2013广州二模理科数学试卷(word含答案精美版)
2013年高考真题理科数学(广东卷)及答案(word精校版)
绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式121()3V S S h =,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是A .(2,4)B .(2,4)-C .(4,2)-D .(4,2)4. 已知离散型随机变量X 的分布列为则X 的数学期望A .32B .2C .52D .3图1 正视图俯视图侧视图2 图3DABCO EA .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β7. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率 等于32,则C 的方程是 A .2214x = B .22145x y -= C .22125x y -= D .2212x =8. 设整数4n ≥,集合{1,2,3,,}X n = . 令集合{(,,)|,,,S x y z x y z X =∈且三条件x y z <<,y z x <<,z x y <<恰有一个成立}. 若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是 A .(,,)y z w ∈S ,(,,)x y w ∉S B .(,,)y z w ∈S ,(,,)x y w ∈S C .(,,)y z w ∉S ,(,,)x y w ∈S D .(,,)y z w ∉S ,(,,)x y w ∉S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9. 不等式220x x +-<的解集为 .10. 若曲线ln y kx x =+在点(1,)k处的切线平行于x 轴,则k = . 11. 执行如图2所示的程序框图,若输入n 的值为4,则输出s 的值 为 .12. 在等差数列{}n a 中,已知3810a a +=,则573a a += .13. 给定区域D :4440x y x y x +⎧⎪+⎨⎪⎩≥≤≥. 令点集0000{(,)|,T x y D x y =∈∈Z ,00(,)x y 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系,则l 的极坐标方程为 .15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E . 若6AB =, 2ED =,则BC = .图41 7 92 0 1 53 0图6A 'BC 图5OCDEB三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数())12f x x π=-,x ∈R .(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?其中A O '=(1)证明:A O '⊥平面BCDE ;(2)求二面角A CD B '--的平面角的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n a a a +++< .20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.21.(本小题满分14分)设函数2()(1)x f x x e kx =--()k ∈R .(1)当1k =时,求函数()f x 的单调区间;(2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M .图41 7 92 0 1 53 02013年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9. (2,1)- 10. 1-11. 7 12. 20 13.5 (二)选做题(14 ~ 15题,考生只能从中选做一题) 14.cos sin 20ρθρθ+-=(填sin()4πρθ+=cos(4πρθ-=15.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数())12f x x π=-,x ∈R .(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(23f πθ+. 16. 解:(1)())1661242f ππππ-=--=-==(2)因为3cos 5θ=,3(,2)2πθπ∈ 所以4sin 5θ==-所以4324sin 22sin cos 2()5525θθθ==⨯-⨯=-2222347cos 2cos sin ()()5525θθθ=-=--=-所以(2)))cos 2sin 233124f ππππθθθθθ+=+-=+=-72417(252525=---=17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?图6A 'A B C 图5OC D EBA 'OC DEBFC其中A O '=(1)证明:A O '⊥平面BCDE ;(2)求二面角A CD B '--的平面角的余弦值.18. 解:(1)连结OD ,OE因为在等腰直角三角形ABC 中,45B C ∠=∠=,CD BE ==3CO BO ==所以在△COD 中,OD ==OE = 因为AD A D A E AE ''====A O '= 所以222A OOD A D ''+=,222A O OE A E ''+=所以90A OD A OE ''∠=∠=所以A O OD '⊥,A O OE '⊥,OD OE O = 所以A O '⊥平面BCDE(2)方法一:过点O 作OF CD ⊥的延长线于F ,连接A F ' 因为A O '⊥平面BCDE根据三垂线定理,有A F CD '⊥所以A FO '∠为二面角A CD B '--的平面角在Rt △COF 中,cos 45OF CO ==在Rt △A OF '中,A F '== 所以cos OF A FO A F '∠==' 所以二面角A CD B '--方法二: 取DE 中点H ,则OH OB ⊥以O 为坐标原点,OH 、OB 、OA '分别为x 、y 、z 轴建立空间直角坐标系则(0,0,0),(0,3,0),(1,2,0)O A C D '--(0,3)OA '=是平面BCDE 的一个法向量 设平面A CD '的法向量为(,,)x y z =nCA '= ,(1,1,0)CD =所以30CA y CD x y ⎧'⋅=+=⎪⎨⋅=+=⎪⎩n n ,令1x =,则1y =-,z =所以(1,1=-n 是平面A CD '的一个法向量设二面角A CD B '--的平面角为θ,且(0,)2πθ∈所以cos 5OA OA θ'⋅==='⋅ n n所以二面角A CD B '--的平面角的余弦值为519.(本小题满分14分)设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . (1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .19. 解:(1)当1n =时,11221221133S a a ==---,解得24a =(2)32112233n n S na n n n +=--- ①当2n ≥时,321122(1)(1)(1)(1)33n n S n a n n n -=------- ②①-②得212(1)n n n a na n a n n +=----整理得1(1)(1)n n na n a n n +=+++,即111n n a a n n +=++,111n n a an n+-=+ 当1n =时,2121121a a -=-= 所以数列{}n a 是以1为首项,1为公差的等差数列 所以na n n=,即2n a n = 所以数列{}n a 的通项公式为2n a n =,*n ∈N (3)因为211111(1)1n a n n n n n=<=---(2n ≥) 所以222212111111111111111()()()123423341n a a a n n n+++=++++<++-+-++-- 11171714244n n =++-=-<20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值. 20. 解:(1)焦点(0,)F c (0)c >到直线:20l x y --=的距离2d ===,解得1c = 所以抛物线C 的方程为24x y =(2)设2111(,)4A x x ,2221(,)4B x x 由(1)得抛物线C 的方程为214y x =,12y x '=,所以切线PA ,PB 的斜率分别为112x ,212x所以PA :211111()42y x x x x -=- ①PB :222211()42y x x x x -=- ②联立①②可得点P 的坐标为1212(,)24x x x x +,即1202x x x +=,1204x xy = 又因为切线PA 的斜率为2011011142y x x x x -=-,整理得201011124y x x x =- 直线AB 的斜率221201212114442x x x x x k x x -+===- 所以直线AB 的方程为210111()42y x x x x -=-整理得20101111224y x x x x x =-+,即0012y x x y =-因为点00(,)P x y 为直线:20l x y --=上的点,所以0020x y --=,即002y x =-所以直线AB 的方程为00122y x x x =-+(3)根据抛物线的定义,有21114AF x =+,22114BF x =+所以2222221212121111||||(1)(1)()144164AF BF x x x x x x ⋅=++=+++ 22212121211[()2]1164x x x x x x =++-+ 由(2)得1202x x x +=,1204x x y =,002x y =+所以2222220000000001||||(48)121(2)214AF BF y x y x y y y y y ⋅=+-+=+-+=++-+22000192252()22y y y =++=++所以当012y =-时,||||AF BF ⋅的最小值为9221.(本小题满分14分)设函数2()(1)x f x x e kx =--()k ∈R . (1)当1k =时,求函数()f x 的单调区间;(2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M . 21. 解:(1)当1k =时,2()(1)x f x x e x =--()(1)2(2)x x x f x e x e x x e '=+--=-令()0f x '=,解得10x =,2ln 20x => 所以(),()f x f x '随x 的变化情况如下表:所以函数()f x 的单调增区间为(,0)-∞和(ln 2,)+∞,单调减区间为(0,ln 2)(2)2()(1)x f x x e kx =--,[0,]x k ∈,1(,1]2k ∈()2(2)x x f x xe kx x e k '=-=-()0f x '=,解得10x =,2ln(2)x k =令()ln(2)k k k ϕ=-,1(,1]2k ∈11()10k k k k ϕ-'=-=≤ 所以()k ϕ在1(,1]2上是增函数所以11()()022k ϕϕ>=>,即0ln(2)k k <<所以(),()f x f x '随x 的变化情况如下表:(0)1f =-,3()(1)k f k k e k =--()(0)f k f -=332(1)1(1)(1)(1)(1)(1)k k k k e k k e k k e k k k --+=---=---++2(1)[(1)]k k e k k =--++因为1(,1]2k ∈,所以10k -≤对任意的1(,1]2k ∈,x y e =的图象恒在21y k k =++下方,所以2(1)0k e k k -++≤ 所以()(0)0f k f -≥,即()(0)f k f ≥所以函数()f x 在[0,]k 上的最大值3()(1)k M f k k e k ==--。
2013年广州二模理科数学试卷及答案(纯word版)
广州市2013届普通高中毕业班综合测试(二)数学(理科)
18.(本小题满分14分)
等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足==EA CE DB AD 图3).将ΔADE 沿DE 折起到ΔA 1DE 的位置,使二面角A 1-DE-B 成直二面角, 连结A 1B 、A 1C (如图4).
(1) 求证:A 1D 丄平面BCED;
(2) 在线段BC 上是否存在点P ,使直线PA 1与平面A 1BD 所成的角为600
?若存在,求出PB 的长;若不存在,请说明理由
19.(本小题满分W 分)
巳知a>0,设命题p:函数f(x)=x 2
-2ax+ 1-2a 在区间[0,1]上与x 轴有两个不同 的交点;命题q: g(x) =|x-a|-ax 在区间(0, + ∞ )上有最小值.若q p ∧⌝)(是真命题,求实数a 的取值范围. 20.(本小题满分14分)
经过点F (0,1)且与直线y= -1相切的动圆的圆心轨迹为M 点A 、D 在轨迹M 上, 且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、 C.
(1) 求轨迹M 的方程;
(2) 证明:CAD BAD ∠=∠;
(3) 若点D 到直线AB 的距离等于
||22AD ,且ΔABC 的面积为20,求直线BC 的方程. 21.(本小题满分14分)
设a n 是函数*)(1)(23N n x n x x f ∈-+=的零点.
(1)证明:0<a n <1;(2)2
3...21<+++<n a a a。
广东省广州市2013年普通高中毕业班综合测试(二)理科数学考试试卷(word版)
试卷类型:A2013年广州市普通高中毕业班综合测试(二)数 学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型 (A) 填涂在答题卡相应位置上.2.选择题每小题选出答案后.用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 如果事件A 、B 相互独立,那么()()()P A B P A P B = .如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,,)k k n kn n P k C p p k n -=-= . 两数立方差公式:3322() ()a b a b a ab b -=-++.一、选择题:本大题共8小题.每小题5分,满分40分.在每小题给出的四个选项中.只有一项是符合题目要求的 l .已知i 为虚数单位,若复数(1)(1)a a -++i 为实数,则实数a 的值为A .-1B .0C . 1D .不确定2.已知全集U A B = 中有m 个元素,()()U UA A痧中有n 个元索,若A B 非空,则A B 的元素个数为A .mnB .m n +C .m n -D .n m -3.已知向量()sin ,cos a x x =,向量(b =,则a b +的最大值为A .1BC .3D .94.若m ,n 是互不相同的空间直线,α是平面,则下列命题中正确的是A .若//m n ,n α⊂,则//m αB .若//m n ,//n α,则//m αC .若//m n ,n α⊥,则m α⊥D .若m n ⊥,n α⊥,则m α⊥5.在如图1所示的算法流程图中,若()2x f x =,()3g x x =,则()2h 的值为(注:框图中的赋值符号“=”也可以写成“←”或“=”) A .9 B .8 C .6 D .46.已知点(),p x y 的坐标满足10,30,2x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩O 为坐标原点,则PO 的最小值为A.2B.2CD7.已知函数()sin f x x =,若12,[,]22x x ππ∈-且()()12f x f x <,则下列不等式中正确的是A .12x x >B .12x x <C .120x x +<D .2212x x < 8.一个人以6米/秒的匀速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始作变速直线行驶 (汽车与人的前进方向相同),汽车在时刻t 的速度为()v t t =米/秒.那么.此人A .可在7秒内追上汽车B .可在9秒内追上汽车C .不能追上汽车,但其间最近距离为14米D .不能追上汽车,但其间最近距离为7米二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分 (一) 必做题 (9~13题)9.若函数()cos() cos() (>0)2f x x x πωωω=-的最小正周期为π,则m 的值为 .10.已知椭圆C的离心率2e =,且它的焦点与双曲线2224x y -=的焦点重台,则椭圆C 的方程为 .11.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是. 12.图2是一个有n 层(2)n ≥的六边形点阵.它的中心是一个点,算作 第一层.第2层每边有2个点.第3层每边有3个点,…,第n 层 每边有n 个点,则这个点阵的点数共有 个.13.已知2nx ⎫⎪⎭的展开式中第5项的系数与第3项的系数比为56:3,则该展开式中2x 的系数为 . (二) 选做题 (14~15题.考生只能从中选做一题)14.(坐标系与参数方程选做题) 已知直线l 的参数方程为142x ty t =+⎧⎨=-⎩(参数t R ∈),圆C 的参数方程为2cos 22sin x y θθ=+⎧⎨=⎩ (参数[0,2]θπ∈),则直线l 被圆C 所截得的弦长为 .15.(几何证明选讲选做题) 如图3,半径为5的圆O 的两条弦AD 和BC 相交于点P ,OD BC ⊥,P 为AD 的中点,6BC =,则弦AD 的长度为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知tan 24πα⎛⎫+=⎪⎝⎭,1tan 2β=.(1) 求tan α值;(2) 求sin()2sin cos 2sin sin cos()αβαβαβαβ+-++的值.17.(本小题满分12分)如图4,在直角梯形ABCD 中,90ABC DAB ∠=∠=°.30CAB ∠=°,1BC =,AD CD =,把DAC ∆沿对角线AC 折起后如图5所示 (点D 记为点P ).点P 在平面ABC 上的正投影E 落在线段AB 上,连接PB . (1) 求直线PC 与平面PAB 所成的角的大小;(2) 求二面角P AC B --的大小的余弦值.18.(本小题满分14分)一射击运动员进行飞碟射击训练,每一次射击命中飞碟的概率p 与运动员离飞碟的距离s (米)成反比.每一个飞碟飞出后离运动员的距离s (米)与飞行时间t (秒)满足15(1) (04)s t t =+≤≤,每个飞碟允许该运动员射击两次 (若第一次射击命中,则不再进行第二次射击).该运动员在每一个飞碟飞出0.5秒时进行第一次射击.命中的概率为45,当第一次射击没有命中飞碟,则在第一次射击后0.5秒进行第二次射击,子弹的飞行时间忽略不计.(1) 在第一个飞碟的射击训练时,若该运动员第一次射击没有命中,求他第二次射击命中飞碟的概率;(2) 求第一个飞碟被该运动员命中的概率;(3) 若该运动员进行三个飞碟的射击训练 (每个飞碟是否被命中互不影响),求他至少命中两个飞碟的概率19.(本小题满分14分)已知抛物线C :22 (0)x py p => 的焦点为F ,A 、B 是抛物线C 上异于坐标原点O 的不同两点,抛物线C 在点A 、B 处的切线分别为1l 、2l ,且12l l ⊥,1l 与2l 相交于点D .(1) 求点D 的纵坐标;(2) 证明:A 、B 、F 三点共线;(3) 假设点D 的坐标为3,12⎛⎫- ⎪⎝⎭,问是否存在经过A 、B 两点且与1l 、2l 都相切的圆,若存在,求出该圆的方程;若不存在,请说明理由.20.(本小题满分14分)已知函数()32(,)f x x x ax b a b R =-++∈的一个极值点为1x =.方程20ax x b ++=的两个实根为α,()βαβ<,函数()f x 在区间[,]αβ上是单调的(1) 求a 的值和b 的取值范围;(2) 若1x ,2[,]x αβ∈证明:()()121f x f x -≤.21.(本小题满分14分)已知数列{}n a 和{}n b 满足11a b =,且对任意n N ∈*都有1n n a b +=,211n n n na ba a +=-. (1) 求数列{}n a 和{}nb 的通项公式; (2) 证明:31324122341123...1 (1) ...n n n na a aa a a a a n nb b b b b b b b ++++++<+<++++.。
广州二模纯word试题及答案
2013年广州二模化学试题7.下列实验能达到实验目的的是A.用乙醇萃取碘水中的碘B.用饱和NaHCO3溶液除去CO2中的HClC.用Ba(NO3)2溶液鉴别SO32-和SO42-D.用淀粉KI溶液鉴别FeCl3溶液和溴水8.下列说法正确的是A.溴乙烷和甲醇都能发生消去反应B.乙烯和苯都能与酸性KMnO4溶液发生反应C.糖类和蛋白质都是人体需要的营养物质D.纤维素和油脂的水解产物都是葡萄糖9.设n A为阿伏加德罗常数的数值,下列说法正确的是A.常温下,18gH2O中含有2n A个氢原子B.标准状况下,22.4L苯含有n A个苯分子C.1mol Na与足量水反应转移2n A个电子D.0.1 mol·L-1CH3COOH溶液中含有0.1n A个CH3COO-10.下列物质的制取,实验操作正确的是A.将CuCl2溶液置于蒸发皿中加热蒸干,可制取无水CuCl2固体B.将NH4HCO3饱和溶液置于蒸发皿中加热蒸干,可制取NH4HCO3固体C.向FeCl3饱和溶液缓慢滴入过量氨水加热,可制取Fe(OH)3胶体D.向电石中缓慢滴入饱和食盐水,可制取C2H211.下列离子方程式正确的是A.铝溶于NaOH溶液:Al +2OH-=AlO2-+H2↑B.铜溶于稀硝酸:3Cu+ 8H+ +2NO3-=3Cu2++2NO↑ + 4H2OC.碳酸镁中滴加稀盐酸:CO32-+2H+ =CO2↑ + H2OD.稀硫酸中滴加氢氧化钡溶液:H+ + OH=H2O12.短周期元素甲、乙、丙、丁、戊的原子序数依次增大,甲是周期表中原子半径最小的元素,乙形成的气态氢化物的水溶液呈碱性,乙与丁同族,丙、丁、戊同周期,丙单质可制成半导体材料,戊的最高化合价为+7,则A.原子半径:乙>丁>丙B.非金属性:丙>丁>戊C.甲与戊形成的化合物是共价化合物D.乙、丙、丁最高价氧化物对应的水化物均是强酸22.HA为酸性略强于醋酸的一元弱酸,则下列叙述正确的是A.0.1 mol·L-1 HA 中c(H+) = c(OH-) + c(A-)B.0.1 mol·L-1 HA 与0.1 mol·L-1NaOH 混合至溶液呈中性:C.0.1 mol·L-1 NaA 中c(Na+) > c(OH-)>c(A-)> c(H+)D.0.1 mol·L-1 HA中加入少量NaA固体,HA的电离常数减小23.下列实验现象预测正确的是A.实验I:电流表A指针偏转,碳棒上有红色固体析出B.实验II:电流表A指针偏转,铁极上有无色气体产生C.实验III:碳棒上有无色气体产生,铁极上有黄绿色气体产生D.实验IV:粗铜溶解,精铜上有红色固体析出30.(16分)钯(Pd)催化偶联反应是近年有机合成的研究热点之一。
2013年高考真题理科数学(广东卷)及答案(word精校版)
绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试【广东卷】数学【理科】本试卷共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型【A 】填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式121()3V S S h =,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高、一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的、 1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N =A 、{0}B 、{0,2}C 、{2,0}-D 、{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A 、4B 、3C 、2D 、13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是A 、(2,4)B 、(2,4)-C 、(4,2)-D 、(4,2)4. 已知离散型随机变量X 的分布列为则X 的数学期望A 、32B 、2C 、52D 、3图1 正视图 俯视图侧视图21图3DABCO E5. 某四棱台的三视图如图1所示,则该四棱台的体积是 A 、4 B 、143 C 、163D 、6 6. 设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A 、若α⊥β,m ⊂α,n ⊂β,则m ⊥nB 、若α∥β,m ⊂α,n ⊂β,则m ∥nC 、若m⊥n ,m ⊂α,n ⊂β,则α⊥βD 、若m ⊥α,m ∥n ,n ∥β,则α⊥β7. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率 等于32,则C 的方程是 A 、2214x = B 、22145x y -= C 、22125x y -= D 、2212x =8. 设整数n ≥,集合{1,2,3,,}X n =. 令集合{(,,)|,,,S x y z x y z X =∈且三条件x y z <<,y z x <<,z x y <<恰有一个成立}. 若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是 A 、(,,)y z w ∈S ,(,,)x y w ∉S B 、(,,)y z w ∈S ,(,,)x y w ∈S C 、(,,)y z w ∉S ,(,,)x y w ∈S D 、(,,)y z w ∉S ,(,,)x y w ∉S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分、 【一】必做题【9 ~ 13题】9. 不等式220x x +-<的解集为 .10. 若曲线ln y kx x =+在点(1,)k 处的切线平行于x 轴,则k = . 11. 执行如图2所示的程序框图,若输入n 的值为4,则输出s 的值 为 .12. 在等差数列{}n a 中,已知3810a a +=,则573a a += .13. 给定区域D :4440x y x y x +⎧⎪+⎨⎪⎩≥≤≥. 令点集0000{(,)|,T xy D x y=∈∈Z ,00(,)x y 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.【二】选做题【14 ~ 15题,考生只能从中选做一题】14.【坐标系与参数方程选做题】已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩【t 为参数】,C 在点【1,1】处的切线为l ,以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系,则l 的极坐标方程为 .15.【几何证明选讲选做题】如图3,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E . 若6AB =, 2ED =,则BC = .图41 7 92 0 1 53 0图6A 'BC 图5OCD EB三、解答题:本大题共6小题,满分80分、解答须写出文字说明、证明过程和演算步骤、 16.【本小题满分12分】已知函数())12f x x π=-,x ∈R .【1】求()6f π-的值;【2】若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+.17.【本小题满分12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.【1】根据茎叶图计算样本均值;【2】日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?90,BC =DE 折起,得到如图其中A O '=【1】证明:A O '⊥平面BCDE ;【2】求二面角A CD B '--的平面角的余弦值.19.【本小题满分14分】设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . 【1】求2a 的值;【2】求数列{}n a 的通项公式; 【3】证明:对一切正整数n ,有1211174n a a a +++<.20.【本小题满分14分】已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.【1】求抛物线C 的方程;【2】当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程; 【3】当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.21.【本小题满分14分】设函数2()(1)x f x x e kx =--()k ∈R . 【1】当1k =时,求函数()f x 的单调区间;【2】当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M .图41 7 92 0 1 53 02013年普通高等学校招生全国统一考试【广东卷】数学【理科】参考答案一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的、二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分、 【一】必做题【9 ~ 13题】9. (2,1)- 10. 