实数的有关概念和计算
实数知识点及典型例题
实数知识点及典型例题一、实数知识点。
(一)实数的分类。
1. 有理数。
- 整数:正整数、0、负整数统称为整数。
例如:5,0,-3。
- 分数:正分数、负分数统称为分数。
分数都可以表示为有限小数或无限循环小数。
例如:(1)/(2)=0.5,(1)/(3)=0.333·s。
- 有理数:整数和分数统称为有理数。
2. 无理数。
- 无理数是无限不循环小数。
例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。
3. 实数。
- 有理数和无理数统称为实数。
(二)实数的相关概念。
1. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 实数与数轴上的点是一一对应的关系。
2. 相反数。
- 只有符号不同的两个数叫做互为相反数。
a的相反数是-a,0的相反数是0。
例如:3与-3互为相反数。
- 若a、b互为相反数,则a + b=0。
3. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。
例如:| 5| = 5,| -3|=3。
4. 倒数。
- 乘积为1的两个数互为倒数。
a(a≠0)的倒数是(1)/(a)。
例如:2的倒数是(1)/(2)。
(三)实数的运算。
1. 运算法则。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。
2. 运算律。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:ab = ba。
实数的定义及其运算
18.若∣a∣=6, =3,且ab 0,则a-b=______。
19.数轴上点A,点B分别表示实数 则A、B两点间的距离为______。
20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
三、认真解一解
按整数、分数的关系分类:按正数、负数、零的关系分类:
三、数轴:
1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。
2.数轴的画法:①画一条水平的直线;②在直线的适当位置选取一点作为原点,并用0表示这点;③确定向右为正方向,用箭头表示出来;④选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次为1,2,3,…;从原点向左,每隔一个单位长度取一点,依次为-1,-2,-3,…。如图1所示。
五、非负数
若数a≧0,则称a为非负数。
非负数的性质:任何非负数的和仍为非负数;如果几个非负数的和为0,则这几个非负数均为0。
3.点A在数轴上表示的数为 ,点B在数轴上表示的数为 ,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
例题:1、如图,数轴上表示1, 的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().
12. 的算术平方根是_______, =______。
13.____的平方根等于它本身,____的立方根等于它本身,____的算术平方根等于它本身。
14.已知∣x∣的算术平方根是8,那么x的立方根是_____。
实数的有关概念及习题
知识点1 实数的有关概念及习题一、实数定义:有理数和无理数统称为实数二、实数分类:1.按照正负分:正实数、0、负实数2.按照定义分:有理数、无理数3.有理数相关知识(1)有理数定义:整数和份数统称为有理数(2)整数可分为:正整数、0、负整数。
正整数和0成为非负整数;负整数和0成为非正整数(3)分数可分为正分数和负分数。
(4)分数都可化为有限小数或无限循环小数;反之有限小数或无限循环小数都可化为分数4.无理数的相关知识(1)无理数定义:无线不循环小数(2)无理数常见的几种类型a:含π的数,比如3π,π+2等b.开放开不尽的数C.有特殊规律的数,比如0.1001000100001........注意:有理数之间的加减乘除运算的结果一定是有理数。
有理数×无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 有理数÷无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 无理数÷有理数的结果是无理数。
举例____________________________________________________________________ 无理数+无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 无理数-无理数的结果既可以是有理数也可以是无理数。
举例____________________________________________________________________ 以上问题请学生自己举例进行验证。
实数知识点
实数知识点实数是数学中重要的概念之一,它在数学和实际生活中都有着广泛的应用。
本文将从实数的概念、性质、分类以及实数在数学和实际生活中的应用等方面进行详细介绍。
一、实数的概念及性质实数是数学中最基本的数集之一,包括有理数和无理数。
