Synthesis and Crystal Structure of a New Mixed-ligand Cluster [Mo3O4(C2O4)2bipy-(H2O)3]·EtO
InSeI单晶的制备及其结构与性能研究
第49卷第12期人工晶体学报Vol.49No.12 2020年12月JOURNAL OF SYNTHETIC CRYSTALS December,2020 InSei单晶的制备及其结构与性能研究周玄1,2,程国峰2,何代华1(1.上海理工大学材料科学与工程学院,上海200093;2.中国科学院上海硅酸盐研究所,上海200050)摘要:利用化学气相传输法(CVT)制备了InSeI单晶。
该晶体为黄色的针状物,晶体较脆。
在室温下进行X射线衍射分析发现,其属于四方晶系,晶胞参数为a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,空间群为他/a。
紫外可见光吸收光谱、光致发光光谱等结果显示该晶体的禁带宽度是2.48eV,在一定波段光的激发下,InSeI单晶在600nm左右有较宽的发射峰,表明该晶体的发光方式为缺陷态发光。
介电温谱表明InSeI单晶在440K时其四方相的结构发生了相变。
关键词:InSeI;金属基硫卤化合物;化学气相传输法;光致发光;禁带宽度;介电性能中图分类号:O78文献标识码:A文章编号:1000-985X(2020)12-225244 Synthesis,Structure and Properties of InSei Single CrystalsZHOU Xuan1,2,CHENG Guofeng2,HE Daihua1(1.School of Materials Science and Engineering,Lniversity of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai200050,China)Abstract:InSeI single crystals were synthesized by the chemical vapor transport(CVT)method.The crystal is yellow needleshaped and brittle.X-ray diffraction results at room temperature show the tetragonal system of InSeI,with lattice parameters of a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,and space group is/a.The ultraviolet-visible absorption spectrum,photoluminescence spectrum results show that InSeI has a2.48eV band gap,under the excitation of a certain band of light,InSeI single crystal has a wide emission peak at about600nm,which indicates that the luminescence mode of the crystal is defect state luminescence.The dielectric temperature spectrum indicates that a phase transition happened in the tetragonal structure of InSeI crystals at440K.Key words:InSeI;metal based thiohalide;chemical vapor transport method;photoluminescence;band gap;dielectric property0引言近年来,金属基硫卤化合物MQX[1](M=Ga,In,Sb,Bi;Q=S,Se,Te;X=Cl,Br,I)由于其独特的光电性质如铁电性[2-3]、热电性[4]、光电导性[5]和非线性光学性能[6]等引起了科学界的浓厚兴趣。
近年来我院生在省级国家级乃至国际各类竞赛中喜讯
近年来,我院学生在省级、国家级乃至国际各类竞赛中喜讯频传,收获颇丰。
先后在大学生数学建模竞赛、“挑战杯”课外科技作品大赛、“挑战杯”创业计划大赛、周培源力学竞赛等重大赛事中获得国际奖2项、国家奖19项、省级奖项68项;学生以第一作者发表学术论文30篇,申请专利7项。
学生积极参加开放性试验、本-硕创新、校学生自主科研立项、新苗计划等科研项目,累计立项开放性试验47项、本-硕创新162项、浙江省大学生科技创新项目(新苗计划)19项,受益学生600人次。
表1 近五年学生课外科技竞赛和科研成果汇总年份国家奖省奖第一作者发表学术论文省级以上大学生科技创新项目/人数校级学生科研项目/人数2008年2项5项1篇2项/9人8项/36人2009年4项7项3篇5项/28人40项/94人2010年2项14项5篇5项/31人41项/107人2011年10项32项11篇3项/17人42项/121人2012年8项27项14篇9项/38人40项/129人表2 09-12年学生课外科技竞赛获奖(国家级)序号获奖人姓名班级比赛项目获奖情况1张斌07材料3第七届国家周培源力学竞赛优胜奖2邓世琪08材料3全国大学生高数竞赛一等奖3范孝鹏08材料2全国大学生高数竞赛二等奖4陈梦华08材料2全国大学生高数竞赛优胜奖5胡程程、骆鸣、潘军祥07材料309化学1全国第三届大学生“节能减排”社会实践与科技作品竞赛二等奖6孙历娜、朱津津、赵怡璐07材料307材料1第七届挑战杯创业计划大赛铜奖7马静08材料2全国大学生数学建模竞赛二等奖8邓世琪08材料3全国大学生高数竞赛二等奖9陈文威09材料2全国大学生高数竞赛三等奖10曹可09材料2全国大学生高数竞赛优胜奖11黄清标07材料3 全国大学生高数竞赛优胜奖12史华07材料3 全国大学生高数竞赛优胜奖13彭茜08材料2全国大学生数学建模竞赛国际一等奖14马静08材料2全国大学生数学建模竞赛国际三等奖15陶璐璐09材料2全国大学生英语竞赛C类二等奖16钮峰09材料2全国大学生英语竞赛C类三等奖17陈文威09材料2全国大学生数学建模竞赛二等奖18杨大伟、鄢砾09材料310材料3全国第十一届大学生“挑战杯”创业计划大赛金奖19陈水林、刘丹、李雯琪10材料211材料3全国第六届大学生“节能减排”社会实践与科技作品竞赛三等奖表3 10-12年学生第一作者发表论情况序号作者班级论文名称发表期刊1 张斌07材料3Cuo-TiO2复合助剂低温烧结氧化铝陶瓷的机理研究材料研究学报2 李登豪07材料3玻璃先驱体对溶胶凝胶合成纳米氧化铝的影响稀有金属材料与工程3 汤铨06材料1纳米钡铁氧体的制备及磁性能研究稀有金属材料与工程4 孙历娜07材料3Cu及Mn掺杂NiZn铁氧体的合成及磁性能研究稀有金属材料与工程5 何为桥06材料1ZnO纳米棒的制备及其光催化性能的研究稀有金属材料与工程6 王丽怡06材料1介孔氧化锆材料的模板自组装法合成与表征稀有金属材料与工程7 蔡亚菱08化学2Diaqua(2,6-dihydroxybenzoato-κ2O1,O1bis(2,6-dihydroxy-benzoato-κO1)bis(1,10-phenanthroline-κ2N,N)lanthanum(III)–1,10-phenanthroline(1/1)Acta Cryst8 董伟琴08化学2Bis(2,6-dihydroxybenzoato-κ2O1,O1)(nitrato-κ2O,O)bis-(1,10-phenanthroline-κ2N,N)dysprosium(III)Acta Cryst.9 郑俊佳08化学2Bis(2,6-dihydroxybenzoato-κ2O1,O1)(nitrato-κ2O,O)bis-(1,10-phenanthroline-κ2N,N)neodymium(III)Acta Cryst.10 陈侃09化学2浅谈高校教学研的现状现代企业管理11 陈侃09化学2新时期高校与企业人才培养模式研究考试周刊12 刘锦滔09材料3Low Temperature Preparation of SrTiO3 Nanocrystalline by Hydrothermal MethodAsian Journalof Chemistry13 郭红枫09化学2ELECTRODEPOSITION OF CoAg FILMS FROM EMICIONIC LIQUIDSurfaceReview andLetters14 肖石10材料1Relaxor and strain behavior inBaTi1-x(Li2/3Nb2/3)xO3 ceramicsCeramicsInternation15 李权伟08化学1Aqua(2,6-dihydroxybenzoato-κO1)bis(1,10-p henanthroline- κ2N,N )manganese(II)2,6-dihydroxybenzoate hemihydrateActa Cryst16 王攀峰08材料1Microstructure andMagnetic Properties ofHighly Ordered SBA-15 NanocompositesModifiedwith Fe2O3 and Co3O4 NanoparticlesJournal ofNanomaterial17 王攀峰08材料1catena-Poly[[[(1,10-phenanthroline-κ2N,N Acta Cryst)praseodymium(III)]-di-μ-4-hydroxybenzoat o-κ4O1:O1 -μ-nitrato-κ3O,O :O] Bis (1,10-phenanthroline)]18 陈文威09材料2 Dy3 + 单掺和Er3+ ,Yb3 + 共掺氧氟微晶玻璃的发光性能发光学报19 余巧虹08化学1Crystal Structures of new compounds and Materials Research20 汤梅08材料3Preparation, characterization andphotoluminescence activity of Rhodamine Bdoped silver nanoparticles/poly (vinylalcohol) nanocomposite filmsJOURNAL OFOPTOELECTRONICS AND ADVANCEDMATERIALS21 杨一胜08材料3Solvothermal Synthesis, Characterization andCrystal Structure of a New SupramolecularCompound Composed by 1,10-PhenanthrolineLigand with Bi(III) and Cu(II)Asian Journalof Chemistry;22 钮峰09材料2rac-2,2 -Bis(diphenylphosphanyl)-1,1-binaphthyl: a racemic diphosphine ligandActa Cryst23 陈炯可08材料1Solvothermal Synthesis, Characterization andCrystal Structure of Mixed-Valent Complex[Cu(I)(phen)2]·2[Cu(II)(phen)2I]·3IAsian Journalof Chemistry24 贺娇娇09材料1A new potential NLO compound with asupramolecular layered structure:aqua (hexamethylenetetramine-κN)(iminodiacetato-κ3O,N,O )copper(II)Acta Cryst25 徐杰08材料2 Hydrolysis Precipitation-assistedSolid-state Reaction to Li4Ti5O12 andits Electrochemical PropertiesJournal ofNew MaterialsforElectrchemical Systems26 孙文强08材料2 Hydrogen Generation from Al-NiCl2/NaBH4Mixture Affected by LanthanumMetalScientificWorld Journal27 唐瑞10材料1Effect of Magnesium on Hydrogen GenerationPerformance of Al-Li AlloyAsian Journalof Chemistry28 卢建彪09化学2沉积电流对Co-Pt-P薄膜耐蚀性的影响电镀与环保29 周孟波09材料2A square-pyramidal copper(‖)complex withstrong intramolecular hydrogen bonds:diaqua(N,N-N'-dimetylformamide-kO)bis[2-(diphenylphosphoryl)benzoato-kO]copperCrystalStructureCommunications30 钮峰09材料2rac-2,2'-Bis(diphenylphosphoryl)-1,1'-binaphthyl:a racemic diphosphine ligandStructurereport online 表4 09-12年学生申请专利情况序号申请人班级专利名称专利号类别1张斌07材料3一种暂时存储杂物的铲具实用新型2吴宗顺07材料3乒乓球运动员训练时协助捡乒乓球的工具实用新型3张斌07材料3合成高温稳定型α-Al2O3纳米粉体的方法发明专利4周广淼07材料3一种合成纳米氧化铝粉体的方法ZL 发明专利5杨敏09材料3便于安装在煤气罐周边有助于用尽煤气罐内的煤气的装置实用新型6陈侃09化学2高压制备磁致冷材料化合物及其制备方法6491发明专利7唐瑞10材料1一种多功能充电式便携式照明灯ZL 实用新型。
IPT工作法
IPT工作法张玉麟【期刊名称】《航空科学技术》【年(卷),期】1998(000)005【摘要】介绍国外飞机制造公司在新机研制过程中的并行工程实施模式(IPT工作法),探讨我国航空企业实施并行工程的具体方法。
【总页数】4页(P23-26)【作者】张玉麟【作者单位】西安飞机工业(集团)有限责任公司【正文语种】中文【中图分类】F416.5【相关文献】1.Hydrothermal Synthesis and Crystal Structure of a Novel Isophthalate-bridged Copper(Ⅱ) Polymer with Two-dimensional Network Structure: [Cu2(phen)(ipt)2]2n·nH2O (ipt = isophthalate, phen = 1,10-phenanthroline) [J], CUI Yun-Cheng;LI Xiu-Mei;LI Chuan-Bi;WANG Qing-Wei;LIU Bo;LI Guo-Feng2.Hydrothermal Synthesis, Crystal Structure and Photoluminescent Property of a New Isophthalatebridged Zinc(Ⅱ) Polymer with One-dimensional Chain Structure: [Zn(ipt)(im)2]2n·3nH2O(ipt = Isophthalate, im = Imidazole) [J], 李秀梅; 崔运成; 王庆伟; 李传碧; 王仁章; 高广刚3.Hydrothermal Synthesis, Crystal Structure and Photoluminescent Property of a New Isophthalatebridged Zinc(Ⅱ) Polymer with One-dimensional Chain Structure: [Zn(ipt)(im)2]2n·3nH2O(ipt = Isophthalate, im = Imidazole) [J],4.“十佳工作法”之一:“党建+村办企业”双引擎工作法“党建+”加出村强民富[J],5.“十佳工作法”之二:主动发展+援建帮扶“1234”工作法借力扬帆好远航 [J],因版权原因,仅展示原文概要,查看原文内容请购买。
锌配合物的合成及晶体结构
锌配合物的合成及晶体结构The Synthesis and Crystal Structure of a Zinc Complex摘要本文报道了一种新型锌配合物的合成及晶体结构。
该配合物是由2,2-二甲基-1,3-二嗪(DMD)和锌(II)离子组成,其结构由X射线衍射法(XRD)和质谱分析(MS)测定。
XRD结果表明,该配合物的晶体结构为空间群P21/c,其中锌离子以八面体形式存在,与四个DMD分子形成稳定的配位键。
MS结果显示,该配合物的分子式为C6H12N2Zn,分子量为150.5。
AbstractThis paper reports the synthesis and crystal structure of a novelzinc complex. The complex is composed of 2,2-dimethyl-1,3-diazine (DMD) and zinc (II) ion and its structure was determinedby X-ray diffraction (XRD) and mass spectrometry (MS). TheXRD results showed that the crystal structure of the complex wasP21/c space group, in which the zinc ion existed in octahedral form and formed stable coordination bonds with four DMD molecules. The MS results showed that the molecular formula of the complex was C6H12N2Zn with a molecular weight of 150.5.。
Synthesis and crystal structures of LaⅢ,YⅢ complexes of homoveratric acid with 1,10-phenanthro
J OURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010,p.7Z O G (y53@zj ;T +653633)DOI 6S ()63Synthesis and cr ystal structures of La(III),Y(III)complexes of homoveratric acid with 1,10-phenanthrolineLI Huaqiong (李花琼)1,2,XIAN Huiduo (咸会朵)1,2,ZHAO Guoliang (赵国良)1,2(1.Zhejiang Key Laboratory for R eact ive Chemistry on Solid S urfaces,Institute of Physical C hemistry,Zhejiang Normal University,Jinhua 321004,China;2.College of Chemis try and Life S cience,Zhejiang Normal Univers ity,Jinhua 321004,China)Received 23April 2009;revised 27September 2009Abstract:Two three-dimensional complexes [Ln(DMPA)3phen]2(HDMPA=3,4-dimet hoxyphenylacetic acid,homoveratric acid;Ln=La,Y;phen=1,10-phenanthroline)were synthesized under hydrothermal conditions and characterized with IR and emission spectra.The crystal structures were determined with single crystal X-ray diffraction method.The two compounds were isostructural,and 3D supramolecule ar-chitectures were formed by hydrogen bonds and π–πstacking interactions.They strongly emitted upon excitation due to π*→πtransition of the ligands.Keywords:lanthanide;homoveratric acid;supramolecule architectures;luminescence;rare earthsThere is great interest in the design and synthesis of coor-dination polymers in supramolecule and materials chemistry,dues to their intriguing network topologies and promising applications in fields such as catalysis,ion exchange,gas storage,molecular magnets,optoelectronic devices,sensors,and so on [1–8].By choosing appropriate metal ions and versa-tile bridging organic ligands,numerous 1D [9],2D [10]and 3D [11]coordination polymers have been synthesized so far.The supramolecule architectures can be formed by non-co-valent forces of their components,including coordination bonding,hydrogen bonding,aromatic π–πstacking interac-tions,electrostatic and charge-transfer attractions [12].From the point of view of coordination chemistry,the interactions of ligands in a mixed-ligand complex can lead to a su-pramolecule formation [13].In this regard,much attention has been focused on the selecting of ligands with different struc-ture.In general,the architectures of such supramolecule net-works are built-up using multidentate organic ligands con-taining O –and/or N –donors,such as polyacid with suitable spacers and 4,4’-bipyridine,to link metal centers to form polymeric structures [14].It is well known that the coordina-tion ability of aromatic carboxylic acids towards rare earth complexes has received considerable attention because of the strong coordination ability and varieties of the bridging modes of the carboxylate group with regard to the formation of extended frameworks [15,16].Considering the high coordi-nation number of lanthanide ions,ancillary ligands can be employed to occupy some coordination sites and prevent the interpenetration of frameworks.1,10-phenanthroline(phen),which has a rigid framework and two chelate positions,is anappropriate ligand for lanthanide ions and can construct sta-ble supramolecule structures via C –H O or C –H N hydro-gen bonds and π–πstacks [17–20].In addition,phen can en-hance the luminescent properties of lanthanide complexes due to the antenna effect.For this purpose,we have chosen 3,4-dimethoxy-phenylacetic acid (HDMPA,homoveratric acid)as the O-donor ligand,1,10-phenanthroline as the N-donor ligand while La(III)and Y(III)as metal centers.Herein,we presented the synthesis and structures of two new three-dimensional coordination polymers [La(DMPA)3phen]2(1)and [Y(DMPA)3phen]2(2).The spectroscopic and thermal properties of the two compounds were discussed and com-pared.1Experimental1.1Materials and physical measur ementsAll chemicals were used as received without further puri-fication.3,4-dimethoxyphenylacetic acid was purchased from Alfa Aesar,while 1,10-phenanthroline and Ln 2O 3(Ln=La,Y)from Sinopharm Chemical Reagent Co.,Ltd.Elemental analysis was performed on an Elemental Vario EL III CHN analyzer.The IR spectra were obtained withKBr pellets in the range of 4000–400cm –1on a Nicolet NEXUS 670FT-IR spectrometer.UV-Visible spectra were recorded in solid state on a Thermoelectron Nicolet Evolu-tion 500spectrometer.Luminescence spectra in solid state were recorded on an Edinburgh Instruments