1-11. 7 12. 20 13.5 【二】选做题【14 ~ 15题,考生只能从中选做一题】 14.cos sin 20ρθρθ+-=【填sin()4πρθ+=cos(4πρθ-=15.三、解答题:本大题共6小题,满分80分、解答须写出文字说明、证明过程和演算步骤、16.【本小题满分12分】已知函数())12f x x π=-,x ∈R .【1】求()6f π-的值;【2】若3cos 5θ=,3(,2)2πθπ∈,求(23f πθ+. 16. 解:【1】())1661242f ππππ-=--=-==【2】因为3cos 5θ=,3(,2)2πθπ∈ 所以4sin 5θ==-所以4324sin 22sin cos 2()5525θθθ==⨯-⨯=-2222347cos 2cos sin ()()5525θθθ=-=--=-所以(2)))cos 2sin 233124f ππππθθθθθ+=+-=+=-72417(252525=---=17.【本小题满分12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.【1】根据茎叶图计算样本均值;【2】日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人?图6A 'A B C 图5OC D EBA 'OC DEBFC90,BC =DE 折起,得到如图其中A O '=【1】证明:A O '⊥平面BCDE ;【2】求二面角A CD B '--的平面角的余弦值.18. 解:【1】连结OD ,OE因为在等腰直角三角形ABC 中,45B C ∠=∠=,CD BE ==3CO BO ==所以在△COD 中,5OD ==,同理得OE =因为AD A D A EAE ''====A O '= 所以222A O OD A D ''+=,222A O OE A E ''+=所以90A OD A OE ''∠=∠=所以A O OD '⊥,A O OE '⊥,OD OE O = 所以AO '⊥平面BCDE【2】方法一:过点O 作OF CD ⊥的延长线于F ,连接A F ' 因为A O '⊥平面BCDE根据三垂线定理,有A F CD '⊥所以A FO '∠为二面角A CD B '--的平面角在Rt △COF 中,32cos 452OF CO == 在Rt △A OF '中,A F '== 所以cos 5OF A FO A F '∠==' 所以二面角A CD B '--的平面角的余弦值为5方法二: 取DE 中点H ,则OH OB ⊥以O 为坐标原点,OH 、OB 、OA '分别为x 、y 、z 轴建立空间直角坐标系则(0,0,0),(0,3,0),(1,2,0)O A C D '--(0,3)OA '=是平面BCDE 的一个法向量 设平面A CD '的法向量为(,,)x y z =n(0,3,3)CA '=,(1,1,0)CD =所以30CA y CD x y⎧'⋅=+=⎪⎨⋅=+=⎪⎩n n ,令1x =,则1y =-,z = 所以(1,1=-n 是平面A CD '的一个法向量设二面角A CD B '--的平面角为θ,且(0,)2πθ∈所以cos OA OA θ'⋅==='⋅n n所以二面角A CD B '-- 19.【本小题满分14分】设数列{}n a 的前n 项和为n S ,已知11a =,2121233n n S a n n n +=---,*n ∈N . 【1】求2a 的值;【2】求数列{}n a 的通项公式;【3】证明:对一切正整数n ,有1211174n a a a +++<.19. 解:【1】当1n =时,11221221133S a a ==---,解得24a =【2】32112233n n S na n n n +=--- ①当2n ≥时,321122(1)(1)(1)(1)33n n S n a n n n -=------- ②①-②得212(1)n n n a na n a n n +=----整理得1(1)(1)n n na n a n n +=+++,即111n n a a n n +=++,111n n a an n+-=+ 当1n =时,2121121a a -=-= 所以数列{}n a 是以1为首项,1为公差的等差数列 所以na n n=,即2n a n = 所以数列{}n a 的通项公式为2n a n =,*n ∈N 【3】因为211111(1)1n a n n n n n=<=---【2n ≥】 所以222212111111111111111()()()123423341n a a a n n n+++=++++<++-+-++-- 11171714244n n =++-=-<20.【本小题满分14分】已知抛物线C 的顶点为原点,其焦点(0,)F c (0)c >到直线:20l x y --=的距离为2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. 【1】求抛物线C 的方程;【2】当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程;【3】当点P 在直线l 上移动时,求||||AF BF ⋅的最小值. 20. 解:【1】焦点(0,)F c (0)c >到直线:20l x y --=的距离d ===,解得1c = 所以抛物线C 的方程为24x y =【2】设2111(,)4A x x ,2221(,)4B x x 由【1】得抛物线C 的方程为214y x =,12y x '=,所以切线PA ,PB 的斜率分别为112x ,212x所以PA :211111()42y x x x x -=- ①PB :222211()42y x x x x -=- ②联立①②可得点P 的坐标为1212(,)24x x x x +,即1202x x x +=,1204x xy = 又因为切线PA 的斜率为2011011142y x x x x -=-,整理得201011124y x x x =- 直线AB 的斜率221201212114442x x x x x k x x -+===- 所以直线AB 的方程为210111()42y x x x x -=-整理得20101111224y x x x x x =-+,即0012y x x y =-因为点00(,)P x y 为直线:20l x y --=上的点,所以0020x y --=,即002y x =-所以直线AB 的方程为00122y x x x =-+【3】根据抛物线的定义,有21114AF x =+,22114BF x =+所以2222221212121111||||(1)(1)()144164AF BF x x x x x x ⋅=++=+++ 22212121211[()2]1164x x x x x x =++-+ 由【2】得1202x x x +=,1204x x y =,002x y =+所以2222220000000001||||(48)121(2)214AF BF y x y x y y y y y ⋅=+-+=+-+=++-+22000192252()22y y y =++=++所以当012y =-时,||||AF BF ⋅的最小值为9221.【本小题满分14分】设函数2()(1)x f x x e kx =--()k ∈R . 【1】当1k =时,求函数()f x 的单调区间;【2】当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M . 21. 解:【1】当1k =时,2()(1)x f x x e x =--()(1)2(2)x x x f x e x e x x e '=+--=-令()0f x '=,解得10x =,2ln 20x => 所以(),()f x f x '随x 的变化情况如下表:所以函数()f x 的单调增区间为(,0)-∞和(ln 2,)+∞,单调减区间为(0,ln 2) 【2】2()(1)x f x x e kx =--,[0,]x k ∈,1(,1]2k ∈()2(2)x x f x xe kx x e k '=-=-()0f x '=,解得10x =,2ln(2)x k =令()ln(2)k k k ϕ=-,1(,1]2k ∈11()10k k k k ϕ-'=-=≤ 所以()k ϕ在1(,1]2上是增函数所以11()()022k ϕϕ>=>,即0ln(2)k k <<所以(),()f x f x '随x 的变化情况如下表:(0)1f =-,3()(1)k f k k e k =--()(0)f k f -=332(1)1(1)(1)(1)(1)(1)k k k k e k k e k k e k k k --+=---=---++2(1)[(1)]k k e k k =--++因为1(,1]2k ∈,所以10k -≤对任意的1(,1]2k ∈,x y e =的图象恒在21y k k =++下方,所以2(1)0k e k k -++≤ 所以()(0)0f k f -≥,即()(0)f k f ≥所以函数()f x 在[0,]k 上的最大值3()(1)k M f k k e k ==--。
2013广东高考卷(理科数学)试题及详解
2013广东高考卷(理科数学)模拟试卷一、选择题(每题1分,共5分)1. 设集合A={x|x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 32. 若函数f(x)=x²2ax+a²+2在区间(∞,1)上单调递减,则实数a的取值范围是()A. a≤1B. a≥1C. a≤0D. a≥03. 在等差数列{an}中,已知a1=1,a3+a5=14,则数列的公差d为()A. 3B. 4C. 5D. 64. 若向量a=(2,1),b=(1,2),则2a+3b的模长为()A. 5B. √5C. 10D. 2√55. 设函数f(x)=|x1|,则f(x)的图像在x=1处()A. 连续B. 断开C. 可导D. 不可导二、判断题(每题1分,共5分)1. 若a,b为实数,且a≠b,则a²≠b²。
()2. 两个平行线的斜率相等。
()3. 在等差数列中,若m+n=2p,则am+an=2ap。
()4. 若矩阵A的行列式为0,则A不可逆。
()5. 任何两个实数的和都是实数。
()三、填空题(每题1分,共5分)1. 已知函数f(x)=3x²4x+1,则f(1)=______。
2. 若向量a=(1,2),b=(2,1),则a·b=______。
3. 在等比数列{an}中,已知a1=2,公比q=3,则a4=______。
4. 二项式展开式(1+x)⁶的常数项为______。
5. 设平面直角坐标系中,点A(2,3),则点A关于原点的对称点坐标为______。
四、简答题(每题2分,共10分)1. 简述函数的单调性定义。
2. 请写出等差数列的通项公式。
3. 矩阵乘法的运算规律有哪些?4. 求解一元二次方程x²5x+6=0。
5. 简述平面向量的线性运算。
五、应用题(每题2分,共10分)1. 已知函数f(x)=2x²4x+3,求f(x)的最小值。
2013年广州二模理科数学试题附详细解答(纯WORD版)
试卷类型:B2013年广州市普通高中毕业班综合测试(二)数学(理科)2013.4 本试卷共4页,21小题, 满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于任意向量a 、b 、c ,下列命题中正确的是 A. |a.b | = |a | |b | B. |a +b |=|a |+|b | C. (a .b )c =a (b -c )D. a .a =|a |22.直线1y kx =+与圆2220x y y +-=的位置关系是A .相交B .相切C .相离D .取决于k 的值文3(理1).若1i -(i 是虚数单位)是关于x 的方程220x px q ++=(p q ∈R 、)的一个解,则p q +=A .3-B .1-C .1D .34.已知函数()y f x =的图象如图1所示,则其导函数()y f x '=的图象可能是图1A .B .C .D .5.若函数cos 6y x πω⎛⎫=+⎪⎝⎭()*ω∈N 的一个对称中心是06π⎛⎫ ⎪⎝⎭,,则ω的最小值为A .1B .2C .4D .86.一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两 部分,则截面的面积为 A .14π B .π C .94π D .4π7.某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是A .8年B .10年C .12年D .15年8.记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为{}12min ,,n x x x …,,则{}{}2m ax m in 116x x x x +-+-+=,,A .34B .1C .3D .72二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔的数量之比依次为2﹕3﹕4.现用分层抽样的方法抽出一个容量为n 的样本,其中甲型钢笔有12支,则此样本容量n = . 10.已知 α为锐角,且3cos 45απ⎛⎫+= ⎪⎝⎭,则 sin α= .11.用0,1,2,3,4,5这六个数字,可以组成 个没有重复数字且能被5整除的五位数(结果用数值表示).12.已知函数()22f x x x =-,点集()()(){}M x y f x fy =+,≤2,()()(){}N x y fx f y =-,≥0,则M N 所构成平面区域的面积为 .图213.数列}{n a 的项是由1或2构成,且首项为1,在第k 个1和第1k +个1之间有21k -个2,即数列}{n a 为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列}{n a 的前n 项和为n S ,则20S = ;2013S = .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)在△ABC 中,D 是边AC 的中点,点E 在线段B D 上,且满足13BE BD =,延长A E 交BC 于点F ,则BF FC的值为 .15.(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为80AB =m ,70BC =m ,50CA =m .假定A 、B 、C 、O 四点在同一平面内. (1)求BAC ∠的大小;(2)求点O 到直线BC 的距离.17.(本小题满分12分)已知正方形ABCD 的边长为2,E F G H 、、、分别是边AB BC CD DA 、、、的中点.(1)在正方形ABCD 内部随机取一点P ,求满足||P H <(2)从A B C D E F G H 、、、、、、、这八个点中,随机选取两个点,记这两个点之间的距离为ξ,求随机变量ξ的分布列与数学期望E ξ.18.(本小题满分14分)等边三角形ABC 的边长为3,点D 、E 分别是边A B 、AC 上的点,且满足AD DB=12CE EA=(如图3).将△A D E 沿D E 折起到△1A D E 的位置,使二面角1A D E B --成直二面角,连结1A B 、1A C(如图4).(1)求证:1A D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线1P A 与平面1A B D 所成的角为60 ?若存在,求出PB 的长,若不存在,请说明理由.19.(本小题满分14分)已知0a >,设命题p :函数()2212f x x ax a =-+-在区间[]0,1上与x 轴有两个不同的交点;命题q :()g x x a ax =--在区间()0,+∞上有最小值.若()p q ⌝∧是真命题,求实数a 的取值范围.20.(本小题满分14分)经过点()0,1F 且与直线1y =-相切的动圆的圆心轨迹为M .点A 、D 在轨迹M 上,且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、C .(1)求轨迹M 的方程; (2)证明:BAD CAD ∠=∠; (3)若点D 到直线A BD ,且△ABC 的面积为20,求直线BC 的方程.21.(本小题满分14分)设n a 是函数()321f x x n x =+-()*n ∈N 的零点.(1)证明:01n a <<; (2)证明:1n n <+1232n a a a +++<.2013年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.1、分析:|||||||cos ,|a b a b a b =<> ;由向量加法的几何意义||||||a b a b ++ …;()a b c是与c 平行的向量,()a b c是与a 平行的向量;D 正确,即22||a a a a ==2、分析:圆2220x y y +-=即22(1)1x y +-=,圆心为(0,1),半径1r =,圆心到直线1y kx =+即10kx y -+=得距离0d ==,即直线经过圆心,故直线与圆相交3、分析:因为1i -是方程220x px q ++=的一个解,所以2(1i)2(1i)0p q -+-+=,整理得(2)(22)i 0p q p ++--=,解得1p =-,2q =,所以1p q +=4、分析:用排除法,当0x >时,()f x 单调递减,故此时()0f x '<,即()f x '的图象在x 轴下方,排除B 、D ;当0x <时,()f x 先增后减再增,故此时()0()0()0f x f x f x '''>→<→>,排除C ;A 正确5、分析:由题意cos()066ππω⨯+=,代入检验2ω=适合6、分析:圆锥直观图如图,设截面圆半径为r ,所截小圆锥的高为h ,由题意2221131173433r hr hπππ=⨯⨯-,化简2836r h =,又由三角形相似得34r h =,即34h r =,联立解得294r =,故截面圆面积为294r ππ=7、分析:设使用了n 年,则年平均费用为15(1.50.3)(1.520.3)(1.530.3)(1.50.3)n n++++⨯++⨯+++⨯15 1.50.3(123)n n n++++++=(1)15 1.50.32n n n n+++⨯=150.31.65 1.652n n=+++…当且仅当150.32n n=时,即2100n =,10n =取到最小值8、分析:2m in{1,1,6}x x x x +-+-+的图象如下图中的红色部分,其最大值2m ax{m in{1,1,6}}x x x x +-+-+在两直线16y x y x =+⎧⎨=-+⎩的交点处取到,解得交点坐标为57(,)22,即最大值为72二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题第一个空2分,第二个空3分.9.54 1010 11.216 12.2π 13.36;3981 14.14159、分析:设乙型号x 支,丙型号y 支,则12234x y ==,得18x =,24y =,则样本容量12182454n =++=10、分析:因为02πα<<,所以3444πππα<+<,又3cos()45πα+=,所以4sin()45πα+==,故sin sin[()]44ππαα=+-sin()coscos()sin4444ππππαα=+-+43525210=⨯-⨯=11、分析:因为该五位数能被5整除,所以其末位是0或5,若末位是0,则从1,2,3,4,5中任取4个数字填前4位,有45A 5432120=⨯⨯⨯=种;若末位是5,因为0不能在首位,先从1,2,3,4中任取1个数字填首位,有14C 种,再将余下的3个数字连同0共4个数字排在中间三个数位,有34A 种,故末位是5的有1344C A 443296=⨯⨯⨯=种;综上,满足条件的五位数共有12096216+=种 12、分析:2222{(,)|()()2}{(,)|222}{(,)|(1)(1)4}M x y f x f y x y x x y y x y x y =+=-+-=-+-剟 M 表示以(1,1)为圆心,半径2r =的圆及其内部;2222{(,)|()()0}{(,)|220}{(,)|(1)(1)}{(,)|1||1|}N x y f x f y x y x x y y x y x y x y x y =-=--+=--=--厖 …N 表示两条相交直线构成的两个部分;在同一坐标系中画出上述两个图形,其公共部分如图中阴影部分所示,其面积21222S ππ=⨯=13、分析:2036S =;截至第21k -个 2 时,共有2(121)[135(21)]2k k k k k k k +-+++++-=+=+ 项,估计2k k +的值,当44k =时,共21980k k +=项,要达到2013项,只需从其后续的取1个1,32个 2,故201344(187)451(13587)23224526439812S +=⨯+++++⨯+⨯=+⨯+=14、分析:如图,作//D H BC ,交A F 于G ,交A B 于H ,设H G x =,因为D 是A C 中点,所以G 、H 分别是A F 、A B 中点, 所以2B F x =,又BEF ∆∽D E G ∆,又13B E B D =,所以24G D B F x ==,5H D H G G D x =+=,由中位线知10B C x =,1028F C B C B F x x x =-=-=, 所以2184B F x F Cx==15、分析:点(1,)2A π的平面直角坐标为(0,1)A ,由2sin 4cos ρθθ=得22sin 4cos ρθρθ=,即其平面直角坐标方程为24y x =(抛物线),由cos 10ρθ+=得10x +=,(恰是抛物线的准线),作图如下:由抛物线定义知||||||PA d PA PF +=+,(F 为抛物线的焦点(1,0)) 由两点之间线段最短知,当P 移动到直线A F 与抛物线的交点'P 时||||PA PF +最小,此时|||||||'||'|||PA d PA PF P A P F AF +=+=+==三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题主要考查解三角形等基础知识,考查正弦定理与余弦定理的应用,本小题满分12分)解:(1)在△A B C 中,因为80A B =m ,70B C =m ,50C A =m ,由余弦定理得222cos 2AB AC BC BAC AB AC+-∠=⨯⨯ ……………………………………………………2分2228050701280502+-==⨯⨯. ……………………………3分因为B A C ∠为△A B C 的内角,所以3B AC π∠=.……………………………………………………4分(2)方法1:因为发射点O 到A 、B 、C 三个工作点的距离相等,所以点O 为△A B C 外接圆的圆心.……………………………………………………………………5分设外接圆的半径为R , 在△A B C 中,由正弦定理得2sin BCR A=, ……………………………………………………………7分 因为70B C =,由(1)知3A π=,所以sin 2A =.所以70232R ==,即3R =.…………………8分过点O 作边BC 的垂线,垂足为D ,…………………………9分在△O B D中,3O B R ==,703522BC BD ===,所以O D ==……………………………………11分3=所以点O 到直线BC的距离为3m .……………………………………………………………12分方法2:因为发射点O 到A 、B 、C 三个工作点的距离相等,所以点O 为△A B C 外接圆的圆心.……………………5分 连结OB ,OC ,过点O 作边BC 的垂线,垂足为D , …………………6分 由(1)知3B AC π∠=,所以3BO C 2π∠=.所以3BO D π∠=.………………………………………9分在Rt △BOD 中,703522BC BD ===,所以35tan tan 603BD O D BO D===∠11分所以点O 到直线BC的距离为3m .……………………………………………………………12分17.(本小题主要考查几何概型、随机变量的分布列与数学期望等基础知识,考查运算求解能力与数据处理能力等,本小题满分12分)解:(1)这是一个几何概型.所有点P 构成的平面区域是正方形ABCD 的内部,其面积是224⨯=.……………………………1分满足||P H <P 构成的平面区域是以HABCD 内部的公共部分,它可以看作是由一个以H圆心角为2π的扇形HEG 的内部(即四分之一个圆)与两个直角边为1的等腰直角三角形(△AEH 和△DGH )内部 构成. ……………………………………………………………2分 其面积是2112111422π⨯π⨯+⨯⨯⨯=+.………………3分 所以满足||P H <112484π+π=+.………………………………………………………4分(2)从A B C D E F G H 、、、、、、、这八个点中,任意选取两个点,共可构成28C 28=条不同的线段.……………………………………5分其中长度为1的线段有8条,长度为的线段有4条,长度为2的线段有6条,长度为8条,长度为2条.所以ξ所有可能的取值为12,7分且()821287P ξ===,(41287P ξ===,()6322814P ξ===,(82287P ξ===,(212814P ξ===. ………………………………………9分所以随机变量ξ的分布列为:随机变量ξ的数学期望为21321127714714E ξ=⨯++⨯++7=.………12分18.(本小题主要考查空间直线与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力等,本小题满分14分) 证明:(1)因为等边△ABC 的边长为3,且AD DB=12CE EA=,所以1AD =,2A E =. 在△A D E 中,60DAE ∠=,由余弦定理得DE ==因为222AD DE AE +=, 所以A D D E ⊥. 折叠后有1A D D E ⊥.……………………………………………………………………………………2分因为二面角1A D E B --是直二面角,所以平面1A D E ⊥平面BCED . …………………………3分又平面1A D E 平面BCED D E =,1A D ⊂平面1A D E ,1A D D E ⊥,……10分所以1A D ⊥平面BCED . ………………………………………………………………………………4分(2)解法1:假设在线段BC 上存在点P ,使直线1P A 与平面1A B D 所成的角为60 .如图,作PH BD ⊥于点H ,连结1A H 、1A P .………………5分由(1)有1A D ⊥平面BCED ,而P H ⊂平面BCED ,所以1A D ⊥P H .…………………………………………………6分 又1A D BD D = , 所以PH ⊥平面1A B D .…………………………………………………………………………………7分所以1P A H ∠是直线1PA 与平面1A B D 所成的角. ……………………………………………………8分设P B x =()03x ≤≤,则2x BH =,2PH x =.…………………………………………………9分在Rt △1P A H 中,160P A H ∠=,所以112A H x =.………………………………………………10分在Rt △1A D H 中,11A D =,122D H x =-.………………………………………………………11分由22211A D D HA H +=,得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭.………………………………………………………12分解得52x =,满足03x ≤≤,符合题意.……………………………………………………………13分所以在线段BC 上存在点P ,使直线1P A 与平面1A B D 所成的角为60,此时52PB=.………14分解法2:由(1)的证明,可知E D D B⊥,1A D⊥平面BCED.以D为坐标原点,以射线D B、D E、1D A分别为x轴、y轴、z轴的正半轴,建立空间直角坐标系D xyz-如图.设2P B a=()023a≤≤,则BH a=,PH=,2D H a=-.……………………6分所以()10,0,1A,()2,0P a-,()0E.…………7分所以()12,,1PA a=-.……………………………………………………………………8分因为E D⊥平面1A B D,所以平面1A B D的一个法向量为()0D E=.……………………………………………………9分因为直线1PA与平面1A B D所成的角为60 ,所以11sin60PA D EPA D E=……………………………………………………………10分2==,…………………………………………11分解得54a=.……………………………………………………………………12分即522PB a==,满足023a≤≤,符合题意.……………………………………………………13分所以在线段BC上存在点P,使直线1P A与平面1A B D所成的角为60 ,此时52PB=.………14分19.(本小题主要考查二次函数的交点与分段函数的最值、常用逻辑用语等基础知识,考查数形结合思想、分类讨论思想和运算求解能力、抽象概括能力等,本小题满分14分)解:要使函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点,必须()()0101,0.f f a ⎧⎪⎪⎨<<⎪⎪∆>⎩≥0,≥0,……………………………………………………………2分即()()2,1224012412a a a a a -⎧⎪-⎪⎨<<⎪⎪--->⎩≥0,≥0,0.………………………………………………4分112a <≤.所以当112a <≤时,函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点.…5分下面求()g x x a ax =--在()0,+∞上有最小值时a 的取值范围: 方法1因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥…………………………………………………………6分①当1a >时,()g x 在()0,a 和[),a +∞上单调递减,()g x 在()0,+∞上无最小值;……………7分②当1a =时,()1,,21,1.x g x x x -⎧=⎨-+<⎩≥1()g x 在()0,+∞上有最小值1-;………8分③当01a <<时,()g x 在()0,a 上单调递减,在[),a +∞上单调递增, ()g x 在()0,+∞上有最小值()2g a a =-.