它们可以用数轴来表示,数轴上的每个点都对应着一个实数。
实数具有以下性质:1. 实数的有序性:对于实数集中的任意两个数a、b,必定存在三种关系:a<b,a=b或a>b。
这个性质使得实数可以进行大小比较。
2. 实数的稠密性:对于任意两个实数a、b (a<b),必定存在一个实数c (a<c<b),即实数集中不存在空隙。
这个性质可以用来证明实数集的连续性。
3. 实数的无穷性:实数集是无界的,即没有最大和最小值。
无论给定多大或多小的数,总可以找到比它更大或更小的数。
4. 实数的完备性:实数集中满足某个性质的数列必定收敛于一个实数。
这个性质使得实数集可以用来描述物理量的测量结果。
二、实数的分类实数可以分为有理数和无理数两类。
1. 有理数:有理数是可以表示为两个整数的比值的数,包括整数、分数和有限小数。
有理数可以表示为无限循环小数,例如1/3=0.3333...。
2. 无理数:无理数是不能表示为两个整数的比值的数,无理数的小数表示无限不循环。
常见的无理数有开方数(如√2)和圆周率π。
无理数在数轴上是无限不重复的。
三、实数的应用实数在数学中有着广泛的应用,同时也贯穿于实际生活的各个领域。
1. 几何学:实数可以用来度量和描述几何图形的属性,例如线段的长度、角的度数等。
实数的大小和比较关系可以帮助我们确定图形的大小和位置。
2. 物理学:实数可以用来表示物理量的不同数值,例如速度、质量和能量等。
实数的运算规律可以帮助我们进行物理量的计算和分析。
3. 经济学:实数可以用来表示货币的数额、价格的变动等经济指标。
实数的运算可以用于货币的兑换和经济指标的计算。
4. 统计学:实数可以用来表示数据的测量结果,例如年龄、身高、体重等。
实数的知识点
实数的知识点实数是数学中一个基础概念,是指包括有理数和无理数的所有数的集合。
在数学中,实数的研究是非常重要的,它涉及数学的各个领域,如数论、代数、几何、微积分等。
本文将介绍实数的基本概念、性质及其在数学中的应用。
一、实数的基本概念实数是指包含有理数和无理数的所有数的集合,用R来表示。
其中有理数是可以表示为两个整数之比的数,无理数则不能表示成这种形式,如常见的$\pi$和$\sqrt{2}$。
实数集合R包括正实数、负实数、0等数。
其中正实数是大于0的实数,负实数是小于0的实数,0是同时是正数和负数的唯一实数。
二、实数的性质实数集合R具有如下性质:1. 实数具有传递性,即如果a>b,b>c,则有a>c。
2. 实数有可加性,即对于任意的实数a、b,有a+b=b+a。
3. 实数有可乘性,即对于任意的实数a、b,有ab=ba。
4. 实数有结合律和分配律,即对于任意的实数a、b、c,有a+(b+c)=(a+b)+c和a(b+c)=ab+ac。
5. 实数有数乘的结合律和分配律,即对于任意的实数a、b、c,有a(bc)=(ab)c和(a+b)c=ac+bc。
6. 实数有数乘的交换律,即对于任意的实数a、b,有ab=ba。
7. 实数有倒数和相反数,即对于任意的非零实数a,有a x1/a=1和-a是相反数。
8. 实数有加法逆元,即对于任意的实数a,有a+(-a)=0。
9. 实数有乘法逆元,即对于任意的非零实数a,有a x 1/a=1。
三、实数的应用实数在数学中的应用十分广泛,下面我们分别从代数、几何和微积分等方面来介绍它的应用。
1. 代数在代数中,实数用于求解多项式方程。
对于一元多项式$f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$,其中$a_i(i=0,1,...,n)$是实数,其解为实数或虚数。
在求解实数根时,可以用有理根定理求得多项式的整数根和分数根,然后利用余式定理计算余下的一元多项式,再用求根公式求解即可。
实数知识点及例题
实数知识点及例题一、实数的概念实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。
例如,π(圆周率)、根号 2 等都是无理数。
而像 3、-5、025 等则是有理数。
二、实数的分类1、按定义分类:有理数:整数和分数。
无理数:无限不循环小数。
2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。
2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。
3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。
五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。
绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。
2、若|a| =|b|,则 a = ±b。
例如,|3| = 3,|-5| = 5。
六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。
例如,5 的相反数是-5,它们的和为 0。
若两个实数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是 1/a。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2、减法法则:减去一个数,等于加上这个数的相反数。