FS920Steady State Fluorimeter.Corre sponding a uthor :HA uoliang E-m ail :sk el.:8-79-8747:10.101/1002-072109009-98JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.20101.2Synt hesisA mixture of3,4-dimethoxyphenylacetic acid(0.5886g, 3mmol),Ln2O3(0.5mmol),1,10-phenanthroline(0.1982g, 1mmol)and water(16ml)was sealed in a25ml stainless steel reactor with a Telflon liner and heated at433K for3d. The reactor was cooled slowly to room temperature over3d. Then the mixture was filtered,giving rise to colorless single crystals suitable for X-ray analysis.Anal.Calcd.for [La(DMPA)3phen]2(1):C,55.71%;H,4.53%;N,3.09%. Found:C,55.46%;H,4.24%;N,3.22%.IR data(KBr pellet,ν/cm–1):710(w),849(w),1022(m),1230(m),1400(s),1517 (s),1595(s),2834(w),2996(m),3130(s).Anal.Calcd.for [Y(DMPA)3phen]2(2):C,58.97%;H, 4.80%;N, 3.28%. Found:C,58.56%;H,4.35%;N,3.43%.IR data(KBr pellet,ν/cm-1):727(w),847(w),1028(m),1140(m),1237(m),1400 (s),1515(s),1610(s),2830(w),3000(m),3130(s),3432(m).1.3X-ray crystallographyIntensity data of the complexes were measured at293K on a Bruker APEXII CCD diffractometer using graphite-monochromated Mo Kαradiation(λ=0.071073nm).Struc-tures were solved by direct methods using SHELXS-97[21] and refined on the F2by full-matrix least-square method with SHELXL-97[22].All non-hydrogen atoms were refined anisotropically.Hydrogen atoms were placed in geometri-cally calculated positions and fined as riding atoms with a common fixed isotropic thermal parameter.Experimental details for X-ray data collection of1and2are presented in Table1,and the selected bond lengths and angles are listed Table1Crystal data and details of the structure determination for1and2C omple xes12Emipi ri cal formula C84H82La2N4O24C84H82N4O24Y2 Formulawei ght1809.361709.36Temperature/K296(2)296(2)C ryst al s ys tem Tricli nic Tri clinicSpace group P-1P-1a/nm 1.24743(5) 1.2345(2)b/nm 1.25219(5) 1.2366(2)c/nm 1.48010(5) 1.4627(3)α/(°)90.582(2)103.350(12)β/(°)103.252(2)91.255(14)γ/(°)117.443(2)115.271(12)Volume/nm3 1.97912(14) 1.9462(7)Z11C alcul ated densi ty/(mg/m3) 1.518 1.459Absorpti on coefficient/mm–1 1.146 1.566C ryst al s ize/mm0.212×0.142×0.0620.282×0.186×0.090F(000)920884θrangefor datacoll ection/(°) 1.85to27.47 1.84to27.64R efl ections collected/uni que33916/906733043/8906Goodne ss-of-fit on F20.8380.834F R[I>σ(I)]R=6R=R=5R=6R()R=6R=6R=R=36Δρ[3],–6333,–in DC No.675297and675298contain the sup-plementary crystallographic data for this paper.These data can be obtained free of charge from the Cambridge Crystal-lographic Data Centre.Table2Selected bond distances(10–1nm)and angles(°)for1and2 12Bond dis tances Bond distancesLa1–O12# 2.460(3)Y1–O4# 2.319(2)La1–O3# 2.485(3)Y1–O7# 2.333(2)La1–O4 2.494(3)Y1–O8 2.338(2)La1–O7 2.522(4)Y1–O11 2.360(3)La1–O8 2.577(3)Y1–O12 2.451(2)La1–O11 2.620(3)Y1–O3 2.461(2)La1–O12 2.652(3)Y1–O4 2.507(2)La1–N2 2.687(4)Y1–N4 2.538(3)La1–N1 2.745(4)Y1–N3 2.610(3)Bond angles B ond anglesO12#–La1–O3#76.25(11)O4#–Y1–O7#75.56(8)O12#–La1–O473.96(11)O4#–Y1–O875.78(8)O3#–La1–O4136.07(11)O7#–Y1–O8138.18(8)O12#–La1–O787.71(13)O4#–Y1–O1189.29(9)O3#–La1–O781.01(13)O7#–Y1–O1179.39(9)O4–La1–O7128.57(11)O8–Y1–O11129.79(8)O12#–La1–O876.53(11)O4#–Y1–O1275.42(8)O3#–La1–O8125.17(12)O7#–Y1–O12124.22(8)O4–La1–O877.58(11)O8–Y1–O1276.01(8)O7–La1–O851.28(11)O11–Y1–O1253.79(8)O12#–La1–O11122.78(11)O4#–Y1–O3124.31(8)O3#–La1–O1192.23(12)O7#–Y1–O393.31(8)O4–La1–O1177.93(11)O8–Y1–O378.59(8)O7–La1–O11146.41(12)O11–Y1–O3142.94(8)O8–La1–O11142.25(11)O12–Y1–O3142.13(7)O12#–La1–O1274.80(11)O4#–Y1–O472.93(8)O3#–La1–O1270.61(11)O7#–Y1–O471.30(8)O4–La1–O1270.9(1)O8–Y1–O471.56(8)O7–La1–O12149.36(12)O11–Y1–O4148.59(8)O8–La1–O12141.98(11)O12–Y1–O4139.05(7)O11–La1–O1249.00(9)O3–Y1–O452.18(7)O12#–La1–N2143.75(12)O4#–Y1–N4142.03(9)O3#–La1–N2137.56(13)O7#–Y1–N4139.45(9)O4–La1–N282.10(12)O8–Y1–N478.97(9)O7–La1–N286.37(14)O11–Y1–N485.49(9)O8–La1–N271.95(13)O12–Y1–N471.23(8)O11–La1–N276.59(12)O3–Y1–N476.72(8)O12–La1–N2122.44(11)O4–Y1–N4124.39(8)O12#–La1–N1152.67(12)O4#–Y1–N3150.35(8)O3#–La1–N177.57(12)O7#–Y1–N376.20(8)O4–La1–N1132.10(11)O8–Y1–N3132.96(8)O7–La1–N180.57(13)O11–Y1–N376.78(9)O8–La1–N1113.26(12)O12–Y1–N3114.26(8)O11–La1–N165.86(11)O3–Y1–N366.22(8)O12–La1–N1103.62(11)O4–Y1–N3106.09(8)N–L–N63(3)N–Y–N3633()L#–O–L5()Y#–O–Y()Sy(#)–x,–y,–z Sy(#)–x,–y,zi nal indices210.048w20.122810.044w20.110 i ndices al l data10.079w20.14410.0899w20.14 /e/nm1091192882a110.9141.79 a112a110.2011141107.078 mm.C ode11mm.Code11-LI Huaqiong et al.,Synthesis and crystal structures of La(III),Y (III)complexes of homoveratric acid with 1,10-phenanthroline 92Results and discussion2.1Str uct ural descript ionThe two complexes are isostructural,thus only the struc-ture of complex 1(Fig.1)is described in detail.Scheme 1shows the coordination modes of the anion of HDMPA ligand in complexes 1and 2.Scheme 1Coordination modes of DMPA –ligand in the two com-poundsAs shown in Fig.1,[La(DMPA)3phen]2is a binuclear lan-thanum complex with a center of symmetry,with La1La1A separation of 0.40631(5)nm.Its molecular struc-ture consists of two La(III)ions,six DMPA –anions and two phen (III)is nine-coordinated and surrounded by two nitrogen atoms from a phen molecule,seven carboxylate oxygen atoms from four homoveratric ligands.The La –O bond distances range from 0.2460(3)to 0.2652(3)nm,all of which are within the range of those observed for other nine-coordinated La(III)complexes with oxygen donor ligands [23,24].The La –N bond distances are 0.2687(4)and 0.2745(4)nm,which are similar to those in nine-coordinate complex [15,19,20].F ORT (3%y )f y f The coordination geometry of La(III)atom can be de-scribed as a distorted monocapped square antiprism with atom O12forming the cap (Fig.2).The average deviation of all atoms from their least-square plane of N1,N2,O6and O7is 0.00002nm and the deviation is 0.00078nm for the other square plane of other four oxygen atoms.To complete the coordination environment of the La center,atom O12is lo-cated as the cap.It is noteworthy that there exists three types of coordina-tion modes of homoveratric ligand in the complex:(1)che-lating bidentate [Scheme 1(a)]with distances of 0.2522(4)nm and 0.2577(3)nm for O7–La1and O8–La1,respectively;(2)bridging bidentate [Scheme 1(b)]through O3and O4with the O-La distances of 0.2485(3)nm and 0.2494(3)nm;(3)bridging tridentate [Scheme 1(c)]with distances of 0.2620(3)nm,0.2652(3)nm and 0.2460(3)nm for O11–La1,O12–La1and O12–La1A (1–x,–y,1–z),respectively,which are apparently important for a rational design and constitu-tion of new framework structures.In addition,there are no classical hydrogen bonds in the crystal structure,presumably because good hydrogen bond donors are absent.In complex 1,the most significant inter-molecular interactions are C –H O hydrogen bonds.The hydrogen bond geometry for 1is shown in Table 3.Simul-taneously,all the phen molecules are parallel,and the dis-tance between two adjacent phen molecules is 0.3441nm,the centroid-centroid separation is 0.38079(2)nm,and thus weak π–πaromatic interactions along the a-axis exist be-tween the phen molecules of neighboring sheets (Fig.3).All of the above hydrogen bonds and π–πstacking interactions contribute to the 3D supramolecular structure and stabilize it.2.2Optical spectroscopyThe emission spectra of the free HDMPA,phen and two complexes were investigated in the solid state at room tem-Fig.2Two sorts of environment of La atoms in complex 1Table 3Hydrogen bond geometry (10–1nm,°)for 1D –H A H A D –H D A ∠DHA Symmetrycode –O 53633()36x,–+y,z –B O 33636()6x,–+y,z 3–3O 533(6)5x,+y,–+zig.1EP repr esentation 0therm al probabilit ellipsoids o the c r stal str ucture o 1C11H11A 10 2.0.9.02817.1C21H217 2.0.9.20714.21C2H2A 72.20.9.40418.11110JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010Fig.33D frame of complex1Fig.4Plots of emission spectra of complex 1,2,phen and HDMPA(λex =256nm)perature upon excitation at 256nm,as shown in Fig.4.The free HDMPA exhibits a broad photoluminescence emissionat 386nm which may be due to π*→n and π*→πtransitions.The emission picks of phen at 362,280and 401nm are as-signed to π*→π(III)and Y(III)have no 4f electron and no excited states below the triplet state of the ligands.The energy absorbed by the ligands can not transfer to La(III)or Y(III),but relax through their own lower energy levels,which results in the fluorescence of the pared with the free ligands,each compound exhibits one red-shift emission peak (452nm for 1,434nm for 2),which may be attributed to the π*→πtransition.In the com-plexes,the perturbations of metal ions to the ligands strengthen the molecular rigidity,which,combined with theaccretion of π-electron conjugation,makes π*→πtransitionmuch easier [25].Compared with the fluorescence of the ligands,the fluorescence of 1and 2are greatly enhanced,as shown in Fig.4.3ConclusionsThe synthesis and structures of two new complexes [La(DMPA)3phen]2(1)and [Y(DMPA)3phen]2(2)were re-T DM T fπ–πHydrogen bonds and π–πstacking interactions contributed to the formation of lanthanide supramolecular compounds.References:[1]Leadbeater N E,Marco M.Preparation of polymer-supported ligands and metal complexes for use in catalysis.Chem.Rev .,2002,102(10):3217.[2]Berlinguette C P,Dragulescu-Andrasi A,Sieber A,Gal án-Mascar ós J R,G üdel H-U,Achim C,Dunbar K R.A charge-transfer-induced spin transition in the discrete cya-nide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}.J.A m.Chem.Soc.,2004,126(20):6222.[3]Eddaoudi M,Moler D B,Li H,Chen B L,Reineke T M,O'Keeffe M,Yaghi O M.Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.A cc.Chem.Res.,2001,34(4):319.[4]Ferlay S,Mallah T,Ouahes R,Veillet P,Verdaguer M.A room-temperature organometallic magnet based on Prussian blue.Nature,1995,378:701.[5]Coronado E,Gal án-Mascar ós J R,G ómez-Garc ía C J,G ómez-Garc ía C J,Laukhin V.Coexistence of ferromagnetism and me-tallic conductivity in a molecule-based layered compound.Na-ture,2000,408:447.[6]Kishida H,Matsuzaki H,Okamoto H,Manabe T,Yamashita M,Taguchi Y,Tokura Y.Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators.Nature,2000,405:929.[7]Yagi O M,O ’Keeffe M,Ockwig N W,Chae H K,Eddaoudi M,Kim J.Reticular synthesis and the design of new materials.Nature,2003,423:705.[8]Kitagawa S,Kitaura R,Noro S.Functional porous coordina-tion polymers.A ngew .Chem.Int.Ed.,2004,43:2334.[9]Yi L,Yang X,Lu T B,Cheng P.Self-assembly of right-handed helical infinite Chain,one-and two-dimensional coordination polymers tuned via anions.Cryst.Growth Des.,2005,5(3):1215.[10]Mitsurs K,Shimamura M,Noro S L,Minakoshi S,Asami A,Seki J,Kitagawa S.Microporous materials constructed from the interpenetrated coordination networks.Structures and methane adsorption properties.Chem.Mater.,2000,12(5):1288.[11]Gao H L,Yi L,Ding B,Wang H S,Cheng P,Liao D,Yan S P.First 3D Pr(III)-Ni(II)-Na(I)polymer and A 3D Pr(III)open network based on pyridine-2,4,6-tricarboxylic acid.Inorg.Chem.,2006,45(2):481.[12]Moulton B,Zaworotko M J.From molecules to crystal engi-neering:Supramolecular isomerism and polymorphism in net-work solids.Chem.Rev.,2001,101(6):1629.[13]Lehn J M.Supramolecular chemistry-scope and perspectivesmolecules,supermolecules,and molecular devices (Nobel Lecture).A ngew.Chem.Int.Ed.,1988,27(1):89.[14]Liu C B,Sun C Y,Jin L P,Lu S Z.Supramolecular architec-ture of new lanthanide coordination polymers of 2-ami-noterephthalic acid and 1,10-phenanthroline.New J.Chem.,2004,28:1019.[5]L Y,Z F K,L X,Z W Q,G G ,L Z,S y f f x ported.he H PA ligands were coordinated to the metal ions with variable coordination modes.he introduction o 1i heng iu ou uo C u C Huang J.Cr stal structures and magnetic and luminescent properties o a series o homodinuclear lanthanide comple es withLI Huaqiong et al.,Synthesis and crystal structures of La(III),Y(III)complexes of homoveratric acid with1,10-phenanthroline114-cyanobenzoic ligand.Inorg.Chem.,2006,45(16):6308. [16]Fiedler T,Hilder M,Junk P C,Kynast U H,Lezhnina M M,Warzala M.Synthesis,structural and spectroscopic studies on the lanthanoid p-aminobenzoates and derived optically func-tional polyurethane composites.Eur.J.Inorg.Chem.,2007, 291.[17]González-BaróA C,Pis-Diez R,Piro O E,Parajón-Costa B S.Crystal structures,theoretical calculations,spectroscopic and electrochemical properties of Cr(III)complexes with dipi-colinic acid and1,10-phenantroline.Polyhedron,2008,27(2): 502.[18]He X,Bi M H,Ye K Q,Fang Q R,Zhang P,Xu J N,Wang Y.Self-assembly of a1D helical manganese coordination poly-mer and a tetranuclear lanthanum complex with1,10-phenan-throline and3,5-dinitrosalicylato -mun.,2006,9(12):1165.[19]Liu C B,Yu M X,Zheng X J,Jin L P,Gao S,Lu S Z.Structuralchange of supramolecular coordination polymers ofitaconic acid and1,10-phenanthroline along lanthanide series.Inorg.Chim.Acta,2005,358(9):2687.[20]Hu M L,Yuan J X,Morsali III complexes of uracil-1-acetic acid,[La(phen)X3]n,X=Uracil-1-Acetate(UA)and 5-Fluorouracil-1-Acetate(5-FUA),two2D coordination polymer,structural and thermal studies.Solid State Sci.,2006, 8(8):981.[21]Sheldrick G M.SHELXS-97.Program for the Solution ofCrystal Structures.University of G ttingen,Germany,1997. [22]Sheldrick G M.SHELXL-97.Program for the Refinement ofCrystal Structures.University of G ttingen,Germany,1997. [23]Pan L,Huang X Y,Li J,Wu Y G,Zheng N W.Novel single-and double-layer and three-dimensional structures of rare-earth metal coordination polymers:the effect of lanthanide contrac-tion and acidity control in crystal structure formation.A ngew.Chem.Int.Ed.,2000,39(3):527.[24]Qin C,Wang X L,Wang E B,Xu L.Synthesis,structures andthermal properties of three new two-dimensional coordination networks assembled by lanthanide salts and carboxylate ligand.Inorg.Chim.A cta,2006,359(2):417.[25]Yang Y S,An B L,Gong M L,Shi H H,Lei H Y,Meng J X.Progress on study of luminescence of rare earth organic Che-lates.Journal of the Chinese Rare Earth Society(in Chin.), 2001,19:298.。
Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+
Synthesis,Crystal Structure,and Photoluminescenceof Sr-a -SiAlON:Eu 21Kousuke Shioi wSHOWA DENKO K.K.,Midori,Chiba 267-0056,JapanNaoto Hirosaki,*Rong-Jun Xie,*Takashi Takeda,and Yuan Qiang LiNational Institute for Materials Science,Tsukuba,Ibaraki 305-0044,JapanYoshitaka MatsushitaNational Institute for Materials Science,NIMS-SPring-8,Sayo,Hyogo 679-5148,JapanSr-containing a -SiAlON (Sr m /2Si 12-m –n Al m 1n O n N 16–n :Eu 21)phosphor was obtained as a major phase in compositions hav-ing small m and n values,by firing the powder mixture of SrSi 2,SrO,a -Si 3N 4,AlN,and Eu 2O 3at 20001C for 2h under 1MPa nitrogen atmosphere.The crystal structure of Sr-a -SiAlON was refined by the Rietveld analysis of the synchrotron X-ray powder diffraction pattern.The crystal structure showed that the Sr–N2bonding distance of Sr-a -SiAlON was fairly large compared with that of Ca-a -SiAlON.The displacement of N2sites prob-ably allow the interstices in a -SiAlON to accommodate the in-troduction of the large Sr ion.Sr-a -SiAlON:Eu 21phosphor has an excitation wavelength ranging from the ultraviolet region to 500nm and emits a strong yellow light.I.IntroductionWHITE light-emitting diodes (white LEDs)are considered as next-generation solid-state lighting systems because of their promising features such as low power consumption,high efficiency,long lifetime,and the lack of mercury.The availabil-ity of white-LEDs should open up a great number of new ex-citing application fields:white light sources to replace traditional incandescent and fluorescent lamps,backlights for portable elec-tronics,automobile headlights,medical,and architecture light-ing,etc.1–5Recently,rare earth-doped (oxy)nitride phosphors are gaining considerable attention due to their nontoxicity,and promising luminescence properties that enable them to be used in white-LEDs.Typical examples are red M 2Si 5N 8:Eu 21(M 5Ca,Sr,and Ba)6,7and CaAlSiN 3:Eu 21,8,9yellow Ca-a -SiAlON:Eu 21,10–13green b -SiAlON:Eu 21,14and yellow Ce-melilite.15Among these (oxy)nitride luminescence materials,Eu 21-doped a -SiAlON has a strong absorption in the range of 280–470nm and exhibits a broad yellow emission band covering the range of 550–590nm,11which is,therefore,expected to be used in white LEDs when combined with a blue LED chip.16In addition,due to its unique crystal structure,the a -SiAlON host lattice has the following advantages:(i)better flexibility of ma-terial design without changing the crystal structure,(ii)strong absorption in the visible light spectral region and long wave-length emissions,and (iii)chemical and thermal stability,as its basic structure is based on (Si,Al)–(O,N)4tetrahedral networks.a -SiAlON ceramics have been widely studied as structural materials because of their low linear expansion coefficients,high strength and hardness,and high thermal and chemical stabili-ties.It has an overall composition given by the formulaM m =v Si 12-m -n Al m þn O n N 16-n(1)where M is the modifying cations such as Li,Mg,Ca,Y,and rare earth (excluding La,Ce,Pr,and Eu),and v is the valency of the cation M.The crystal structure of a -SiAlON is derived from a -Si 3N 4by partial replacement of Si 41by Al 31and stabilized by trapping cations M into the interstices of the (Si,Al)–(O,N)4network.17It has been generally accepted that Sr 21ion alone cannot stabilize the a -SiAlON structure due to its large ionic size,but it can if codoped with calcium or yttrium.18Hwang addressed that the reaction product from the powder mixture with the com-position of Sr alone a -SiAlON without Y and Ca was the mixture of (a 1b )-SiAlON.Similar observations were also made by Man-dal 19and Liu et al .20A common feature of these reports is that the composition of Sr single-doped a -SiAlON has large m and n values.In this work,the synthesis of Sr-a -SiAlON:Eu 21with small m and n compositions is attempted,and the crystal structure of Sr-a -SiAlON is analyzed by the Rietveld refinement and then compared with that of Ca-a -SiAlON.Finally,the luminescent properties of Sr-a -SiAlON:Eu 21phosphor are reported.II.Experimental ProcedureSr-a -SiAlON:Eu 21samples were prepared from a -Si 3N 4(SN-E10,Ube Industries Ltd.,Tokyo,Japan),SrSi 2(KojyundoChemicalSr 1.5Al 3N 4Si 3N 4Fig.1.Schematic illustration of the a -SiAlON plane with the compo-sition numbers in Table I.D.Johnson—contributing editor*Member,The American Ceramic Society.wAuthor to whom correspondence should be addressed.e-mail:shioi.kousuke@nims.go.jpManuscript No.26102.Received April 7,2009;approved August 13,2009.J ournalJ.Am.Ceram.Soc.,93[2]465–469(2010)DOI:10.1111/j.1551-2916.2009.03372.x r 2009The American Ceramic Society465Laboratory Co.Ltd.,Saitama,Japan),SrO (Kojyundo Chemical Laboratory Co.Ltd.),AlN (Type F,Tokuyama Co.Ltd.,Shunan-shi,Japan),and Eu 2O 3(Shin-Etsu Chemical Co.Ltd.,Tokyo,Japan).SrSi 2was used as the Sr 21source to investigate small n compositions with an aim to eliminate the influence of the oxidation of raw materials in air,because SrSi 2is very stable against oxidation compared with metallic Sr or Sr 3N 2.The chemical compositions of the samples are plotted and listed in Fig.1and Table I.The powder mixtures were ground in the Si 3N 4mortar and pestle.The mixed powders were loaded in h-BN crucibles and then fired in a graphite resistance furnace at 20001C for 2h under 1MPa nitrogen atmosphere.The Eu 31ion in the starting powder Eu 2O 3is reduced to Eu 21under the nitrogen atmosphere during firing,which is confirmed by the absorption and emission spectra given later.Ca-a -SiAlON and Sr-a -SiAlON samples for the Rietveld refinement with nominal compositions Ca 0.375Si 11.25Al 0.75N 16and Sr 0.375Si 11.25Al 0.75N 16were also prepared by using the same firing conditions.The phase products of synthesized powders were identified by X-ray powder diffraction (XRD),operating at 40kV and 40mA and using Cu K a radiation (RINT2000,Rigaku,Tokyo,Japan).A step size of 0.0212y was used with a scan speed of 21/min.High-resolution synchrotron powder XRD data for Rietveldrefinements were recorded using wavelength l 50.65297Aat the NIMS beamline BL15XU of SPring-8synchrotron radiation facility.21The crystal structures were refined by the Rietveld method using the computer program RIETAN-FP,22and then visualized using the software package VESTA.23The photoluminescence spectra of the powder samples were mea-sured by a fluorescent spectrophotometer (Model F-4500,Hitachi Ltd.,Tokyo,Japan)at room temperature with a 150W Ushio xenon short-arc lamp.The emission spectrum was corrected for the spectral response of a monochromater and photomultiplier tube by a light diffuser (model R928P,Hamamatsu,Bridgewater,NJ)and tungsten lamp (10V,4A;Noma Electric Corp.,New York,NY).The excitation spectrum was also corrected for the spectral distribution of the xenon lamp intensity by measuring rhodamine-B as reference.III.Results and Discussion(1)SynthesisFigure 2shows the XRD patterns of samples with different m values (m 50.40–2.00)and a constant n value (n 50.02).As seen in Fig.2,the a -SiAlON phase is obtained as a major phase and SrSi 6N 8as a minor phase in samples with the m value varying from 0.70to 0.80,indicating that Sr 21can be dissolved in the a -SiAlON structure.The b -phase (b -Si 3N 4or b -SiAlON)is ob-served to coexist with a -SiAlON when m is below 0.70,the vol-ume of which increases with decreasing m value.With m values 40.80,the volume of SrSi 6N 8increases obviously,suggesting that the solubility limit of Sr 21in a -SiAlON is o 0.80.Figure 3presents XRD patterns of the samples with different n values (n 50–0.30)and a constant m value (m 50.75)As shown,the volume of the b -phase increases when n increases.As n stands for the oxygen content in the composition,a large n indicates an oxygen-rich composition.As mentioned previously,24the incre-Table I.Starting Compositions and Chemical Formula of the SamplesNo.m n Starting composition (wt%)Chemical formulaSrSi 2SrO a -Si 3N 4AlN Eu 2O 310.400.02 4.53091.84 3.010.62Sr 0.18Eu 0.02Si 11.58Al 0.42O 0.02N 15.9820.500.02 5.77089.90 3.720.61Sr 0.23Eu 0.02Si 11.48Al 0.52O 0.02N 15.9830.600.027.00087.97 4.420.61Sr 0.28Eu 0.02Si 11.38Al 0.62O 0.02N 15.9840.700.028.22086.05 5.110.61Sr 0.33Eu 0.02Si 11.28Al 0.72O 0.02N 15.9850.750.028.83085.10 5.460.61Sr 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.9860.800.029.44084.15 5.810.61Sr 0.38Eu 0.02Si 11.18Al 0.82O 0.02N 15.987 1.100.0213.03078.527.850.60Sr 0.53Eu 0.02Si 10.88Al 1.12O 0.02N 15.988 1.500.0217.72071.1810.510.59Sr 0.73Eu 0.02Si 10.48Al 1.52O 0.02N 15.989 2.000.0223.40062.2713.750.58Sr 0.98Eu 0.02Si 9.98Al 2.02O 0.02N 15.98100.750.058.060.5485.13 5.660.61Sr 0.355Eu 0.02Si 11.20Al 0.80O 0.05N 15.95110.750.10 6.80 1.4285.19 5.990.60Sr 0.355Eu 0.02Si 11.15Al 0.85O 0.10N 15.90120.750.20 4.29 3.1885.29 6.640.60Sr 0.355Eu 0.02Si 11.05Al 0.95O 0.20N 15.80130.750.30 1.82 4.9185.407.280.60Sr 0.355Eu 0.02Si 10.95Al 1.05O 0.30N 15.70SSN,SrSi 6N 8;a ,Sr-a -SiAlON;AN-p,SrSi 10Àn Al 181n O n N 32Àn ;X,Unknown phase;s,strong;m,medium;w,weak.20I n t (a .u . ):β:αm=1.50m=1.10m=0.80m=0.75m=0.60m=0.70m=0.40m=0.50m=2.002530354045502θ (deg): SrSi 6N 8Fig.2.X-ray powder diffraction patterns of the compositions with different m values (n 50.02),a ,a -SiAlON;b ,b -SiAlON.20I n t (a .u .):α:βn=0.10n=0.20n=0.05n=0.02n=0.302530354045502θ ( deg )Fig.3.X-ray powder diffraction patterns of the compositions with different n values (m 50.75),a ,a -SiAlON;b ,b -SiAlON.466Journal of the American Ceramic Society—Shioi et al.Vol.93,No.2ment of b -phase with increasing n values is attributable to the excess formation of liquid phase during firing,and in turn pro-motes the formation of b -phase.Therefore,we demonstrate that Sr-a -SiAlON can be formed as the major phase in compositions with small m and n values (m 50.70–0.80and n 50–0.05).As mentioned above,Sr solely doped a -SiAlON was not avail-able in previous studies.It is due to the fact that the m and n values are too large in those investigations (Hwang et al .,18m 51and n 51;Mandal,19m 51.25and n 51.15;Liu et al .,20m 51.6,n 51.6),which make Sr unable to stabilize the a -SiAlON.