九年级数学上册第一章1菱形的性质与判定第2课时菱形的判定练习1新版新人教版

合集下载

1.1菱形的性质与判定第2课时菱形的判定(教案)2022秋九年级上册初三数学北师大版(安徽)

1.1菱形的性质与判定第2课时菱形的判定(教案)2022秋九年级上册初三数学北师大版(安徽)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的定义、性质与判定方法,以及它在实际生活中的应用。通过实践活动和小组讨论,我们加深了对菱形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天的教学过程中,我注意到同学们对菱形的性质与判定方法表现出较高的兴趣。在导入新课环节,通过提问日常生活中的菱形实例,成功引发了学生的好奇心。但在讲授理论部分,我意识到需要进一步简化语言,用更直观的方式解释菱形的定义和判定条件,以确保所有同学都能跟上教学节奏。
1.1菱形的性质与判定第2课时菱形的判定(教案)2022秋九年级上册初三数学北师大版(安徽)
一、教学内容
本节课选自2022秋九年级上册初三数学北师大版(安徽)第1章第1节“菱形的性质与判定”第2课时,主要教学内容包括:
1.菱形的定义及性质复习;
2.菱形的判定方法:
a.有一组邻边相等的平行四边形是菱形;
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与菱形相关的实际问题,如如何判断一个四边形是否为菱形。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺规作图画出菱形,并验证其对角线垂直平分的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

1.1 菱形的性质与判定 第2课时 菱形的判定课件+2023—2024学年北师大版数学九年级上册

1.1 菱形的性质与判定 第2课时 菱形的判定课件+2023—2024学年北师大版数学九年级上册
可将一张矩形的纸片按照如图所示方法进行折叠,然后
沿着虚线将左下角剪下,剪下的部分展开后,得到的四
边形一定是( D )
A. 梯形
C. 正方形
B. 矩形
D. 菱形
11. 如图,在长方形纸片 ABCD 中,点 M , N 分别为
AD , BC 上的点,连接 MN ,将长方形纸片沿 MN 折
叠,恰好使点 A 落在点 C 处,点 B 落在点 P 处,连接 AN .
∵点 E , F 分别为对角线 AC 上的三等
分点,
∴ AE = CF ,∴△ ADE ≌△ CBF ,
∴ DE = BF ;
(2)若 AB = BC ,判断四边形 EBFD 的形状,并说
明理由.
(2)解:四边形 EBFD 为菱形;
理由:连接 BD 交 AC 于点 O ,∵ AB =
BC ,四边形 ABCD 是平行四边形,∴四
为菱形.理由如下:∵∠ ACB =90°,∠ B

=30°,∴∠ BAC =60°, AC = AB ,


又∵ E 为 AB 的中点,∴ AE = AB ,∴ AE = AC ,∴△

ACE 是等边三角形,∴ AC = CE ,又由(1)可知四边形
ACEF 是平行四边形,∴四边形 ACEF 是菱形.
12. (贵阳期末)如图,已知四边形 ABCD 是平行四边
形, E 是 AB 延长线上一点且 BE = AB ,连接 CE , BD .
(1)求证:四边形 BECD 是平行四边形;
(1)证明:∵四边形 ABCD 是平
行四边形,∴ AB = CD , AB ∥
CD ,又∵ BE = AB ,∴ BE =
C. 对角线相等的平行四边形是菱形