3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
初一实数知识点
初一实数知识点实数是数学中重要的一种数集,其包括有理数和无理数两个部分。
在初中数学中,学生将接触到很多实数知识点。
本文将从实数的性质、大小关系、运算及应用等角度,详细介绍初一实数知识点。
一、实数的性质1. 有序性:对于任意两个实数a和b,存在以下三种关系中的一种:a<b,a=b或者a>b,且这种关系具有传递性,即如果a<b,b<c,则有a<c。
2. 密闭性:如果对于实数集合中的任意两个实数a和b,其和a+b和积ab也必然属于该集合,则称该实数集合是密闭的。
3. 稠密性:对于任意两个实数a和b(a<b),存在一个实数c,使得a<c<b。
4. 无处不在:实数集合无限延展,其中的数无限多。
无论多小的实数,都存在。
二、实数的大小关系1. 基本不等式:对任意两个实数a和b,有不等式$$2ab≤a^2+b^2$$2. 绝对值:绝对值表示实数与0之间的距离,通常用竖线“| |”表示。
对于任意实数a,则其绝对值定义如下:当a≥0时,$|a|=a$;当a<0时,$|a|=-a$。
3. 实数的比较:对于任意两个实数a和b,若a-b>0,则有a>b;若a-b=0,则有a=b;若a-b<0,则有a<b。
4. 实数的符号:实数a>0时,a为正数;a<0时,a为负数;a=0时,a为零。
三、实数的运算1. 四则运算:实数的四则运算与我们平时的计算方法一致。
其中,加法运算即为两个实数的和;减法运算即为两个实数的差;乘法运算即为两个实数的积;除法运算即为两个实数的商。
2. 平方运算:对于任意实数a,其平方表示为a^2。
3. 立方运算:对于任意实数a,其立方表示为a^3。
4. 乘方运算:对于任意实数a和正整数n,其乘方表示为a^n。
5. 乘方根运算:对于任意正整数n和正实数a,其乘方根表示为$a^{1/n}$,记为$\sqrt[n]{a}$。
实数基本概念
实数基本概念实数基本概念及应用一、实数的定义与性质1.1 实数的定义实数是由有理数和无理数组成的数。
其中,有理数包括整数和分数,无理数则是无法表示为有限小数或无限循环小数的数。
1.2 实数的性质实数具有连续性、完备性、有序性等性质。
连续性指实数在数轴上是可以无限接近的,没有间隙;完备性指实数可以表示为任意精确程度的有限小数或无限循环小数;有序性指实数可以按照大小进行比较,可以排序。
二、实数的表示方法2.1 有限小数表示法有限小数表示法是指用小数点后几位数字来表示实数的方法。
例如,123.45表示为有限小数123.45。
2.2 无限小数表示法无限小数表示法包括无限循环小数和无限不循环小数。
无限循环小数是指小数点后的数字重复出现,例如1/3=0.3333……。
无限不循环小数是指小数点后的数字不重复出现,例如π=3.141592……。
三、实数的运算3.1 加法运算实数的加法运算按照加法交换律和结合律进行。
即a+b=b+a,(a+b)+c=a+(b+c)。
3.2 减法运算实数的减法运算按照加法交换律和结合律进行。
即a-b=a+(-b),a-b-c=a+(-b)+(-c)。
3.3 乘法运算实数的乘法运算按照乘法交换律和结合律进行。
即a×b=b×a,(a×b)×c=a×(b×c)。
3.4 除法运算实数的除法运算按照乘法交换律和结合律进行。
即a/b=c,则ac=bc,c/a=b,则ca=cb。
3.5 指数运算实数的指数运算可以使用幂运算进行。
即a^b=c,则log(a)c=b。
3.6 对数运算实数的对数运算可以使用指数运算进行。
即log(a)b=x,则a^x=b。
四、实数在生活中的应用4.1 测量中的应用实数在测量中有着广泛的应用。
例如,长度、面积、体积等都可以用实数来表示。
4.2 工程中的应用在工程中,实数被广泛应用于计算各种物理量。
例如,物体的质量、速度、加速度等都可以用实数来表示。
实数的性质和计算
实数的性质和计算实数是数学中的一个重要概念,它包括整数、有理数和无理数。
实数具有很多独特的性质和特点,并且可以通过各种计算方法进行运算。
本文将探讨实数的性质以及如何进行实数的计算。
一、实数的性质1. 实数集的无缝连接性:实数集包含了整数、有理数和无理数,而且在实数轴上不存在任何间隙,可以无限接近任意一个实数。
2. 排序性:实数集具有可比性,任意两个实数可以通过比较大小来确定它们的相对顺序。
3. 密度性:在任意两个不等的实数之间,一定存在另一个实数。
换句话说,实数集中的任意一个区间都包含无穷多个实数。
4. 有界性:实数集可以分为有界集和无界集。
有界集是指存在上界和下界的实数集,无界集则是指不存在上界或下界的实数集。
二、实数的计算1. 实数的加法:实数的加法运算是指将两个实数相加得到一个新的实数。
加法满足交换律、结合律和分配律。
2. 实数的减法:实数的减法运算是指将一个实数减去另一个实数得到一个新的实数。
3. 实数的乘法:实数的乘法运算是指将两个实数相乘得到一个新的实数。
乘法也满足交换律、结合律和分配律。
4. 实数的除法:实数的除法运算是指将一个实数除以另一个非零实数得到一个新的实数。
5. 实数的乘方:实数的乘方运算是指将一个实数自乘若干次得到一个新的实数。
6. 实数的开方:实数的开方运算是指将一个非负实数开方得到一个新的非负实数。