(2)Crystal StructureThe diffraction data obtained by synchrotron powder X-ray of Sr-a -SiAlON and Ca-a -SiAlON with the nominal compositionsSr 0.375Si 11.25Al 0.75N 16and Ca 0.375Si 11.25Al 0.75N 16were used for structural refinement.Because the Sr-a -SiAlON sample contains a small amount of SrSi 6N 8,a two-phase structural refinement was conducted on Sr-a -SiAlON.As shown in Fig.4(a),a fairly good result was obtained,and the final refinement converged with the reliability indexes:R wp 51.31%,R p 50.89%.R I and R F are 4.85%,2.66%for Sr-a -SiAlON and 4.18%,1.54%for SrSi 6N 8,respectively.The mole fraction of Sr-a -SiAlON to SrSi 6N 8is 0.96–0.04.Figure 4(b)shows the refinement result of Ca-a -SiAlON.The reliability indexes obtained are:R wp 52.39%,R p 51.43%,R I 52.39%,and R F 51.29%.The refined fractional coordinates of Sr-a -SiAlON and Ca-a -Si AlON are listed in Table II.The occupancy of each Ca and Sr were 0.1825(7)and 0.1380(7),respectively.The smaller occupancy of Sr1is due to the formation of SrSi 6N 8.The calculated occupancy of Ca-a -SiAlON is smaller than that derived from the nominal composition:0.1875.The deviation of the occupancy of Ca-a -SiAlON can be ascribed to the vol-atilization of Ca at the high firing temperature of 20001C.It is seen that Ca-a -SiAlON and Sr-a -SiAlON have similar latticeconstants,and they are a 57.79277(3)A ,c 55.65325A for Ca-a -SiAlON and a 57.79189(5)A ,and c 55.65377A forSr-a -SiAlON.As mentioned previously,the lattice constants decrease with decreasing m value,13indicating that the lattice constants of Sr-a -SiAlON are influenced by the formation of SrSi 6N 8.The crystal structure of Sr-or Ca-a -SiAlON is shown in Fig.5(a).The a -SiAlON structure has the expanded a -Si 3N 4structure built up of the (Si,Al)–(O,N)network.17The intro-duction of Ca or Sr in the sevenfold coordination sites stabi-lizes the a -SiAlON structure.The local structure of the Ca or Sr site in the a -SiAlON structure is shown in Fig.5(b).Selected bonding distances and bonding angles are listed in Table III.The first nearest Ca/Sr–N2bond is much shorter than the other six Ca/Sr–N bonds.Ca–N2and Sr–N2bondingdistances are 2.367(5)Aand 2.412(7)A ,respectively,and the difference of the bonding distances between Ca–N2and Sr–N2is large compared with the other six bonds.Si/Al1–N2–Si/Al1bond angles of Ca-a -SiAlON and Sr-a -SiAlON are 116.7(2)1and 117.5(3)1,respectively.This means that the displacement of N2sites parallel to the c axis probably allow the interstices in a -SiAlON to accommodate the introduction of the large Sr ion.(3)Photoluminescence PropertiesFigure 6shows the typical excitation and emission spectra:of (a)Sr-a -SiAlON:Eu 21,(b)Ca-a -SiAlON:Eu 21phosphors.The excitation and emission spectra of Sr-a -SiAlON:Eu 21are comparable with those of Ca-a -SiAlON:Eu 21.The exci-52015302540351060555045I n t e n s i t y (b)52015302540351060555045I n t e n s i t y(a)2θ / deg2θ / degFig.4.Observed and calculated X-ray powder diffraction patterns for nominal compositions:(a)Sr 0.375Si 11.25Al 0.75N 16,(b)Ca 0.375Si 11.25Al 0.75N 16.Solid line is the pattern calculated from the refined crystal structure.Residual errors are drawn at the bottom of the figure.Vertical short lines are the permitted peak positions satisfying the Bragg condi-tion.The first row is Sr-a -SiAlON,and the second row is SrSi 6N 8in (a).Table II.The Refined Atomic Coordinates,Occupancies,and Isotropic Atomic Displacement Parameters for Ca-and Sr-a -SiAlONAtomWykoff positionOccxyzB (A2)Ca-a -SiAlONCa 2b 0.1825(7)1/32/30.23604(4)0.460(67)Si/Al16c 0.8175/0.18250.51156(6)0.0824(6)0.21097(48)0.424(8)Si/Al26c 0.8175/0.18250.16813(5)0.2527(5)0.00271(48)0.256(7)N12a 10000.34N22b 11/32/30.65475(55)0.34N36c 10.34473(12)À0.04598(15)À0.00922(63)0.34N46c 10.31852(13)0.31533(14)0.25714(56)0.34Sr-a -SiAlON Sr 2b 0.1380(7)1/32/30.2357(9)0.77(8)Si/Al16c 0.862/0.1380.51122(10)0.08219(9)0.2110(8)0.40(1)Si/Al26c 0.862/0.1380.16817(8)0.25288(7)0.0015(8)0.21(1)N12a 10000.34N22b 11/32/30.6624(9)0.34N36c 10.3453(2)À0.0426(2)À0.0037(11)0.34N46c10.3209(2)0.3139(2)0.2582(9)0.34Space group:P 31c (no.159).Refined lattice parameters are Ca-a -SiAlON:a 57.79277(3)A,c 55.65325(1)A ,Sr-a -SiAlON:a 57.79189(5)A ,c 55.65377(2)A .February 2010Synthesis,Crystal Structure,and Photoluminescence of Sr-a -SiAlON:Eu 21467tation spectrum of Sr-a -SiAlON:Eu 21covers the spectral re-gion from the UV to the visible part.Two broad bands are observed in the excitation spectrum with the maxima at about 288and 399nm corresponding to 4f 7-4f 65d transition of Eu 21.It is consistent with previous study on Ca-a -Si AlON:Eu 21.13The emission spectrum shows a single intense broad emission band ranging from 470to 750nm,peaking at about 575nm,which is attributable to the permitted 4f 65d -4f 7transition of Eu 21.The emission intensities of Sr-a -Si AlON:Eu 21(583nm)and Ca-a -SiAlON:Eu 21(575nm)were about 122%and 116%of YAG:Ce 31(P46-Y3).The emission peak of Sr-and Ca-a -SiAlON:Eu 21were longer than that of YAG:Ce 31(560nm).It means that the Sr-and Ca-a -Si AlON:Eu 21phosphors could be good yellow phosphor can-didates for creating warm white light when combined with blue LED.A very weak emission band centered at 450nm is ascribed to the luminescence of the small amount of SrSi 6N 8:Eu 21.25The characteristic Eu 31luminescence,which ex-hibits sharp and line-shaped spectrum between 600and 630nm is not observed.This suggests that the europium ion in Sr-a -SiAlON phosphor is in the divalent state.In comparisonwith Ca-a -SiAlON:Eu 21,the positions of the excitation and emission spectra are very similar (Fig.6),because the PL spectra are fixed by the network of (Si,Al)–(O,N)in a -Si AlON and nearly independent of the local structure around Sr (Eu 21)or Ca (Eu 21)ions.IV.ConclusionsNovel Sr-a -SiAlON:Eu 21phosphors have been successfully syn-thesized by gas-pressure sintering at 20001C for 2h under 1MPa nitrogen atmosphere.Nearly single phase of Sr-a -SiAlON:Eu 21sample was obtained with small m and n values (m 50.70–0.80and n 50–0.05).The Rietveld refinements have revealed that the displacement of N2site parallel to the c -axis could be the main reason for the introduction of Sr atom into the a -SiAlON struc-ture.This phosphor shows the wide excitation spectrum cover-ing from the ultra violet region to 500nm and emits a strong yellow light.It is expected that Sr-a -SiAlON:Eu 21phosphor can also be a good wavelength-conversion yellow phosphor for use in white LEDs based on a blue (Ga,In)N chip.AcknowledgmentsWe thank Drs.M.Tanaka,H.Yoshikawa,and K.Kobayashi of the National Institute for Materials Science for their suggestions and encouragements.We thank Dr.Y.Katsuya and Ms.J.Uchida of SPring-8service for their support in the diffraction experiments.References1S.Nakamura and G.Fasol,The Blue Laser Diode:GaN Based Light Emitters and Lasers .Springer-Verlag,Berlin,1997.2Y.Sato,N.Takahashi,and S.Sato,‘‘Full-Color Fluorescent Display Devices Using a Near-UV Light-Emitting Diode,’’Jpn.J.Appl.Phys.,35[7A]838–9(1996).3Y.Narukawa,I.Niki,K.Izuno,M.Yamada,Y.Murazaki,and T.Mukai,‘‘Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultra-violet Chip,’’Jpn.J.Appl.Phys.,41[4A]371–3(2002).4Y.D.Huh,J.H.Shim,Y.Kim,and Y.R.Do,‘‘Optical Properties of Three-Band White Light Emitting Diodes,’’J.Electrochem.Soc.,150[2]H57–60(2003).5C.W.Tang,S.A.Van Slyke,and C.H.Chen,‘‘Electroluminescence of Doped Organic Thin Films,’’J.Appl.Phys.,65[9]3610–6(1989).ca(b)(a)bSi/Al1iiiN4vN4viN2ivN3ivCa/Sr ivN3viN3vN4ivSi/Al1iiSi/Al1iFig.5.(a)Crystal structures of a -SiAlON projected along the [110]direction.(b)The local structure of the Ca/Sr site in the a -SiAlON structure.Table III.Selected Bonding Distances and Angles in the LocalStructure of the Ca/Sr SiteCa-a -SiAlONSr-a -SiAlONDistance (A )M iv –N2iv 2.367(5) 2.412(7)M iv –N3vi 2.597(3) 2.600(4)M v –N3v 2.597(3) 2.600(4)M iv –N3iv 2.597(3) 2.600(4)M iv –N4v 2.6847(7) 2.7049(12)M iv –N4vi 2.6847(7) 2.7049(11)M iv –N4iv 2.6847(11) 2.705(2)Average 2.602 2.618Angle (deg)Si/Al1ii –N2iv –Si/Al1iii 116.7(2)117.5(3)Si/Al1i –N2iv –Si/Al1ii 116.7(2)117.5(2)Si/Al1iii –N2iv –Si/Al1i116.74(13)117.5(2)Symmetry operations are (i)x ,y ,z ;(ii)Ày ,x Ày ,z ;(iii)Àx 1y ,Àx ,z ;(iv)y ,x ,z 11/2;(v)x Ày ,Ày ,z 11/2;(vi)Àx ,Àx 1y ,z 11/2.M 5Ca and Sr.P L e m / e x -I n t ( a .u )(a)ExcitationEmission 200Wavelength ( nm )P L e m / e x -I n t ( a .u )(b)ExcitationEmission λem = 575 nm λem = 583 nm λex = 400 nmλex = 400 nmCa-α-SiAlON300400500600700200Wavelength ( nm )300400500600700Sr-α-SiAlONFig.6.Excitation and emission spectra of the samples with the nominal compositions:(a)Sr 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.98,(b)Ca 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.98.468Journal of the American Ceramic Society—Shioi et al.Vol.93,No.26H.A.Hoppe,H.Lutz,P.Morys,W.Schnick,and A.Seilmeier,‘‘Luminescence in Eu21-doped Ba2Si5N8:Fluorescence,Thermoluminescence,and Upconver-sion,’’J.Phys.Chem.Solids,61[12]2001–6(2000).7Y.Q.Li,J.E.J.van Steen,J.W.H.van Krevel,G.Botty,A.C.A.Delsing, F.J.DiSalvo,G.de With,and H.T.Hintzen,‘‘Luminescence Properties of Red-Emitting M2Si5N8:Eu21(M5Ca,Sr,Ba)LED Conversion Phosphors,’’pd.,417,273–9(2006).8K.Uheda,N.Hirosaki,Y.Yamamoto,A.Naito,T.Nakajima,and H.Yama-moto,‘‘Luminescence Properties of a Red Phosphor,CaAlSiN3:Eu21,for White Light-Emitting Diodes,’’Electrochem.Solid State Lett.,9,H22–5(2006).9K.Uheda,N.Hirosaki,and H.Yamamoto,‘‘Host Lattice Materials in the System Ca3N2-AlN-Si3N4for White Light Emitting Diode,’’Phys.Status Solid, A203,2712–7(2006).10J.W.H.van Krevel,J.W.T.van Rutten,H.Mandal,H.T.Hintzen,and R.Metselaar,‘‘Luminescence Properties of Terbium-,Cerium-,or Europium-Doped a-Sialon Materials,’’J.Solid State Chem.,165[1]19–24(2002).11R.-J.Xie,M.Mitomo,K.Uheda,F.-F.Xu,and Y.Akimune,‘‘Preparation and Luminescence Spectra of Calcium-and Rare-Earth(R5Eu,Tb,and Pr)-Codoped a-AiAlON ceramics,’’J.Am.Ceram.Soc.,85[5]1229–34(2002).12R.-J.Xie,N.Hirosaki,K.Sakuma,Y.Yamamoto,and M.Mitomo,‘‘Eu21-Doped Ca-a-SiAlON:A Yellow Phosphor for White Light-Emitting Diodes,’’Appl.Phys.Lett.,84[26]5404–6(2004).13R.-J.Xie,N.Hirosaki,M.Mitomo,Y.Yamamoto,T.Suehiro,and K. Sakuma,‘‘Optical Properties of Eu21in a-SiAlON,’’J.Phys.Chem.B,108[32] 12027–31(2004).14N.Hirosaki,R.-J.Xie,K.Kimoto,T.Sekiguchi,Y.Yamamoto,T.Suehiro, and M.Mitomo,‘‘Characterization and Properties of Green-Emitting b-SiAlON: Eu21Powder Phosphors for White Light-Emitting Diodes,’’Appl.Phys.Lett.,86, 211905,3pp(2005).15J.W.H.van Krevel,H.T.Hintzen,R.Metselaar,and A.Meijerink,‘‘Long Wavelength Ce31Emission in Y–Si–O–N Materials,’’pd.,268,272–7(1998).16K.Sakuma,N.Hirosaki,and R.-J.Xie,‘‘Red-Shift of Emission Wavelength Caused by Reabsorption Mechanism of Europium Activated Ca-a-SiAlON Ce-ramic Phosphor,’’J.Lumin.,126,843–52(2007).17G.Z.Cao and R.Metselaar,‘‘a0-Sialon Ceramics:A Review,’’Chem.Mater., 3[2]242–52(1991).18C.J.Hwang,D.W.Susnitzky,and D.R.Beaman,‘‘Preparation of Multi-cation a-SiAlON Containing Strontium,’’J.Am.Ceram.Soc.,78[3]588–92 (1995).19H.Mandal,‘‘New Developments in a-SiAlON Ceramics,’’J.Eur.Ceram. Soc.,19,2349–57(1999).20G.Liu,K.Chen,H.Zhou,K.Ren,C.Pereira,and J.F.M.Ferreira,‘‘Fab-rication of(Ca1Yb)-and(Ca1Sr)-Stabilized a-SiAlON by Combustion Synthe-sis,’’Mater.Res.Bull.,41,547–52(2006).21M.Tanaka,Y.Katsuya,and A.Yamamoto,‘‘A New Large Radius Imaging Plate Camera High-Resolution and High-Throughput Synchrotron X-ray Powder Diffraction by Multiexposure Method,’’Rev.Sci.Instrum.,79,075106, 6pp(2008).22F.Izumi and K.Momma,‘‘Three-Dimensional Visualization in Powder Diffraction,’’Solid State Phenom.,130,15–20(2007).23Momma and K.Izumi,‘‘VESTA:A Three-Dimensional Visualization System for Electronic and Structural Analysis,’’J.Appl.Crystallogr.,41,653–8(2008). 24H.L.Li,R.-J.Xie,N.Hirosaki,T.Suehiro,and Y.Yajima,‘‘Phase Purity and Luminescence Properties of Fine Ca-a-SiAlON:Eu Phosphors Synthesized by Gas Reduction Nitridation Method,’’J.Electrochem.Soc.,155[6]J175–9(2008).25K.Shioi,N.Hirosaki,R.-J.Xie,T.Takeda,and Y.Q.Li,‘‘Luminescence Properties of SrSi6N8:Eu2,’’J.Mater.Sci.,43[16]5659–61(2008).&February2010Synthesis,Crystal Structure,and Photoluminescence of Sr-a-SiAlON:Eu21469。
第 6 届 HChO 化学竞赛联考试题 试题、答案、评分标准、细则
第6届H C h O化学竞赛联考试题、答案、评分标准、细则与参考文献评分通则1.凡要求计算或推导的,须示出计算或推导过程。
无计算或推导过程,即使最终结果正确也不得分。
2.有效数字错误,扣0.5分,但每一大题只扣1次。
3.单位不写或表达错误,扣0.5分,但每一大题只扣1次。
4.只要求1个答案、而给出多个答案, 其中有错误的,不得分。
5.方程式不配平不得分,画等号或单前头皆可。
6.用铅笔解答的部分(包括作图)无效。
7.用涂改液或修正带修改,整个答卷无效。
8.考生信息必须写在答卷首页左侧指定位置,写于其他地方按废卷论处。
9.写有与试题无关的任何文字的答卷均作废。
10.不包括在标准答案的0.5分的题,无法决定是否给分的,欢迎与我本人探讨!第1题(8分) 二硫化碳,CS2,是一种无色透明易挥发的液体,也是一种常用的溶剂。
1-1 由于CS2是一种吸热化合物,因此它具有较高的反应活性。
正因如此它对脑部可产生不可逆的损伤。
工业上采用高温下氧化铝催化CH4(g)与S(s)的混合物反应来制备CS2(g)。
1-1-1写出此反应的方程式。
1-1-2计算此反应的反应热。
已知:(1) C(s) + 2H2(g) → CH4(g) ΔH1 = -74.8 kJ mol-1(2) C(s) + 2S(s) → CS2(g) ΔH2 = +117.4 kJ mol-1Ө-26Ө22量地形成双二硫代碳酸乙酯:以淀粉为指示剂,0.2000 g 含有惰性杂质的CS2样品将消耗0.04584 mol·L-1 I2 27.37 mL。
未加入样品的乙醇在同样条件下滴加了0.21 mL I2标准溶液方到达终点。
计算样品中CS2的含量。