…………………………………………………………9分所以当01a <≤时,函数()g x 在()0,+∞上有最小值.……………………………………………10分方法2:因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥…………………………………………………………6分因为0a >,所以()10a -+<.所以函数()()110y a x a x a =-++<<是单调递减的.………………………………………………7分要使()g x 在()0,+∞上有最小值,必须使()21y a x a =--在[),a +∞上单调递增或为常数.……8分即10a -≥,即1a ≤.……………………………………………………………………………………9分所以当01a <≤时,函数()g x 在()0,+∞上有最小值. ……………………………………………10分若()p q ⌝∧是真命题,则p ⌝是真命题且q 是真命题,即p 是假命题且q 是真命题.……………11分所以102201a a a ⎧<>⎪⎨⎪<⎩≤或 …………………………………………………………………………12分解得01a <或112a <≤. ………………………………………………………………………13分故实数a的取值范围为(11,12⎛⎤⎤ ⎥⎦⎝⎦.…………………………………………………………14分20.(本小题主要考查动点的轨迹和直线与圆锥曲线的位置关系、导数的几何意义等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分) 解:(1)方法1:设动圆圆心为(),x y ,依题意得,1y =+.…………………………1分整理,得24x y =.所以轨迹M 的方程为24x y =.…………………………………………………2分方法2:设动圆圆心为P ,依题意得点P 到定点()0,1F 的距离和点P 到定直线1y =-的距离相等,根据抛物线的定义可知,动点P 的轨迹是抛物线.……………………………………………………1分且其中定点()0,1F 为焦点,定直线1y =-为准线. 所以动圆圆心P 的轨迹M 的方程为24x y =.………………………………………………………2分(2)由(1)得24x y =,即214y x =,则12y x '=.设点2001,4D x x ⎛⎫⎪⎝⎭,由导数的几何意义知,直线l 的斜率为012BC k x =.…………………………3分由题意知点2001,4A x x ⎛⎫- ⎪⎝⎭.设点2111,4C x x ⎛⎫ ⎪⎝⎭,2221,4B x x ⎛⎫ ⎪⎝⎭, 则2212120121114442BCx x x x k x x x -+===-,即1202x x x +=.4分因为2210101011444A Cx x x x k x x --==+,2220202011444AB x x x x k x x --==+.……………………………5分由于()120102020444AC AB x x x x x x x k k +---+=+==,即AC AB k k =-.……6分所以BAD CAD ∠=∠.…………………………………………………………7分 (3)方法1:由点D 到A BD ,可知B A D ∠45=.………………………………8分不妨设点C 在A D 上方(如图),即21x x <,直线A B 的方程为:()20014y x x x -=-+.由()20021,44.y x x x x y ⎧-=-+⎪⎨⎪=⎩A B CDO xylE解得点B 的坐标为()20014,44x x ⎛⎫-- ⎪⎝⎭.……………………………………………………………10分所以)()00042AB x x =---=-.由(2)知C A D B A D ∠=∠45= ,同理可得02AC =+.………………………………11分所以△ABC 的面积200012244202S x =⨯-⨯+=-=,解得03x =±.……………………………………………………………………12分 当03x =时,点B 的坐标为11,4⎛⎫- ⎪⎝⎭,32B C k =, 直线BC 的方程为()13142y x -=+,即6470x y -+=.…………………………………………13分当03x =-时,点B 的坐标为497,4⎛⎫- ⎪⎝⎭,32BC k =-, 直线BC 的方程为()493742y x -=-+,即6470x y +-=. ……………………………………14分方法2:由点D 到A B D ,可知B A D ∠45=.…………………………………8分由(2)知C A D B A D ∠=∠45= ,所以C A B ∠90=,即A C A B ⊥.由(2)知104A C x x k -=,204A B x x k -=.所以1020144A C AB x x x x k k --=⨯=-.即()()102016x x x x --=-. ① 由(2)知1202x x x +=. ②不妨设点C 在A D 上方(如图),即21x x <,由①、②解得10204,4.x x x x =+⎧⎨=-⎩…………………………10分 因为02AB ==-,同理02AC =+. ……………………………………………………11分 以下同方法1.21.(本小题主要考查函数的零点、函数的导数和不等式的证明等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)证明:(1)因为()010f =-<,()210f n =>,且()f x 在R 上的图像是一条连续曲线,所以函数()f x 在()01,内有零点.………………………………………………………………………1分因为()2230f x x n '=+>,所以函数()f x 在R 上单调递增.………………………………………………………………………2分所以函数()f x 在R 上只有一个零点,且零点在区间()01,内. 而n a 是函数()f x 的零点,所以01n a <<.…………………………………………………………3分 (2)先证明左边的不等式:因为3210n n a n a +-=,由(1)知01n a <<,所以3n n a a <.………………………………………………………………4分即231n n n n a a a -=<.所以211n a n >+.…………………………………………………………5分所以1222211111211n a a a n +++>++++++ .…………………6分以下证明222111112111n n n +++≥++++ . ①方法1(放缩法):因为()21111111n a n n n nn >≥=-+++,…………………………………………7分所以1211111111223341n a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.…………………………………9分方法2(数学归纳法):1)当1n =时,2111111=++,不等式①成立.2)假设当n k =(*k ∈N )时不等式①成立,即222111112111k k k +++≥++++ .那么()222211111121111k k +++++++++ ()21111kk k ≥++++. 以下证明()()()21111111k k k k k ++≥+++++. ②即证()()()21111111k k k k k +≥-+++++.即证22112232k k k k ≥++++.由于上式显然成立,所以不等式②成立. 即当1n k =+时不等式①也成立.根据1)和2),可知不等式①对任何*n ∈N 都成立. 所以121n n a a a n +++>+ .…………………………………………………9分再证明右边的不等式:当1n =时,()31f x x x =+-.由于31113102228f ⎛⎫⎛⎫=+-=-< ⎪ ⎪⎝⎭⎝⎭,3333111044464f ⎛⎫⎛⎫=+-=> ⎪ ⎪⎝⎭⎝⎭,所以11324a <<.………………………………………………………………10分由(1)知01n a <<,且3210n n a n a +-=,所以32211n n a a nn-=<. ……………………………11分因为当2n ≥时,()2111111nn nn n<=---,…………………………………………………………12分所以当2n ≥时,12342311111114223341n a a a a a n n ⎛⎫⎛⎫⎛⎫+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 113122n=+-<.所以当*n ∈N 时,都有1232n a a a +++< .综上所述,1n n <+1232n a a a +++<.……………………………………………………………14分。
平面向量 Word版(含答案)
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编4:平面向量一、选择题1 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知,,O A B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB += ,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+【答案】A2 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知向量a =(x ,1),b=(3,6),a ⊥b ,则实数x 的值为 ( )A .12B .2-C .2D .21-【答案】B3 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)在平面直角坐标系中,O 为坐标原点,点(3,4)A ,将向量OA 绕点O 按逆时针方向旋转23π后得向量OB ,则点B 的坐标是3.(22A -+--3.(22B ---+3.(22C -+-+ .(4,3)D -【答案】B4 .(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)OAB ∆,点P 在边AB 上,3AB AP = ,设,OA a OB b ==,则OP =12.33A a b + 21.33B a b + .C 1233a b - .D 2133a b -PBA【答案】B5 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)定义空间两个向量的一种运算sin ,⊗=⋅<>a b a b a b ,则关于空间向量上述运算的以下结论中,①⊗=⊗a b b a ,②()()λλ⊗=⊗a b a b ,③()()()+⊗=⊗+⊗a b c a c b c , ④若1122(,),(,)x y x y ==a b ,则1221x y x y ⊗=-a b . 恒成立的有 ( )A .1个B .2个C .3个D .4个【答案】B 解析: ①恒成立; ② ()λ⊗=a b sin ,λ⋅<>a b a b ,()λ⊗=a b sin ,λ⋅<>a b a b ,当0<λ时,()()λλ⊗=⊗a b a b 不成立;③当,,a b c 不共面时,()()()+⊗=⊗+⊗a b c a c b c 不成立,例如取,,a b c 为两两垂直的单位向量,易得()+⊗=a b c ()()2⊗+⊗=a c b c ;④由sin ,⊗=⋅<>a b a b a b ,cos ,=⋅<>a b a b a b ,可知2222()()⊗+=⋅ a b a b a b,2()⊗=a b 222222222112212121221()()()()()x y x y x x y y x y x y ⋅-=++-+=- a b a b ,故1221x y x y ⊗=-a b 恒成立.6 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知向量(1,cos ),(1,2cos )θθ=-=a b 且⊥a b ,则cos 2θ等于( )A .1-B .0C .12D .2【答案】B 解析:212cos 0cos 20θθ⊥⇔-+=⇔=a b .7 .(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))在平行四边形ABCD 中,AE →=13AB →,AF →=14AD →,CE 与BF 相交于G 点.若AB →=a ,AD →=b ,则 AG →=( )A .27a +17bB .27a +37bC .37a +17bD .47a +27b【答案】C8 .(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知平面向量a ,b 的夹角为60°,=a ,||1=b ,则|2|+=a b( )A .2B C .D .【答案】C9 .(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)若向量)1,1(),0,2(==b a ,则下列结论正确的是( )A .1=⋅B .||||b a =C .⊥-)(D .//【答案】C10.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)如图2,一条河的两岸平行,河的宽度600d =m,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1km,水流速度为2km/h, 若客船行驶完航程所用最短时间为6分钟,则客船在静水中 的速度大小为( )A .8 km/hB .C .km/hD.10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 【答案】B11.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)平面四边形ABCD 中0AB CD += ,()0AB AD AC -=⋅,则四边形ABCD 是( )A .矩形B .菱形C .正方形D .梯形【答案】B 由0AB CD += ,得AB CD DC =-=,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅ ,故0DB AC =⋅,所以DB AC ⊥,即对角线互相垂直.12.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知(1,2)=a ,(0,1)=b ,(,2)k =-c ,若(2)+⊥a b c ,则k =( )A .2B .8C .2-D .8-【答案】B13.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)在ABC ∆中,已知||||||2AB BC CA ===,则向量AB BC =( )A .2B .2-C .D .-【答案】B 解析:1cos 22232AB BC AB BC ππ⎛⎫⎛⎫=⋅-=⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭14.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))向量(2,0),(,)a b x y == ,若b 与b a - 的夹角等于6π,则|b |的最大值为( )A .4B .C .2 D【答案】A15.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)已知点A (1,5)-和向量a =(2,3),若3AB a =,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14) 【答案】设(,)B x y ,由3AB a = 得1659x y +=⎧⎨-=⎩,所以选D .16.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知向量(1,1)a =- ,(3,)b m = ,//()a a b +,则m =( )A .2B .2-C .3-D .3【答案】【解析】向量(1,1)a =- ,(3,)b m = ,()(2,1)a b m +=+,因为//()a a b +∴(1)2m -+=,3m =-故选C .17.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))对于任意向量a 、b 、c ,下列命题中正确的是 ( )A .=a b a b B .+=+a b a b C.()()= a b c a b cD .2= a a a【答案】D18.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)设向量12(,)a a a = ,12(,)b b b = ,定义一运算:12121122(,)(,)(,)a b a a b b a b a b ⊗=⊗=,已知1(,2)2m = ,11(,sin )n x x = .点Q 在()y f x =的图像上运动,且满足OQ m n =⊗(其中O 为坐标原点),则()y f x =的最大值及最小正周期分别是 ( )A .1,2π B .1,42π C .2,π D .2,4π(一)必做题:第9至13题为必做题,每道试题考生都必须作答. 【答案】C二、填空题19.(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )已知向量,的夹角为60,12==,_________=+;向量与向量2+的夹角的大小为_________.【答案】632π20.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)如图,在边长为2的菱形ABCD 中,60BAD ∠=,E 为CD 的中点,则___________.AE BD ⋅=BAEDC【答案】121.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)在ABC ∆中90C ∠=o ,BC =2 则=⋅BC AB ________ .【答案】-422.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)若向量a 、b 满足2||||==,与b 的夹角为︒60,则=+||_______【答案】32;23.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知在三角形ABC中,AB=2,AC=3,∠BAC=θ,若D 为BC 的三等分点〔靠近点B 一侧).则的取值范围为____.【答案】⎪⎭⎫⎝⎛-37,3524.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知e 1、e 2、e 3为不共面向量,若a =e 1+e 2+e 3,b =e 1-e 2+e 3,c =e 1+e 2-e 3,d =e 1+2e 2+3e 3,且d =xa +yb +zc ,则x 、y 、z 分别为_*****_.【答案】答案:52 ,-12,-1解:由d =xa +yb +zc 得e 1+2e 2+3e 3=(x +y +z )e 1+(x -y +z )e 2+ (x +y -z )e 3,∴⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x +y -z =3,解得:⎩⎪⎨⎪⎧x =52,y =-12,z =-1.故x 、y 、z 分别为52,-12,-1.25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知平面向量a2,)(b a a -⊥;则><b a ,cos 的值是_______.【答案】21; 26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知正方形ABCD 的边长为1,点E 是AB 边上的点,则DE CB ⋅的值为____________.【答案】127.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)已知向量,a b, ()-⊥a b a , 向量a 与b 的夹角为________.【答案】4π三、解答题28.(广东省珠海一中等六校2013届高三第二次联考数学(理)试题)已知(s i n ,c o sa θθ= 、b =(1)若//a b,求tan θ的值;(2)若()f a b θ=+, ABC ∆的三个内角,,A B C 对应的三条边分别为a 、b 、c ,且(0)a f =,()6b f π=-,()3c f π=,求AB AC ⋅.【答案】解:(1)//,sin 0a b θθ∴=sin tan θθθ∴⇒(2)(sin 1)a b θθ+=+a b ∴+===(0)a f ∴===()6b f π∴=-==()33c f π∴===由余弦定理可知:222cos 230b c a A bc +-==7cos cos 2AB AC AB AC A bc A ∴⋅=== (其它方法酌情给分)。
2013年广州二模数学理科试题
2013年广州二模数学理科试题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷有三个大题,26个小题.满分为130分,考试时间为120分钟.2.请用蓝、黑圆珠笔或水笔答题,并按要求将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.4.抛物线的顶点坐标为.试题卷Ⅰ一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1. 的值等于(▲)A.4 B. C. D.22.据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为( ▲).A. B. C. D.3.计算的结果是(▲)A.B.C.D.4. 在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是………………………(▲)A. B. C. D.5.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米, CA=1米, 则树的高度为(▲)A. 4.5米B. 6米C. 3米D. 4米6.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为(▲)A.r B.22 r C.10 r D.3r7.小兰画了一个函数的图象如图,那么关于x的分式方程的解是(▲)A.x=1B.x=2 C.x=3 D.x=48.从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三角形的概率为(▲)A.B.C.D.9.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是(▲).A.B.若MN与⊙O相切,则C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切10. 如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b 的值为( ▲)A.3 B.C.D.11.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a <0)的图象上,则a的值为(▲)A.B.C.D.12. 如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上()A.1 B.2 C.3 D.5试题卷Ⅱ二、填空题(每小题3分,共18分)13.在函数y= 1 x-2 中,自变量x的取值范围是▲.14.已知关于x的方程的一个根是1,则k= ▲.15. 如图,在长为8 ,宽为4 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是▲.16.抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是▲17.如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是▲18. 如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连结AP,以AP为边在其左侧作等边△APQ ,连结PB、BA.若四边形ABPQ为梯形,则(1)当AB为梯形的底时,点P的横坐标是▲;(2)当AB为梯形的腰时,点P的横坐标是▲.三.解答题(第19题6分,第20-22题各8分,第23-24题10分,第25题12分,第26题14分,共76分)19. (本题6分)计算:20.先化简再求值:,其中.21.(本题8分)某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2012年宁波市区初二学生约为2万人,按此调查,可以估计2012年宁波市区初二学生中每天锻炼未超过1小时的学生约有多少万人?(4)请根据以上结论谈谈你的看法.22. (本题8分)如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.(1)求量角器在点G处的读数α(0°<α<90°);(2)若AB=10cm,求阴影部分面积.23.宁波滨海水产城一养殖专业户陈某承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,陈某养殖甲鱼20亩,桂鱼10亩.求陈某这一年共收益多少万元?(收益=销售额-成本)(2) 2011年,陈某继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求陈某原定的运输车辆每次可装载饲料多少kg?24. (1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为。
导数与积分(2) Word版(含答案)