除了基本运算外,实数还有其他的计算方法,如绝对值、倒数、平均数等。
三、实数的应用实数的概念和计算方法在数学中广泛应用于各个领域,如代数、几何、概率等。
实数的性质和计算方法是数学建模以及解决实际问题的重要基础。
在代数中,实数的四则运算是代数运算的基础,通过实数的计算可以解决方程、不等式等数学问题。
在几何学中,实数的性质可以用来描述点、线、面等几何对象的位置,实数的计算方法可以用来计算长度、角度等几何量。
在概率论中,实数的计算方法被广泛应用于计算概率、期望、方差等统计量,帮助理解和分析随机事件。
实数的概念及运算法则
实数的概念及运算法则实数的概念实数是指包括有理数和无理数在内的数的集合。
有理数是可以表示为两个整数的比值的数,而无理数则不能被表示为两个整数的比值。
实数包括了所有的整数、分数和无限不循环小数。
实数的运算法则1. 加法法则:实数的加法满足交换律和结合律。
即对于任意实数a、b和c,有:- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)2. 减法法则:实数的减法可以视为加法的逆运算。
即对于任意实数a、b和c,有:- 减法定义:a - b = a + (-b)3. 乘法法则:实数的乘法满足交换律和结合律。
即对于任意实数a、b和c,有:- 交换律:a * b = b * a- 结合律:(a * b) * c = a * (b * c)4. 除法法则:实数的除法可以视为乘法的逆运算。
即对于任意实数a、b和c,有:- 除法定义:a / b = a * (1 / b)5. 分配律:实数的乘法对加法具有分配律。
即对于任意实数a、b和c,有:- 左分配律:a * (b + c) = (a * b) + (a * c)- 右分配律:(a + b) * c = (a * c) + (b * c)6. 幂的法则:实数的幂运算满足以下法则:- a^0 = 1,其中a是非零实数- a^n * a^m = a^(n + m),其中a是非零实数,n和m是整数这些实数的运算法则可以帮助我们在数学计算中正确地进行加减乘除等运算。
通过熟练掌握这些法则,我们可以更好地理解和应用实数的运算概念。
关于实数的知识点总结
关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
实数的概念及运算
12=4+1-2
„ [3分] 3
=5-2
3
„ „ „ „ „ „ „ „ „ „ „ „ „
[4分]
(2)(-2)2+2×(-3)+(
1 -1 ) =4-6+3 3
„ „ „ [3分]
=1
„ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „
[4分]
探究提高:实数运算要严格按照法则进 行,对于实数混合,注意符号和顺序是 非常重要的.
(6)平方根,算术平方根,立方根:
如果x2=a,那么x叫做a的平方根,记作_______ ± a ; 正数a的正的平方根,叫做这个数的算术平方根;
a 如果x3=a,那么x叫做a的立方根,记作_______ . 3
3.零指数幂,负整数指数幂:
任何非零数的零次幂都等于1,即____ ____;任 a0=1(a≠0) 何不等于零的数的-p次幂,等于这个数p次幂的倒数,
5.实数的运算: 乘方和开方 乘除 , 实数的运算顺序是先算_____ ___,再算________ 最后算________ 加减 .如果有括号,先算________ 小括号 ,再算 ________ 中括号 ,最后算________ 大括号 .同级运算应__ 从左到右__ , 按顺序进行_. ___
1 C. 1 D.- 2 2 解析:(1)a+b=0,可知a,b两数互为相反数.
A.-2 B.2
(2)|-2|=2,绝对值的概念.
探究提高:1. 两个互为相反数的和为0;2. 正 数的绝对值是它本身,负数的绝对值是它的相反 数,0的绝对值是0.
2 知能迁移:(1)- 的倒数是______; 3
- 2 的相反数是_______;- 2 的绝对值是______;
实数的概念及运算
证明:交换律可以通过定义和泛应用,是数学运算的基本规则之一。
结合律的定义:结合律是数学中 的基本运算规则之一,它规定了 几个数相加或相乘时,不论怎样 改变它们的排列顺序,结果都相 同。
结合律的应用:结合律在数学中 有着广泛的应用,例如在实数、 复数、矩阵等数学领域中都有重 要的应用。
添加标题
添加标题
添加标题
添加标题
结合律的证明:可以通过代数证 明来证明结合律的正确性。
结合律的意义:结合律是数学运 算中的基本规则之一,它对于数 学的发展和应用都起到了重要的 作用。
定义:a × (b + c) = a × b + a × c 举例:5 × (2 + 3) = 5 × 2 + 5 × 3 = 15 应用:在数学、物理、工程等领域中广泛使用 注意:分配律不适用于除法运算
XX,a click to unlimited possibilities
01 实 数 的 定 义 02 实 数 的 运 算 03 实 数 的 四 则 运 算 规 则 04 实 数 的 运 算 顺 序 05 实 数 在 生 活 中 的 应 用
无理数则无法表示为两个整 数之比,常见于无限不循环 小数,如圆周率π。
性质:乘法交换律、结合律、 分配律