新课标-最新北师大版九年级数学上学期《菱形的性质与判定》课时练习及答案解析-精品试题

新课标-最新北师大版九年级数学上学期《菱形的性质与判定》课时练习及答案解析-精品试题

北师大版数学九年级上册第一章第一节菱形的性质与判定课时练习一、单选题(共15题)1.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.43B.33C.23D.3答案:B解析:解答:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=23∴EF=AE=23过A作AM⊥EF,∴AM=AE•sin60°=3,∴△AEF的面积是:12EF•AM=12×23×3=33故选:B.分析: 首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积2. 如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A.6.5 B.6 C.5.5 D.5答案:C解析:解答: ∵四边形ABCD是菱形,∴AD=BC=AB=CD,AD∥BC,AB∥CD,∵EG∥AD,FH∥AB,∴四边形AEOF与四边形CGOH是平行四边形,∴AF=OE,AE=OF,OH=GC,CH=OG,∵AE=AF,∴OE=OF=AE=AF,∵AE=AF,∴BC-BH=CD-DG,即OH=HC=CG=OG,∴四边形AEOF与四边形CGOH是菱形,∵四边形AEOF与四边形CGOH的周长之差为12,∴4AE-4(8-AE)=12,解得:AE=5.5,故选C分析: 根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可3. 如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A.12B.2 C.33D.3答案:D解析:解答: ∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴BE=12 BC∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan∠BFE的值为3故选D.分析: 首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案4.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14答案:A解析:解答: ∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.分析: 根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可5.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18 B.183C.36 D.363答案:B解析:解答: 过点A作AE⊥BC于E,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠ABC=60°∴∠BAE=30°,∵AE⊥BC,∴AE=33∴菱形ABCD的面积是6×33=183故选B分析: 本题考查了菱形的邻角互补的性质,作辅助线求出菱形边上的高线的长度是解题的关键6.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米答案:A解析:解答: ∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA=22=33(米),63则AC=2OA=63米,故选A.分析: 由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长7. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为()A.-12 B.-27 C.-32 D.-36答案:C解析:解答:解:∵A(-3,4),∴OA=2234=5,∴CB=OC=5,则点B的横坐标为-3-5=-8,故B的坐标为:(-8,4),将点B的坐标代入y=kx得,4=8k解得:k=-32.故选C.分析: 根据点A的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可8.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD的周长为()A.4 B.43C.47D.28答案:C解析:解答: ∵E,F分别是AB,BC边上的中点,EF=3∴AC=2EF=23∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=3,OB=12BD=2,∴AB=22AO BO=7∴菱形ABCD的周长为47故选:C.分析: 首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可9. 菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直答案:D解析:解答: A.不正确,两组对边分别平行;B.不正确,两组对角分别相等,两者均有此性质正确,;C.不正确,对角线互相平分,两者均具有此性质;D.菱形的对角线互相垂直但平行四边形却无此性质.故选D.分析: 根据菱形的特殊性质可知对角线互相垂直10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m答案:C解析:解答: 如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选:C.分析:根据题意和正六边形的性质及等边三角形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长11. 如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°答案:B解析:解答: 连接PA,如图所示:∵四边形ABCD是菱形,∴∠ADP=∠CDP=12∠ADC=36°,BD所在直线是菱形的对称轴,∴PA=PC,∵AD的垂直平分线交对角线BD于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.分析: 本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形是等腰三角形是解决问题的关键12.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.60°B.55°C.45°D.30°答案:A解析:解答: 如图,连接AC,∵AE⊥BC,点E是BC的中点,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴△ABC是等边三角形,∴∠CAE=30°,同理可得∠CAF=30°,∴∠EAF=∠CAE+∠CAF=30°+30°=60°.故选A.分析: 连接AC,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=AC,然后求出△ABC是等边三角形,再根据等边三角形的性质求出∠CAE=30°,同理可得∠CAF=30°,然后根据∠EAF=∠CAE+∠CAF计算即可得解13.