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编17:导数与积分(2)一、选择题1 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图1中的阴影部分)的面积是( )A .1B .4πC .3D .2【答案】D2 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图所示,图中曲线方程为21y x =-,用定积分表达围成封闭图形(阴影部分)的面积是【答案】C3 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))曲线f(x)=xlnx在点x=1处的切线方程为( )A .y=2x+2B .y=2x-2C .y=x-1C .y=x+1【答案】C4 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)将边长为2的等边三角形PAB 沿x 轴滚动,某时刻P 与坐标原点重合(如图),设顶点(,)P x y 的轨迹方程是()y f x =,关于函数()y f x =的有下列说法:①()f x 的值域为[0,2];②()f x 是周期函数;③( 1.9)()(2013)f f f π-<<;④69()2f x dx π=⎰.其中正确的说法个数为: ( )A .0B .C .2D .3【答案】C5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知函数()yf x =的图象如图1所示,则其导函数()y f x '=的图象可能是【答案】A二、填空题6 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)计算________.【答案】2e ;7 .(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy中,直线a y =(0>a )与抛物线2x y =所围成的封闭图形的面积为328,则=a _______. 【答案】28 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)不等式211x -<的解集为(),a b ,计算定积分)2b ax dx -=⎰_______.【答案】139.(广东省广州市2013届高三调研测试数学(理)试题)若直线2y x m =+是曲线ln y x x=图1A .B .C .D .O x P A 第8题图的切线,则实数m 的值为_________.【答案】e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x x x x''==+=+ 得0ln 1k x =+, 故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-, 与2y x m =+比较得00ln 12x x m+=⎧⎨-=⎩,解得0e x =,故e m =-10.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)10x cos ⎰d x =______________.【答案】1sin11.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)20(3sin )x x dx π+=⎰________________.【答案】2318π+解析:22220033(3sin )(cos )|128x x dx x x πππ+=-=+⎰.12.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))曲线y= x 3-x + 3在点(1,3)处的切线方程为_______【答案】21x y -+13.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))若直线y kx =与曲线ln y x =相切,则k =__________________.【答案】1e14.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)计算= ________.【答案】2e .三、解答题15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知函数()ln f x x =,2()()g x f x ax bx =++,函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴.(1)确定a 与b 的关系;(2)试讨论函数()g x 的单调性; (3)证明:对任意*n N ∈,都有()211ln 1ni i n i=-+>∑成立.【答案】解:(1)依题意得2()ln g x x axbx =++,则1'()2g x ax b x=++ 由函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴得:'(1)120g a b =++= ∴21b a =--(2)由(1)得22(21)1'()ax a x g x x -++=(21)(1)ax x x--=∵函数()g x 的定义域为(0,)+∞∴当0a ≤时,210ax -<在(0,)+∞上恒成立, 由'()0g x >得01x <<,由'()0g x <得1x >, 即函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当0a >时,令'()0g x =得1x =或12x a=, 若112a <,即12a >时,由'()0g x >得1x >或102x a <<,由'()0g x <得112x a<<,即函数()g x 在1(0,)2a ,(1,)+∞上单调递增,在1(,1)2a单调递减;若112a >,即102a <<时,由'()0g x >得12x a>或01x <<,由'()0g x <得112x a<<, 即函数()g x 在(0,1),1(,)2a +∞上单调递增,在1(1,)2a单调递减;若112a =,即12a =时,在(0,)+∞上恒有'()0g x ≥, 即函数()g x 在(0,)+∞上单调递增,综上得:当0a ≤时,函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当102a <<时,函数()g x 在(0,1)单调递增,在1(1,)2a 单调递减;在1(,)2a+∞上单调递增;当12a =时,函数()g x 在(0,)+∞上单调递增, 当12a >时,函数()g x 在1(0,)2a 上单调递增,在1(,1)2a单调递减;在(1,)+∞上单调递增.(3)证法一:由(2)知当1a =时,函数2()ln 3g x x x x =+-在(1,)+∞单调递增,2ln 3(1)2x x x g ∴+-≥=-,即2ln 32(1)(2)x x x x x ≥-+-=---,令*11,x n N n =+∈,则2111ln(1)n n n+>-, 2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-2222111111111111ln[(1)(1)(1)...(1)]...123112233n n n∴++++++>-+-+-++-即()211ln 1ni i n i=-+>∑ 【证法二:构造数列{}n a ,使其前n 项和ln(1)n T n =+, 则当2n ≥时,111ln()ln(1)n n n n a T T n n-+=-==+, 显然1ln 2a =也满足该式, 故只需证221111ln(1)n n n n n-+>=- 令1x n=,即证2ln(1)0x x x +-+>,记2()ln(1)h x x x x =+-+,0x > 则11(21)'()12120111x x h x x x x x x +=-+=-+=>+++,()h x 在(0,)+∞上单调递增,故()(0)0h x h >=,∴221111ln(1)n n n n n -+>=-成立,2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-即()211ln 1ni i n i =-+>∑ 】 【证法三:令211()ln(1)i ni i n n i ϕ==-=+-∑,则2(1)()ln(2)ln(1)(1)n n n n n n ϕϕ+-=+--++2111ln(1)11(1)n n n =+-++++ 令11,1x n =++则(1,2]x ∈,*11,,1x n N n =-∈+ 记22()ln (1)(1)ln 32h x x x x x x x =--+-=+-+∵1(21)(1)()230x x h x x x x--'=+-=>∴函数()h x 在(1,2]单调递增, 又(1)0,(1,2],()0,h x h x =∴∈>当时即(1)()0n n ϕϕ+->, ∴数列()n ϕ单调递增,又(1)ln 20ϕ=>,∴()211ln 1ni i n i =-+>∑ 】 16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知x a a x a x x f ln )()12(21)(22+++-=(0>x ,a 是常数),若对曲线)(x f y =上任意一点) , (00y x P 处的切线)(x g y =,)()(x g x f ≥恒成立,求a 的取值范围.江门市2013年高考模拟考【答案】解:依题意,xaa a x x f +++-=2/)12()()(00x f y =,曲线)(x f y =在点) , (00y x P 处的切线为))((00/0x x x f y y -=- ,即))((00/0x x x f y y -+=,所以))(()(00/0x x x f y x g -+= 直接计算得)1)(ln ()12(21)(002200-++++--=x x x a a x a x x x x g , 直接计算得)()(x g x f ≥等价于0)1)(ln ()(2100220≥+-++-x xx x a a x x 记)1)(ln ()(21)(00220+-++-=x xx x a a x x x h ,则 )1)(()11)(()()(020020/xx aa x x x x a a x x x h +--=-++-=若02≤+a a ,则由0)(/=x h ,得0x x = ,且当00x x <<时,0)(/<x h ,当0x x >时,0)(/>x h ,所以)(x h 在0x x =处取得极小值,从而也是最小值,即0)()(0=≥x h x h ,从而)()(x g x f ≥恒成立 .若02>+a a ,取a a x +=20,则0)1)(()(020/≥+--=xx aa x x x h 且当01x x ≠时0)(/>x h ,)(x h 单调递增 ,所以当00x x <<时,0)()(0=<x h x h ,与)()(x g x f ≥恒成立矛盾,所以02≤+a a ,从而a 的取值范围为01≤≤-a17.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+ 都成立. 【答案】(本小题主要考查导数、函数的单调性、不等式、最值、方程的根等知识,考查化归转化、分类讨论、数形结和的数学思想方法,以及抽象概括能力、运算求解能力、创新能力和综合应用能力) 解:(1)()'121,f x x x a=--+ 0x = 时,()f x 取得极值, ()'00,f ∴=故12010,0a-⨯-=+解得 1.a =经检验1a =符合题意 (2)由1a =知()()2ln 1,f x x x x =+--由()52f x x b =-+,得()23ln 10,2x x x b +-+-= 令()()23ln 1,2x x x x b ϕ=+-+-则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=在区间[]0,2上恰有两个不同的实数根()()()()'451132,1221x x x x x x ϕ-+-=-+=++当[]0,1x ∈时,()'0x ϕ>,于是()x ϕ在[)0,1上单调递增; 当(]1,2x ∈时,()'0x ϕ<,于是()x ϕ在(]1,2上单调递减依题意有()()()()()0031ln 111022ln 12430b b b ϕϕϕ=-≤⎧⎪⎪=+-+->⎨⎪⎪=+-+-≤⎩,解得,1ln 31ln 2.2b -≤<+(3) ()()2ln 1f x x x x =+--的定义域为{}1x x >-,由(1)知()()()'231x x f x x -+=+,令()'0fx =得,0x =或32x =-(舍去), ∴当10x -<<时, ()'0f x >,()f x 单调递增;当0x >时, ()'0fx <,()f x 单调递减.()0f ∴为()f x 在()1,-+∞上的最大值. ()()0f x f ∴≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立)对任意正整数n ,取10x n=> 得,2111ln 1,n n n⎛⎫+<+⎪⎝⎭ 211ln n n n n++⎛⎫∴< ⎪⎝⎭.故()23413412ln 2ln ln ln ln 14923n n n n n++++++>++++=+ . 18.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知二次函数()21fx x a x m =+++,关于x的不等式()()2211f x m x m <-+-的解集为()1m m ,+,其中m 为非零常数.设()()1f xg x x =-.(1)求a 的值;(2)k k (∈R )如何取值时,函数()x ϕ()g x =-()1k x ln -存在极值点,并求出极值点;(3)若1m =,且x 0>,求证:()()1122nn ng x g x n (⎡⎤+-+≥-∈⎣⎦N *). 【答案】(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+. ∴2a =-(2)解法1:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=>则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②当0m <时,由0Δ>,得k <-k >若k <-,则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点若k >时,1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x (其中122k x +-=, 222k x ++=解法2:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δkk m k m =+--+=+>,(**)方程(*)的两个实根为1x =2x =设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立.则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x (其中122k x +-=, 222k x ++=(2)证法1:∵1m =, ∴()g x=()111x x -+-.∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭ 112212111111n n n n n n n n n n n n n x C x C x C x C x x x x x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n n n n n C x C x C x ----=+++令T 122412n n n nn n n C xC x C x ----=+++ , 则T 122412n nn n n n n n C xC x C x -----=+++122412n n n n n n n C x C x C x ----=+++ .∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++≥121n nn n C C C -⋅+⋅++⋅ ()1212n n n n C C C -=+++()012102n n n n n n n n n n C C C C C C C -=+++++--()222n =-∴22n T ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭()22k ≥⋅-+122k +=-也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立19.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)二次函数()f x 满足(0)(1)0f f ==,且最小值是14-.(1)求()f x 的解析式; (2)设常数1(0,)2t ∈,求直线l :2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥【答案】解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-;(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t - t) 由定积分的几何意义知3232222002()[()()]()|3232ttx x t t S t x x t t dx t x tx =---=--+=-+⎰(3)∵()f x 的最小值为14-,故14m -,14n -∴12m n +-≥-,故12m n ++≥∵1()02m n +,102m n ++, ∴11()()22m n m n +++=∴211()()24m n m n +++≥20.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)设()x g x e =,()[(1)]()f x g x a g x =λ+-λ-λ,其中,a λ是常数,且01λ<<.(1)求函数()f x 的极值;(2)证明:对任意正数a ,存在正数x ,使不等式11x e a x--<成立; (3)设12,λλ∈+R ,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ.【答案】解析:(1)∵()[(1)]()f x g x a g x λλλλ'''=+--,由()0f x '>得,[(1)]()g x a g x λλ''+->,∴(1)x a x λλ+->,即(1)()0x a λ--<,解得x a <, 故当x a <时,()0f x '>;当x a >时,()0f x '<; ∴当x a =时,()f x 取极大值,但()f x 没有极小值(2)∵111x x e e x x x----=, 又当0x >时,令()1xh x e x =--,则()10xh x e '=->, 故()(0)0h x h >=,因此原不等式化为1x e x a x--<,即(1)10x e a x -+-<, 令()(1)1x g x e a x =-+-,则()(1)xg x e a '=-+, 由()0g x '=得:1xe a =+,解得ln(1)x a =+,当0ln(1)x a <<+时,()0g x '<;当ln(1)x a >+时,()0g x '>. 故当ln(1)x a =+时,()g x 取最小值[ln(1)](1)ln(1)g a a a a +=-++,令()ln(1),01a s a a a a =-+>+,则2211()0(1)1(1)a s a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0g a a a a +=-++<.因此,存在正数ln(1)x a =+,使原不等式成立(3)对任意正数12,a a ,存在实数12,x x 使11x a e =,22x a e =, 则121122112212xx x x a a e ee λλλλλλ+=⋅=,12112212x x a a e e λλλλ+=+,原不等式12121122a a a a λλλλ≤+11221212x x x x e e e λλλλ+⇔≤+,11221122()()()g x x g x g x λλλλ⇔+≤+由(1)()(1)()f x g a λ≤-恒成立,故[(1)]()(1)()g x a g x g a λλλλ+-≤+-, 取1212,,,1x x a x λλλλ===-=, 即得11221122()()()g x x g x g x λλλλ+≤+, 即11221212x x x x e e e λλλλ+≤+,故所证不等式成立21.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)已知函数321,(1)()(1),(1)x x ax bx x f x c e x -⎧-++<⎪=⎨-≥⎪⎩在32,0==x x 处存在极值. (1)求实数b a ,的值;(2)函数)(x f y =的图像上存在两点B A ,使得AOB ∆是以坐标原点O 为直角顶点的直角三角形,且斜边AB 的中点在y 轴上,求实数c 的取值范围; (3)当e c =时,讨论关于x 的方程()f x kx =()k R ∈的实根的个数.【答案】解(1)当1x <时,2()32f x x ax b '=-++.因为函数f(x)在20,3x x ==处存在极值,所以(0)0,2()0,3f f '=⎧⎪⎨'=⎪⎩解得1,0a b ==. (2) 由(1)得321,(1),()(1),(1),x x x x f x c e x -⎧-+<⎪=⎨-≥⎪⎩根据条件知A,B 的横坐标互为相反数,不妨设32(,),(,()),(0)A t t t B t f t t -+>.若1t <,则32()f t t t =-+,由AOB ∠是直角得,0OA OB ⋅= ,即23232()()0t t t t t -++-+=,即4210t t -+=.此时无解;若1t ≥,则1()(1)t f t c e -=-. 由于AB 的中点在y 轴上,且AOB ∠是直角,所以B 点不可能在x 轴上,即1t ≠. 由0OA OB ⋅= ,即2321()(1)t t t t c e --++⋅-=0,即()11(1)1t c t e -=+-..因为函数()1(1)1t y t e -=+-在1t >上的值域是(0,)+∞,所以实数c 的取值范围是(0,)+∞.(3)由方程()f x kx =,知32,(1),(1)x x x x kx e e x ⎧-+<⎪=⎨-≥⎪⎩,可知0一定是方程的根,所以仅就0x ≠时进行研究:方程等价于2,(10),,(1).x x x x x k e e x x ⎧-+<≠⎪=⎨-≥⎪⎩且构造函数2,(10),(),(1),x x x x x g x e e x x⎧-+<≠⎪=⎨-≥⎪⎩且对于10x x <≠且部分,函数2()g x x x =-+的图像是开口向下的抛物线的一部分, 当12x =时取得最大值14,其值域是1(,0)(0,]4-∞ ; 对于1x ≥部分,函数()x e e g x x -=,由2(1)()0x e x e g x x-+'=>,知函数()g x 在()1,+∞上单调递增.所以,①当14k >或0k ≤时,方程()f x kx =有两个实根; ②当14k =时,方程()f x kx =有三个实根; ③当104k <<时,方程()f x kx =有四个实根.22.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知a <2,(1) 求f(x)的单调区间; (2)若存在x 1∈[e,e2],使得对任意的x 2∈[—2,0],f (x 1)<g(x 2)恒成立,求实数a 的取值范围.【答案】23.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))定义(,)|||ln |x x y e y y x y ρ=---,其中,x R y R +∈∈.(1)设0a >,函数()(,)f x x a ρ=,试判断()f x 的定义域内零点的个数; (2)设0a b <<,函数()(,)(,)F x x a x b ρρ=-,求()F x 的最小值; (3)记(2)中最小值为(,)T a b ,若{}n a 是各项均为正数的单调递增数列,证明:1111(,)()ln 2nii n i T a aa a ++=<-∑.【答案】24.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间;(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M .【答案】设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M . 解:(1)由1()3f '=0,得a =b .当0a =时,则0b =,()f x c =不具备单调性 故f (x )= ax 3-2ax 2+ax +c .由()f x '=a (3x 2-4x +1)=0,得x 1=13,x 2=1列表:由表可得,函数f (x )的单调增区间是(-∞,13)及(1,+∞) .单调减区间是1[,1]3(2)当0a =时,()f x '=2bx b -+ 若0b = ()0f x '=,若0b >,或0b <,()f x '在[0,1]是单调函数,'(0)(1)f f '-=≤()f x '≤(0)f ',或'(1)f -=(0)f '≤()f x '≤(1)f '所以,()f x '≤M当0a >时,()f x '=3ax 2-2(a +b )x +b =3222()33a b a b aba x a a++---. ①当1,033a b a b a a++≥或≤时,则()f x '在[0,1]上是单调函数,所以(1)f '≤()f x '≤(0)f ',或(0)f '≤()f x '≤(1)f ',且(0)f '+(1)f '=a >0.所以M -()f x '<≤M②当013a ba +<<,即-a <b <2a ,则223a b ab a +--≤()f x '≤M . (i) 当-a <b ≤2a 时,则0<a +b ≤32a. 所以 (1)f '223a b ab a +--=22223a b ab a --=223()3a a b a -+≥214a >0.所以 M -()f x '<≤M (ii) 当2a <b <2a 时,则()(2)2a b b a --<0,即a 2+b 2-52ab <0. 所以223a b ab b a +--=2243ab a b a -->22523ab a b a-->0,即(0)f '>223a b ab a +-.所以 M -()f x '<≤M综上所述:当0≤x ≤1时,|()f x '|≤M25.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知函数2(),()ln f x x ax g x x =-=.(1)若()()f x g x ≥对于定义域内的任意x 恒成立,求实数a 的取值范围; (2)设()()()h x f x g x =+有两个极值点12,x x ,且11(0,)2x ∈,证明:123()()ln 24h x h x ->-; (3)设1()()()2ax r x f x g +=+对于任意的(1,2)a ∈,总存在01[,1]2x ∈,使不等式2()(1)r x k a >- 成立,求实数k 的取值范围.【答案】解析:(Ⅰ)由题意:)()(x g x f ≥⇔≥-ax x 2x ln ,)0(>x分离参数a 可得:)0(ln >-≤x xx x a设x x x x ln )(-=φ,则22/1ln )(x x x x -+=φ由于函数2x y =,x y ln =在区间),0(+∞上都是增函数,所以函数1ln 2-+=x x y 在区间),0(+∞上也是增函数,显然1=x 时,该函数值为0 所以当)1,0(∈x 时,0)(/<x ϕ,当),1(+∞∈x 时,0)(/>x ϕ所以函数)(x φ在)1,0(∈x 上是减函数,在),1(+∞∈x 上是增函数 所以1)1()(min ==φφx ,所以1)(min =≤x a φ即]1,(-∞∈a(Ⅱ)由题意知道:x ax x x h ln )(2+-=,且)0(,12)(2|>+-=x x ax x x h所以方程)0(0122>=+-x ax x 有两个不相等的实数根21,x x ,且)21,0(1∈x , 又因为,2121=x x 所以),1(2112+∞∈=x x ,且)2,1(,122=+=i x ax i i而)ln ()()(112121x ax x x h x h +-=-)ln (2222x ax x +--]ln )12([12121x x x ++-=]ln )12([22222x x x ++--212122lnx x x x +-=22222221ln )21(x x x x +-=2222222ln 41x x x --=,)1(2>x设)1(,2ln 41)(222≥--=x x x x x u ,则02)12()(322/≥-=x x x u所以2ln 43)1()(-=>u x u ,即2ln 43)()(21->-x h x h(Ⅲ))21()()(ax g x f x r ++=21ln2++-=ax ax x 所以12)(|++-=ax a a x x r 12222++-=ax x x a ax 1)22(22+--=ax a a x ax 因为(1,2)a ∈,所以21212212222=-≤-=-a a a a 所以当),21(+∞∈x 时,)(x r 是增函数,所以当01[,1]2x ∈时, 21ln1)1()(max 0++-==a a r x r ,(1,2)a ∈所以,要满足题意就需要满足下面的条件:)1(21ln12a k a a ->++-,令)1(21ln 1)(2a k a a a --++-=ϕ,(1,2)a ∈即对任意(1,2)a ∈,)1(21ln1)(2a k a a a --++-=ϕ0>恒成立 因为)122(11222111)(2/-++=+-+=+++-=k ka a aa a ka ka ka a a ϕ分类讨论如下:(1)若0=k ,则1)(/+-=a aa ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意(2)若0<k ,则)121(12)(/+-+=k a a ka a ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意.(3)若0>k ,则)121(12)(/+-+=k a a ka a ϕ,那么当1121>-k 时,假设t 为2与121-k中较小的一个数,即}121,2min{-=k t ,则)(a ϕ在区间})121,2min{,1(-k 上递减,此时0)1()(=<ϕϕa 不符合题意.综上可得⎪⎩⎪⎨⎧≤->11210k k 解得41≥k ,即实数k 的取值范围为),41[+∞26.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))已知函数32(),()ln ,(0)f x x x bx g x a x a =-++=>.(1)若()f x 存在极值点,求实数b 的取值范围;(3)当b=0时,令(),1()(),1f x x F xg x x <⎧=⎨≥⎩.P(11,()x F x ),Q(22,()x F x )为曲线y=()F x 上的两动点,O 为坐标原点,请完成下面两个问题:①能否使得POQ 是以O 为直角顶点的直角三角形,且斜边中点在y 轴上?请说明理由. ②当1<12x x <时,若存在012(,)x x x ∈,使得曲线y=F(x)在x=x 0处的切线l ∥PQ, 求证:1202x x x +<【答案】27.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,n = ).(1)求12,a a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立.【答案】解:(1)解法1:∵121'()(1)2(1)(1)[(1)2]n n n n f x nx x x x x x n x x --=---=---当1n =时,1'()(1)(13)f x x x =--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减, ∴1111()28a f ==, 当2n =时,2'()f x 2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减, ∴2211()216a f ==【解法2:当1n =时,21()(1)f x x x =-,则21'()(1)2(1)(1)(13)f x x x x x x =---=-- 当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减,∴1111()28a f ==, 当2n =时,222()(1)f x x x =-,则222'()2(1)2(1)f x x x x x =---2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减,∴2211()216a f ==】 (2)令'()0n f x =得1x =或2n x n =+,∵当3n ≥时,1[,1]22n n ∈+且当1[,)22nx n ∈+时'()0n f x >,当(,1]2nx n ∈+时'()0n f x <, 故()n f x 在2nx n =+处取得最大值,即当3n ≥时,22()()()222n n n n n a f n n n ==+++24(2)nn n n +=+,------(*) 当2n =时(*)仍然成立,综上得21,184.2(2)n nn n a n n n +⎧=⎪⎪=⎨⎪≥⎪+⎩(3)当2n ≥时,要证2241(2)(2)n n n n n +≤++,只需证明2(1)4n n +≥∵01222(1)()()n nnn n n C C C nnn+=+++ 2(1)41212142n n n-≥++⋅≥++=∴对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立 28.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知函数2()1f x a bx x =++在3x =处的切线方程为58y x =-. (1)求函数()f x 的解析式;(2)若关于x 的方程()x f x k e =恰有两个不同的实根,求实数k 的值; (3)数列{}n a 满足12(2)a f =,1(),n n a f a n N *+=∈, 求12320131111S a a a a =+++⋅⋅⋅⋅+的整数部分.惠州市2013届高三第一次模拟考【答案】解: (1) f'(x)=2ax+b ,依题设,有`(3)5(3)7f f =⎧⎨=⎩,即659317a b a b +=⎧⎨++=⎩,解得11a b =⎧⎨=-⎩2()=1f x x x ∴-+(2)方程()=k x f x e ∴,即21k xx x e -+=,得2k (1)xx x e -=-+, 记2F(x)(1)xx x e -=-+,则22F'(x)=(21)(1)(32)(1)(2)x x x x x e x x e x x e x x e -------+=--+=---令F'(x)=0,得121,2x x ==当x 变化时,F'(x)、F(x)的变化情况如下表:∴当1x =时,F(x)取极小值1e ;当2x =时,F(x)取极大值23e作出直线y x =和函数2F(x)(1)xx x e -=-+的大致图象,可知当1k e =或23k e =时,它们有两个不同的交点,因此方程()x f x k e =恰有两个不同的实根,(3) 12(2)3a f ==,得1312a >>,又21()1n n n n a f a a a +==-+.22121(1)0n n n n n a a a a a +∴-=-+=->,11n n a a +∴>>由211n n n a a a +=-+,得11=(1)n n n a a a +--,111111(1)1n nnnnaa a a a+∴==----,即111111nnn aa a+=---122013122320132014111111111()()()111111S a aaa aaaaa∴=+++=-+-++-------12014201411111122a aa=-=-<---又1211242637211S a a>++==>即12S <<,故S 的整数部分为. l4分。