运算方法:按照定义和性质进 行计算
注意事项:注意运算顺序和符 号
定义:将一个数分成若干相等的部分,每一部分称为除数 性质:除法有唯一确定的商,当且仅当被除数能够被除数整除 运算规则:除以一个数等于乘以它的倒数 运算律:结合律、交换律和分配律
定义:交换律是指实数的加法、减法、乘法和除法满足交换律,即a+b=b+a,ab=ba, a-b=b-a,a/b=b/a。
实数的知识点全总结
实数的知识点全总结一、实数的定义实数是指包括有理数和无理数在内的所有实际存在的数。
有理数是可以表示为两个整数的比的数,而无理数是不能表示为两个整数的比的数。
例如,根号2就是一个无理数,它不能被表示为两个整数的比。
实数的定义是数学上一个很基础的定义,但是实数的性质和运算规则却有很多深刻的内容,需要深入研究和探讨。
二、实数的性质1. 实数的闭包性:任意两个实数相加、相减、相乘得到的仍然是一个实数,这就是实数的闭包性。
实数集合对于加法和乘法是封闭的,这也是实数集合与有理数集合的一个重要区别。
2. 实数的稠密性:实数集合是一个稠密集合,任意两个实数之间都存在有理数,也存在无理数。
这就意味着实数集合是一个非常密集的数学概念,包含了所有可能的数。
3. 实数的有序性:实数集合是一个有序集合,任意两个实数都可以进行比较大小。
这是实数集合与无理数集合的一个重要区别,也是实数集合在数学分析中应用广泛的一个性质。
4. 实数的无限性:实数集合是一个无限集合,它包括了所有可能的有理数和无理数。
实数集合的无限性是数学中一个非常重要的概念,它在分析、代数、几何等不同领域都有重要的应用。
5. 实数的稳定性:实数集合是一个稳定的数学概念,它对于加法、乘法、取绝对值等运算都是稳定的。
这也是实数集合与有理数集合的一个重要区别,有理数集合在进行除法运算时往往会出现不稳定的情况。
三、实数的运算规则1. 实数的加法:对于任意两个实数a和b,它们的和a+b也是一个实数。
加法满足交换律、结合律和分配律等运算规则。
2. 实数的减法:对于任意两个实数a和b,它们的差a-b也是一个实数。
减法是加法的逆运算,减法也满足交换律和结合律。
3. 实数的乘法:对于任意两个实数a和b,它们的积ab也是一个实数。
乘法满足交换律、结合律和分配律等运算规则。
4. 实数的除法:对于任意两个实数a和b,如果b不等于0,那么它们的商a/b也是一个实数。
实数的除法是乘法的逆运算,除法满足交换律和结合律。
实数的有关概念和计算-2020年中考数学复习备考备考资料
第1讲 实数的相关概念和计算☞【基础知识归纳】☜☞归纳1. 有理数的意义⑴ 数轴的三要素为 、 和数轴上的点与 构成一一对应.⑵ 实数a 的相反数为 . 若a ,b 互为相反数,则a b += ⑶ 非零实数a 的倒数为 . 若a ,b 互为倒数,则ab =⑷ 绝对值____________________________(0)(0)(0)a a a a ⎧>⎪⎪==⎨⎪<⎪⎩正数的绝对值是0的绝对值是负数的绝对值是⑸ 科学记数法: 把一个数表示成 的形式,其中1≤a <10, n 是整数☞归纳2. 数的开方⑴ 任何正数a 都有 个平方根,它们互为其中正的平方根a 叫 没有平方根,0的算术平方根为 ⑵ 任何一个实数a 都有立方根,记为 ⑶=2a ⎩⎨⎧<-≥=)0( )0( a a a a a☞归纳3. 实数的分类 和 统称实数☞归纳4. 数的乘方n a 表示 ,其中a 叫做 ,n 叫做 =0a (其中a 0) =-p a (其中a 0)☞归纳5. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大 ⑵ 正数 0,负数 0,正数 负数 两个负数比较大小,绝对值大的 绝对值小的☞归纳6. 实数混合运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.☞【常考题型展示】☜☺ 题型一 相反数、绝对值【例1】(2019广东)2-的绝对值是( )A. 2B. 2-C.12D.2± 【举一反三】1.(2017广东)5的相反数是( )A.15 B. 5 C. 15- D. 5- 2.(2019深圳)15-的绝对值是( )A. 5-B.15 C. 5 D. 15-☺ 题型二 科学记数法【例2】(2019广东) 某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( ) A. 62.2110⨯B. 52.2110⨯C. 322110⨯D. 60.22110⨯【举一反三】3. (2018广东) 据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A. 71.44210⨯B. 70.144210⨯C. 81.44210⨯D. 80.144210⨯4. (2017广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000 美元,将4000000000用科学记数法表示为( )A. 90.410⨯B. 100.410⨯C. 9410⨯ D. 10410⨯☺ 题型三 比较实数大小【例3】(2018广东)四个实数0、13、 3.14-、2中,最小的数是( ) A. 0 B.13C. 3.14-D. 2 【举一反三】5.