菱形的两条对角线长分别为6和8,则菱形的面积是()A.10 B.20 C.24 D.48答案:C解析:解答:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:12×6×8=24.故选C.分析: 由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.14. 在菱形ABCD中,下列结论错误的是()A.BO=DO B.∠DAC=∠BAC C.AC⊥BD D.AO=DO答案: D解析:解答:∵四边形ABCD是菱形,∴AC⊥BD,∠DAC=∠BAC,BO=DO,故A,B,C正确,D错误.故选D.分析: 根据菱形的两条对角线互相垂直且平分,并且每一条对角线平分一组对角;即可求得答案15.如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是()A.30 B.24 C.18 D.6答案:B解析:解答:由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD的周长=6×4=24,故选B.分析: 根据题意得PQ是△ADC的中位线,从而可求得菱形的边长,则菱形的周长就不难求得了二、填空题(共5题)16.如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF 是菱形.答案: AB=AC或∠B=∠C解析:解答: 需加条件AB=AC,这样可根据三线合一的性质,得出D是BC的中点,根据中位线定理可得,DE平行且等于AF,则AEDF为平行四边形,又可得AE=AF,则四边形AEDF为菱形.则添加条件:AB=AC.当∠B=∠C时,四边形AEDF是菱形.故答案为:AB=AC或∠B=∠C.分析: 由三角形的中位线的性质,可得四边形AEDF为平行四边形,如AE=AF,则四边形AEDF 为菱形,则添加条件:AB=AC17. 如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________就可以证明这个多边形是菱形答案: AB=AC,答案不唯一解析:解答: 添加:AB=AC,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵E、F、D分别是AB、AC、BC上的点,∴DE=12AC,DF=12AB,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形.故答案为:AB=AC.分析:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形18.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:_________,使四边形ABCD成为菱形.答案: AB=AD,答案不唯一解析:解答: 添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD分析: 由条件OA=OC,OB=OD根据对角线互相平分的四边形是平行四边形可得四边形ABCD 为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定19. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是_________答案:菱形解析:解答:∵分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC是菱形.故答案为:菱形.分析: 根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形20.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:__________ ,可使它成为菱形答案:AB=BC|AC⊥BD等解析:解答:∵四边形ABCD是平行四边形,∴当AB=BC时,平行四边形ABCD是菱形,当AC⊥BD时,平行四边形ABCD是菱形.故答案为:AB=BC或AC⊥BD等分析: 菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,进而得出答案三、解答题(共5题)21.如图,已知△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.(1)求证:四边形ADCE是菱形;(2)求证:BC=ED.答案:(1)证明:∵∠C=90°,点E为AB的中点,∴EA=EC,∵△ACD与△ACE关于直线AC对称.∴△ACD≌△ACE,∴EA=EC=DA=DC,∴四边形ADCE是菱形;(2)证明:∵四边形ADCE是菱形,∴CD∥AE且CD=AE,∵AE=EB,∴CD∥EB且CD=EB∴四边形BCDE为平行四边形,∴DE=BC.解析:分析:(1) 利用直线对称性得出△ACD≌△ACE,进而得出EA=EC=DA=DC,求出即可;(2)利用平行四边形的判定得出四边形BCDE为平行四边形,进而得出答案22. 如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.答案:解答:(1)证明:∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E、F分别为AC、BC的中点∴EF=12AB,EC=12AC,FC=12BC∴EF=EC=FC∴EF=FC=ED=DC,∴四边形EFCD是菱形.(2)解:连接DF,与EC相交于点G,∵四边形EFCD是菱形∴DF⊥EC,垂足为G∵EF=12AB=4,EF∥AB∴∠FEG=∠A=60°在Rt△EFG中,∠EGF=90°∴DF=2FG=2×4sin∠FEC=8sin60°=43解析:分析:(1)利用三角形的中位线定理即可得到四边形EFCD的四边相等,即可证得;(2)连接DF,与EC相交于点G,△EFC是等边三角形,则△EFG是直角三角形,利用三角函数即可求得GF的长,根据DF=2GF即可求得23.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.答案:解答:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.解析:分析: (1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.24.如图,四边形ABCD中,AB∥CD,CE∥AD交AB于E,AE=AD.求证:四边形AECD是菱形答案:解答:证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形,∵AE=AD,∴四边形AECD是菱形;解析:分析: 首先根据定义证明四边形AECD是平行四边形,则以及菱形的定义即可证得25. 如图,由两个等宽的矩形叠合而得到四边形ABCD.试判断四边形ABCD的形状并证明答案:解答:四边形ABCD是菱形.理由:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形解析:分析: 作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AP=AQ得平行四边形ABCD是菱形。