2013届广州市高三年级调研测试数学(理科)试题及参考答案详解打印版
试卷类型:A广州市2013届高三年级调研测试数 学(理 科) 2013.1本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则复数i 23(-i )对应的点位于( )A .第一象限B . 第二象限C .第三象限D .第四象限 2.已知集合}4,3,2,1,0{=A ,集合},2|{A n n x x B ∈==,则=B A ( )A .}0{B .}4,0{C .}4,2{D .}4,2,0{3.已知函数()2030x x x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 ( )A .9B .19C .9-D .19-4.设向量=a ()21x ,-,=b ()14x ,+,则“3x =”是“a //b ”的( ) A .充分不必要条件 B .必要不充分条件俯视图侧视图正视图图1C .充要条件D .既不充分也不必要条件5.函数)(x f y =的图象向右平移6π单位后与函数x y 2sin =的图象重合,则)(x f y =的解析式是 ( ) A .()f x =)32cos(π-x B .()f x =)62cos(π-xC .()f x =)62cos(π+x D .()f x =)32cos(π+x6.已知四棱锥P ABCD -的三视图如图1所示,则四棱锥P ABCD -的四个侧面中面积最大的是( )A .3 B..6 D .7.在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,,则方程22221x y a b+=表示焦点在x 轴上且离心率小于2的椭圆的概率为( ) A .12 B .1532C .1732D .31328.在R 上定义运算).1(:y x y x -=⊗⊗若对任意2x >,不等式()2x a x a -⊗≤+ 都成立,则实数a 的取值范围是( ) A .17,⎡⎤-⎣⎦ B .(3,⎤-∞⎦ C .(7,⎤-∞⎦D .()17,,⎤⎡-∞-+∞⎦⎣二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 已知等差数列}{n a 的前n 项和为n S ,若34512a a a ++=,则7S 的值为 .10.若291()ax x-的展开式的常数项为84,则a 的值为 . 11.若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为 . 12.圆2224150x y x y +++-=上到直线20x y -=的距离为的点的个数是 _ .图313.图2是一个算法的流程图, 则输出S 的值是 .(二)选做题(14~15题,考生 只能从中选做一题) 14.(几何证明选讲选做题) 如图3,已知AB 是⊙O 的一条弦, 点P 为AB 上一点,PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =, 则PC 的长是15.(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16、(本小题满分12分)已知ABC V 的内角A B C ,,的对边分别是a b c ,,,且123a b B ,,π===.(1) 求A sin 的值; (2) 求2C cos 的值.图2图4M NBCDAP某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查. (1)问,,,A B C D 四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的50名学生中,从来自,A C 两所中学的学生当中随机抽取两名学生,用ξ表示抽得A 中学的学生人数,求ξ的分布列.18、(本小题满分14分)如图4,已知四棱锥P ABCD -,底面ABCD 是正方形,PA ^面ABCD ,点M 是CD 的中点,点N 是PB 的中点,连接AM ,AN MN ,. (1) 求证:MN //面PAD ;(2)若5MN =,3AD =,求二面角N AM B --的余弦值.如图5, 已知抛物线2P y x :=,直线AB OA OB ^,OA OB OC uu r uu u r uu u r+=,OC 与AB 交于点M (1) 求点M 的轨迹方程;(2) 求四边形AOBC 的面积的最小值.20、(本小题满分14分)在数1和2之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记为n A ,令2n n a A log =,n ∈N *. (1)求数列{}n A 的前n 项和n S ;(2)求2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅ .若函数()f x 对任意的实数1x ,2x D ∈,均有2121()()f x f x x x -≤-,则称函数()f x 是区间D 上的“平缓函数”.(1) 判断()sin g x x =和2()h x x x =-是不是实数集R 上的“平缓函数”,并说明理由;(2) 若数列{}n x 对所有的正整数n 都有 121(21)n n x x n +-≤+,设sin n n y x =, 求证: 1114n y y +-<.222N 2013届广州市高三年级调研测试数学(理科)试题参考答案及评分标准一、选择题1. A分析:2i(23i)=2i3i2i332i--=+=+,其对应的点为(3,2),位于第一象限2. D分析:{0,1,2,3,4}A=,{|2,}{0,2,4,6,8}B x x n n A∴==∈=,{0,2,4}A B∴=3. B分析:22211log log2244f-⎛⎫===-⎪⎝⎭,()2112349f f f-⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭4. A分析:当//a b时,有24(1)(1)0x x?-+=,解得3x=±;所以3//x a b=⇒,但//3a b x=¿,故“3x=”是“//a b”的充分不必要条件5. B分析:逆推法,将sin2y x=的图象向左平移6π个单位即得()y f x=的图象,即()sin2()sin(2)cos[(2)]cos(2)cos(2)632366f x x x x x xππππππ=+=+=-+=-+=-6. C分析:三棱锥如图所示,3PM=,142PDCS∆=⨯=,12332PBC PADS S∆∆==⨯⨯=,14362PABS∆=⨯⨯=7. B分析:方程22221x ya b+=表示焦点在x轴且离心率小于的椭圆时,有222a bcea a⎧>⎪⎨==<⎪⎩,即22224a ba b⎧>⎨<⎩,化简得2a ba b>⎧⎨<⎩,又[1,5]a∈,[2,4]b∈,画出满足不等式组的平面区域,如右图阴影部分所示,求得阴影部分的面积为154,故152432SP==⨯阴影8. C分析:由题意得()()(1x a x x a x-?--,故不等式()2x a x a-?…化为()(1)2x a x a--+…,化简得2(1)220x a x a-+++…,故原题等价于2(1)220x a x a-+++…在(2,)+∞上恒成立,由二次函数2()(1)22f x x a x a=-+++图象,其对称轴为12ax+=,讨论得122(2)0af+⎧⎪⎨⎪⎩……或1221()02aaf+⎧>⎪⎪⎨+⎪⎪⎩…,解得3a…或37a<…,综上可得7a…二、填空题9.28分析:方法一、(基本量法)由34512a a a++=得11123412a d a d a d+++++=,即13912a d+=,化简得134a d+=,故7117677(3)73282S a d a d´=+=+=?方法二、等差数列中由173542a a a a a+=+=可将34512a a a++=化为173()122a a+=,即178a a +=,故1777()282a a S +== 10.1分析:299183991C ()(1)C rr rr r r r ax a x x---骣琪-=-琪桫,令6r =,得其常数项为6369(1)C 84a -=, 即38484a =,解得1a =11.e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x x x x''==+=+ 得0ln 1k x =+,故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-,与2y x m =+比较得00ln 12x x m +=⎧⎨-=⎩,解得0e x =,故e m =-12. 4分析:圆方程2224150x y x y +++-=22(1)(2)20x y +++=,其圆心坐标(1,2)--,半径r =20x y -=的距离d ==,由右图所示,圆上到直线20x y -=4个. 13.3018 分析:由题意11cos112a π=⨯+=,222cos112a π=⨯+=-,333cos 112a π=⨯+=,444cos152a π=⨯+=,555cos 112a π=⨯+=,666cos 152a π=⨯+=-,777cos112a π=⨯+=,888cos 192a π=⨯+=,…503(1592009)503(59132013)=-+++++++++ 50315032013=-++20091a =, 20102009a =-, 20111a =,20122013a =;以上共503行,输出的122012S a a a =+++3018= 14.分析:如图,因为PC OP ⊥ ,所以P是弦CD 中点,由相交弦定理知2PA PB PC =, 即28PC =,故PC =15.分析:圆C 的参数方程化为平面直角坐标方程为22(2)x y +-=直线l 的极坐标方程化为平面直角坐标方程为1x y +=如右图所示,圆心到直线的距离2d == 故圆C 截直线l 所得的弦长为=三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵123a b B ,,π===,依据正弦定理得:a bA Bsin sin =, …………… 1分即1Asin =,解得A sin =4. …………… 3分 (2)解:∵a b <, ∴02A B π<<<. …………… 4分∴4A cos ==. …………… 5分∴22A A A sin sin cos ==, …………… 6分 252128A A cos sin =-=. …………… 7分 ∵ABC π++=, ∴23C A π=-. …………… 8分 ∴4223C A cos cos π⎛⎫=- ⎪⎝⎭…………… 9分 442233A A coscos sin sin ππ=+ …………… 10分1528=-⨯-⨯=-. …………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想) (1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为5011002=. ∴应从,,,A B C D 四所中学抽取的学生人数分别为15,20,10,5. …… 4分ENP (2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从参加问卷调查的50名学生中随机抽取两名学生的取法共有C 250=1225种,… 5分这两名学生来自同一所中学的取法共有C 215+C 220+C 210+C 25=350. … 6分∴()3501225P M ==27. 答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为27. …………… 7分 (3) 解:由(1)知,在参加问卷调查的50名学生中,来自,A C 两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2, …………… 8分()0P ξ==210225C C 960=, ()1P ξ==111510225C C C =12,()2P ξ==215225C C 720=. …………… 11分 ∴ξ的分布列为:…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE EN ,, ∵点N 是PB 的中点,MNDCBAP∴12EN AB EN AB //,=. …………… 1分 ∵点M 是CD 的中点,底面ABCD 是正方形, ∴12DM AB DM AB //,=. …………… 2分 ∴EN DM EN DM //,=. ∴四边形EDMN 是平行四边形.∴MN DE //. …………… 3分 ∵DE ⊂平面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分证法2:连接BM 并延长交AD 的延长线于点E ,连接PE , ∵点M 是CD 的中点,∴12DM AB DM AB //,=, …………… 1分 ∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,∴MN PE //. …………… 3分 ∵PE ⊂面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分 证法3: 取AB 的中点E ,连接NE ME ,, ∵点M 是CD 的中点,点N 是PB 的中点,∴ME AD //,NE PA //. ∵AD ⊂面PAD ,ME ⊄平面PAD ,∴ME //面PAD . …………… 1分 ∵PA ⊂面PAD ,NE ⊄平面PAD ,∴NE //面PAD . …………… 2分FEMNDCBAP∵ME NE E = ,NE ⊂平面MEN ,ME ⊂平面MEN , ∴平面MEN //面PAD . …………… 3分 ∵MN ⊂平面MEN ,∴MN //面PAD . …………… 4分 (2)解法1:∵NE PA //,PA ^面ABCD ,∴NE ^面ABCD . …………… 5分 ∵AM ⊂面ABCD ,∴NE AM ⊥. …………… 6分 过E 作EF AM ⊥,垂足为F ,连接NF ,∵NE EF E = ,NE ⊂面NEF ,EF ⊂面NEF ,∴AM ⊥面NEF . …………… 7分 ∵NF ⊂面NEF ,∴AM NF ⊥. …………… 8分 ∴NFE ∠是二面角N AM B --的平面角. …………… 9分 在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==,…………… 10分 在Rt △MEA 中,32AE =,得AM ==,5AE ME EF AM ==g . …………… 11分 在Rt △NEF中,5NF ==, …………… 12分cos EF NFENF ?=…………… 13分 ∴二面角N AM B --. ……… 14分解法2:∵NE PA //,PA ^面ABCD , ∴NE ^面ABCD .在Rt △NEM 中,5MN =,3ME AD ==,得4NE ==5分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴,建立空间直角坐标系A xyz -, …………… 6分则()333000300004222A M EN ,,,,,,,,,,,⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴()004EN ,,= ,3302AM ,,⎛⎫= ⎪⎝⎭ ,3042AN ,,⎛⎫= ⎪⎝⎭. ……… 8分设平面AMN 的法向量为n ()x y z ,,=,由n 0AM ⋅= ,n 0AN ⋅=,得33023402x y y z ,.⎧+=⎪⎪⎨⎪+=⎪⎩ 令1x =,得2y =-,34z =.∴n 3124,,⎛⎫=- ⎪⎝⎭是平面AMN 的一个法向量. …………… 11分又()004EN ,,=是平面AMB 的一个法向量, …………… 12分cos , n EN ==n ENnEN89. …………… 13分 ∴二面角N AM B --的余弦值为89. …………… 14分 19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,, ∵OA OB OC +=,∴M 是线段AB 的中点. …………… 2分 ∴()222121212222y y y y y y x +-+==,① …………… 3分122y y y +=. ② …………… 4分 ∵OA OB ⊥, ∴0OA OB ⋅=.∴2212120y y y y +=. …………… 5分 依题意知120y y ≠,∴121y y =-. ③ …………… 6分把②、③代入①得:2422y x +=,即()2112y x =-. ………… 7分∴点M 的轨迹方程为()2112y x =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB = =⋅………… 9分===…………… 11分∵22121222y y y y +≥=,当且仅当12y y =时,等号成立, (12)分∴2S ≥=. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-. …………… 1分 故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=.解得0x =或21x k=. …………… 2分 ∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭. …………… 3分同理得点B 的坐标为()2k k ,-. …………… 4分∵OA OB OC +=,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为()x y ,,则221212k kx k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩ …………… 6分消去k ,得()2112y x =-. …………… 7分 ∴点M 的轨迹方程为()2112y x =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB ==⋅…………… 9分=………… 10分≥…………… 11分 2=. …………… 12分 当且仅当221k k=,即21k =时,等号成立. …………… 13分 ∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力)(1)解法1:设1232n b b b b ,,,,+ 构成等比数列,其中1212n b b ,+==,依题意,1212n n n A b b b b ++=⋅⋅⋅⋅ , ① …………… 1分 2121n n n A b b b b ++=⋅⋅⋅⋅ , ② …………… 2分 由于12213212n n n n b b b b b b b b +++⋅=⋅=⋅==⋅= , ………… 3分①⨯②得()()()()212211221nn n n n A b b b b b b b b ++++=⋅⋅⋅⋅ 22n +=.…………… 4分 ∵0n A >, ∴222n n A +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =的等比数列. …………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. …………… 8分解法2: 设1232n b b b b ,,,,+ 构成等比数列,其中1212n b b ,+==,公比为q , 则121n n b b q ++=,即12n q +=. …………… 1分 依题意,得1212n n n A b b b b ++=⋅⋅⋅⋅()()()211111n b b q b q b q +=⋅⋅⋅⋅ …………… 2分 ()()212311n n b q++++++=⋅ …………… 3分()()122n n q ++= …………… 4分222n +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =的等比数列. ………… 7分∴1nn S ⎡⎤-⎢⎥=(41n⎡⎤=+-⎢⎥⎣⎦. ……… 8分 (2)解: 由(1)得2n n a A log =222222n n log ++==, …………… 9分 ∵()()()11111n nn n n ntan tan tan tan tan tan +-⎡⎤=+-=⎣⎦++⋅, …………10分∴()()1111n nn n tan tan tan tan tan +-⋅+=-,n ∈N *. ………11分∴2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅ 2334tan tan tan tan tan =⋅+⋅++ ()()12n n tan +⋅+()()213243111111n n tan tan tan tan tan tan tan tan tan ⎛⎫+-+⎛⎫⎛⎫--=-+-++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()221n n tan tan tan +--. …………… 14分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”;设()sin x x x ϕ=-,则()1c o s 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数, 不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-,则2121sin sin x x x x -<-. ① …………… 1分 又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+, 即2112sin sin x x x x ->-, ② …………… 2分 由①、②得 212121()sin sin x x x x x x --<-<-. 因此,2121sin sin x x x x -<-,对12x x <都成立. …………… 3分 当12x x >时,同理有2121sin sin x x x x -<-成立 又当12x x =时,不等式2121sin sin 0x x x x -=-=, 故对任意的实数1x ,2x ∈R ,均有2121sin sin x x x x -≤-.因此 ()sin g x x =是R 上的“平缓函数”. ………… 5分 由于121212()()()(1)h x h x x x x x -=-+- …………… 6分 取13x =,22x =,则1212()()4h x h x x x -=>-, ………… 7分 因此, 2()h x x x =-不是区间R 的“平缓函数”. …………… 8分 (2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”,则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤-. …………… 9分第 21 页 共 21 页 而121(21)n n x x n +-≤+, ∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++. …………… 10分 ∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++- ,……… 11分 ∴1111221n n n n n y y y y y y y y ++---≤-+-++- . …………… 12分 ∴11111111[()()(1)]4112n y y n n n n +-≤-+-++-+- 11141n ⎛⎫=- ⎪+⎝⎭ …………… 13分 14<. …………… 14分。
广东省13大市2013届高三二模数学(理)试题分类汇编7立体几何