(2017广东)已知实数a ,b 在数轴上的对应点的位置如图所示,则a ÷b 0(填“>”,“<”或“=”)6.(2019广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A. a b >B. a b <C. 0a b +>D.0ab< 7.(2016广东)如图1所示,a 和b 的大小关系是( )A. a <bB. a >bC. a=bD. b=2a8.(2015广东)在0,2,0(3)-,5-这四个数中,最大的数是( )A. 0B. 2C. 0(3)-D. 5-☺ 题型四 数的平方根及立方根【例4】(201924 )A. 4-B. 4C. 4±D. 2【举一反三】9.(2018广东)一个正数的平方根分别是1x +和5x -,则x =10.(2016广东)9的算术平方根为11. 一个正数的两个平方根分别为3a +和23a +,则a =☺ 题型五 实数的运算【例5】(2019广东)计算:10120193-⎛⎫+= ⎪⎝⎭【举一反三】12.(2018广东)计算:101220182-⎛⎫--+ ⎪⎝⎭13. (2017广东) 计算:()11713π-⎛⎫---+ ⎪⎝⎭14. (2016广东) 计算:()10132016sin302-⎛⎫--+-- ⎪⎝⎭15. (2014广东) ()119412-⎛⎫-+-- ⎪⎝⎭☞【巩固提升自我】☜1.(2019广州)6-=( )A. 6-B. 6C. 16-D. 162.(2019安顺)2019的相反数是( )A. 2019-B. 2019C.12019-D. 120193. (2019深圳) 预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为( ) A. 4.6×109B. 46×107C. 4.6×108D. 0.46×1094. (2019重庆) 下列各数中,比﹣1小的数是( )A. 2B. 1C. 0D. ﹣25. (2018苏州) 在下列四个实数中,最大的数是( )A. 3-B. 0C.32 D. 346. (2018铜仁) 9的平方根是( )A. 3B. ﹣3C. 3和﹣3D. 817. 一个正数的两个平方根分别是21m -和43m -,则这个正数是________8. (2019云南) 计算:()()012351π----9. (2019广安) 计算:()100120192sin 302π-⎛⎫--+ ⎪⎝⎭10. (2019丽水) 计算:1132tan 603-⎛⎫-- ⎪⎝⎭11. (2019深圳) ()10012cos60 3.148π-⎛⎫++- ⎪⎝⎭12. (2019庆阳) 计算:()()20222cos 453π--+-13. (2019贺州) 计算:()()201901 3.142sin30π-+-第1讲 实数的相关概念和计算☞【基础知识归纳】☜☞归纳1. 有理数的意义⑴ 数轴的三要素为 原点 、 正方向 和 单位长度数轴上的点与 实数 构成一一对应.⑵ 实数a 的相反数为a - . 若a ,b 互为相反数,则b a += 0 ⑶ 非零实数a 的倒数为1a. 若a ,b 互为倒数,则ab = 1 ⑷ 绝对值 (0)(0)(000)a a a a a a ⎧>⎪⎪==⎨⎪<⎪⎩-正数的绝对值是0的绝对值是负数的绝对正数它的相反值是数⑸ 科学记数法:把一个数表示成 10n a ⨯ 的形式,其中1≤a <10, n 是整数☞归纳2. 数的开方⑴ 任何正数a 都有 两 个平方根,它们互为 相反数其中正的平方根a 叫 算术平方根 负数 没有平方根,0的算术平方根为 0 ⑵ 任何一个实数a 都有立方根,记为⑶=2a ⎩⎨⎧<-≥=)0( )0( a a a a a☞归纳3. 实数的分类 有理数 和 无理数 统称实数 ☞归纳4. 数的乘方n a 表示n a 个相乘,其中a 叫做 底数 ,n 叫做 指数=0a 1 (其中a ≠0 )=-p a 1p a(其中a ≠0) ☞归纳5. 实数大小的比较⑴ 数轴上两个点表示的数, 右边 的点表示的数总比 左边 的点表示的数大 ⑵ 正数 > 0,负数 < 0,正数 > 负数 两个负数比较大小,绝对值大的 < 绝对值小的☞归纳6. 实数混合运算 先算 乘方 ,再算 乘除 ,最后算 加减 ;如果有括号,先算 括号 里面的,同一级运算按照从 左 到 右 的顺序依次进行.。
实数的有关概念及运算
实数的有关概念及运算【知识要点】实数的有关概念(1)实数的组成 脑筋急转弯:一个多边形的盒子有几个边{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 【典型例题】例1(1)已知013=+++b a ,则实数(a+b )的相反数(2)数-3.14与 -Л的大小关系是(3)和数轴上的点成一一对应关系的是(4)和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是例2(1)在实数中 Л,52-,0, 3,-3.14, 4无理数有( ) (A )1 个 (B )2个 (C )3个 (D )4个(2).一个数的绝对值等于这个数的相反数,这样的数是( )(A )非负数 (B )非正数 (C )负数 (D )正数(3).若x <-3,则|x +3|等于( )(A )x +3 (B )-x -3 (C )-x +3 (D )x -3(4).