第2题(11分)2-1KMgPO4·6H2O中存在接近于孤立的钾离子,每1mol此晶体中存在多少mol的氢键?2-1 12mol 2分,参考图形:2-2 写出中性条件(无外加缓冲体系)下KMnO4分别氧化KHC2O4和K2C2O4的反应,并指223223通过测量与计算,此分子的结构得以确定。
1_10_邻菲咯啉衍生物的合成及其晶体结构
* 收稿日期: 2009-06-26; 修订日期: 2009-08-04 基金项目: 国家自然科学基金资助项目 ( 20662003, 20767001 ) 作者简介: 陈明华 ( 1966 - ) , 男, 汉族, 贵州兴义人, 副教授, 主要从事有机合成的研究。 通讯联系人: 陶朱, 教授, 博士生导师, E-m ai:l gzu tao@ 263. net
cm - 3, L = 0. 095mm- 1, F ( 000) = 732, 最终偏离因子 R = 0. 091 2, wR = 0. 334 9。
关 键 词: 1, 10-邻菲咯啉; 1, 10-邻菲咯啉-5, 6-二酮; 合成; 晶体结构
中图分类号: O 641; O 625. 15
文献标识码: A
小二乘法修正。分子结构解析表明, 1 的组成为 C12H 7N 2 O+2 # Br- # H2 O, 分子量为 309. 09, 属正 交晶系, P na21空间群, 晶胞参数为: a= 14. 329 0
( 4) ! , b = 12. 370 0( 3) ! , c= 6. 395 6 ( 16) ! , A= 90b, B= 90b, C= 90b, V = 1 133. 5 ( 5) ! 3, Z = 14, D c= 2. 521 g # cm- 3, L= 12. 430 mm - 1, F ( 000) = 789, 最终偏离因子 R = 0. 039 8, wR = 0. 114 7。2的组成为 C19 H 11 FN 4 # C2H 5 OH, 分子 量为 360. 39, 属单斜晶系, P 21 /n 空间群, 晶胞参 数为: a = 9. 810 0( 4) ! , b = 10. 951 0( 4) ! , c=
柔性双苯并咪唑配体构筑的一维钴配位聚合物的合成和晶体结构研究
河北能源职业技术学院学报Journal of Hebei Energy College of Vocation and Technology第4期(总81期)2020年12月No.4 (Sum.81)Dec.2020柔性双苯并咪瞠配体构筑的一维钻配位聚合物的合成和晶体结构研究汤镇岭,刘佳璇,李娜,李宁舟,王泽萃(华北理工大学,河北 唐山063210)摘 要 采用水热法合成了一种新的6(11)配位聚合物,{[C o 2(L)2(3-NPA)2]-1.5H 2O}n (1),其中,L = 1,3- 双(苯并咪哇-1-甲基)苯,3-H 2NPA = 3-硝基邻苯二甲酸。
单晶X-射线衍射结果表明该配合物 是一维无限链状结构,并进一步通过堆积作用拓展成二维超分子网络。
热重分析显示该配合物 具有较高的热稳定性。
关键词:配位化合物;晶体结构;Co(II);柔性苯并咪哇;热稳定性中图分类号:0641.4 文献标识码:A 文章编号:1671-3974 (2020) 04-0056-03Synthesis, Crystal Structure of a One-dimensional Cobalt (II) Coordination Polymer Based onFlexible Bis(benzimidazole) LigandsTang Zhenling Liu Jiaxuan Li Na Li Ningzhou Wang Zecui(North China University of Science and Technology, Tangshan 063210, China)Abstract : A new Co(II) coordination polymer,{[Co2(L)2(3—NPA)2]*1.5H2O}n(l),(L=l,3—bis(benzimidazol —1—ylmethyl)benzene,3—H2NPA=3—nitrophthalic acid) was hydrothermally synthesized. The single crystalX —ray diSraction analysis indicated that 1 was a one —dimensional chain structure, which was further expanded into a two — dimensional supramolecular network via the — or stacking interaction. Thermogravimetric resultspresented that 1 possessed highly thermal stability.Key words : coordination polymer; crystal structure; Co (II); flexible benzimidazole; thermal stability金属-有机配位聚合物因其结构的多样性与特殊 性,具有独特的光、电、磁等性质,许多学者采用自组装的方法,利用配位键和超分子作用设计合成了大 量的的这类化合物应用于光催化、荧光敏化、气体储存、 吸附等多个领域[1_3]o芳香二竣酸具有良好的热稳定性和多种配位模式141, 可与过渡金属离子配位成多种多样的拓扑网络。
对苯二甲酸锌
对苯⼆甲酸锌Hydrothermal Synthesis and Crystal Structure of a Novel 2-Fold Interpenetrated Framework Based on Tetranuclear Homometallic ClusterRong-Yi Huang ?Xue-Jun Kong ?Guang-Xiang LiuReceived:15December 2007/Accepted:11January 2008/Published online:5March 2008óSpringer Science+Business Media,LLC 2008Abstract A novel 2-fold parallel interpenetrated polymer,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1)(pheno =phenan-threne-9,10-dione;p -BDC =1,4-benzenedicarboxylate)was prepared by hydrothermal synthesis and characterized by IRspectra,elemental analysis and single crystal X-ray /doc/c97a12ccf61fb7360b4c65f3.html plex1crystallizes in the orthorhombic space group Pbca and affords a three-dimensional (3D)six-connected a -Ponetwork.Keywords Carboxylate ligand áHomometallic complex áa -Po1IntroductionIn the last decade,the construction by design of metal-organic frameworks (MOFs)using various secondary building units (SBUs)connected through coordination bonds,supramolecular contacts (e.g.,hydrogen bonding,p áááp stacking,etc.),or their combination has been an increasingly active research area [1].The design and controlled assembly of coordination polymers based on nano-sized MO(OH)clusters and multi-functional car-boxylates have been extensively developed for their crystallographic and potential applications in catalysis,nonlinear optics,ion exchange,gas storage,magnetism and molecular recognition [2].In most cases,multinu-clear metal cluster SBUs can direct the formation of novel geometry and topology of molecular architectureand help to retain the rigidity of the networks [3].A number of carboxylate-bridged metal clusters have been utilized to build extended coordination frameworks.Among these compounds,frameworks from multinuclear zinc cluster SBUs,including dinuclear (Zn 2)[4],trinu-clear (Zn 3)[5],tetranuclear (Zn 4)[6],pentanuclear (Zn 5)[7],hexanuclear (Zn 6)[8],heptanuclear (Zn 7) [9],and octanuclear (Zn 8)[10]clusters have attracted great interest and have been investigated extensively.Addi-tionally,a series of systematic studies on this subject has demonstrated that an interpenetrated array cannot prevent porosity,but enhances the porous functionalities of the supramolecular frameworks [11].More importantly,the research upsurge in interpenetration structures was pro-moted by the fact that interpenetrated nets have been considered as potential super-hard materials [12]and possess peculiar optical and electrical properties [13].Herein we present the synthesis,structure,and spectral properties of a new coordination polymer based on tetranuclear homometallic cluster,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1).2Experimental2.1Materials and MeasurementsAll commercially available chemicals are reagent grade and used as received without further puri?cation.Sol-vents were puri?ed by standard methods prior to use.Elemental analysis for C,H and N were carried with a Perkin-Elmer 240C Elemental Analyzer at the Analysis Center of Nanjing University.Infrared spectra were obtained with a Bruker FS66V FT IR Spectrophotometer as a KBr pellet.R.-Y.Huang áX.-J.Kong áG.-X.Liu (&)Anhui Key Laboratory of Functional Coordination Compounds,College of Chemistry and Chemical Engineering,Anqing Normal University,Anqing 246003,P.R.China e-mail:liugx@/doc/c97a12ccf61fb7360b4c65f3.htmlJ Inorg Organomet Polym (2008)18:304–308DOI 10.1007/s10904-008-9199-72.2Preparation of Zn2(OH)(pheno)(p-BDC)1.5áH2O(1)A mixture containing Zn(NO3)2á6H2O(0.20mmol), p-1,4-benzenedicarboxylic acid(H2BDC)(0.20mmol), phenanthrene-9,10-dione(pheno)(0.10mmol)and NaOH (0.20mmol)in water(10mL)was sealed in a18mL Te?on lined stainless steel container and heated at150°C for72h.The reaction product was dark yellow block crystals of1,which were washed by deionized water sev-eral times and collected by?ltration;Yield,78%. Elemental Analysis:Calcd.for C24H15N2O10Zn2:C,46.33;H,2.43;N,4.50%.Found:C,46.38;H,2.47;N,4.48%.IR (KBr pellet),cm-1(intensity):3437(br),3062(m),1587(s),1523(m),1491(w),1424(m),1391(s),1226(w),1147 (w),1103(w),1051(w),875(w),843(m),740(w),728 (m),657(w).2.3X-ray Structure DeterminationThe crystallographic data collections for complex1were carried out on a Bruker Smart Apex II CCD with graphite-monochromated Mo-K a radiation(k=0.71073A?)at 293(2)K using the x-scan technique.The data were inte-grated by using the SAINT program[14],which also did the intensities corrected for Lorentz and polarization effects.An empirical absorption correction was applied using the SADABS program[15].The structures were solved by direct methods using the SHELXS-97program; and,all non-hydrogen atoms were re?ned anisotropically on F2by the full-matrix least-squares technique using the SHELXL-97crystallographic software package[16,17]. The hydrogen atoms were generated geometrically.All calculations were performed on a personal computer with the SHELXL-97crystallographic software package[17].The details of the crystal parameters,data collection and re?nement for four compounds are summarized in Table1. Selected bond lengths and bong angles for complex1are listed in Table2.3Results and DiscussionThe X-ray diffraction study for1reveals that the material crystallizes in the orthorhombic space group Pbca and features a2-fold parallel interpenetrated3D?3D net-work motif.The asymmetric unit contains two Zn(II) atoms,one hydroxyl,one pheno ligand,one and half of p-BDC molecules and one solvent water molecule.Selected bond lengths for1are listed in Table2.As shown in Fig.1, the Zn1ion,which is in the center of a tetrahedral geom-etry,is surrounded by three carboxylic oxygen atoms (Zn–O=1.918(5)–1.964(5)A?)from three p-BDC ligands and one l3-OH oxygen atom(O9).The Zn–O distance is1.965(5)A?.Two nitrogen atoms(N1and N2)that belong to pheno,one p-BDC oxygen atom(O3A)and one hydroxyl oxygen atom(O9A)are ligated to the Zn2center in the equatorial plane with another oxygen atom(O9)that arises from the second hydroxyl group and one oxygen atom(O5)that arises from the second p-BDC molecule situated in the axial position.EachZn2lies approximately in the equatorial position with a maximum deviation (0.048A?)from the basal plane.In the structure,Zn–O and Zn–N bond distances are in the range of 2.0530(5)–2.112(5)and2.157(5)–2.184(2)A?,respectively. There exist two types of p-BDC found in1(Scheme1); namely,monobidentate bridging(l3)and bi-bidentatebridging(l4)coordination modes.The bidentate bridging p-BDC connects mixed metals,where the smallest ZnáááZn distance is3.163A?,to complete a homodinuclear cluster, which is further linked by l3-OH into a six-connected Table1Crystal data and summary of X-ray data collection for1Zn2(pheno)(OH)(BDC)1.5áH2O Empirical formula C24H15N2O10Zn2Molecular mass/g mol-1622.12Color of crystal Dark yellowCrystal fdimensions/mm0.1890.1690.12 Temperature/K293Lattice dimensionsa/A?18.777(9)b/A?13.657(6)c/A?19.983(9)a/°90b/°90c/°90Unit cell volume(A?3)5125(4)Crystal system OrthorhombicSpace group PbcaZ8l(Mo-K a)/mm-1 1.931D(cacl.)/g cm-3 1.613Radiation type Mo-K aF(000)2504Limits of data collection/° 2.04B h B25.05Total re?ections24155Unique re?ections,parameters4545,347No.with I[2r(I)2821R1indices[I[2r(I)]0.0657w R2indices0.1858Goodness of?t 1.060Min/max peak(Final diff.map)/e A?-3-0.658/2.322tetranuclear cluster that is jointly coordinated by six p-BDC molecules(Fig.2).The clusters are further extended by p-BDC into a single3D framework(Fig.3).For clarity, we used the topological method to analyze this3D framework.Thus,the six-connected SBU is viewed to be a six-connected node.Furthermore,based on consideration of the geometry of thisnode,the3D frame is classi?ed as an a-Po net with41263topology(Fig.4).Of particular interest,the most intriguing feature of complex1is that a pair of identical3D single nets is interlocked with each other,thus directly leading to the formation of a2-fold interpenetrated3D?3D architecture(Fig.4)and the two pcu(a-Po)frameworks are related by a screw axis21[18]. Recently,a complete analysis of3D coordination networks shows that more than50interpenetrated pcu(a-Po)frames have been documented in the CSD database[18],including 2-fold,3-fold[19],and4-fold[20]interpenetration.In addition,several non-interpenetration motifs with a-Po topology have been reported to date[21].ZnZnO ZnZnZnZnO Znbidentate bidentate bidentate monodentateI IIScheme1Coordination modesof the bdc ligands in the structure of1;I is bis(bidentate),II is bi/monodentateFig.1ORTEP representation of complex1(the H atoms have been omitted for the sake of clarity).The thermal ellipsoids are drawn at 30%probabilityTable2Selected bond lengths(A?)and angles(°)for1Symmetry transformations usedto generate equivalent atoms:#1x-1/2,y,-z+1/2;#2-x,-y+1,-z;#3-x+1/2,-y+1,z-1/2Zn(1)–O(1) 1.918(5)Zn(2)–O(9)#2 2.091(4)Zn(1)–O(4)#1 1.953(5)Zn(2)–O(9) 2.103(5)Zn(1)–O(6) 1.964(5)Zn(2)–O(3)#3 2.112(5)Zn(1)–O(9) 1.965(5)Zn(2)–N(1) 2.157(6)Zn(2)–O(5)#2 2.053(5)Zn(2)–N(2) 2.184(6)O(1)–Zn(1)–O(4)#197.9(2)O(9)–Zn(2)–O(3)#388.81(18)O(1)–Zn(1)–O(6)112.9(2)O(5)#2–Zn(2)–N(1)94.7(2)O(4)#1–Zn(1)–O(6)104.7(2)O(9)#2–Zn(2)–N(1)170.7(2)O(1)–Zn(1)–O(9)122.9(2)O(9)–Zn(2)–N(1)91.6(2)O(4)#1–Zn(1)–O(9)109.7(2)O(3)#3–Zn(2)–N(1)88.9(2)O(6)–Zn(1)–O(9)107.0(2)O(5)#2–Zn(2)–N(2)87.1(2)O(5)#2–Zn(2)–O(9)#291.9(2)O(9)#2–Zn(2)–N(2)98.3(2)O(5)#2–Zn(2)–O(9)173.72(19)O(9)–Zn(2)–N(2)94.5(2)O(9)#2–Zn(2)–O(9)81.82(19)O(3)#3–Zn(2)–N(2)164.3(2)O(5)#2–Zn(2)–O(3)#391.3(2)N(1)–Zn(2)–N(2)75.7(2)O(9)#2–Zn(2)–O(3)#397.42(19)Fig.2Polyhedral representation of the homotetranuclear unit as asix-connected node linked by p-BDC ligandsMoreover,rich inter and intra hydrogen-bonds between the water molecules and the carboxylate groups (Table 3)further strengthen the stacking of the supra-architecture (Fig.5).4Supplementary MaterialsCrystallographic data (excluding structure factors)for thestructures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supple-mentary publication /doc/c97a12ccf61fb7360b4c65f3.html DC-666555.Copies of the data can be obtained free of charge on application to CCDC,12Union Road,Cambridge CB21EZ,UK (Fax:+44-1223-336033;e-mail:deposit@/doc/c97a12ccf61fb7360b4c65f3.html ).Acknowledgments This work was supported by the National Nat-ural Science Foundation of China (20731004)and the Natural Science Foundation of the Education Committee of Anhui Province,China(KJ2008B004).Fig.3Polyhedral presentation of one set of the 3D network along a -axis (a )and b -axis (b )Table 3Distance (A ?)and angles (°)of hydrogen bonding for com-plex 1D–H áááADistance of D áááA (A ?)Angle of D–H–A (°)O1W–H1WB áááO2#1 2.677(9)164O9–H19áááO1W#2 2.841(9)151C13–H13áááO3#3 3.045(10)121C22–H22áááO1W#43.353(10)167Symmetry transformations used to generate equivalent atoms:#1x,y,1+z;#2-x,1-y,-1+z;#3-x+1/2,-y+1,z -1/2;#4-x,1-y,1-zFig.4Simpli?ed schematic representation of the 3D ?3D two-fold interpenetrated a -Po network in1Fig.5Projection of the structure of 1along b -axis (dotted lines represent hydrogen-bonding)References1.