1.1《菱形的性质与判定》北师大版九年级数学上册教案(第2课时)

1.1《菱形的性质与判定》北师大版九年级数学上册教案(第2课时)

第一章特殊的平行四边形1.1 菱形的判定和面积第2课时一、教学目标1.经历菱形判定定理的探索过程,进一步发展合情推理能力。

2.能够用综合法证明菱形的判定定理,进一步发展演绎推理能力。

3.体会探索与证明过程中所蕴含的抽象、推理等数学思想。

二、教学重点及难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求、方法及思路.难点:明确推理证明的条件和结论能否用数学语言正确表达.三、教学用具多媒体课件、直尺或三角板。

四、相关资《菱形的性质》动画,《菱形的判定》微课五、教学过程【复习引入】上一节课,我们学习了菱形的概念和菱形的性质,你能说出菱形的概念和菱形的性质定理吗?师生活动:教师出示问题,学生回顾上一节课所学内容.答:菱形的概念:有一组邻边相等的平行四边形叫做菱形.菱形的性质定理:菱形的四条边相等.菱形的两条对角线互相垂直.设计意图:通过复习,可以加深对菱形的概念和菱形性质的理解,也是探究菱形判定方法的基础.【探究新知】根据菱形的定义,有一组邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?师生活动:教师出示问题,学生思考、讨论,教师引导.教师引导:我们学习平行四边形的判定时,是如何猜想并进行证明的呢?学生回答:……教师引导:与研究平行四边形的判定方法类似,我们研究菱形的性质定理的逆命题,看看它们是否成立.我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?师生活动:教师出示问题,学生猜想.学生猜想:对角线互相垂直的平行四边形是菱形.教师追问:如何证明你的猜想呢?师生活动:教师追问,引导学生写出已知、求证并完成证明过程.已知:如图,在□ABCD中,对角线AC与BD交于点O,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).思考我们知道,菱形的四条边都相等.反过来,四条边相等的四边形是菱形吗?师生活动:教师出示问题,学生猜想.学生猜想:四条边相等的四边形是菱形.教师追问:如何证明你的猜想呢?师生活动:教师追问,引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形(菱形的定义).设计意图:通过此环节让学生对菱形的性质和判定的关系有了一定的认识.总结菱形的判定方法:(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)判定定理1:对角线互相垂直的平行四边形是菱形.几何语言:∵□ABCD,AC⊥BD(已知),∴□ABCD是菱形(对角线互相垂直的平行四边形是菱形).(3)判定定理2:四条边相等的四边形是菱形.几何语言:∵AB=BC=CD=DA(已知),∴四边形ABCD是菱形(四条边相等的四边形是菱形).设计意图:通过类比平行四边形判定定理的探究过程,从菱形性质定理的逆命题出发,提出猜想,发现结论,并从定义出发证明结论,得到菱形的判定方法.议一议如图,分别以A,C为圆心,以大于的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD就是菱形.你认为这种做法正确吗?为什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答.答:这种做法正确;因为分别以A,C为圆心,以大于的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,则AB=BC=CD=DA.所以四边形ABCD是菱形(四边相等的四边形是菱形).做一做:先将一张长方形的纸对折、再对折,然后沿虚线剪下,将纸展开,就得到了一个菱形。

菱形的性质与判定经典例题练习

菱形的性质与判定经典例题练习

1、叫菱形2、菱形的性质1)边2)角3)对角线4)对称性5)菱形的面积计算方法:练一练:、1菱形具有而矩形不一定具有的性质是().A.对边相等 B.对角相等 C.对角线互相垂直 D.对角线相等2、能够找到一点使该点到各边距离相等的图形为().A.平行四边形 B.菱形 C.矩形 D.不存在3、如图所示,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°3.如在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()A.1个B.2个C.3个D.4个4、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30°6、菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4 cmB.3 cmC.2 cmD.23 cm例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.2、如图,菱形ABCD的对角线AC、BD交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离为_______.3、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.12. 如图,菱形OABC 在直角坐标系中,点A 的坐标为(5,0),对角线OB =45,反比 例函数xky(k ≠0,x >0)经过点C .则k 的值等于( ) A .12 B .8 C .15 D .94变式:菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.5如图,在菱形ABCD 中,∠BAD=60°,BD=4,则菱形ABCD 的周长是_________.6、如图,菱形ABCD 中,E 是AB 中点,DE ⊥AB ,AB=4.求(1)∠ABC 的度数; (2)AC 的长; (3)菱形ABCD 的面积.例7:如图,在菱形ABCD 中,AB=4,E 在BC 上,BE=2,角ABC=120度,P 点在AC 上,求PE+PC 的最小值。