下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数5.实数在数轴上的对应点的位置如图,比较下列每组数的大小:(1)c-b 和d-a(2)bc 和ad例3.1)光年是天文学中的距离单位,1光年大约等于9.46万亿千米,用科学记数法可表示为( )A .米1310946⨯ B. 米161046.9⨯ C. 米151046.9⨯ D.米141095.0⨯2)今年5月,台湾亲民党宋楚瑜先生带着堂客及家人回到阔别57年的家乡湘潭, 若每年按365天计算(结果保留两个有效数字)用科学记数法表示57年的天数正确的是( )A 天4102⨯ B.天41008.2⨯C. 天5101.2⨯D. 天4101.2⨯ 例4. 1)当x 为何值时,(1)x x 2162-++ (2)x x x 200722+--在实数范围内有意义2).计算(1)132+ (2)3535+- (3)2002)145(sin 230tan 2121-+--(4)(3)23121418÷+-+ (5)3)2()32(5623---+-- π【课堂练习】一.判断题:(每小题各1.5分,共12分)1)如果a 为实数,那么-a 一定是负数( )2)对于任何实数a 与b,|a -b|=|b -a|恒成立( )3)两个无理数之和一定是无理数()4)两个无理数之积不一定是无理数( )5)任何有理数都有倒数( ) 6)最小的负数是-1( )7)a 的相反数的绝对值是它本身()8)若|a|=2,|b|=3且ab>0,则a -b=-1( )二 填空题及选择题 (每空各2分,共26分)1.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,722-,0,sin60°,9-,381--, 2π-,8, 0)3-2(,3-2,ctg45°,1.2121121112......中无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ }2.3-л的相反数是 ,38-的相反数是 ; 3-2的倒数是 3 33-,л,0)2-(1,722-,0.1313…,2cos60º, -3-1 ,1.101001000… (两1之间依次多一个0),中无理数有 ,整数有 ,负数有4.下列语句正确的是( )(A )无尽小数都是无理数 (B )无理数都是无尽小数(C )带拫号的数都是无理数 (D )不带拫号的数一定不是无理数。
实数的概念与计算
实数的概念与计算在我们的数学世界中,实数是一个极其重要的概念,它与我们的日常生活和各种科学领域都有着紧密的联系。
要深入理解实数,首先得搞清楚它到底是什么。
实数,简单来说,就是包括有理数和无理数的数的集合。
有理数,大家应该都比较熟悉,像整数(比如-3、0、5 ),以及分数(比如1/2 、-3/4 ),这些都属于有理数的范畴。
那无理数又是什么呢?无理数是指无限不循环小数,比如圆周率π,约等于 31415926,还有像根号 2 ,约等于 141421356,它们的小数部分没有规律地无限延伸,而且永远不会循环。
实数的概念之所以重要,是因为它能够准确地描述我们在现实世界中遇到的各种数量。
比如说,测量一个物体的长度、计算一个图形的面积、表示物体运动的速度等等,都离不开实数。
接下来,咱们再聊聊实数的计算。
实数的计算包括加法、减法、乘法、除法等基本运算。
先说说加法和减法。
在进行实数的加法和减法运算时,我们要先把它们的小数点对齐,然后再像整数加减法那样进行计算。
例如,计算35 + 12 ,我们把 35 和 12 的小数点对齐,得到 35 + 12 = 47 。
如果是减法,比如 58 23 ,同样小数点对齐,计算结果为 35 。
乘法运算相对来说稍微复杂一点。
计算两个实数的乘法时,我们先把它们当作整数相乘,然后再看两个乘数一共有几位小数,就在积的末尾从右往左数出几位,点上小数点。
比如 25 × 16 ,先算 25 × 16 =400 ,因为 25 有一位小数, 16 也有一位小数,一共两位小数,所以25 × 16 = 400 = 4 。
除法运算则需要把除数变成整数,然后再进行计算。
比如计算 15 ÷05 ,我们把除数 05 扩大 10 倍变成 5 ,同时被除数 15 也扩大 10 倍变成 15 ,然后计算 15 ÷ 5 = 3 。
在实数的计算中,还有一些特殊的情况需要注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数的有关概念和计算
一、目标要求:
1、了解:平(立)方根、算术平方根的概念;无理数、实数的概念;近似数、有效数字的概念;二次根式的概念及其加、减、乘、除运算法则.
2、理解:有理数的意义;借助数轴理解相反数和绝对值的意义;实数与数轴上的点一一对应;有理数的运算律.
3、会:比较有理数大小;求有理数的相反数;会求有理数的绝对值;用根号表示数的平(立)方根;求平(立)方根;进行实数的简单四则运算.
4、掌握:有理数的加、减、乘、除、乘方;简单的混合运算.
5、能:灵活处理较大数字的信息;能用有理数估计无理数的大致范围.
二、课前热身
1.向东行驶3km ,记作+3km ,向西行驶2km 记作( )
A . +2km
B . ﹣2km
C . +3km
D . ﹣3km
2.﹣3的倒数是【 】
A .3-
B .3
C .