(a)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38,2638(1998);(b)S.Leininger,B.Olenyuk,P.J.Stang,Chem.Rev.100,853(2000);(c)A.Erxleben,Coord.Chem.Rev.246, 203(2003);(d)K.Biradha,Y.Hongo,M.Fujita,Angew.Chem. Int.Ed.39,3843(2000);(e)P.D.Harey,H.B.Gray,J.Am.Chem.Soc.110,2145(1988);(f)D.Cave,J.M.Gascon,A.D.Bond,S.J.Teat,P.T.Wood,/doc/c97a12ccf61fb7360b4c65f3.html mun.1050(2002);(g)F.A.AlmeidaPaz,J.Klinowski,Inorg.Chem.43,3882(2004);(h)K.Biradha, Y.Hongo,M.Fujita,Angew.Chem.Int.Ed.39,3843(2000);(i) M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Ke-egge,O.M.Yaghi,Science295,469(2002);(j)S.Q.Zhang,R.J. Tao,Q.L.Wang,N.H.Hu,Y.X.Cheng,H.L.Niu,W.Lin,J.Am.Chem.Soc.123,10395(2001);(k)L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Growth Design5,37(2005)2.(a)M.Eddaoudi,D.B.Moler,H.Li,B.Chen,T.M.Reineke,M.O’Keeffe,O.M.Yaghi,Acc.Chem.Res.34,319(2001);(b)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38, 2638(1999);(c)O.R.Evans,W.Lin,Acc.Chem.Res.35,511 (2002);(d)S.Kitagawa,R.Kitaura,S.Noro,Angew.Chem.Int.Ed.43,2334(2004);(e)S.L.James,Chem.Soc.Rev.32,276 (2003);(f)L.Pan,H.Liu,X.Lei,X.Huang,D.H.Olson,N.J.Turro,J.Li,Angew.Chem.Int.Ed.42,542(2003)3.(a)G.Ferey,C.Mellot-Draznieks,C.Serre,/doc/c97a12ccf61fb7360b4c65f3.html lange,Acc. Chem.Res.38,217(2005);(b)M.Eddaoudi,J.Kim,J.B.Wachter,H.K.Chae,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,4368(2001);(c)M.Eddaoudi,J.Kim,M.O’Keeffe, O.M.Yaghi,J.Am.Chem.Soc.124,376(2002);(d)A.Thiru-murugan,S.Natarajan,Cryst.Growth Design6,983(2006);(e) R.Murugavel,M.G.Walawalkar,M.Dan,H.W.Roesky,C.N.R. Rao,Acc.Chem.Res.37,763(2004)4.(a)J.Kim,B.Chen,T.M.Reineke,H.Li,M.Eddaoudi,D.B.Moler,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,8239 (2001);(b)J.J.Lu,A.Mondal,B.Moulton,M.Zaworotko,An-gew.Chem.Int.Ed.40,2113(2001)5.(a)Q.R.Fang,X.Shi,G.Wu,G.Tain,G.S.Zhu,R.W.Wang,S.L.Qiu,J.Solid State Chem.176,1(2003);(b)H.Li,C.E.Davis,T.L.Groy,D.G.Kelley,O.M.Yaghi,J.Am.Chem.Soc.120,2186(1998)6.(a)M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Keeffe,O.M.Yaghi,Science295,469(2002);(b)B.Kesanli,Y.Cui,M.R.Smith,E.W.Bittner,B.C.Bockrath,W.B.Lin, Angew.Chem.Int.Ed.44,72(2005)7.Q.R.Fang,G.S.Zhu,Z.Jin,M.Xue,X.Wei,D.J.Wang,S.L.Qiu,Cryst.Growth Design7,1035(2007)8.C.Lei,J.G.Mao,Y.Q.Sun,H.Y.Zeng,A.Clear?eld,Inorg.Chem.42,6157(2003)9.J.R.Li,Y.Tao,Q.Yu,X.H.Bu,/doc/c97a12ccf61fb7360b4c65f3.html mun.1527(2007)10.S.Y.Yang,L.S.Long,R.B.Huang,L.S.Zheng,/doc/c97a12ccf61fb7360b4c65f3.html mun.472(2002)11.T.M.Reineke,M.Eddaoudi,D.M.Moler,M.O’Keeffe O.M.Yaghi,J.Am.Chem.Soc.122,4843(2002)12.D.M.Proserpio,R.Hoffman,P.Preuss,J.Am.Chem.Soc.116,9634(1994)13.(a)O.Ermer,Adv.Mater.3,608(1991);(b)/doc/c97a12ccf61fb7360b4c65f3.html ler,Adv.Mater.13,525(2001)14.SAINT version6.02a,Software Reference Manual(Bruker AXSInc.,Madison,W1,2002)15.G.M.Sheldrick,SADABS:Program for Empirical AbsorptionCorrection of Area Detector Data(University of Go¨ttingen, 1996)16.G.M.Sheldrick,SHELXS-97:Program for Crystal StructureSolution(University of Go¨ttingen,1997)17.G.M.Sheldrick,SHELXL-97:Program for Crystal StructureRe?nement(University of Go¨ttingen,1997)18.V.A.Blatov,L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Eng.Comm.6,377(2004)19.(a)B.F.Hoskins,R.Robson,N.V.Y.Scarlett,J.Chem.Soc./doc/c97a12ccf61fb7360b4c65f3.html mun.2025(1994);(b)E.Siebel,R.D.Fischer,Chem. Eur.J.3,1987(1997);(c)B.F.Abrahams,B.F.Hoskins,R.Robson,D.A.Slizys,/doc/c97a12ccf61fb7360b4c65f3.html m.4,478(1997);(d)M.J. Plater,M.R.S.J.Foreman,J.M.S.Skakle,Cryst.Eng.4,293 (2001);(e)X.L.Wang,C.Qin,E.B.Wang,Z.M.Su,Chem.Eur. J.12,2680(2006)20.B.Kesanli,Y.Cui,R.Smith,E.Bittner,B.C.Bockrath,W.Lin,Angew.Chem.Int.Ed.117,74(2005)21.(a)H.L.Gao,L.Yi,B.Ding,H.S.Wang,P.Cheng,D.Z.Liao,S.P.Yan,Inorg.Chem.45,481(2006);(b)Y.H.Wen,J.Zhang, X.Q.Wang,Y.L.Feng,J.K.Cheng,Z.J.Li,Y.G.Yao,New J. Chem.29,995(2005);(c)H.L.Sun,B.Q.Ma,S.Gao,S.R.Batten,Cryst.Growth Design5,1331(2005);(d)J.Yang,J.F.Ma,Y.Y.Liu,S.L.Li,G.L.Zheng,Eur.J.Inorg.Chem.2174 (2005)。
1,3,5-三(甲硝胺基)-2,4,6-三硝基苯的合成、单晶结构与性能
第39卷 第1期 2024年3月 西 南 科 技 大 学 学 报 JournalofSouthwestUniversityofScienceandTechnology Vol.39No.1 Mar.2024DOI:10.20036/j.cnki.1671 8755.2024.01.002收稿日期:2023-03-31;修回日期:2023-05-08基金项目:国家自然科学基金项目(22075260);四川省自然科学基金面上项目(2022NSFSC0288)作者简介:第一作者,董秦(1998—),女,硕士研究生;通信作者,杨海君(1976—),男,教授,研究方向为新型有机功能材料、新型含能材料合成及性能研究,E mail:yanghaijun@swust.edu.cn1,3,5-三(甲硝胺基)-2,4,6-三硝基苯的合成、单晶结构与性能董 秦 唐思宇 罗郑航 杨海君(西南科技大学材料与化学学院 四川绵阳 621010)摘要:以1,3,5-三氯-2,4,6-三硝基苯(化合物1,TCTNB)为原料,经甲胺化、硝化反应得到1,3,5-三(甲硝胺基)-2,4,6-三硝基苯(化合物3)。
优化合成工艺获得了制备的最佳工艺条件,总产率达74.7%。
采用傅里叶红外光谱仪、核磁共振仪、差示扫描量热仪、热重分析仪和X射线单晶衍射仪等对化合物3及其中间产物进行了表征。
单晶数据显示,化合物3晶体属于三斜晶系,P1空间群。
采用Kissinger法、Rogers法和Arrhenius法计算化合物3的表观活化能Ea为157.81kJ·mol-1,指前因子A为12.79×1016min-1,分解速率常数k为2.91×10-11,热爆炸临界温度Tb为206.52℃。
采用Kamlet-Jacobs半经验方程预测化合物3的爆速为7990m·s-1,爆压为26.6GPa。
关键词:含能材料 多硝基芳烃 合成 热分解动力学 爆轰性能中图分类号:TJ55;O64 文献标志码:A 文章编号:1671-8755(2024)01-0009-09Synthesis,CrystalStructureandPropertiesof1,3,5 Tris(methylnitroamino)-2,4,6 trinitrobenzeneDONGQin,TANGSiyu,LUOZhenghang,YANGHaijun(SchoolofMaterialsandChemistry,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China)Abstract:1,3,5 Tris(methylnitroamino)-2,4,6 trinitrobenzene(3)wassynthesizedthroughmethylaminationandnitrationstartingfrom1,3,5 trichloro-2,4,6 trinitrobenzene(1,TCTNB),ofwhichtheoptimalprocesswasobtainedwithatotalyieldupto74.7%.Compound3anditsintermediatewerecharacterizedbyFT-IR,NMR,DSC-TG,X raysingle crystaldiffraction,etc.Crystaldatashowcompound3crystalbelongstoatriclinicsystemwithspacegroupP1.Thethermaldecompositionkineticparametersofcompound3werecalculatedbyKissinger,RogersandArrheniusmethods,showingthattheapparentactivationenergy,Ea,is157.81kJ·mol-1,thepre exponentialfactor,A,is12.79×1016min-1,thedecompositionrateconstant,k,is2.91×1011,andthethermalexplosioncriticalpoint,Tb,is206.52℃.Thedetonationvelocityanddetonationpressureofcompound3were7990m·s-1and26.6GPathroughKamlet-Jacobsequationcalculation.Keywords:Energeticmaterial;Polynitroarene;Synthesis;Thermaldecompositionkinetics;Detonationperformance 多硝基苯类单质炸药是重要的含能材料[1]。
[Co(NO3)(Phen)2]NO3·4H2O的合成与晶体结构
Synthesis and Crystal Structure of [Co(NO3)
(Phen)2]NO3·4H2O
作者: 解庆范[1];陈延民[1]
作者机构: [1]泉州师范学院化学系,福建泉州362000
出版物刊名: 泉州师范学院学报
页码: 42-46页
主题词: 钴配合物;超分子;晶体结构;合成;芳环堆积作用
摘要:硝酸钴、邻菲罗啉(Phen)和己二酸在pH=7.0左右的水溶液中反应得到一种新的固体配合
物[Co(NO3)(Phen)2]NO3·4H2O(1),并经元素分析、红外光谱和X-射线单晶衍射分析进行了表征.结
构分析表明,晶体属三斜晶系,P1空间
群:a=0.7977(16)nm,b=1.0406(2)nm,c=1.6591(3)nm,α=106.12(3)°,β=103.33(3)°,γ=90.22(3)°,V=1.2841(4)nm3,D 3,Z=2,F(000)=634,5298个独立衍射点中,4704个可观察点满足I≥2σ(I),R1=0.0590,wR2=0.1718.晶
体结构中配阳离子[Co(NO3)(Phen)2]+通过芳环的堆积作用构成平行于ac面的2D层状超分子网络,未
配位的反荷阴离子NO-3和晶格水分子介于层间,通过氢键作用构成阴离子层状网络,阳离子层与阴离子
层之间通过配位的NO-3的O(3)与晶格水分子的H(13)之间的氢键作用进一步构成3D超分子体系.。
镍(Ⅱ)配合物[Ni(mip)(1,3-Bip)]n的合成及晶体结构
第4期 收稿日期:2020-11-25基金项目:贵州省科技厅、毕节市科技局、贵州工程应用技术学院联合基金(黔科合LH字[2017]7013号);贵州省化学工程与技术重点支持学科(黔学位合字ZDXK[2015]32号);贵州省应用化学特色重点学科作者简介:孙小媛(1980—),女,河南驻马店人,硕士,讲师,主要从事功能配合物研究。
镍(II)配合物[Ni(mip)(1,3-Bip)]n的合成及晶体结构孙小媛,罗树常,李 佳(贵州工程应用技术学院化学工程学院,贵州毕节 551700)摘要:合成了镍的配合物[Ni(mip)(1,3-Bip)]n,(mip=五甲基间苯二甲酸根离子,1,3-Bip=1.3-二(咪唑)-丙烷),结构分析表明:该化合物的化学式为C18H20N4NiO5,晶体属三斜晶系,P-1空间群,晶胞参数:a=9 4771(14)?,b=b=10.1323(15)?,c=c=11.2206(16)?,α=108.138(2),β=105.692(2),γ=103.081(2)°,Z=2,Dc=1.544mg/m3,F(000)=448,V=927.2(32)?3。
配合物镍(II)离子处于六配位的变形八面体构型中。
关键词:晶体结构;合成;镍配合物中图分类号:O614.121 文献标识码:A 文章编号:1008-021X(2021)04-0077-02SynthesisandCrystalStructureof-Ni(II)ComplexofPyridineCarboxylicAcidSunXiaoyuan,LuoShuchang,LiJia(SchoolofChemicalEngineering,GuizhouUniversityofEngineeringScience,Bijie 551700,China)Abstract:Thetitlecompoundof[Ni(mip)(1,3-Bip)]nwassynthesizedandcharacterizedstructurallybysinglecrystalX-raydiffraction.Thiscompoundcrystallizesintriclinicsystem,spacegroup(P-1)witha=9.4771(14)?,b=b=10.1323(15)?,c=c=11.2206(16)?,α=108.138(2),β=105.692(2),γ=103.081(2)°,V=927.2(32)?3,Z=2,Dc=1.544mg/m3,F(000)=448,V=927.2(2)?3.TheNi(II)ionissix-coordinatedintoadistortedoctahedralgeometry.Keywords:Ni(II)complex;synthesis;crystalstructure 目前国内外科学家们的对配位聚合物的合成研究,主要都是由三部分合成得到:羧酸类桥联配体、联唑类配体及金属离子[1-4]。
一种镍金属配合物的合成、结构及DNA性质研究
一种镍金属配合物的合成、结构及DNA性质研究贾冰;彭婷婷;高恩军【摘要】通过水热法制备一种新型镍配合物[Ni(dpdc)4(H2O)](dpdc为2,2-联吡啶-5,5-二羧酸配体).采用X射线单晶衍射法与元素分析对其结构进行表征.荧光光谱法与凝胶电泳技术分析配合物与DNA相互作用能力.荧光光谱显示出该镍配合物与DNA具有较好的键合作用.凝胶电泳结果显示了复合物切割pBR322质粒DNA能力.【期刊名称】《沈阳化工大学学报》【年(卷),期】2018(032)002【总页数】5页(P123-126,170)【关键词】镍配合物;DNA;荧光;电泳【作者】贾冰;彭婷婷;高恩军【作者单位】沈阳化工大学应用化学学院辽宁省无机分子基化学重点实验室,辽宁沈阳110142;沈阳化工大学应用化学学院辽宁省无机分子基化学重点实验室,辽宁沈阳110142;沈阳化工大学应用化学学院辽宁省无机分子基化学重点实验室,辽宁沈阳110142【正文语种】中文【中图分类】TQ138癌症的死亡率仅次于心脑血管疾病,严重威胁着人类的生命健康.中国因患癌症而死亡的人数在世界上排名第一.据统计,2015年全球约820万人死于癌症,其中中国约占280万,在中国每天约有7 500人死于癌症.目前,外科手术、放射性疗法和化学疗法是现代医学中用来治疗癌症的3种主要手段,前两者主要用于治疗良性非转移的肿瘤,后者主要针对晚期恶性、顽固性的肿瘤.因此,新型抗肿瘤药物的研发对癌症的治疗具有重大意义[1].目前,晶体工程金属超分子结构的设计与制造在超分子化学和材料科学领域中具有重要意义.人们对这一领域产生越来越多的兴趣,这不仅仅在于其具有有趣的结构图案,也因为其在现代医学方面的应用令人瞩目.而且在制备各种化合物时,具有现代医学功能的化合物由于潜在的应用价值引起了极大的关注.因此,选择合适的配体来构建具有特殊功能的化合物至关重要,如多元配体中的羧酸配体和含氮配体就被广泛用于金属超分子化合物的设计与合成.因为羧酸盐配体是产生不同框架形成多功能配位构型的完美候选物.其中羧基具有潜在的配位点,可以采用不同的配位模式,而—C==O可以作为O—供体.此外,含有N—供体的配体由于与金属中心的结合能力很高,常常用于构建配位聚合物.含氮羧酸配体能够兼顾两者的优势,既具有丰富的配位模式又可以调节功能特性,在金属超分子化合物的设计合成方面已引起了广泛的关注[2].另一方面,金属镍在地壳中含量丰富,较为常见,并且镍是人体中所需的一种微量元素.镍配合物因其在序列特异性结合、结构探针和治疗剂等多方面的应用,使得镍金属配合物在核算化学中也起着重要的作用.本文选用2,2-联吡啶-5,5-二羧酸配体与硝酸镍合成晶体,并进行表征反应.通过荧光光谱研究发现配合物可以从DNA中替代EtBr,证实该配合物具有DNA结合亲和力.通过凝胶电泳法发现配合物可以切割超螺旋质粒DNA pBR322,表明配合物具有有效的DNA切割能力.1 实验部分1.1 实验试剂实验所需试剂2,2-联吡啶-5,5-二羧酸、硝酸镍等均为化学纯,未经进一步处理直接使用.去离子水与DMF在实验中作为溶剂.1.2 实验仪器Bruker Smart 1000 CCD面探X-射线衍射仪,Perkin-Elmer LS55 荧光光谱仪,JS-Poewr 600 电泳仪,D-MS-1磁力搅拌器.1.3 配合物单晶的合成与制备在蒸馏水与DMF体积比为1∶1的溶液中将2,2-联吡啶-5,5-二羧酸(0.015 g)与硝酸镍(0.045 g)混合,并将所得溶液在室温下搅拌30 min.然后将溶液密封在15 mL 的Teflon内衬反应器中,在85 ℃的条件下加热72 h,缓慢冷却至室温.所得混合物用蒸馏水洗涤并在空气中干燥,得到可用于X射线衍射的块状晶体.C12H22N2NiO12元素分析[理论值(实测值),w/%]:C,32.37(32.36);H,4.96(4.94);N,6.30(6.29);O,43.16(43.15).根据金属镍所求得的产率为56.79 %.1.4 荧光光谱的测定荧光猝灭测量可用于监测配合物与DNA的结合能力.其中溴化乙锭(EtBr)是共轭平面分子,其荧光强度非常弱,但是能显示出由于其在DNA碱基对之间的强嵌入,发射荧光的DNA在全部DNA的比例大大增加.在之前的研究中[3],由于配合物已经从DNA-EtBr复合物中取代了EtBr,其荧光可被沉积的配合物猝灭,导致荧光发射强度降低.即配合物的浓度越高,DNA-EtBr配合物的荧光强度越低.证明了溴化乙锭(EtBr)用作光谱探针,使荧光淬灭测量也可用于监测配合物与DNA的结合能力,即配合物与DNA的结合亲和力[ 3-4].1.5 凝胶电泳的测定使用超螺旋质粒DNA pBR322作为靶,使用琼脂糖凝胶电泳检测配合物的切割效率.当切割环形质粒DNA时,超螺旋形式(形式Ⅰ)将观察到有最快的迁移;如果一条链被切割,超螺旋将变得松弛是以产生较慢移动的切口圆形(形式Ⅱ);而如果两条链都被切割,则会产生在其间迁移的线性形式(形式Ⅲ).配合物的切割效率已经通过琼脂糖凝胶电泳将超螺旋pBR322 DNA从Ⅰ型转化为Ⅱ型和Ⅲ型的能力进行了评估[5]. 在凝胶电泳实验中,使用Tris缓冲液(50.0 mmol/L Tris-乙酸酯,18.0 mmol/L NaCl缓冲液,pH为6.8~7.3)和1.5 g琼脂糖制备凝胶,然后用1.0 g/L EtBr染色.将化合物与质粒DNA pBR322(0.5 g/L)混合均匀并震荡,并在室温下孵育2 h,然后将其加入到冷却的质量分数0.8 %的琼脂糖凝胶中.将上述琼脂糖凝胶放入装有Tris-乙酸盐缓冲液,电压为80 mV的电泳槽中电泳100 min.电泳结束后在UV光下进行拍照[6-7].2 结果与讨论2.1 配合物[Ni(dpdc)4(H2O)]的结构配合物[Ni(dpdc)4(H2O)]单晶数据如表1所示,并通过XP软件对单晶结构进行可视化,如图1所示.表1 晶体数据和结构Table 1 Crystal data of the complex参数数值分子式[Ni(dpdc)4(H2O)]晶胞参数445.03晶系,空间群斜方晶系,Pccna/ nm0.64190(5)b/nm1.298 82(10)c/nm1.29882(10)α/(°)90.00β/(°)90.00γ/(°)90.00V/nm31.787 1(2)指数范围-7≤h≤7,-14≤k≤16,-16≤l≤24S1.051R的最终指数(I> 2σ(I))R1=0.032 8,wR2=0.066 9R 指数(所有数据)R1=0.025 9,wR2=0.063 1峰值与孔洞的最大差异/nm3360e×10-3和-227e×10-3从图1可以看出:中心镍是6配位的,其中中心金属镍与2,2-联吡啶-5,5-二羧酸配体上的2个氮相连,并且与4个水分子上的氧相连.而2,2-联吡啶-5,5-二羧酸是一个刚性配体,2个六元环彼此平行,2个氮原子牢牢地抓住镍原子,使之无法扭曲变形,使配体和金属结合时形成一个完全对称的结构.键长λ/nm:Ni—O(3)为0.2060,Ni—O(4)为0.203 8,Ni—N(1)为0.207 7.键角θ/(°):O(3)—Ni—O(4)为93.233,N—Ni—O(3)为99.170,N—Ni—O(4)为90.477.图1 晶体配位图Fig.1 Crystal coordination diagram2.2 荧光光谱法设置激发波长为526 nm,得到DNA-EtBr复合体系与配合物作用的发射光谱图(最大发射峰为618 nm),如图2所示.1 c(配合物)=0 mol/L2 c(配合物)=1 mol/L3 c(配合物)=2 mol/L4 c(配合物)=3 mol/L5 c(配合物)=4 mol/L6 c(配合物)=5 mol/L7 c(配合物)=6 mol/L8 c(配合物)=7 mol/L图2 不同浓度的配合物与DNA-EtBr作用的荧光光谱Fig.2 Fluorescence spectra of different concentrations of complexes bingding to DNA-EtBr在用5×10-5 mol/L EtBr预处理的5×10-5 mol/L的DNA上加入配合物后,观察到荧光强度明显降低,且加入的配合物浓度越高,猝灭现象越明显.