菱形的性质与判定复习题

菱形的性质与判定复习题

菱形练习题知识点1 菱形的定义菱形的定义:有一组邻边相等的平行四边形叫做菱形;数学语言:如图,在平行四边形ABCD中,如果AB=AD,那么平行四边形ABCD 是菱形;知识点2 菱形的性质(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;(3)对称性:既是关于对角线的交点成中心对称图形,又是以对角线所在直线为对称轴的轴对称图形;(4)菱形的面积公式:①菱形的面积=底×高;②菱形的面积=两条对角线乘积的一半巩固练习1.菱形的对角线长分别为6和8,则菱形的边为 ,菱形的面积为 ;2.若菱形周长为52cm,一条对角线长为10cm,则其面积为A.240 cm2 B.120 cm2 C.60 cm2 D.30 cm23.如下图,菱形ABCD中,O是对角线AC BDAO=,则,的交点,5cmAB=,4cmBD=____________cm.4、如上图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点O到边AB的距离___________5.一个菱形两条对角线之比为1︰2,一条较短的对角线长为4cm,那么菱形的边长为A .2cmB .4cmC .(225)cm +D .25cm6.如图,菱形ABCD 的边长为2,45ABC ∠=,则点D 的坐标为 .7.如图,将一个长为10cm,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线虚线剪下,再打开,得到的菱形的面积为A .210cmB .220cmC .240cmD .280cm8.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 . 9.菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD 的面积是 ,对角线BD 的长是 . 10.如图,点E ,F 分别是菱形ABCD 中BC ,CD 边上的点E ,F 不与B ,C ,D 重合在不连辅助线的情况下请添加一个条件,说明AE =AF .11、如图,在菱形ABCD 中,AE⊥BC,E 为垂足.且BE=CE,AB=2.求:1∠BAD 的度数;2对角线AC 的长及菱形ABCD 的周长.AD CE BO B AD x yC B AHD CO12.如图,在菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB =4.求:1∠ABC 的度数;2菱形ABCD 的面积. 13.在菱形ABCD 中,对角线AC 与BD 相交于点O,AB=5,AC=6.过点D 作DE∥AC 交BC 的延长线于点E.1求△BDE 的周长; 2点P 为线段BC 上的点,连接PO 并延长交AD 于点Q,求证:BP=DQ. 14.如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F ;请你猜想DE 与DF 的大小有什么关系并证明你的猜想.有一个角为60°的特殊菱形1.若菱形的边长为1cm,其中一内角为60°,则它的面积为A .23cm 2B .23cmC .22cmD .223cm 2.已知菱形的周长为96㎝,两个邻角的比是1︰2,则较短对角线的长是A .21㎝B .22㎝C .23㎝D .24㎝3.如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.4.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是B C .CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为A . 32B . 33C . 34D . 3提高题1.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n 个菱形n n n AB C D 的边n AD 的长是 . A D FC E B2.如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =A .35° B.45° C.50° D.55°知识点3 菱形的判定方法(1) 有一组邻边相等的平行四边形是菱形;(2) 对角线互相垂直的平行四边形是菱形;(3) 四条边都相等的四边形是菱形.1.把菱形ABCD 沿对角线AC 的方向平移到菱形A′B′C′D′的位置,它们重叠部分的四边形A′FCE 是A .正方形B .矩形C .菱形D .不确定2.如图,下列条件之一能使平行四边形ABCD 是菱形的为①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD =A .①③B .②③C .③④D .①②③ 3.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 只需写出一个即可,图中不能再添加别的“点”和“线”.4.如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是1D B A C BCDB DC ABC DA.DE是△ABC的中位线 B.AA'是BC边上的中线C.AA'是BC边上的高 D.AA'是△ABC的角平分线5.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有.A.1种 B.2种 C.3种 D.4种证明题1.如图,在△ABC中,AB=AC,点D、E、F分别是AB、BC、AC的中点,求证:四边形ADEF是菱形2.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.3、如图,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于__________cm2.4、如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是CD的中点,过点A 作AG∥BD,交CB的延长线于点G;求证:四边形DEBF是菱形;5、如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.1说明四边形ACEF是平行四边形;2当∠B满足什么条件时,四边形ACEF是菱形,并说明理由;6.在矩形ABCD中,AB=6cm, BC=8cm,若将矩形对角线BD对折,使B点与D 点重合,折痕为EF,问:四边形EBFD是菱形吗请说明理由,并求这个菱形的边长.7.如图,□ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.1证明:当旋转角为90°时,四边形ABEF是平行四边形;2试说明在旋转过程中,线段AF与EC总保持相等;3在旋转过程中,四边形BEDF可能是菱形吗如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数.8.如图,ABC△中,点O是边AC上一个动点,过O作直线MN BC∥,设MN交BCA∠的平分线于点E,交BCA∠的外角平分线于点F.1探究:线段OE与OF的数量关系并加以证明;2当点O在边AC上运动时,四边形BCFE有可能是菱形吗若是,请证明,若不是,则说明理由AF NDCBM E O。