13 D .13- 3. -3的绝对值为( )
A.3-
B. 3
C. 13
- D. 13 4. 2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面.月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为【 】
A. 3.844×108
B. 3.844×107
C. 3.844×106
D. 38.44×106
5.下列各数中,既不是正数也不是负数的是【 】
A. 0
B. -1
C. 3
D. 2
三、【基础知识重温】
1.有理数的意义
⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应.
⑵ 实数a 的相反数为 .若a ,b 互为相反数,则b a += .
⑶ 非零实数a 的倒数为 . 若a ,b 互为倒数,则ab = .
⑷ 绝对值⎪⎪⎩⎪⎪⎨⎧<=>=)
0()0()0(a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.
2.数的开方
⑴ 任何正数a 都有 个平方根,它们互为 .其中正的平方根a 叫 . 没
有平方根,0的算术平方根为 .
⑵ 任何一个实数a 都有立方根,记为 .
⑶ =2a ⎩⎨
⎧<-≥=)
0( )0( a a a a a .
3. 实数的分类 和 统称实数.
4.数的乘方 =n a ,其中a 叫做 ,n 叫做 .
=0a (其中a 0 且a 是 )=-p a (其中a 0)
5. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面
的,同一级运算按照从 到 的顺序依次进行.
6. 实数大小的比较
⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.
⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝
对值小的.
四、例题分析
考点一 相反数、绝对值、倒数的概念理解
例1.(2014汕尾)2-的倒数是( )
A .2
B .21
C .21
- D .1-
例2. (2014嘉兴)-3的绝对值为( )
A.3-
B. 3
C. 1
3- D. 1
3
【举一反三】
1.下列各组数中,互为相反数的是( )
A ﹣2与2
B . 2与2
C . 3与
D . 3与|﹣3|
2.下列各数中,绝对值最大的数是( )
A . ﹣3
B .﹣2
C . 0
D . 1 3.31
-的值是( )
A .3
B .-3
C .13
D .-13
考点二 实数分类的判断
例.(2014常德)下列各数:227cos60°,0
)
A . 1个
B . 2个
C . 3个
D . 4个
【举一反三】
1.下列四个实数中,是无理数的为()
A. 0 B. -3 C D.3 11
考点三实数的运算
例.(2014广安市)计算:+(﹣)﹣1+(﹣5)0﹣cos30°.
【举一反三】
1.定义一种新运算:a⊗b=b2-ab,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=.
2.计算:(﹣2)2﹣+2sin45°+|﹣|
3.(2
π
-2014)0-2cos30°-(
1
2
)-1.
4.计算:(﹣1)2014+(1
2
)﹣1+
5.计算:|﹣3|﹣﹣()0+4sin45°.
考点四 科学记数法及近似数
例.(2014汕尾)在我国南海某海域探明可燃冰储量约有194亿立方米.数字19 400 000 000用科学记数法
表示正确的是( )
A .101094.1⨯
B .1010194.0⨯
C .9104.19⨯
D .9
1094.1⨯
【举一反三】 1.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=
2.若一粒米的质量约是0.000012kg ,将数据0.000012用科学记数法表示为( )
A . 12×10-4
B .1.2×10-6
C .1.2×10-5
D .1.2×10-4
考点五 数的平方根及立方根
例.(2014本溪)一个数的算术平方根是2,则这个数是
【举一反三】
1.计算:38+(﹣1)0= .
2.计算:1-= ,22-= ,()23-= ,= .
3.x 的取值范围是
考点六 比较实数的大小
例.(2014聊城)在﹣,0,﹣2,,1这五个数中,最小的数为( )
A . 0
B . 12-
C . ﹣2
D 13. 【举一反三】
1.在所给的
13,0,-1,3这四个数中,最小的数是( ) A .13
B . 0
C . -1
D . 3 2.下列式子中成立的是( )
A . ﹣|﹣5|>4
B . ﹣3<|﹣3|
C . ﹣|﹣4|=4
D . |﹣ 5.5|<5
3.比较大小: (填“>”“<”“=”).
考点七 实数中的非负数及性质 (拓展考点)
例.(2014泸州)已知实数x 、y y 30+=,则x y +的值为【 】
A .2-
B .2
C .4
D .4-
【举一反三】
1.已知x 、y 为实数,且y=﹣+4,则x ﹣y=
五、牛刀小试
1、【题源】2014广东汕尾卷—4
在我国南海某海域探明可燃冰储量约有194亿立方米.数字19 400 000 000用科学记数法表示正确的是( )
A .101094.1⨯
B .1010194.0⨯
C .9104.19⨯
D .91094.1⨯.
2、【题源】2014北京卷—14 计算:()330tan 351601
0-+-⎪⎭⎫ ⎝⎛-+--π.。