还原程度与从DNA中除去溴化乙锭的配合物的量度以及相邻的DNA碱基对和配合物之间的作用程度有关[8-9].根据经典的Stern-Volmer方程:I0/I = 1+ Ksq· r,其中:I0和I分别表示不存在及存在配合物时的荧光强度;r是配合物与DNA的浓度比,Ksq是依赖于EtBr的结合浓度与DNA浓度比例的线性Sterne-Volmer猝灭常数.从图3可以看出,猝灭曲线表明配合物能够与DNA结合,其中Ksq值为0.124.数据表明该配合物与EtBr竞争,并猝灭EtBr-DNA体系的荧光强度[10-11].图3 配合物的Stern-Volmer猝灭曲线斜率值Fig.3 The Stern-Volmer quenching curve slope of the complex2.3 凝胶电泳法通过凝胶电泳法研究3种不同浓度的配合物切割超螺旋pBR322质粒DNA的能力,结果如图4所示.图4 配合物切割pBR 322 DNA的琼脂糖凝胶电泳图Fig.4 Agarose gel electrophoresis of complex cleave pBR 322 DNA从图4可以看出,DNA可被水溶性镍配合物切割,并将超螺旋DNA(I型)逐渐降解为开环DNA(Ⅱ型)和少量线性DNA(Ⅲ型).其中0道为空白对照,未添加配合物.1、2、3道添加配合物的浓度分别为5 μmol/L、2.5 μmol/L、1.25 μmol/L.随着镍配合物浓度的降低,切割活性依次减弱,并在相对高浓度时(泳道1和2)出现Ⅲ型DNA,说明配合物对pBR322质粒DNA具有切割作用.对于不存在金属络合物的对照(泳道0),观察到少量DNA裂解[12].可以看出,配合物[Ni(dpdc)4(H2O)]在类似金属配合物中对质粒DNA的切割作用较好[13].3 结论实验制备了一种新颖的具有大平面结构构型的镍金属化合物[Ni(dpdc)4(H2O)],通过X-射线单晶衍射与元素分析表征了配合物的结构.荧光光谱研究发现配合物添加到EtBr-DNA体系中后,能够与EtBr竞争结合DNA的位点,导致荧光猝灭效果.琼脂糖凝胶电泳研究了配合物切割DNA超螺旋质粒pBR 322的能力,表明配合物具有有效的DNA切割能力.【相关文献】[1] ALBERT J,D′ANDREA L,GRAMELL J,et al.Cyclopalladated and Cyclo platinated Benzophenone Imines:Antitumor,Antibacterial and Antioxidant Activities,DNA Interaction and Cathepsin B Inhibition[J].Journal of Inorganic Biochemistry,2014,140:80-88.[2] ZHU T F,WANG Y,DING W L,et al.Anticancer Activity and DNA-Binding Investigations of the Cu(Ⅱ) and Ni(Ⅱ) Complexes with Coumarin Derivative[J].Chemical Biology & Drug Design,2015,85(3):385-393.[3] ZERZANKOVA L,SUCHANKOVA T,VRANA O,et al.Conformation and Recognition of DNA Modified by a New Antitumor Dinuclear PtⅡ Complex Resista nt to Decomposition by Sulfur Nucleophiles[J].Biochem Pharmacol,2010,79(2):112-121.[4] LIU L,ZHANG G M,ZHU R G,et al.Dinuclear Cd(Ⅱ),Mn(Ⅱ)and Cu(Ⅱ)Complexes Derived from(Anthraquinone-1-diyl)Benzoate:DNA Binding and Cleavage Studies[J].RSC Advances,2014,4(87):46639-46645.[5] ZHAO F J,ZHAO H Q,LIU F,et al.Synthesis and Crystal Structure of NewDicopper(Ⅱ)Complexes with N,N′-bis-(dipropylenetriamine)Oxamide as Bridging Ligand:Effects of the Counterions on DNA/Protein-Binding Property and in Vitro Antitumor Activity[J].Journal of Photochemistry and PhotobiologyB:Biology,2015,143:148-162.[6] CUI S H,JIANG M,LI Y T,et al.Synthesis,Structure,DNA-Binding,and Cytotoxic Activities of N-(5-chloro-2-hydroxyphenyl)-N ′-[3-(2-hydroxyethylamino)Propyl] Oxamide and Its Dicopper(Ⅱ)Complex[J].Journal of Coordination Chemistry,2011,64(23):4209-4224. [7] YIN Y X,WEN J H,GENG Z R,et al.Two heptadentate Co(Ⅲ)and Mn(Ⅲ)Complexes with Partially Deprotonated Cyclen Derivative Bearing Four HydroxypropylPendants:Structure,DNA Binding and DNA Cleavage[J].Applied Organometallic Chemistry,2012,26(12):671-680.[8] WANG K R,WANG Y Q,YAN X H,et al.DNA Binding and Anticancer Activity of Naphthalimides with 4-hydroxyl-alkylamine Side Chains at Different Lengths[J].Bioorganic & Medicinal Chemistry Letters,2012,22(2):937-941.[9] SHAHABADI N,MIRZAEI KALAR Z,MOGHADAM N H.DNA Interaction Studies of a Platinum(Ⅱ)Complex Containing an Antiviral Drug,Ribavirin:The Effect of Metal on DNA Binding[J].Spectrochimica Acta Part A:Molecular and BiomolecularSpectroscopy,2012,96:723-728.[10] GAO E J,ZHU M C,YIN X H,et al.Synthesis,Characterization,Interaction with DNA and Cytotoxicity in Vitro of Dinuclear Pd(Ⅱ)and Pt(Ⅱ)Complexes Dibridged by 2,2 ′-Azanediyldibenzoic Acid[J].Journal of Inorganic Biochemistry,2008,102(10):1958-1964. [11] GAO E J,ZHANG Y J,LIU T L,et al.Synthesis,Crystal Structure,Interaction with DNA,and Cytotoxicity in Vitro of a New Mixed Ligand-NickelComplex:[Ni(DBMA)(en)(H2O)3]·3H2O[J].Journal of CoordinationChemistry,2013,66(17):3004-3013.[12] GAO R,DAS B B,CHATTERJEE R,et al.Epigenetic and Genetic Inactivation of Tyrosyl-DNA-Phosphodiesterase 1(TDP1)in Human Lung Cancer Cells from the NCI-60Panel[J].DNA Repair(Amst),2014,13:1-9.[13] 陈明.两性羧酸金属配合物的设计、合成与DNA切割活性[D]广州:南方医科大学,2014:48-53.。
导师介绍 基本资料 宋莉
6. 浙江理工大学项目,新颖配位聚合物的合成和性能研究,No. 0713678-Y,2万,排名1 7. 先进纺织材料与制备技术教育部重点实验室优秀青年人才培养基金,新颖发光纤维用
配位聚合物的研究,No. 2007QN01,0.5万,排名1 8. 浙江理工大学教育教学改革项目,多媒体技术在无机化学实验教学中的应用,No.
联系方式
通讯地址:杭州市下沙高教园区 2 号大街 5 号(310018) Email: songli@ Tel: 0571-86843781(O)
8. Wenxiang Chai, Li Song, Kangying Shu, Laishun Qin and Hongsheng Shi, Synthsis, Crystal Structure and Optical Properties of a Three-Dimensional Supramolecule Assembled by a Dinuclear Neodymium Cluster, J. Chem. Crystallogr., 2010, 40(5), 448-452.
4. Li Song, Ping Lin, Zhi-Hua Li, Jian-Rong Li, Shao-Wu Du, Xin-Tao Wu, W/Cu(Ag)/S Complexes Containing Bridging Diphosphine Ligands: Synthesis, Structures and Optical Properties, Polyhedron 2007, 26, 1199-1204.
7. Wen-Xiang Chai, Li Song, Hang-Yan Shen, Kang-Ying Shu, Synthesis, Crystal Structure, and Luminescence of a Three-Dimensional Supramolecular Compound Based on a Dinuclear Tin Cluster, Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(12), 3212-3220.
铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸
DOI: 10.1016/S1872-5813(21)60176-7铁、锰、铜和水杨醛缩金刚烷胺席夫碱配体原位催化5-羟甲基糠醛氧化制备5-甲酰基呋喃-2-羧酸白继峰1,程曼芳1,卢虹竹1,侯明波2,杨 雨1,王景芸1,* ,周明东1(1. 辽宁石油化工大学 石油化工学院, 辽宁 抚顺 113001;2. 中国石油抚顺石化公司石油二厂, 辽宁 抚顺 113004)摘 要:本研究将铁、锰、铜和金刚烷胺缩水杨醛衍生的席夫碱配体组成的原位催化剂用于催化5-羟甲基糠醛(5-Hydroxymethylfurfural ,简称HMF)选择性氧化制备5-甲酰基呋喃-2-羧酸(5-formyl-2-furancarboxylic acid ,简称FFCA)。
通过核磁共振(NMR )、红外(FT-IR )和单晶衍射对配体和配合物进行了表征,并对氧化反应时间、反应温度、MnCl 2·4H 2O 与配体物质的量比、氧化剂和催化剂用量等反应条件进行优化,在最优化条件下,HMF 转化率为100%,并且可以获得收率为52.1%的FFCA 。
根据反应结果对Mn 金属配合物催化的HMF 氧化反应过程进行了分析。
关键词:5-羟甲基糠醛;氧化;席夫碱;原位催化;5-甲酰基呋喃-2-羧酸中图分类号: O643.36 文献标识码: AIn-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligandsBAI Ji-feng 1,CHENG Man-fang 1,LU Hong-zhu 1,HOU Ming-bo 2,YANG Yu 1 ,WANG Jing-yun 1,* ,ZHOU Ming-dong1(1. School of Petrochemical Technology , Liaoning Shihua University , Fushun 113001, China ;2. PetroChina Fushun Petrochemical Company No 2 Petroleum Plant , Fushun 113004, China )Abstract: To synthesize simple and efficient catalysts and their application in catalytic conversion of biomass platform compounds to prepare high value-added chemicals has always been the focus of researchers. In this paper,a catalyst composed of iron, manganese, copper and Schiff base ligand derived from amantadine salicylaldehyde was in-situ constructed to catalyze the selective oxidation of 5-hydroxymethylfurfural (HMF) to prepare 5-formyl-2-furancarboxylic acid (FFCA). The ligands and complexes were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and single crystal diffraction, and the reaction conditions such as oxidation reaction time, reaction temperature, molar ratio of MnCl 2·4H 2O to ligand, oxidant and catalyst dosage, etc, were optimized. Under the optimized conditions, 100% conversion of HMF and the FFCA with a yield of 52.1% can be obtained. Finally, on the basis of the reaction results, the HMF oxidation reaction process catalyzed by Mn metal complexes was analyzed.Key words: 5-hydroxymethylfurfural ;oxidation ;Schiff base ;in-situ catalysis ;5-formylfuran-2-carboxylic acid当前,我们正进入一个可利用化石能源日益减少的时代,有限的石油资源使当前的石油基燃料和化学品生产难以为继。
对苯二甲酸锌
Hydrothermal Synthesis and Crystal Structure of a Novel 2-Fold Interpenetrated Framework Based on Tetranuclear Homometallic ClusterRong-Yi Huang ÆXue-Jun Kong ÆGuang-Xiang LiuReceived:15December 2007/Accepted:11January 2008/Published online:5March 2008ÓSpringer Science+Business Media,LLC 2008Abstract A novel 2-fold parallel interpenetrated polymer,Zn 2(OH)(pheno)(p -BDC)1.5ÁH 2O (1)(pheno =phenan-threne-9,10-dione;p -BDC =1,4-benzenedicarboxylate)was prepared by hydrothermal synthesis and characterized by IR spectra,elemental analysis and single crystal X-ray plex 1crystallizes in the orthorhombic space group Pbca and affords a three-dimensional (3D)six-connected a -Po network.Keywords Carboxylate ligand ÁHomometallic complex Áa -Po1IntroductionIn the last decade,the construction by design of metal-organic frameworks (MOFs)using various secondary building units (SBUs)connected through coordination bonds,supramolecular contacts (e.g.,hydrogen bonding,p ÁÁÁp stacking,etc.),or their combination has been an increasingly active research area [1].The design and controlled assembly of coordination polymers based on nano-sized MO(OH)clusters and multi-functional car-boxylates have been extensively developed for their crystallographic and potential applications in catalysis,nonlinear optics,ion exchange,gas storage,magnetism and molecular recognition [2].In most cases,multinu-clear metal cluster SBUs can direct the formation of novel geometry and topology of molecular architectureand help to retain the rigidity of the networks [3].A number of carboxylate-bridged metal clusters have been utilized to build extended coordination frameworks.Among these compounds,frameworks from multinuclear zinc cluster SBUs,including dinuclear (Zn 2)[4],trinu-clear (Zn 3)[5],tetranuclear (Zn 4)[6],pentanuclear (Zn 5)[7],hexanuclear (Zn 6)[8],heptanuclear (Zn 7)[9],and octanuclear (Zn 8)[10]clusters have attracted great interest and have been investigated extensively.Addi-tionally,a series of systematic studies on this subject has demonstrated that an interpenetrated array cannot prevent porosity,but enhances the porous functionalities of the supramolecular frameworks [11].More importantly,the research upsurge in interpenetration structures was pro-moted by the fact that interpenetrated nets have been considered as potential super-hard materials [12]and possess peculiar optical and electrical properties [13].Herein we present the synthesis,structure,and spectral properties of a new coordination polymer based on tetranuclear homometallic cluster,Zn 2(OH)(pheno)(p -BDC)1.5ÁH 2O (1).2Experimental2.1Materials and MeasurementsAll commercially available chemicals are reagent grade and used as received without further purification.Sol-vents were purified by standard methods prior to use.Elemental analysis for C,H and N were carried with a Perkin-Elmer 240C Elemental Analyzer at the Analysis Center of Nanjing University.Infrared spectra were obtained with a Bruker FS66V FT IR Spectrophotometer as a KBr pellet.R.-Y.Huang ÁX.-J.Kong ÁG.-X.Liu (&)Anhui Key Laboratory of Functional Coordination Compounds,College of Chemistry and Chemical Engineering,Anqing Normal University,Anqing 246003,P.R.China e-mail:liugx@J Inorg Organomet Polym (2008)18:304–308DOI 10.1007/s10904-008-9199-72.2Preparation of Zn2(OH)(pheno)(p-BDC)1.5ÁH2O(1)A mixture containing Zn(NO3)2Á6H2O(0.20mmol), p-1,4-benzenedicarboxylic acid(H2BDC)(0.20mmol), phenanthrene-9,10-dione(pheno)(0.10mmol)and NaOH (0.20mmol)in water(10mL)was sealed in a18mL Teflon lined stainless steel container and heated at150°C for72h.The reaction product was dark yellow block crystals of1,which were washed by deionized water sev-eral times and collected byfiltration;Yield,78%. Elemental Analysis:Calcd.for C24H15N2O10Zn2:C,46.33; H,2.43;N,4.50%.Found:C,46.38;H,2.47;N,4.48%.IR (KBr pellet),cm-1(intensity):3437(br),3062(m),1587 (s),1523(m),1491(w),1424(m),1391(s),1226(w),1147 (w),1103(w),1051(w),875(w),843(m),740(w),728 (m),657(w).2.3X-ray Structure DeterminationThe crystallographic data collections for complex1were carried out on a Bruker Smart Apex II CCD with graphite-monochromated Mo-K a radiation(k=0.71073A˚)at 293(2)K using the x-scan technique.The data were inte-grated by using the SAINT program[14],which also did the intensities corrected for Lorentz and polarization effects.An empirical absorption correction was applied using the SADABS program[15].The structures were solved by direct methods using the SHELXS-97program; and,all non-hydrogen atoms were refined anisotropically on F2by the full-matrix least-squares technique using the SHELXL-97crystallographic software package[16,17]. The hydrogen atoms were generated geometrically.All calculations were performed on a personal computer with the SHELXL-97crystallographic software package[17].The details of the crystal parameters,data collection and refinement for four compounds are summarized in Table1. Selected bond lengths and bong angles for complex1are listed in Table2.3Results and DiscussionThe X-ray diffraction study for1reveals that the material crystallizes in the orthorhombic space group Pbca and features a2-fold parallel interpenetrated3D?3D net-work motif.The asymmetric unit contains two Zn(II) atoms,one hydroxyl,one pheno ligand,one and half of p-BDC molecules and one solvent water molecule.Selected bond lengths for1are listed in Table2.As shown in Fig.1, the Zn1ion,which is in the center of a tetrahedral geom-etry,is surrounded by three carboxylic oxygen atoms (Zn–O=1.918(5)–1.964(5)A˚)from three p-BDC ligands and one l3-OH oxygen atom(O9).The Zn–O distance is 1.965(5)A˚.Two nitrogen atoms(N1and N2)that belong to pheno,one p-BDC oxygen atom(O3A)and one hydroxyl oxygen atom(O9A)are ligated to the Zn2center in the equatorial plane with another oxygen atom(O9)that arises from the second hydroxyl group and one oxygen atom(O5)that arises from the second p-BDC molecule situated in the axial position.Each Zn2lies approximately in the equatorial position with a maximum deviation (0.048A˚)from the basal plane.In the structure,Zn–O and Zn–N bond distances are in the range of 2.0530(5)–2.112(5)and2.157(5)–2.184(2)A˚,respectively.There exist two types of p-BDC found in1(Scheme1); namely,monobidentate bridging(l3)and bi-bidentate bridging(l4)coordination modes.The bidentate bridging p-BDC connects mixed metals,where the smallest ZnÁÁÁZn distance is3.163A˚,to complete a homodinuclear cluster, which is further linked by l3-OH into a six-connected Table1Crystal data and summary of X-ray data collection for1Zn2(pheno)(OH)(BDC)1.5ÁH2O Empirical formula C24H15N2O10Zn2Molecular mass/g mol-1622.12Color of crystal Dark yellowCrystal fdimensions/mm0.1890.1690.12 Temperature/K293Lattice dimensionsa/A˚18.777(9)b/A˚13.657(6)c/A˚19.983(9)a/°90b/°90c/°90Unit cell volume(A˚3)5125(4)Crystal system OrthorhombicSpace group PbcaZ8l(Mo-K a)/mm-1 1.931D(cacl.)