1.1菱形的性质与判定 课件-北师大版数学九年级上册

1.1菱形的性质与判定 课件-北师大版数学九年级上册

知1-练
知1-练
1-1. 如图, 在平行四边形ABCD 中, 点O 是AD 的中点, 连接CO 并延长交BA 的延长线于点E, 连接AC,DE.
(1)求证: 四边形ACDE 是平行四边形; 证明:∵四边形ABCD是平行四边形, ∴AB∥CD.∴∠BEC=∠DCE. ∵点O是AD的中点,∴AO=DO. 又∵∠AOE=∠DOC, ∴△AEO≌△DCO(AAS).∴AE=DC. 又∵AE∥DC,∴四边形ACDE是平行四边形.
知2-练
3-1.[中考·安徽] 如图,在菱形ABCD 中,AB=1, ∠ DAB=60°,则AC 的长为( D )
A.
1 2
B.1
C.23
D. 3
知识点 3 菱形的判定
知3-讲
元 素
边定 义 法
定 理
对定 角理 线
文字语言
有一组邻边相 等的平行四边 形叫做菱形
四边相等的四 边形是菱形
对角线互相垂 直的平行四边
四边形ቊ对角四线边互相都垂相直等平→分菱形→菱形
平行四边形ቊ对有一角组线邻互边相相垂等直→→菱菱形形
知3-讲
知3-练
知1-练
知1-练
(2)若AB=AC, 判断四边形ACDE 的形状,并说明理由. 解:四边形ACDE是菱形.理由如下: ∵四边形ABCD是平行四边形,∴AB=CD. 又∵AB=AC,∴CD=AC. 又由(1)知四边形ACDE是平行四边形, ∴四边形ACDE是菱形.
知识点 2 菱形的性质
知2-讲
菱形是一种特殊的平行四边形,它具有平行四边形的
知2-讲
图形
性质
数学表达式
对角线互相 ∵四边形ABCD 是菱形,
垂直 ∴ BD ⊥ AC

九上1.1菱形的性质与判定(1)

九上1.1菱形的性质与判定(1)