广东省13大市2013届高三二模数学(理)试题分类汇编7:立体几何姓名____________班级___________学号____________分数______________一、选择题1 .(广东省珠海市2013年高三4月模拟考试数学(理)试卷及答案 )下列四个命题中,真命题的个数为(1)如果两个平面有三个公共点,那么这两个平面重合;(2)两条直线可以确定一个平面;(3)若α∈M ,β∈M ,l =⋂βα,则l M ∈; (4)空间中,相交于同一点的三直线在同一平面内. ( )A .1B .2C .3D .42 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版)( )523 .(广东省韶关市2013届高三4月第二次调研测试数学理试题)一空间几何体的三视图如右图所示,该几何体的体积为12π+853,则正视图与侧视图中x 的值为A .5B .4C .3D .24 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)某三棱锥的三视图如图所示,该三棱锥的体积是 ( )A .403 B C .503D5 .(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图(1)示,则该几何体的体积为( )A .7B .223C .476D .2336 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)下列命题中假命题...是 ( )A .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;B .垂直于同一条直线的两条直线相互垂直;C .若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;D .若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行. 7 .(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))如图是某简单组合体的三视图,则该组合体的体积为( )A.π B.2)π+ C.D.2)+8 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于 圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两部分,则截面的面积为 ( ) A .14π B .πC.94πD .4π9 .(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知一个几何体的三视图及其大小如图1,这个几何体的体积=V( )图2侧视图正视图A .π12B .π16C .π18D .π64二、填空题10.(广东省珠海市2013年高三4月模拟考试数学(理)试卷及答案 )如右图,一个空间几何体的主视图、左视图是周长为4一个内角为060的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为________.俯视图左视图主视图11.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)图2是一个组合体的三视图,根据图中数据,可得该几何体的表面积等于(几何体的接触面积可忽略不计)___________12.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))某简单组合体的三视图如图2,其中正视图与侧视图相同(尺寸如图,单位:cm),则该组合体的体积是________3cm (结果保留π)13.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))一个几何体的三视图如图所示,则这个几何体的体积为___14.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知集合A B C 、、,A ={直线},B ={平面},C A B =.若,,a A b B c C ∈∈∈,给出下列四个命题:①//////a b a c c b ⎧⇒⎨⎩ ②//a b a c c b ⊥⎧⇒⎨⊥⎩ ③//a ba c cb ⎧⇒⊥⎨⊥⎩ ④//a ba c cb ⊥⎧⇒⊥⎨⎩其中所有正确命题的序号是__________. 三、解答题15.(广东省珠海市2013年高三4月模拟考试数学(理)试卷及答案 )如图,四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB ⊥,CD AC ⊥,︒=∠60ABC ,BC AB PA ==,E 是PC 的中点. (1)求证:AE CD ⊥; (2)求证:⊥PD 面ABE ;(3)求二面角C PD A --的平面角的正弦值.EDCBAP16.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)如图51-,在直角梯形ABCD 中,已知//AD BC ,1AD AB ==,90,45o o BAD BCD ∠=∠=,AE BD ⊥.将ABD ∆沿对角线BD 折起(图52-),记折起后点A 的位置为P 且使平面PBD ⊥平面BCD .(1)求三棱锥P BCD -的体积;(2)求平面PBC 与平面PCD 所成二面角的平面角的大小.17.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))如图,在长方体ABCD 一A 1B 1C 1D 1中,AA 1=2, AD = 3, E 为C D 中点,三棱 锥A 1-A B 1E 的体积是6. (1) 设P 是棱BB 1的中点,证明:CP//平面AEB 1; (2) 求AB 的长;(3)求二面角B —AB 1-E 的余弦值.18.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))如图6,已知四边形ABCD 是矩形,22AB BC ==,三角形PAB 是正三角形,且平面ABCD ⊥平面PCD . (1)若O 是CD 的中点,证明:BO PA ⊥; (2)求二面角B PA D --的余弦值.19.(广东省韶关市2013届高三4月第二次调研测试数学理试题)如图甲,在平面四边形ABCD 中,已知45,90,A C ∠=∠=105ADC ∠=,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1)求证:DC ⊥平面ABC; (2)求BF 与平面ABC 所成角的正弦值; (3)求二面角B-EF-A 的余弦值.甲DCBAF E乙DCBA20.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图,在梯形ABCD 中//AB CD ,,60AD CD CB a ABC ===∠=︒,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE a =,点M 在线段EF 上.(1)求证:BC ⊥平面ACFE ;(2)当EM 为何值时,//AM 平面BDF ?证明你的结论;(3)求二面角E EF D --的余弦值.21.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))如图,在边长为4的菱形ABCD中,60DAB ∠=,点E,F 分别在边CD,CB 上,点E 与点C,点D 不重合,EF AC ⊥, EF AC O ⋂= ,沿EF 将CEF ∆折起到PEF ∆的位置,使得平面PEF ⊥ 平面ABFED(1)求证:BD ⊥平面POA (2)设AOBD=H,当O 为CH 中点时,若点Q 满足AQ QP =,求直线OQ 与平面PBD 所成角的正弦值.22.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)在图(4)所示的长方形ABCD 中,AD=2AB=2,E 、F 分别为AD 、BC 的中点, M 、N 两点分别在AF 和CE 上运动,且AM=EN=a (0a <<把长方形ABCD 沿EF 折成大小为θ的二面角A-EF-C,如图(5)所示,其中(0,]2πθ∈图(5)图(4)MN FDC B AE(1)当045θ=时,求三棱柱BCF-ADE 的体积;(2)求证:不论θ怎么变化,直线MN 总与平面BCF 平行;(3)当090θ=且a =时,求异面直线MN 与AC 所成角余弦值.23.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)如图甲,设正方形ABCD的边长为3,点E F 、分别在AB CD 、上,并且满足22AE EB CF FD ==,,如图乙,将直角梯形AEFD 沿EF 折到11A EFD 的位置,使点1A 在平面EBCF 上的射影G 恰好在BC 上.(1)证明:1//A E 平面1CD F ;(2)求平面BEFC 与平面11A EFD 所成二面角的余弦值.24.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(本小题满分14分)如图, 111ABC A B C -中,侧棱与底面垂直, AB AC ⊥,12AB AC AA ===,点,M N 分别为1A B 和11B C 的中点. (1)证明: 11//MN A ACC 平面; (2)求二面角N MC A --的正弦值.BECD F图甲1A EFBC1D图乙A 第18题图B 125.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图 3).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1AC (如图4).(1)求证:1A D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.26.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为点D ,PD DB =.(1)求证:PA CD ⊥;(2)求二面角C PB A --的余弦值.第18题图广东省13大市2013届高三二模数学(理)试题分类汇编7:立体几何参考答案一、选择题 1. A 2. C 3. C 4. A5. 依题意可知该几何体的直观图如右上图,其体积为.3112322111323-⨯⨯⨯⨯⨯=,故选D.6. B7. 【解析】由三视图可知几何体是由截面相同的半个圆锥与半个三棱锥组合而成的.圆椎底面半径为6,椎体底面边长为12,高为.1111361262)3232V ππ=⨯⨯⨯⨯+⨯⨯⨯⨯=+故选B .8. C 9. B 二、填空题 10. π11. 40π解析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22422222648.S ππππ=⨯+⨯⨯+⨯⨯=12. 13π+13.10314. 【解析】由题意知:C 可以是直线,也可以是平面, 当C 表示平面时,①②③都不对,故选④正确.三、解答题15. (1)证明:⊥PA 底面ABCD ,PA CD⊥∴又AC CD ⊥,A AC PA =⋂,故⊥CD 面PAC ⊆AE 面PAC ,故AE CD ⊥(2)证明:BC AB PA ==,︒=∠60ABC ,故AC PA = E 是PC 的中点,故PC AE ⊥由(1)知AE CD ⊥,从而⊥AE 面PCD ,故PD AE ⊥ 易知PD BA ⊥,故⊥PD 面ABE(3)过点A 作PD AF ⊥,垂足为F ,连结EF .由(2)知,⊥AE 面PCD ,故AFE ∠是二面角C PD A --的一个平面角.设a AC =,则a AE 22=,a AD 32=,a PD 37=从而a PD AD PA AF 72=⋅=,故414sin ==∠AF AE AFE 说明:如学生用向量法解题,则建立坐标系给2分,写出相关点的坐标给2分,第(1)问正确给2分,第(2)问正确给4分,第(3)问正确给4分.16.解:(1)∵平面PBD ⊥平面BCD ,PE BD ⊥,PE ⊂平面PBD ,平面PBD 平面BCD BD =,∴PE ⊥平面BCD , 即PE 是三棱锥P BCD -的高,又∵//AD BC ,1AD AB ==,90,45o o BAD BCD ∠=∠=, ∴45,90,o o ABD CBD BDC ∠=∠=∠=CD BD ===∴sin 45o PE AE AB ===, 11122BCD S BD CD ∆=⋅==,∴三棱锥P BCD -的体积11133BCD V S PE ∆=⋅=⨯=. (2)方法一:∵PE ⊥平面BCD ,CD ⊂平面BCD ,∴CD PE ⊥又∵CD BD ⊥,PE PD P =,∴CD ⊥平面PBD , ∵PD ⊂平面PBD ,∴CD ⊥PD∴2223PC CD PD =+=∵090BD CD BDC ==∠=,∴2224BC BD CD =+=∴ 222BC PB PC =+∴090BPC ∠=,即PB PC ⊥ 由已知可知PB PD ⊥,∵PD PC P =,∴PB ⊥平面PBC ∵PB ⊂平面PBC ,∴平面PBC ⊥平面PBC 所以平面PBC 与平面PCD 所成二面角的平面角的大小为90o . 方法二:过E 作直线//EG DC ,交BC 于G,则EG BD ⊥,EG PE ⊥如图建立空间直角坐标系,则,,P B C ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,D ⎛⎫ ⎪ ⎪⎝⎭222,0,,PB PC⎛⎫⎛=-=-⎪⎝,PD⎛=-⎝设平面PBC的法向量为(,,)xy z=n,则PBPC⎧=⎪⎨=⎪⎩nn,即x zx z=⎪+-=⎪⎩化简得20z xx y z=⎧⎨-+=⎩令1x=,得1,1z y==,所以(1,1,1)=n是平面PBC的一个法向量.同理可得平面PCD的一个法向量为(1,0,1)=-m设向量n 和m所成角为θ,则cos0θ===n mn m∴平面PBC与平面PCD所成二面角的平面角的大小为90o.17.18.19.证明:在图甲中∵AB BD =且45A ∠=(1) ∴45ADB ∠= ,90ABC ∠= 即AB BD ⊥在图乙中,∵平面ABD ⊥平面BDC , 且平面ABD 平面BDC=BD∴AB⊥底面BDC,∴AB⊥C D 又90DCB ∠=,∴DC⊥BC,且ABBC B =∴DC ⊥平面ABC(2)解法1:∵E、F 分别为AC 、AD 的中点 ∴EF//CD,又由(1)知,DC ⊥平面ABC, ∴EF⊥平面ABC,垂足为点E∴∠FBE 是BF 与平面ABC 所成的角在图甲中,∵105ADC ∠=, ∴60BDC ∠=,30DBC ∠= 设CD a =则2,BD a BC ==,BF ==,1122EF CD a ==∴在Rt △FEB 中,sin EF FBE FB ∠=== 即BF 与平面ABC解法2:如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示, 设CD a =,则2,BD AB a ==BC =,AD =可得(0,0,0),(2,0,0)B D a ,(0,0,2)A a,3(,0)2C a a ,(,0,)F a a ,∴1(,,0)2CD a =,(,0,)BF a a = 设BF 与平面ABC 所成的角为θ 由(1)知DC ⊥平面ABC∴2cos()2||||CD BF CD BF a πθ⋅-===⋅⋅∴sin θ=(3)由(2)知 FE ⊥平面ABC,又∵BE⊂平面ABC,AE ⊂平面ABC,∴FE⊥BE,FE ⊥AE, ∴∠AEB 为二面角B-EF-A 的平面角 在△AEB 中,12AE BE AC ==== ∴2221cos 27AE BE AB AEB AE BE +-∠==-⋅即所求二面角B-EF-A 的余弦为17-20.证明:(Ⅰ)在梯形ABCD 中,∵,,60AB CD AD DC CB a ABC ===∠=︒,∴四边形ABCD 是等腰梯形, 且30,120,DCA DAC DCB ∠=∠=︒∠=︒∴90ACB DCB DCA ∠=∠-∠=︒,∴.AC BC ⊥又∵平面ACFE ⊥平面ABCD,交线为AC ,∴BC ⊥平面ACFE. (Ⅱ)当EM 时,AM平面BDF.现在证明如下:在梯形ABCD 中,设AC BD N=,连结FN,则:1: NA = ∵EM =而EF AC =,∴:1:2,EM FM =∴MF =AN,∴四边形ANFM 是平行四边形. ∴.AMNF又∵NF ⊂平面BDF,AM ⊄平面BDF. ∴AM平面BDF.(Ⅲ)方法一;(几何法)取EF 中点G,EB 中点H,连结DG 、GH 、DH, ∵容易证得DE=DF ,∴.DG EF ⊥∵BC ⊥平面ACFE ,∴.BC EF ⊥又∵EF FC ⊥,∴.EF FB ⊥yX又∵GH FB ,∴.EF GH ⊥∴DGH ∠是二面角B —EF —D 的平面角.在△BDE中,,.DE DB BE ==∴222BE DE DB =+∴90EDB ∠=︒,∴.DH =又,.DG GH ==∴在△DGH 中,由余弦定理得cos DGH ∠=即二面角B —EF —D 的平面角余弦值为1010方法二;(向量法)以C 为坐标原点,建立如图所示的直角坐标系:)0,0,0(C ,)0,,0(a B ,),0,0(a F ,)0,2,23(a a D -,),0,3(a a E所以)0,0,3(a EF -=,),,0(a a BF -=,),2,23(a aa DF -=分别设平面BEF 与平面DEF 的法向量为),,(1111z y x n =,),,(2222z y x n =所以⎪⎩⎪⎨⎧=+-=⋅=-=⋅00311111az ay BF n ax EF n ,令11=y ,则1,011==z x又⎪⎩⎪⎨⎧=++-=⋅=-=⋅022*********az y a x a DF n ax EF n 显然02=x ,令21-,122==z y 则 所以)1,1,0(1=n ,)21,1,0(2-=n ,设二面角的平面角为θθ,为锐角 所以1010252)21,1,0()1,1,0(cos 2121=⨯-⋅=⨯∙=n n n n θG EABCDFNMN 1M 1EA BC DFNM21.22.解:(1)依题意得,,EF DE EF AE EF ⊥⊥∴⊥平面ADE ,DEA ∠=θ由45θ=得,12sin 452ADE S DE EA∆=⋅=, ∴BCF ADE ADE V S EF -∆=⋅=(2)证法一:过点M 作1MM BF ⊥交BF 于1M , 过点N 作1NN CF ⊥交BF 于1N ,连结11M N , ∵11//,//MM AB NN EF ∴11//MM NN 又∵11MM NN FM CN AB FA CE EF===∴11MM NN = ∴四边形11MNN M 为平行四边形,11//MN N M ∴,11,,MN BCF N M BCF ⊄⊂又面面//.MN BCF ∴面【法二:过点M 作MG EF ⊥交EF 于G,连结NG,则,CN FM FGNE MA GE == //NG CF ∴QEABC DFNM,,//NG BCF CF BCF NG BCF ⊄⊂∴又面面面,同理可证得//MG BCF 面,又MG NG G =, ∴平面MNG//平面BCF ∵MN ⊂平面MNG, //MN BCF ∴面 】 (3)法一:取CF 的中点为Q,连结MQ 、NQ,则MQ//AC, ∴NMQ ∠或其补角为异面直线MN 与AC 所成的角,∵090θ=且a =∴12NQ =,MQ ==MN ∴=222cos 2QM MN NQ NMQ MN QM +-∴∠==⋅即MN 与AC【法二:∵090θ=且a =分别以FE 、FB 、FC 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系则111111(1,1,0),(0,0,1),(,,0),(,0,),(1,1,1),(0,,),222222A C M N AC MN =--=-得cos ,AC MN ∴<>==所以与AC】 23. ⑴证明:在图甲中,易知//AE DF ,从而在图乙中有11//A E D F ,因为1A E ⊄平面1CD F ,1D F ⊂平面1CD F ,所以1//A E 平面1CD F (条件2分) ⑵解法1、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面EBCF ,则1AG EF ⊥, 所以EF ⊥平面1A GH ,则1EF A H ⊥,所以1A HG ∠平面BEFC 与平面11A EFD 所成二面角的平面角, 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以,1BG MF ==,AG =; (三角形全等1分) 又由ABGAHE ∆∆,得1AB AE A H AH AG ===, 于是,HG AG AH =-=在1Rt AGH ∆中,112cos 3HG AGH A H ∠==,即所求二面角的余弦值为23解法2、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面EBCF ,则1AG EF ⊥, 所以EF ⊥平面1A GH ,则1EF A H ⊥,图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线, 设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以1BG MF ==,则AG =; 又由ABGAHE ∆∆,得1AB AE A H AH AG ===, 于是,HG AG AH =-=A BE CDF图甲1A EFC1D图乙GMHH图丙B 1A 1PC 1N CBAM在1Rt AGH ∆中,1AG ===作//GT BE 交EF 于点T ,则TG GC ⊥,以点G 为原点,分别以1GC GT GA 、、所在直线为x y z 、、轴,建立如图丙所示的空间直角坐标系,则(0,0,0)G 、(1,1,0)E-、(2,2,0)F、1A ,则1(1,3,0)(EF EA ==-,(坐标系、坐标、向量各1分) 显然,1GA =是平面BEFC 的一个法向量,设(,,)n x y z =是平面11A EFD 的一个法向量,则130,0n EF x y n EA x y ⎧=+=⎪⎨=-++=⎪⎩,即3,x y z =-⎧⎪⎨=-⎪⎩,不妨取1y =-,则(3,1,n =-,设平面BEFC 与平面11A EFD 所成二面角为θ,可以看出,θ为锐角,所以,121|032cos 3||||23(1)GA n GA n θ⨯===+-,所以,平面BEFC 与平面11A EFD 所成二面角的余弦值为2324. (本小题主要考查空间线面关系、空间向量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解 : (1)证法一: 连接1,1AB AC 由题意知,点,M N 分别为1AB 和11B C 的中点,1//MN AC ∴又MN ⊂平面11A ACC ,1AC ⊂平面11A ACC , //MN ∴平面11A ACC证法二:取11A B 中点P ,连,MP NP ,而,M N 分别为1AB 与11B C 的中点,1//MP A A ∴,11MP A ACC ⊄平面,111AA A ACC ⊂平面, 11//MP A ACC ∴平面, 同理可证11//NP A ACC 平面又MP NP P = ∴平面MNP //平面11A ACC MN ⊂平面MNP ,//MN ∴平面11A ACC证法三(向量法): 以点A 为坐标原点,分别以直线1,,AB AC AA 为x 轴, y 轴, z 轴建立空间直角坐标系A xyz-,如图所示.于是B 1A 1QPHOD 1DC 1NC B A MB 1PQHOMD 1(0,0,0),(2,0,0),A B (1,0,1),(1,1,2)M N 1,AB AC AB AA ⊥⊥,1ACAA A =,11AB A ACC ∴⊥平面∴向量(2,0,0)AB 是平面11A ACC 的一个法向量(0,1,1)MN ,2001010AB MN ⋅=⨯+⨯+⨯=AB MN ∴⊥又11MN A ACC ⊄平面 //MN ∴平面11A ACC(2)解法一: 以点A 为坐标原点,分别以直线1,,AB AC AA 为x 轴, y 轴, z 轴建立空间直角坐标系A xyz -,如图所示.于是(0,0,0),(2,0,0),(0,2,0)A B C ,111(0,0,2),(2,0,2),(0,2,2)A B C ,(1,0,1),(1,1,2)M N 由(1)知1MA 是平面MCA 的一个法向量, 1(1,0,1)MA =-设平面NMC 的法向量为(,,)n x y z =,(0,1,1)MN =,(1,2,1)MC =--,002030n MN y z y z x y z x z n MC ⎧⋅=+==-⎧⎧⎪⇒⇒⎨⎨⎨-+-==-⋅=⎩⎩⎪⎩, (3,1,1)n ∴=-设向量1MA 和向量n 的夹角为θ,则11cos (MAn MA nθ⋅===- ∴二面角N MC A --==解法二(几何法):如图,将几何体补形成一个正方体,连11DC CD 、交于点O ,连11B A B O 、,显然,11A M C B D O 、、、、、,都在同一平面11ACB D 上 易证1//B O MC ,11C O CD ⊥,11B D ⊥平面11C CDD ,1C O ⊂平面11C CDD , 111C O B D ∴⊥,又1111B D CD D =1C O ∴⊥平面11ACB D . 取1B O 中点H ,连NH ,N H 、分别是111,B O B C 的中点1//NH C O ∴,NH ∴⊥平面11ACB D ,且H 为垂足,即NH ⊥平面AMC ,过点O 作OP MC ⊥于P ,过H 作//HQ OP 交MC 于Q ,连NQ ,则NQH ∠即是所求二面角N MC A --的补角 在Rt MAC ∆中,CM ===,sin AM MCA MC ∠===,sin sin()cos 2OCP MCA MCA π∠=-∠=∠==, 在Rt OPC ∆中,sin OCP ∠=,OP ∴==HQ OP ∴==又112MH C O ==∴在Rt NQH ∆中,NQ ===sin NH NQH NQ ∴∠===∴所求二面角N MC A --25. (本小题主要考查空间直线与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力等,本小题满分14分)证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =, 所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得3DE ==. 因为222AD DE AE +=, 所以AD DE ⊥. 折叠后有1A D DE ⊥因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED 又平面1A DE平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED(2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60. 如图,作PH BD ⊥于点H ,连结1A H 、1A P 由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED , 所以1A D ⊥PH又1A DBD D =,所以PH ⊥平面1A BD所以1PA H ∠是直线1PA 与平面1A BD 所成的角 设PB x =()03x ≤≤,则2xBH =,PH x =在Rt △1PA H 中,160PA H ∠=,所以112A H x = 在Rt △1A DH 中,11A D =,122DH x =- 由22211A D DH A H +=,得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭解得52x =,满足03x ≤≤,符合题意 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、系D xyz -如图设2PB a =()023a ≤≤,则BH a =,PH =,2DH a =-所以()10,0,1A,()2,0P a -,()E所以()12,,1PA a =- 因为ED ⊥平面1A BD ,所以平面1A BD的一个法向量为()DE = 因为直线1PA 与平面1A BD 所成的角为60, 所以11sin 60PA DE PA DE===, 解得54a =即522PB a ==,满足023a ≤≤,符合题意所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =26.解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥, BC =知,60CAB ∠=, ∴ACO ∆为等边三角形,从而CD AO ⊥ ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.)法2:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中设1AD =,由3AD DB =BC =得,3DB =,4AB =,BC =,∴BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥ ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥法3:∵AB 为圆O 的直径,∴AC CB ⊥, 在Rt ABC ∆BC =得,30ABC ∠=, 设1AD =,由3AD DB =得,3DB =,BC =, 由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=,∴222CD DB BC +=,即CD AO ⊥. ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥(Ⅱ)法1:(综合法)过点D 作DE PB ⊥,垂足为E ,连接CE 由(1)知CD ⊥平面PAB ,又PB ⊂平面PAB , ∴CD PB ⊥,又DE CD D =, ∴PB ⊥平面CDE ,又CE ⊂平面CDE , ∴CE PB ⊥,∴DEC ∠为二面角C PB A --的平面角 由(Ⅰ)可知CD =,3PD DB ==,(注:在第(Ⅰ)问中使用方法1时,此处需要设出线段的长度,酌情给分∴PB =,则PD DB DE PB ⋅===,∴在Rt CDE ∆中,tan CD DEC DE ∠===∴cos DEC ∠=即二面角C PB A --法2:(坐标法)以D 为原点,DC 、DB 和DP 的方向分别为x 轴、y 轴和z 轴的正向,建立如图所示的空间直角坐标系(注:如果第(Ⅰ)问就使用“坐标法”时,建系之前先要证明CD AB ⊥,酌情给分.) 设1AD =,由3AD DB =BC =得,3PD DB ==,CD =,∴(0,0,0)D,C ,(0,3,0)B ,(0,0,3)P , ∴(3,0,3)PC =-,(0,3,3)PB =-,(CD =,由CD ⊥平面PAB ,知平面PAB 的一个法向量为(CD = 设平面PBC 的一个法向量为(,,)x y z =n ,则00PC PB ⎧⋅=⎪⎨⋅=⎪⎩n n,即30330y y z -=-=⎪⎩,令1y=,则x =1z =, ∴=n ,设二面角C PB A --的平面角的大小为θ,则cos ||5CD CD θ⋅===⋅n|n |∴二面角C PB A --。