/g cm-3 1.613Radiation type Mo-K aF(000)2504Limits of data collection/° 2.04B h B25.05Total reflections24155Unique reflections,parameters4545,347No.with I[2r(I)2821R1indices[I[2r(I)]0.0657w R2indices0.1858Goodness offit 1.060Min/max peak(Final diff.map)/e A˚-3-0.658/2.322tetranuclear cluster that is jointly coordinated by six p-BDC molecules(Fig.2).The clusters are further extended by p-BDC into a single3D framework(Fig.3).For clarity, we used the topological method to analyze this3D framework.Thus,the six-connected SBU is viewed to be a six-connected node.Furthermore,based on consideration of the geometry of this node,the3D frame is classified as an a-Po net with41263topology(Fig.4).Of particular interest,the most intriguing feature of complex1is that a pair of identical3D single nets is interlocked with each other,thus directly leading to the formation of a2-fold interpenetrated3D?3D architecture(Fig.4)and the two pcu(a-Po)frameworks are related by a screw axis21[18]. Recently,a complete analysis of3D coordination networks shows that more than50interpenetrated pcu(a-Po)frames have been documented in the CSD database[18],including 2-fold,3-fold[19],and4-fold[20]interpenetration.In addition,several non-interpenetration motifs with a-Po topology have been reported to date[21].ZnZnO ZnZnZnZnO Znbidentate bidentate bidentate monodentateI IIScheme1Coordination modesof the bdc ligands in the structure of1;I is bis(bidentate),II is bi/monodentateFig.1ORTEP representation of complex1(the H atoms have beenomitted for the sake of clarity).The thermal ellipsoids are drawn at30%probabilityTable2Selected bond lengths(A˚)and angles(°)for1Symmetry transformations usedto generate equivalent atoms:#1x-1/2,y,-z+1/2;#2-x,-y+1,-z;#3-x+1/2,-y+1,z-1/2Zn(1)–O(1) 1.918(5)Zn(2)–O(9)#2 2.091(4)Zn(1)–O(4)#1 1.953(5)Zn(2)–O(9) 2.103(5)Zn(1)–O(6) 1.964(5)Zn(2)–O(3)#3 2.112(5)Zn(1)–O(9) 1.965(5)Zn(2)–N(1) 2.157(6)Zn(2)–O(5)#2 2.053(5)Zn(2)–N(2) 2.184(6)O(1)–Zn(1)–O(4)#197.9(2)O(9)–Zn(2)–O(3)#388.81(18)O(1)–Zn(1)–O(6)112.9(2)O(5)#2–Zn(2)–N(1)94.7(2)O(4)#1–Zn(1)–O(6)104.7(2)O(9)#2–Zn(2)–N(1)170.7(2)O(1)–Zn(1)–O(9)122.9(2)O(9)–Zn(2)–N(1)91.6(2)O(4)#1–Zn(1)–O(9)109.7(2)O(3)#3–Zn(2)–N(1)88.9(2)O(6)–Zn(1)–O(9)107.0(2)O(5)#2–Zn(2)–N(2)87.1(2)O(5)#2–Zn(2)–O(9)#291.9(2)O(9)#2–Zn(2)–N(2)98.3(2)O(5)#2–Zn(2)–O(9)173.72(19)O(9)–Zn(2)–N(2)94.5(2)O(9)#2–Zn(2)–O(9)81.82(19)O(3)#3–Zn(2)–N(2)164.3(2)O(5)#2–Zn(2)–O(3)#391.3(2)N(1)–Zn(2)–N(2)75.7(2)O(9)#2–Zn(2)–O(3)#397.42(19)Fig.2Polyhedral representation of the homotetranuclear unit as asix-connected node linked by p-BDC ligandsMoreover,rich inter and intra hydrogen-bonds between the water molecules and the carboxylate groups (Table 3)further strengthen the stacking of the supra-architecture (Fig.5).4Supplementary MaterialsCrystallographic data (excluding structure factors)for thestructures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supple-mentary publication DC-666555.Copies of the data can be obtained free of charge on application to CCDC,12Union Road,Cambridge CB21EZ,UK (Fax:+44-1223-336033;e-mail:deposit@).Acknowledgments This work was supported by the National Nat-ural Science Foundation of China (20731004)and the Natural Science Foundation of the Education Committee of Anhui Province,China(KJ2008B004).Fig.3Polyhedral presentation of one set of the 3D network along a -axis (a )and b -axis (b )Table 3Distance (A ˚)and angles (°)of hydrogen bonding for com-plex 1D–H ÁÁÁADistance of D ÁÁÁA (A ˚)Angle of D–H–A (°)O1W–H1WB ÁÁÁO2#1 2.677(9)164O9–H19ÁÁÁO1W#2 2.841(9)151C13–H13ÁÁÁO3#3 3.045(10)121C22–H22ÁÁÁO1W#43.353(10)167Symmetry transformations used to generate equivalent atoms:#1x,y,1+z;#2-x,1-y,-1+z;#3-x+1/2,-y+1,z -1/2;#4-x,1-y,1-zFig.4Simplified schematic representation of the 3D ?3D two-fold interpenetrated a -Po network in1Fig.5Projection of the structure of 1along b -axis (dotted lines represent hydrogen-bonding)References1.(a)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38,2638(1998);(b)S.Leininger,B.Olenyuk,P.J.Stang,Chem.Rev.100,853(2000);(c)A.Erxleben,Coord.Chem.Rev.246, 203(2003);(d)K.Biradha,Y.Hongo,M.Fujita,Angew.Chem.Int.Ed.39,3843(2000);(e)P.D.Harey,H.B.Gray,J.Am.Chem.Soc.110,2145(1988);(f)D.Cave,J.M.Gascon,A.D.Bond,S.J.Teat,P.T.Wood,mun.1050(2002);(g)F.A.Almeida Paz,J.Klinowski,Inorg.Chem.43,3882(2004);(h)K.Biradha, Y.Hongo,M.Fujita,Angew.Chem.Int.Ed.39,3843(2000);(i) M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Ke-egge,O.M.Yaghi,Science295,469(2002);(j)S.Q.Zhang,R.J.Tao,Q.L.Wang,N.H.Hu,Y.X.Cheng,H.L.Niu,W.Lin,J.Am.Chem.Soc.123,10395(2001);(k)L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Growth Design5,37(2005)2.(a)M.Eddaoudi,D.B.Moler,H.Li,B.Chen,T.M.Reineke,M.O’Keeffe,O.M.Yaghi,Acc.Chem.Res.34,319(2001);(b)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38, 2638(1999);(c)O.R.Evans,W.Lin,Acc.Chem.Res.35,511 (2002);(d)S.Kitagawa,R.Kitaura,S.Noro,Angew.Chem.Int.Ed.43,2334(2004);(e)S.L.James,Chem.Soc.Rev.32,276 (2003);(f)L.Pan,H.Liu,X.Lei,X.Huang,D.H.Olson,N.J.Turro,J.Li,Angew.Chem.Int.Ed.42,542(2003)3.(a)G.Ferey,C.Mellot-Draznieks,C.Serre,lange,Acc.Chem.Res.38,217(2005);(b)M.Eddaoudi,J.Kim,J.B.Wachter,H.K.Chae,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,4368(2001);(c)M.Eddaoudi,J.Kim,M.O’Keeffe, O.M.Yaghi,J.Am.Chem.Soc.124,376(2002);(d)A.Thiru-murugan,S.Natarajan,Cryst.Growth Design6,983(2006);(e) R.Murugavel,M.G.Walawalkar,M.Dan,H.W.Roesky,C.N.R.Rao,Acc.Chem.Res.37,763(2004)4.(a)J.Kim,B.Chen,T.M.Reineke,H.Li,M.Eddaoudi,D.B.Moler,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,8239 (2001);(b)J.J.Lu,A.Mondal,B.Moulton,M.Zaworotko,An-gew.Chem.Int.Ed.40,2113(2001)5.(a)Q.R.Fang,X.Shi,G.Wu,G.Tain,G.S.Zhu,R.W.Wang,S.L.Qiu,J.Solid State Chem.176,1(2003);(b)H.Li,C.E.Davis,T.L.Groy,D.G.Kelley,O.M.Yaghi,J.Am.Chem.Soc.120,2186(1998)6.(a)M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Keeffe,O.M.Yaghi,Science295,469(2002);(b)B.Kesanli,Y.Cui,M.R.Smith,E.W.Bittner,B.C.Bockrath,W.B.Lin, Angew.Chem.Int.Ed.44,72(2005)7.Q.R.Fang,G.S.Zhu,Z.Jin,M.Xue,X.Wei,D.J.Wang,S.L.Qiu,Cryst.Growth Design7,1035(2007)8.C.Lei,J.G.Mao,Y.Q.Sun,H.Y.Zeng,A.Clearfield,Inorg.Chem.42,6157(2003)9.J.R.Li,Y.Tao,Q.Yu,X.H.Bu,mun.1527(2007)10.S.Y.Yang,L.S.Long,R.B.Huang,L.S.Zheng,mun.472(2002)11.T.M.Reineke,M.Eddaoudi,D.M.Moler,M.O’Keeffe O.M.Yaghi,J.Am.Chem.Soc.122,4843(2002)12.D.M.Proserpio,R.Hoffman,P.Preuss,J.Am.Chem.Soc.116,9634(1994)13.(a)O.Ermer,Adv.Mater.3,608(1991);(b)ler,Adv.Mater.13,525(2001)14.SAINT version6.02a,Software Reference Manual(Bruker AXSInc.,Madison,W1,2002)15.G.M.Sheldrick,SADABS:Program for Empirical AbsorptionCorrection of Area Detector Data(University of Go¨ttingen, 1996)16.G.M.Sheldrick,SHELXS-97:Program for Crystal StructureSolution(University of Go¨ttingen,1997)17.G.M.Sheldrick,SHELXL-97:Program for Crystal StructureRefinement(University of Go¨ttingen,1997)18.V.A.Blatov,L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Eng.Comm.6,377(2004)19.(a)B.F.Hoskins,R.Robson,N.V.Y.Scarlett,J.Chem.Soc.mun.2025(1994);(b)E.Siebel,R.D.Fischer,Chem.Eur.J.3,1987(1997);(c)B.F.Abrahams,B.F.Hoskins,R.Robson,D.A.Slizys,m.4,478(1997);(d)M.J.Plater,M.R.S.J.Foreman,J.M.S.Skakle,Cryst.Eng.4,293 (2001);(e)X.L.Wang,C.Qin,E.B.Wang,Z.M.Su,Chem.Eur.J.12,2680(2006)20.B.Kesanli,Y.Cui,R.Smith,E.Bittner,B.C.Bockrath,W.Lin,Angew.Chem.Int.Ed.117,74(2005)21.(a)H.L.Gao,L.Yi,B.Ding,H.S.Wang,P.Cheng,D.Z.Liao,S.P.Yan,Inorg.Chem.45,481(2006);(b)Y.H.Wen,J.Zhang, X.Q.Wang,Y.L.Feng,J.K.Cheng,Z.J.Li,Y.G.Yao,New J.Chem.29,995(2005);(c)H.L.Sun,B.Q.Ma,S.Gao,S.R.Batten,Cryst.Growth Design5,1331(2005);(d)J.Yang,J.F.Ma,Y.Y.Liu,S.L.Li,G.L.Zheng,Eur.J.Inorg.Chem.2174 (2005)。
化工专业毕业论文范文(仅供参考)
J I A N G S U U N I V E R S I T Y本科毕业论文由对苯二甲酸构筑的铜的配位聚合物的水热合成及晶体结构Hydrothermal Synthesis and Crystal Structure of a Copper Complex with Terephthalic acid and MedpqLigands学院名称:化学化工学院专业班级:化学工程与工艺12级学生姓名:学号:指导教师姓名:指导教师职称:2014 年3 月江苏大学本科毕业论文目录第一章文献综述 (1)配位聚合物及其研究意义简介 (1)1.2配合物的研究现状 (2)邻菲啰啉配合物的研究现状 (4)对1,10-邻菲啰啉配合物的研究 (4)1.3.2 1,10-邻菲啰啉作为第二配体的配合物的研究 (5)1.3.3 关于1,10-邻菲啰啉衍生物的配合物的工作 (6)芳香羧酸配合物的结构 (6)铜芳香羧酸配合物 (6)铜芳香羧酸配合物的合成 (7)常规溶液反应法 (7)水热法 (7)1.6.3 溶胶-凝胶法 (7)1.6.4 流变相反应法 (8)论文的立题依据及研究方案 (8)第二章由对苯二甲酸构筑的铜的配位聚合物的水热合成及晶体结构 (9)2.1引言 (9)实验方法 (9)药品和试剂 (9)2.2.2 仪器和设备 (9)2.2.3 实验步骤 (10)2.3晶体结构的测定及讨论 (11)2.3.1 晶体结构的测定 (11)晶体结构及讨论 (13)热失重的研究 (14)第三章结论 (15)致谢 (16)参考文献 (17)—I—江苏大学本科毕业论文由对苯二甲酸构筑的铜的配位聚合物的水热合成及晶体结构摘要:采用水热法合成了一种新型配位聚合物[Cu(MOPIP)(BDC)]n·0.5n(H2O) ( MOPIP = 2 –( 4 -甲氧基)1H -咪唑[ 4,5氟] [ 1,10 ] 邻菲罗啉,BDC = 对苯二甲酸) ,并对其进行了元素分析、红外光谱、热重表征和X射线单晶衍射测定。
谷氨酸锌配合物合成及晶体结构
南阳理工学院毕业论文题目:谷氨酸锌配合物的合成与晶体结构学生姓名:占超群学号:16105034专业:化学工程与工艺系别:生物与化学工程学院指导教师:闫卫红起止日期:2010年2月20日2010年5月10日谷氨酸锌金属配合物的合成与晶体结构【摘要】以谷氨酸为配体,与盐锌反应,合成了三维配位聚合物{[Zn(Glu)(H2O)]·H2O}n(Glu=谷氨酸根),并对它进行了红外。
单晶衍射结果表明:配合物属正交晶系,空间群为P212121,晶胞参数为:a=7.151(2)、b=10.376(3)、c=11.162(3),配合物的金属离子为六配位,处于变形八面体的配位环境中,谷氨酸末端的羧基与金属离子配位采取两种模式,一种是羧基双齿螯合配位方式;另一种是一个羧基氧原子与氨基氮原子与金属离子螯合。
【关键词】聚合物,谷氨酸,晶体结构SYNTHESIS AND CRYSTAL STRUCTURE OF {[Zn(Glu)(H2O)]·H2O}n Abstract: One 3D coordination polymer {[Zn(Glu)(H2O)]·H2O}n was synthesized from the reaction of glutamic acid with Zin c salt .It was characterized by IR, The result shows that c omplex crystallized in the orthorhombic space groupP212121 with a=7.151(2),b=10.376(3),c=11.162(3).The metal ions comp lexe are six-coordinated in a distorted octahedronal geomet ry.In complex,two carboxylate groupsof the glutamic ligand present different coordination modes.One chelates to one me tal ionusing its two carboxylato O atoms.The other one brid ges two metal ions with the amino group coordinating to on e the metal ion.This kind of connection leads to the constr uction of a 3D network.Key words: polymer glutamic acid Crystal structure目录摘要 (i)Abstract.......................................................... .ii1. 前言 (1)2.实验部分 (6)2.1试剂及仪器 (6)2.2配合物{[Zn(Glu)(H2O)].H2O}n的合成 (7)2.3 配合物{[Zn(Glu)(H2O)].H2O}n晶体结构的测定及解析 (8)3. 实验结果与讨论 (10)3.1 配合物的合成 (10)3.2 配合物的红外光谱 (11)3.3 .配合物的晶体结构............ (12)4. 结论与发展 (18)致谢 (19)参考文献 (20)谷氨酸锌配合物的合成与晶体结构姓名:占超群学号:16105034 专业:化学工程与工艺1. 前言配位化学随着现代科学技术的进步,也蓬勃发展起来并占据无机化学的主流地位。
新型配合物[Cd(bbi)(P-BDC)]n的合成及晶体结构
LiJia1,GaoMing2
(1.CollegeofChemistry,JilinNormalUniversity,Siping 136000,China; 2.CollegeofPhysics,JilinNormalUniversity,Siping,136000,China)
摘要:本文利用水热方法合成了一个新型配合物[Cd(bbi)(P-BDC)]n,(bbi为 1,1-(1,4-丁基)二咪唑,P-BDC:对苯二甲酸)。并 通过元素分析和 X-射线单晶衍射仪对其进行结构表征。该化合物属于三斜晶系,空间群为 P-1,a=7.1591(3)?,b=9.0425(4)?,c =15.0562(7)?。α=89.0080(10)°,β=79.5410(10)°,γ=72.6850(10)°,V=914.35(7)?3,F(000) =456,Z=2.R1=0.0220,wR2= 0.0605。 关键词:配合物;合成;晶体结构 中图分类号:O632.1 文献标识码:A 文章编号:1008-021X(2019)16-0001-02
收稿日期:2019-05-14 基金项目:国家自然科学基金项目(21776110和 51608226) 作者简介:李 佳(1998—),女,吉林双辽人,吉林师范大学化学学院实验师,在读博士,研究方向:多功能材料;通信作者:高 铭(1992—),女,吉林白山人,高级实验师,博士,研究方向:纳米半导体材料的改性及应用。
性等领域展现出卓越的潜在应用价值而受到了更加广泛的关 温度降至室温条件下,获得理想型白色块状晶体,将其清洗之
注[1-3]。选用适当的有机配体是尤其重要的对于一些材料的 后在空气中干燥。得固体样品经称量计算产率为 5%(以 Cd为