的关键.24.已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.【答案】证明:(1))(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy,因为a+b=1,所以a-1=-b,b-1=-a,又a,b均为正数,所以a(a-1)x2+b(b-1)y2+2abxy=-ab(x2+y2-2xy)=-ab(x-y)2≤0,当且仅当x=y 时等号成立;(2)==.当且仅当a=b时等号成立.【解析】(1)将所证的关系式作差(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy利用a+b=1,整理,可得a(a-1)x2+b(b-1)y2+2abxy=-ab(x-y)2≤0,当且仅当x=y 时等号成立;(2)将所证的不等式左端展开,转化为,进一步整理后,利用基本不等式即可证得结论成立.本题考查不等式的证明,着重考查作差法的应用,突出考查等价转化思想与逻辑推理能力,属于难题.。

相关文档
最新文档