2013年高考理科数学广东卷word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(广东卷)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式V =13(S 1+S 2)h ,其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013广东,理1)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( ).A .{0}B .{0,2}C .{-2,0}D .{-2,0,2} 答案:D解析:∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2}.2.(2013广东,理2)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ).A .4B .3C .2D .1 答案:C解析:y =x 3,y =2sin x 为奇函数;y =x 2+1为偶函数;y =2x 为非奇非偶函数.所以共有2个奇函数,故选C .3.(2013广东,理3)若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ).A .(2,4)B .(2,-4)C .(4,-2)D .(4,2) 答案:C解析:由i z =2+4i ,得z =24i (24i)(i)i i (i)++⋅-=⋅-=4-2i , 故z 对应点的坐标为(4,-2).4.(2013广东,理4)则X 的数学期望E (X )=( ). A .32 B .2 C .52D .3 答案:A 解析:E (X )=1×35+2×310+3×110=1510=32. 5.(2013广东,理5)某四棱台的三视图如图所示,则该四棱台的体积是( ).A .4B .143C .163D .6 答案:B解析:方法一:由三视图可知,原四棱台的直观图如图所示,其中上、下底面分别是边长为1,2的正方形,且DD 1⊥面ABCD ,上底面面积S 1=12=1,下底面面积S 2=22=4.又∵DD 1=2,∴V 台=13(S 1+S 2)h=13(14)×2=143. 方法二:由四棱台的三视图,可知原四棱台的直观图如图所示.在四棱台ABCD -A 1B 1C 1D 1中,四边形ABCD 与四边形A 1B 1C 1D 1都为正方形, AB =2,A 1B 1=1,且D 1D ⊥平面ABCD ,D 1D =2. 分别延长四棱台各个侧棱交于点O , 设OD 1=x ,因为△OD 1C 1∽△ODC , 所以111OD D C OD DC =,即122x x =+,解得x =2.1111ABCD A B C D V -=V 棱锥O -ABCD -1111O A B C D V -棱锥=13×2×2×4-13×1×1×2=143. 6.(2013广东,理6)设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是( ). A .若α⊥β,m ⊂α,n ⊂β,则m ⊥n B .若α∥β,m ⊂α,n ⊂β,则m ∥n C .若m ⊥n ,m ⊂α,n ⊂β,则α⊥β D .若m ⊥α,m ∥n ,n ∥β,则α⊥β 答案:D解析:选项A 中,m 与n 还可能平行或异面,故不正确; 选项B 中,m 与n 还可能异面,故不正确; 选项C 中,α与β还可能平行或相交,故不正确; 选项D 中,∵m ⊥α,m ∥n ,∴n ⊥α. 又n ∥β,∴α⊥β.故选D .7.(2013广东,理7)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( ). A .2214x -= B .22145x y -= C .22125x y -= D .2212x -= 答案:B解析:由曲线C 的右焦点为F (3,0),知c =3.由离心率32e =,知32c a =,则a =2,故b 2=c 2-a 2=9-4=5, 所以双曲线C 的方程为22145x y -=. 8.(2013广东,理8)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( ).A .(y ,z ,w )∈S ,(x ,y ,w )∉SB .(y ,z ,w )∈S ,(x ,y ,w )∈SC .(y ,z ,w )∉S ,(x ,y ,w )∈SD .(y ,z ,w )∉S ,(x ,y ,w )∉S 答案:B解析:由(x ,y ,z )∈S ,不妨取x <y <z , 要使(z ,w ,x )∈S ,则w <x <z 或x <z <w . 当w <x <z 时,w <x <y <z , 故(y ,z ,w )∈S ,(x ,y ,w )∈S .当x <z <w 时,x <y <z <w ,故(y ,z ,w )∈S ,(x ,y ,w )∈S . 综上可知,(y ,z ,w )∈S ,(x ,y ,w )∈S .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2013广东,理9)不等式x2+x-2<0的解集为__________.答案:{x|-2<x<1}解析:x2+x-2<0即(x+2)(x-1)<0,解得-2<x<1,故原不等式的解集为{x|-2<x<1}.10.(2013广东,理10)若曲线y=kx+ln x在点(1,k)处的切线平行于x轴,则k=__________.答案:-1解析:y′=k+1 x .因为曲线在点(1,k)处的切线平行于x轴,所以切线斜率为零,由导数的几何意义得y′|x=1=0,故k+1=0,即k=-1.11.(2013广东,理11)执行如图所示的程序框图,若输入n的值为4,则输出s的值为__________.答案:7解析:i=1,s=1,i≤4,s=1+0=1;i=2,s=1,i≤4,s=1+1=2;i=3,s=2,i≤4,s=2+2=4;i=4,s=4,i≤4,s=4+3=7;i=5,此时i>4,故s=7.12.(2013广东,理12)在等差数列{a n}中,已知a3+a8=10,则3a5+a7=__________.答案:20解析:因为数列{a n}的等差数列,所以由等差数列的性质得a3+a8=a5+a6=a4+a7=10.所以3a5+a7=a5+2a5+a7=a5+a4+a6+a7=2×10=20.13.(2013广东,理13)给定区域D:44,4,0.x yx yx+≥⎧⎪+≤⎨⎪≥⎩令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定__________条不同的直线.答案:6解析:由区域D:44,4,0,x yx yx+≥⎧⎪+≤⎨⎪≥⎩画出可行域如图所示.满足条件的(x 0,y 0)有(0,1),(0,4),(1,3),(2,2),(3,1),(4,0), 故T 中的点共确定6条不同的直线.(二)选择题(14~15题,考生只能从中选做一题)14.(2013广东,理14)(坐标系与参数方程选做题)已知曲线C的参数方程为,,x t y t ⎧=⎪⎨=⎪⎩(t 为参数),C在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为__________.答案:πsin 4ρθ⎛⎫+= ⎪⎝⎭解析:∵曲线C的参数方程为,x t y t⎧=⎪⎨=⎪⎩(t 为参数),∴其普通方程为x 2+y 2=2.又点(1,1)在曲线C 上,∴切线l 的斜率k =-1.故l 的方程为x +y -2=0,化为极坐标方程为ρcos θ+ρsin θ=2,即πsin 4ρθ⎛⎫+= ⎪⎝⎭15.(2013广东,理15)(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上.延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E .若AB =6,ED =2,则BC =__________.答案:解析:连接OC .∵AB 为圆O 的直径,∴AC ⊥BC .又BC =CD ,∴AB =AD =6,∠BAC =∠CAD . 又CE 为圆O 的切线,则OC ⊥CE .∵∠ACE 为弦切角,∴∠ACE =∠B . ∴∠ACE +∠CAD =90°.∴CE ⊥AD . 又AC ⊥CD ,∴CD 2=ED ·AD =2×6=12,即CD=∴BC=三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(2013广东,理16)(本小题满分12分)已知函数π()12f x x ⎛⎫=- ⎪⎝⎭,x ∈R .(1)求π6f ⎛⎫-⎪⎝⎭的值; (2)若cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,求π23f θ⎛⎫+ ⎪⎝⎭. 解:(1)πππ6612f ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭ππ144⎛⎫-== ⎪⎝⎭.(2)πππ223312f θθ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭π24θ⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ.因为cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,所以sin θ=45-. 所以sin 2θ=2sin θcos θ=2425-,cos 2θ=cos 2θ-sin 2θ=725-.所以π23f θ⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ=72417252525⎛⎫---= ⎪⎝⎭. 17.(2013广东,理17)(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.解:(1)样本均值为171920212530132=2266+++++=.(2)由(1)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有12×13=4名优秀工人.(3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则P (A )=1148212C C 16C 33=.18.(2013广东,理18)(本小题满分14分)如图(1),在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E分别是AC ,AB 上的点,CD =BE ,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′BCDE ,其中A ′O .图(1)图(2)(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CDB 的平面角的余弦值.解:(1)由题意,得OC =3,AC =AD =如图,连结OD ,OE ,在△OCD 中, 由余弦定理可得OD =.由翻折不变性可知A ′D =, 所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE ,又OD ∩OE =O , 所以A ′O ⊥平面BCDE .(2)传统法:过O 作OH ⊥CD 交CD 的延长线于H ,连结A ′H , 因为A ′O ⊥平面BCDE ,所以A ′H ⊥CD . 所以∠A ′HO 为二面角A ′CDB 的平面角.结合题图(1)可知,H 为AC 中点,故OH =2,从而A ′H 2=,所以cos ∠A ′HO =5OH A H ='所以二面角A ′-CD -B 的平面角的余弦值为5. 向量法:以O 点为原点,建立空间直角坐标系O -xyz 如图所示.则A ′(0,0,3),C (0,-3,0),D (1,-2,0), 所以CA '=(0,3),DA '=(-1,2). 设n =(x ,y ,z )为平面A ′CD 的法向量,则0,0,CA DA ⎧⋅'=⎪⎨⋅'=⎪⎩n n 即30,20,y xy ⎧+=⎪⎨-++=⎪⎩解得,.y x z =-⎧⎪⎨=⎪⎩令x =1,得n =(1,-1).由(1)知,OA '=(0,0为平面CDB 的一个法向量, 所以cos 〈n ,OA '〉=55OA OA ⋅'=='n n ,即二面角A ′-CD -B 的平面角的余弦值为5. 19.(2013广东,理19)(本小题满分14分)设数列{a n }的前n 项和为S n .已知a 1=1,2121233n n S a n n n +=---,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++<. 解:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n , 2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即111n n a a n n +-=+.又21121a a-=, 故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以na n=1+(n -1)×1=n .所以a n =n 2. (3)当n =1时,1171<4a =;当n =2时,12111571444a a +=+=<; 当n ≥3时,21111111n a n n n n n =<=-(-)-, 此时12111na a a +++ =222111111111111+<1434423341n n n ⎛⎫⎛⎫⎛⎫++++++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭=1117171+4244n n +-=-<.综上,对一切正整数n,有1211174n a a a +++<. 20.(2013广东,理20)(本小题满分14分)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解:(1)依题意,设抛物线C 的方程为x 2=4cy , 2=,结合c >0,解得c =1. 所以抛物线C 的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x , 设A (x 1,y 1),B (x 2,y 2)221212,44x x y y ⎛⎫== ⎪⎝⎭其中,则切线P A ,PB 的斜率分别为12x 1,12x 2,所以切线P A 的方程为y -y 1=12x(x -x 1),即y =12x x -212x +y 1,即x 1x -2y -2y 1=0,同理可得切线PB 的方程为x 2x -2y -2y 2=0, 因为切线P A ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0.所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1,所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1.联立方程002220,4,x x y y x y --=⎧⎨=⎩消去x 整理得y 2+(2y 0-x 02)y +y 02=0.由一元二次方程根与系数的关系可得y 1+y 2=x 02-2y 0,y 1y 2=y 02, 所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 02+x 02-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2. 所以y 02+x 02-2y 0+1=2y 02+2y 0+5=2019222y ⎛⎫++ ⎪⎝⎭.所以当y 0=12-时,|AF |·|BF |取得最小值,且最小值为92.21.(2013广东,理21)(本小题满分14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈1,12⎛⎤⎥⎝⎦时,求函数f (x )在[0,k ]上的最大值M . 解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2,当x 变化时,f ′(x ),f (x )的变化如下表:由表可知,函数f (x )的递减区间为(0,ln 2),递增区间为(-∞,0),(ln 2,+∞). (2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 令f ′(x )=0,得x 1=0,x 2=ln(2k ),令g (k )=ln(2k )-k ,k ∈1,12⎛⎤⎥⎝⎦, 则g ′(k )=1k -1=1kk -≥0,所以g (k )在1,12⎛⎤⎥⎝⎦上单调递增.所以g (k )≤ln 2-1=ln 2-ln e <0. 从而ln(2k )<k ,所以ln(2k )∈(0,k ). 所以当x ∈(0,ln(2k ))时,f ′(x )<0; 当x ∈(ln(2k ),+∞)时,f ′(x )>0; 所以M =max{f (0),f (k )} =max{-1,(k -1)e k -k 3}. 令h (k )=(k -1)e k -k 3+1, 则h ′(k )=k (e k -3k ),令φ(k )=e k -3k ,则φ′(k )=e k -3≤e -3<0.2013年高考理科数学广东卷word 解析版11 / 11 所以φ(k )在1,12⎛⎤⎥⎝⎦上单调递减, 而12ϕ⎛⎫ ⎪⎝⎭·φ(1)=32⎫-⎪⎭(e -3)<0, 所以存在x 0∈1,12⎛⎤ ⎥⎝⎦使得φ(x 0)=0,且当k ∈01,2x ⎛⎫ ⎪⎝⎭时,φ(k )>0, 当k ∈(x 0,1)时,φ(k )<0,所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在(x 0,1)上单调递减.因为17>028h ⎛⎫= ⎪⎝⎭,h (1)=0, 所以h (k )≥0在1,12⎛⎤ ⎥⎝⎦上恒成立,当且仅当k =1时取得“=”. 综上,函数f (x )在[0,k ]上的最大值M =(k -1)e k -k 3.。
数学试题(理科答案定稿)
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓2013年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 12 3 45 6 7 8答案 D A C A B C B D二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题第一个空2分,第二个空3分.9.54 10.21011.216 12.2π 13.36;3981 14.14 15.2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题主要考查解三角形等基础知识,考查正弦定理与余弦定理的应用,本小题满分12分) 解:(1)在△ABC 中,因为80AB =m ,70BC =m ,50CA =m ,由余弦定理得222cos 2AB AC BC BAC AB AC+-∠=⨯⨯ ………………………………………………………2分2228050701280502+-==⨯⨯. ……………………………………………………3分因为BAC ∠为△ABC 的内角,所以3BAC π∠=.……………………………………………………4分 (2)方法1:因为发射点O 到A 、B 、C 三个工作点的距离相等,所以点O 为△ABC 外接圆的圆心.……………………………………………………………………5分 设外接圆的半径为R ,在△ABC 中,由正弦定理得2sin BCR A=, ……………………………………………………………7分▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓因为70BC =,由(1)知3A π=,所以3sin 2A =. 所以7014032332R ==,即7033R =.…………………8分 过点O 作边BC 的垂线,垂足为D ,…………………………9分在△OBD 中,7033OB R ==,703522BC BD ===, 所以2222703353OD OB BD ⎛⎫=-=- ⎪ ⎪⎝⎭………………………………………………………11分 3533=. 所以点O 到直线BC 的距离为3533m .……………………………………………………………12分 方法2:因为发射点O 到A 、B 、C 三个工作点的距离相等, 所以点O 为△ABC 外接圆的圆心.……………………5分 连结OB ,OC ,过点O 作边BC 的垂线,垂足为D , …………………6分 由(1)知3BAC π∠=, 所以3BOC 2π∠=. 所以3BOD π∠=.………………………………………9分在Rt △BOD 中,703522BC BD ===, 所以35353tan tan 603BD OD BOD ===∠.…………………………………………………………11分 所以点O 到直线BC 的距离为3533m .……………………………………………………………12分ABCODABCOD▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓17.(本小题主要考查几何概型、随机变量的分布列与数学期望等基础知识,考查运算求解能力与数据处理能力等,本小题满分12分)解:(1)这是一个几何概型.所有点P 构成的平面区域是正方形ABCD 的内部,其面积是224⨯=. ………………………………………………1分满足||2PH <的点P 构成的平面区域是以H 为圆心,2为半径的圆的内部与正方形ABCD 内部的公共部分,它可以看作是由一个以H 为圆心、2为半径、 圆心角为2π的扇形HEG 的内部(即四分之一个圆)与两个 直角边为1的等腰直角三角形(△AEH 和△DGH )内部 构成. ……………………………………………………………2分其面积是()21122111422π⨯π⨯+⨯⨯⨯=+.………………3分 所以满足||2PH <的概率为112484π+π=+.………………………………………………………4分 (2)从A B C D E F G H 、、、、、、、这八个点中,任意选取两个点,共可构成28C 28=条不同的线段.………………………………………………………5分其中长度为1的线段有8条,长度为2的线段有4条,长度为2的线段有6条,长度为5的线段有8条,长度为22的线段有2条.所以ξ所有可能的取值为122522,,,,.……………………………………………………7分 且()821287P ξ===, ()412287P ξ===, ()6322814P ξ===, ()825287P ξ===, ()21222814P ξ===. ………………………………………9分所以随机变量ξ的分布列为:ξ12 25 22 P271731427114随机变量ξ的数学期望为213211225227714714E ξ=⨯+⨯+⨯+⨯+⨯522257++=.…………………………12分A B CDE FGH……10分▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓18.(本小题主要考查空间直线与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力等,本小题满分14分)证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =, 所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得2212212cos603DE =+-⨯⨯⨯=. 因为222AD DE AE +=, 所以AD DE ⊥.折叠后有1A D DE ⊥.……………………………………………………………………………………2分因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED . …………………………3分 又平面1A DE平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED . ………………………………………………………………………………4分 (2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60.如图,作PH BD ⊥于点H ,连结1A H 、1A P .………………5分 由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED ,所以1A D ⊥PH .…………………………………………………6分 又1A DBD D =,所以PH ⊥平面1A BD .…………………………………………………………………………………7分 所以1PA H ∠是直线1PA 与平面1A BD 所成的角. ……………………………………………………8分 设PB x =()03x ≤≤,则2x BH =,32PH x =.…………………………………………………9分 在Rt △1PA H 中,160PA H ∠=,所以112A H x =.………………………………………………10分 在Rt △1A DH 中,11A D =,122DH x =-.………………………………………………………11分 由22211A D DH A H +=,AB CDEBCED1A HP▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭.…………………………………………………………………………12分解得52x =,满足03x ≤≤,符合题意.……………………………………………………………13分 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =.………14分解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -如图. …………………………………………………………5分设2PB a =()023a ≤≤,则BH a =,3PH a =,2DH a =-. ……………………6分 所以()10,0,1A ,()2,3,0P a a -,()0,3,0E .…………7分所以()12,3,1PA a a =--.……………………………………………………………………………8分 因为ED ⊥平面1A BD ,所以平面1A BD 的一个法向量为()0,3,0DE =.……………………………………………………9分 因为直线1PA 与平面1A BD 所成的角为60, 所以11sin 60PA DE PA DE=………………………………………………………………………………10分23324453a a a ==-+⨯,……………………………………………………………11分 解得54a =. ……………………………………………………………………………………………12分 即522PB a ==,满足023a ≤≤,符合题意. ……………………………………………………13分所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =.………14分B CE D1A HxyzP▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓19.(本小题主要考查二次函数的交点与分段函数的最值、常用逻辑用语等基础知识,考查数形结合思想、分类讨论思想和运算求解能力、抽象概括能力等,本小题满分14分) 解:要使函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点,必须()()0101,0.f f a ⎧⎪⎪⎨<<⎪⎪∆>⎩≥0,≥0,……………………………………………………………………………………………2分即()()2,1224012412a a a a a -⎧⎪-⎪⎨<<⎪⎪--->⎩≥0,≥0,0.………………………………………………………………………………4分解得1212a -<≤.所以当1212a -<≤时,函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点.…5分 下面求()g x x a ax =--在()0,+∞上有最小值时a 的取值范围: 方法1:因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥…………………………………………………………6分①当1a >时,()g x 在()0,a 和[),a +∞上单调递减,()g x 在()0,+∞上无最小值;……………7分②当1a =时,()1,,21,1.x g x x x -⎧=⎨-+<⎩≥1()g x 在()0,+∞上有最小值1-;………………………8分 ③当01a <<时,()g x 在()0,a 上单调递减,在[),a +∞上单调递增,()g x 在()0,+∞上有最小值()2g a a =-.…………………………………………………………9分所以当01a <≤时,函数()g x 在()0,+∞上有最小值.……………………………………………10分方法2:因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥…………………………………………………………6分因为0a >,所以()10a -+<.所以函数()()110y a x a x a =-++<<是单调递减的.………………………………………………7分▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓要使()g x 在()0,+∞上有最小值,必须使()21y a x a =--在[),a +∞上单调递增或为常数.……8分 即10a -≥,即1a ≤.……………………………………………………………………………………9分 所以当01a <≤时,函数()g x 在()0,+∞上有最小值. ……………………………………………10分 若()p q ⌝∧是真命题,则p ⌝是真命题且q 是真命题,即p 是假命题且q 是真命题.……………11分所以1021,,20 1.a a a ⎧<->⎪⎨⎪<⎩≤≤或 …………………………………………………………………………12分解得021a <-≤或112a <≤. ………………………………………………………………………13分 故实数a 的取值范围为(10,21,12⎛⎤⎤- ⎥⎦⎝⎦.…………………………………………………………14分20.(本小题主要考查动点的轨迹和直线与圆锥曲线的位置关系、导数的几何意义等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)解:(1)方法1:设动圆圆心为(),x y ,依题意得,()2211x y y +-=+.…………………………1分整理,得24x y =.所以轨迹M 的方程为24x y =.…………………………………………………2分 方法2:设动圆圆心为P ,依题意得点P 到定点()0,1F 的距离和点P 到定直线1y =-的距离相等, 根据抛物线的定义可知,动点P 的轨迹是抛物线.……………………………………………………1分 且其中定点()0,1F 为焦点,定直线1y =-为准线.所以动圆圆心P 的轨迹M 的方程为24x y =.………………………………………………………2分 (2)由(1)得24x y =,即214y x =,则12y x '=. 设点2001,4D x x ⎛⎫⎪⎝⎭,由导数的几何意义知,直线l 的斜率为012BC k x =.…………………………3分由题意知点2001,4A x x ⎛⎫- ⎪⎝⎭.设点2111,4C x x ⎛⎫ ⎪⎝⎭,2221,4B x x ⎛⎫⎪⎝⎭,则2212120121114442BCx x x x k x x x -+===-,即1202x x x +=.……4分A B CDOxylE▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓因为2210101011444ACx x x x k x x --==+,2220202011444AB x x x x k x x --==+.……………………………5分 由于()120102020444AC ABx x x x x x x k k +---+=+==,即AC AB k k =-.………………………6分所以BAD CAD ∠=∠.…………………………………………………………………………………7分 (3)方法1:由点D 到AB 的距离等于22AD ,可知BAD ∠45=.………………………………8分 不妨设点C 在AD 上方(如图),即21x x <,直线AB 的方程为:()20014y x x x -=-+. 由()20021,44.y x x x x y ⎧-=-+⎪⎨⎪=⎩解得点B 的坐标为()20014,44x x ⎛⎫-- ⎪⎝⎭.……………………………………………………………10分 所以()()00024222AB x x x =---=-.由(2)知CAD BAD ∠=∠45=,同理可得0222AC x =+.………………………………11分 所以△ABC 的面积2000122222244202S x x x =⨯-⨯+=-=, 解得03x =±.……………………………………………………………………………………………12分 当03x =时,点B 的坐标为11,4⎛⎫- ⎪⎝⎭,32BC k =, 直线BC 的方程为()13142y x -=+,即6470x y -+=.…………………………………………13分 当03x =-时,点B 的坐标为497,4⎛⎫- ⎪⎝⎭,32BC k =-, 直线BC 的方程为()493742y x -=-+,即6470x y +-=. ……………………………………14分 方法2:由点D 到AB 的距离等于22AD ,可知BAD ∠45=.…………………………………8分 由(2)知CAD BAD ∠=∠45=,所以CAB ∠90=,即AC AB ⊥.▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓由(2)知104AC x x k -=,204AB x x k -=. 所以1020144AC ABx x x xk k --=⨯=-.即()()102016x x x x --=-. ① 由(2)知1202x x x +=. ②不妨设点C 在AD 上方(如图),即21x x <,由①、②解得10204,4.x x x x =+⎧⎨=-⎩…………………………10分因为()2222202001122244AB x x x x x ⎛⎫=++-=- ⎪⎝⎭,同理0222AC x =+. ………………………………………………………………………………11分 以下同方法1.21.(本小题主要考查函数的零点、函数的导数和不等式的证明等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)证明:(1)因为()010f =-<,()210f n =>,且()f x 在R 上的图像是一条连续曲线,所以函数()f x 在()01,内有零点.………………………………………………………………………1分 因为()2230f x x n '=+>,所以函数()f x 在R 上单调递增.………………………………………………………………………2分 所以函数()f x 在R 上只有一个零点,且零点在区间()01,内. 而n a 是函数()f x 的零点,所以01n a <<.……………………………………………………………………………………………3分 (2)先证明左边的不等式:因为3210n n a n a +-=, 由(1)知01n a <<,所以3n n a a <.……………………………………………………………………………………………4分 即231n n n n a a a -=<.▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓所以211n a n >+.…………………………………………………………………………………………5分 所以1222211111211n a a a n +++>++++++.…………………………………………………6分 以下证明222111112111n n n +++≥++++. ① 方法1(放缩法):因为()21111111n a n n n n n >≥=-+++,…………………………………………7分 所以1211111111223341n a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-=++.………………………………………………………………9分 方法2(数学归纳法):1)当1n =时,2111111=++,不等式①成立. 2)假设当n k =(*k ∈N )时不等式①成立,即222111112111kk k +++≥++++. 那么()222211111121111k k +++++++++ ()21111k k k ≥++++. 以下证明()()()21111111k k k k k ++≥+++++. ② 即证()()()21111111k kk k k +≥-+++++.即证22112232k k k k ≥++++.由于上式显然成立,所以不等式②成立. 即当1n k =+时不等式①也成立.根据1)和2),可知不等式①对任何*n ∈N 都成立. 所以121n na a a n +++>+.…………………………………………………………………………9分 再证明右边的不等式:当1n =时,()31f x x x =+-.▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 由于31113102228f ⎛⎫⎛⎫=+-=-< ⎪ ⎪⎝⎭⎝⎭,3333111044464f ⎛⎫⎛⎫=+-=> ⎪ ⎪⎝⎭⎝⎭, 所以11324a <<.…………………………………………………………………………………………10分 由(1)知01n a <<,且3210n n a n a +-=,所以32211n n a a n n-=<. ……………………………11分 因为当2n ≥时,()2111111n n n n n<=---,…………………………………………………………12分 所以当2n ≥时,12342311111114223341n a a a a a n n ⎛⎫⎛⎫⎛⎫+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 113122n =+-<. 所以当*n ∈N 时,都有1232n a a a +++<. 综上所述,1n n <+1232n a a a +++<.……………………………………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷类型:B2013年广州市普通高中毕业班综合测试(二)数学(理科)2013.4 本试卷共4页,21小题, 满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于任意向量a 、b 、c ,下列命题中正确的是A .= a b a bB .+=+a b a bC .()()= a b c a b cD .2= a a a 2.直线1y kx =+与圆2220x y y +-=的位置关系是A .相交B .相切C .相离D .取决于k 的值文3(理1).若1i -(i 是虚数单位)是关于x 的方程220x px q ++=(p q ∈R 、)的一个解,则p q +=A .3-B .1-C .1D .34.已知函数()y f x =的图象如图1所示,则其导函数()y f x '=的图象可能是xy Oy x OxO x O xO y yy5.若函数cos 6y x πω⎛⎫=+⎪⎝⎭()*ω∈N 的一个对称中心是06π⎛⎫⎪⎝⎭,,则ω的最小值为 A .1 B .2 C .4 D .86.一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于 圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两 部分,则截面的面积为A .14π B .π C .94π D .4π7.某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是A .8年B .10年C .12年D .15年 8.记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为{}12min ,,n x x x …,,则{}{}2max min 116x x x x +-+-+=,,A .34 B .1 C .3 D .72二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔的数量之比依次为2﹕3﹕4.现用分层抽样的方法抽出一个容量为n 的样本,其中甲型钢笔有12支,则此样本容量n = . 10.已知 α为锐角,且3c o s 45απ⎛⎫+= ⎪⎝⎭,则 sin α= . 11.用0,1,2,3,4,5这六个数字,可以组成 个没有重复数字且能被5整除的五位数(结果用数值表示). 12.已知函数()22fx x x =-,点集()()(){}M x y f x f y =+,≤2,()()(){}N x y f x f y =-,≥0,则M N 所构成平面区域的面积为 .13.数列}{n a 的项是由1或2构成,且首项为1,在第k 个1和第1k +个1之间有21k -个2,即数列}{n a为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列}{n a 的前n 项和为n S ,则20S = ;2013S = .46 图2(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)在△ABC 中,D 是边AC 的中点,点E 在线段BD 上,且满足13BE BD =,延长AE 交BC 于点F ,则BFFC的值为 . 15.(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫ ⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为80AB =m ,70BC =m ,50CA =m .假定A 、B 、C 、O 四点在同一平面内. (1)求BAC ∠的大小;(2)求点O 到直线BC 的距离. 17.(本小题满分12分)已知正方形ABCD 的边长为2,E F G H 、、、分别是边AB BC CD DA 、、、的中点.(1)在正方形ABCD 内部随机取一点P ,求满足||2PH <的概率;(2)从A B C D E F G H 、、、、、、、这八个点中,随机选取两个点,记这两个点之间的距离为ξ,求随机变量ξ的分布列与数学期望E ξ.18.(本小题满分14分)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图 3).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1A C(如图4).(1)求证:1A D ⊥平面BCED ; (2)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60 ?若存在,求出PB 的长,若不存在,请说明理由.19.(本小题满分14分)已知0a >,设命题p :函数()2212f x x ax a =-+-在区间[]0,1上与x 轴有两个不同的交点;命题q :()g x x a ax =--在区间()0,+∞上有最小值.若()p q ⌝∧是真命题,求实数a 的取值范围. BCE D1A 图4图3ABC DE20.(本小题满分14分)经过点()0,1F 且与直线1y =-相切的动圆的圆心轨迹为M .点A 、D 在轨迹M 上,且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、C . (1)求轨迹M 的方程;(2)证明:BAD CAD ∠=∠; (3)若点D 到直线AB 的距离等于22AD ,且△ABC 的面积为20,求直线BC 的方程.21.(本小题满分14分)设n a 是函数()321f x x n x =+-()*n ∈N 的零点.(1)证明:01n a <<; (2)证明:1nn <+1232n a a a +++< .2013年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 23 4 56 7 8答案 D A C A B C B D二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题第一个空2分,第二个空3分.9.54 10.21011.216 12.2π 13.36;3981 14.1415.2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题主要考查解三角形等基础知识,考查正弦定理与余弦定理的应用,本小题满分12分)解:(1)在△ABC 中,因为80AB =m ,70BC =m ,50CA =m ,由余弦定理得222co s 2A B A C BCBAC AB AC+-∠=⨯⨯ ………………………………………………………2分2228050701280502+-==⨯⨯. ……………………………………………………3分因为BAC ∠为△ABC的内角,所以3BAC π∠=.……………………………………………………4分 (2)方法1:因为发射点O 到A 、B 、C 三个工作点的距离相等,所以点O 为△ABC 外接圆的圆心.……………………………………………………………………5分设外接圆的半径为R ,在△ABC 中,由正弦定理得2sin BCR A=, ……………………………………………………………7分 因为70BC =,由(1)知3A π=,所以3sin 2A =. 所以7014032332R ==,即7033R =.…………………8分 过点O 作边BC 的垂线,垂足为D ,…………………………9分在△OBD 中,7033OB R ==,703522BC BD ===, 所以22270353OD OB BD ⎛⎫=-=- ⎪ ⎪⎝⎭………………………………………………………11分3533=. 所以点O到直线BC的距离为3533m .……………………………………………………………12分 方法2:因为发射点O 到A 、B 、C 三个工作点的距离相等, 所以点O 为△ABC 外接圆的圆心.……………………5分 连结OB ,OC ,过点O 作边BC 的垂线,垂足为D , …………………6分 由(1)知3BAC π∠=, 所以3BOC 2π∠=. 所以3BOD π∠=.………………………………………9分在Rt △BOD 中,703522BC BD ===, ABCODABCOD所以35taBDOD BOD===∠.…………………………………………………………11分所以点O到直线BC的距离为3533m .……………………………………………………………12分 17.(本小题主要考查几何概型、随机变量的分布列与数学期望等基础知识,考查运算求解能力与数据处理能力等,本小题满分12分)解:(1)这是一个几何概型.所有点P 构成的平面区域是正方形ABCD 的内部,其面积是224⨯=.………………………………………………1分 满足||2PH <的点P 构成的平面区域是以H 为圆心,2为半径的圆的内部与正方形ABCD 内部的公共部分,它可以看作是由一个以H 为圆心、2为半径、 圆心角为2π的扇形HEG 的内部(即四分之一个圆)与两个 直角边为1的等腰直角三角形(△AEH 和△DGH )内部 构成. ……………………………………………………………2分其面积是()21122111422π⨯π⨯+⨯⨯⨯=+.………………3分所以满足||2PH <的概率为112484π+π=+.………………………………………………………4分 (2)从A B C D E F G H 、、、、、、、这八个点中,任意选取两个点,共可构成28C 28=条不同的线段.………………………………………………………5分 A BCD E FGH其中长度为1的线段有8条,长度为2的线段有4条,长度为2的线段有6条,长度为5的线段有8条,长度为22的线段有2条. 所以ξ所有可能的取值为122522,,,,.……………………………………………………7分且()821287P ξ===,()412287P ξ===,()6322814P ξ===, ()825287P ξ===,()21222814P ξ===. ………………………………………9分所以随机变量ξ的分布列为:ξ 12 25 22 P271731427114随机变量ξ的数学期望为213211225227714714E ξ=⨯+⨯+⨯+⨯+⨯522257++=.…………………………12分18.(本小题主要考查空间直线与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力等,本小题满分14分) 证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =, 所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得2212212cos603DE =+-⨯⨯⨯= . 因为222AD DE AE +=, 所以AD DE ⊥.折叠后有1A D D E ⊥.……………………………………………………………………………………2分AB CDE……10分因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面B C E D . …………………………3分又平面1A DE 平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥, 所以1A D ⊥平面B. ………………………………………………………………………………4分(2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60.如图,作PH BD ⊥于点H ,连结1A H 、1A P .………………5分 由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED ,所以1A D ⊥PH .…………………………………………………6分 又1A D BD D = , 所以PH ⊥平面1A B D .…………………………………………………………………………………7分 所以1PA H∠是直线1PA 与平面1A B D所成的角. ……………………………………………………8分设PB x=()03x ≤≤,则2xBH =,32PH x =.…………………………………………………9分 在Rt△1PA H中,160PA H ∠=,所以112A H x =.………………………………………………10分 在Rt△1A DH中,11A D =,122DH x =-.………………………………………………………11分 由22211A D DH A H +=,数学资源网得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭.…………………………………………………………12分解得52x =,满足03x ≤≤,符合题意.…………………………………………13分 BCED1A HP所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =.………14分解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -如图. ……………………………………………………5分设2PB a =()023a ≤≤,则BH a =,3PH a =,2DH a =-. ……………………6分 所以()10,0,1A ,()2,3,0P a a -,()0,3,0E .…………7分所以()12,3,1PA a a =--.…………………………………………………8分因为ED ⊥平面1A BD ,所以平面1A BD 的一个法向量为()0,3,0DE =.………………………………9分因为直线1PA 与平面1A BD 所成的角为60,所以11sin 60PA DE PA DE=………………………………………………………10分23324453a a a ==-+⨯,………………………………………11分 解得54a =. ………………………………………………………………………12分 即522PB a ==,满足023a ≤≤,符合题意. …………………………………13分所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =.………14分数学资源网 19.(本小题主要考查二次函数的交点与分段函数的最值、常用逻辑用语等基础知识,考查数形结合思想、分类讨论思想和运算求解能力、抽象概括能力等,本小题满分14分) 解:要使函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点,B CE D1A HxyzP必须()()0101,0.f f a ⎧⎪⎪⎨<<⎪⎪∆>⎩≥0,≥0,……………………………………………………………………2分即()()2,1224012412a a a a a -⎧⎪-⎪⎨<<⎪⎪--->⎩≥0,≥0,0.………………………………………………………4分解得1212a -<≤.数学资源网 所以当1212a -<≤时,函数()2212f x x ax a =-+-在[]0,1上与x 轴有两个不同的交点.…5分下面求()g x x a ax =--在()0,+∞上有最小值时a 的取值范围: 方法1:因为()()()1,,1,.a xa x ag x a x ax a--⎧⎪=⎨-++<⎪⎩≥…………………………………………………………6分①当1a >时,()g x 在()0,a 和[),a +∞上单调递减,()g x 在()0,+∞上无最小值;……………7分②当1a =时,()1,,21,1.x g x x x -⎧=⎨-+<⎩≥1()g x 在()0,+∞上有最小值1-;………8分 ③当01a <<时,()g x 在()0,a 上单调递减,在[),a +∞上单调递增,()g x 在()0,+∞上有最小值()2g a a =-.…………………………………………9分所以当01a <≤时,函数()g x 在()0,+∞上有最小值.…………………………10分方法2:因为()()()1,,1,.a x a x a g x a x a x a --⎧⎪=⎨-++<⎪⎩≥…………………………………………6分因为0a >,所以()10a -+<.所以函数()()110y a x a x a =-++<<是单调递减的.…………………………7分 要使()g x 在()0,+∞上有最小值,必须使()21y a x a =--在[),a +∞上单调递增或为常数.……8分即10a -≥,即1a ≤.……………………………………………………………9分所以当01a <≤时,函数()g x 在()0,+∞上有最小值. ………………………10分 若()p q ⌝∧是真命题,则p ⌝是真命题且q 是真命题,即p 是假命题且q 是真命题.……11分所以1021,,20 1.a a a ⎧<->⎪⎨⎪<⎩≤≤或 …………………………………………………12分解得021a <-≤或112a <≤. ……………………………………………13分 故实数a 的取值范围为(10,21,12⎛⎤⎤- ⎥⎦⎝⎦.……………………………………14分 20.(本小题主要考查动点的轨迹和直线与圆锥曲线的位置关系、导数的几何意义等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)解:(1)方法1:设动圆圆心为(),x y ,依题意得,()2211x y y +-=+.………1分整理,得24x y =.所以轨迹M 的方程为24x y =.……………………………2分 方法2:设动圆圆心为P ,依题意得点P 到定点()0,1F 的距离和点P 到定直线1y =-的距离相等,根据抛物线的定义可知,动点P 的轨迹是抛物线.……………………………1分且其中定点()0,1F 为焦点,定直线1y =-为准线.所以动圆圆心P 的轨迹M 的方程为24x y =.………………………………2分 (2)由(1)得24x y =,即214y x =,则12y x '=. 设点2001,4D x x ⎛⎫⎪⎝⎭,由导数的几何意义知,直线l 的斜率为012BC k x =.………3分由题意知点2001,4A x x ⎛⎫- ⎪⎝⎭.设点2111,4C x x ⎛⎫ ⎪⎝⎭,2221,4B x x ⎛⎫⎪⎝⎭,则2212120121114442BCx x x x k x x x -+===-,即1202x x x +=.……4分A B CDOxylE因为2210101011444ACx x x x k x x --==+,2220202011444AB x x x x k x x --==+.…………5分由于()120102020444AC AB x x x x x x x k k +---+=+==,即AC AB k k =-.……6分 所以BAD CAD ∠=∠.…………………………………………………………7分 (3)方法1:由点D 到AB 的距离等于22AD ,可知BAD ∠45= .……………8分 不妨设点C 在AD 上方(如图),即21x x <,直线AB 的方程为:()20014y x x x -=-+. 由()20021,44.y x x x x y ⎧-=-+⎪⎨⎪=⎩解得点B 的坐标为()20014,44x x ⎛⎫-- ⎪⎝⎭.…………………………………10分 所以()()00024222AB x x x =---=-.由(2)知CAD BAD ∠=∠45=,同理可得0222AC x =+.……………11分 所以△ABC 的面积2000122222244202S x x x =⨯-⨯+=-=, 解得03x =±.……………………………………………………………………12分 当03x =时,点B 的坐标为11,4⎛⎫- ⎪⎝⎭,32BC k =, 直线BC 的方程为()13142y x -=+,即6470x y -+=.……………………13分 当03x =-时,点B 的坐标为497,4⎛⎫- ⎪⎝⎭,32BC k =-, 直线BC 的方程为()493742y x -=-+,即6470x y +-=. ……………14分 方法2:由点D 到AB 的距离等于22AD ,可知BAD ∠45= .…………8分 由(2)知CAD BAD ∠=∠45= ,所以CAB ∠90=,即AC AB ⊥.由(2)知104AC x x k -=,204AB x x k -=. 所以1020144AC ABx x x xk k --=⨯=-.即()()102016x x x x --=-. ① 由(2)知1202x x x +=. ②不妨设点C 在AD 上方(如图),即21x x <,由①、②解得10204,4.x x x x =+⎧⎨=-⎩………10分因为()2222202001122244AB x x x x x ⎛⎫=++-=- ⎪⎝⎭,同理0222AC x =+. ………………………………………………………11分 以下同方法1.21.(本小题主要考查函数的零点、函数的导数和不等式的证明等基础知识,考查运算求解能力和推理论证能力等,本小题满分14分)证明:(1)因为()010f =-<,()210f n =>,且()f x 在R 上的图像是一条连续曲线,所以函数()f x 在()01,内有零点.…………………………………………………1分 因为()2230f x x n '=+>,所以函数()f x 在R 上单调递增.……………………………………………………2分 所以函数()f x 在R 上只有一个零点,且零点在区间()01,内. 而n a 是函数()f x 的零点, 所以01n a <<.…………………………………………………………………………………3分(2)先证明左边的不等式:因为3210n n a n a +-=, 由(1)知01n a <<,所以3n n a a <.…………………………………………………………………………4分 即231n n n n a a a -=<.所以211n a n >+.………………………………………………………………………5分 所以1222211111211n a a a n +++>++++++ .……………………………6分 以下证明222111112111n n n +++≥++++ . ① 方法1(放缩法):因为()21111111n a n n n n n >≥=-+++,……………………7分 所以1211111111223341n a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-=++.……………………………………………9分 方法2(数学归纳法):1)当1n =时,2111111=++,不等式①成立. 2)假设当n k =(*k ∈N )时不等式①成立,即222111112111k k k +++≥++++ . 那么()222211111121111k k +++++++++ ()21111k k k ≥++++. 以下证明()()()21111111k k k k k ++≥+++++. ② 即证()()()21111111k kk k k +≥-+++++.即证22112232k k k k ≥++++.由于上式显然成立,所以不等式②成立. 即当1n k =+时不等式①也成立.根据1)和2),可知不等式①对任何*n ∈N 都成立. 所以121n na a a n +++>+ .………………………………………………………9分 再证明右边的不等式:当1n =时,()31f x x x =+-.由于31113102228f ⎛⎫⎛⎫=+-=-< ⎪ ⎪⎝⎭⎝⎭,3333111044464f ⎛⎫⎛⎫=+-=> ⎪ ⎪⎝⎭⎝⎭,所以11324a <<.…………………………………………………………………10分 由(1)知01n a <<,且3210n n a n a +-=,所以32211n n a a n n-=<. …………11分 因为当2n ≥时,()2111111n n n n n<=---,……………………………………12分 所以当2n ≥时,12342311111114223341n a a a a a n n ⎛⎫⎛⎫⎛⎫+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭113122n =+-<. 所以当*n ∈N 时,都有1232n a a a +++<. 综上所述,1nn <+1232n a a a +++< .…………………………………………14分。