菱形的性质复习回顾:平行四边形的性质:1. 从对称性的角度想:平行四边形______(填“是”或“不是”)中心对称图形,____________________ 是它的对称中心.2. 从边的角度想:平行四边形的对边____________________.3. 从角的角度想:平行四边形的对角__________.4. 从对角线的角度想:平行四边形的对角线__________. 围绕上面知识回顾,填空:1.若四边形ABCD 是平行四边形,则有AB ∥_____,AD ∥_____. 2.如图,在平行四边形ABCD 中 (1)若AB =4cm ,则CD =______cm .(2)∠ABC =60°,则∠D =_________°,∠BCD =_________°.知识要点:1.菱形的定义: 有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形. 2.菱形的性质:(1)对边平行,四边相等. (2)对角相等,邻角互补.(3)对角线互相垂直平分且每一条对角线平分一组对角. ABCD AB BC CD DA ⇒===是菱形 12AC BDABCD ⊥⎧⇒⎨∠=∠⎩是菱形边学边练:(1)下列语句中,错误的是( )A .菱形是轴对称图形,它有两条对称轴B .菱形的两组对边可以通过平移而相互得到C .菱形的两组对边可以通过旋转而相互得到D .菱形的相邻两边可以通过旋转而相互得到(2)菱形具有而一般平行四边形不具有的性质是 ( ) A .对角相等 B .对边相等 C .对角线互相垂直 D .对角线相等 3.菱形的面积=边长×高=对角线的乘积的一半.同平行四边形的学习一样,我们也可以从边、角、线(即对角线)三个角度理解、记忆菱形的性质. 【典型例题】例1:已知菱形ABCD 的对角线交于点O ,AC =16cm ,BD =12cm ,求 (1)菱形ABCD 的面积;(2)菱形ABCD 的边长;(3)菱形ABCD 的高.变式练习:如图,四边形ABCD是菱形,对角线AC=8 cm , BD=6 cm, DH⊥AB于H,求:DH的长.例2:菱形的周长为20cm,两邻角的比为1:2,(1)求菱形ABCD的对角线的长;(2)求菱形ABCD的面积;(3)求一组对边的距离.变式练习:已知:如图,菱形ABCD的周长为16 cm,∠ABC=60°,对角线AC和BD相交于点O,求AC和BD的长.例3.如图四边形ABCD是菱形,F是AB上的一点,DF交AC于E.求证:∠AFD=∠CBE.变式练习:已知:如图,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.【巩固练习】分类练习01基础题知识点1菱形的定义1.如图,在▱ABCD中,∵∠1=∠2,∴BC=DC.∴▱ABCD是菱形( ).(请在括号内填上理由)2.如图,在△ABC中,点D、E、F分别在边BC、AB、CA上,且DE∥CA,DF∥BA.小聪认为如果AD平分∠BAC,那么四边形AEDF是菱形,小聪的说法 (填“正确”或“不正确”).知识点2菱形的性质3.(泸州中考)菱形具有而平行四边形不具有的性质是( )A.两组对边分别平行 B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直4.(长沙中考)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( ) A.1 B. 3 C.2 D.2 35.(黔西南中考)如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于( )A.10 B.7 C.6 D.56.如图,在菱形ABCD中,EF∥AB,对角线AC交EF于点G,那么与∠BAC相等的角的个数有( )A.3个 B.4个 C.5个 D.6个7.(毕节中考)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )A.3.5 B.4 C.7 D.148.(广州中考)如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.9.(济南中考)如图,在菱形ABCD中,CE=CF.求证:AE=AF.02中档题10.(衢州中考)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于( )A.63米 B.6米 C.33米 D.3米11.(昆明中考)如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形.其中一定成立的是( )A.①② B.③④ C.②③ D.①③12.(烟台中考)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO,若∠DAC=28°,则∠OBC的度数为( )A.28° B.52° C.62° D.72°13.(乌鲁木齐中考)若菱形的周长为8,相邻两内角之比为3∶1,则菱形的高是.14.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.15.(贵阳中考)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.03综合题16.(河南中考)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A.(1,-1) B.(-1,-1) C.(2,0) D.(0,-2)第2课时 菱形的判定【知识要点】(1)有一组邻边相等的平行四边形是菱形.数学语言:∵四边形ABCD 是____________,且________________ ∴四边形ABCD 是菱形.(2)对角线互相垂直的平行四边形.ABCD ABCD AC BD ⎫⇒⎬⊥⎭平行四边形是菱形数学语言:∵四边形ABCD 是____________,且________________ ∴四边形ABCD 是菱形.(3)四条边都相等的四边形.AB BC CD DA ABCD ===⇒是菱形.数学语言:∵AB =CD =_________=__________ ∴四边形ABCD 是菱形.边学边练:1. 判断下列命题是否正确,并说明理由.(1)对角线互相平分且邻边相等的四边形是菱形.(2)两组对边分别平行且一组邻边相等的四边形是菱形. (3)邻角相等的四边形是菱形.(4)有一组邻边相等的四边形是菱形.(5)两组对角分别相等且一组邻边相等的四边形是菱形. (6)对角线互相垂直的四边形是菱形.(7)对角线互相垂直平分的四边形是菱形. 2. 能够判别一个四边形是菱形的条件是( )A .对角线相等且互相平分B .对角线互相垂直且相等C .对角线互相平分D .一组对角相等且一条对角线平分这组对角 3.下列命题正确的是( )A .有两组邻角相等的四边形是菱形B .有一组邻边相等的四边形是菱形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是菱形【典型例题】例1:如图,AD 是△ABC 的角平分线.DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .四边形AEDF 是菱形吗?说明你的理由.变式练习:如图AD 是△ABC 的角平分线,DE //AC ,交AB 于点E ,DF //AB ,交AC 于点F ,证明:AD ⊥EF .例2: 如图□ABCD 的对角线AC 、BD 交于点O ,AB =5,AO =4,BO =3,求证□ABCD 是菱形.变式练习:如图,已知平行四边形ABCD 的对角线AC 的垂直平分线交BC 、AD 于点E 、F , 求证:四边形AECF 是菱形.分类练习 01 基础题知识点1 有一组邻边相等的四边形是菱形1.(钦州中考)如图,要使▱ABCD 成为菱形,下列添加的条件正确的是( ) A .AC =AD B .BA =BCC .∠ABC =90° D .AC =BD2.(海南中考)如图,将△ABC 沿BC 方向平移得到△DCE ,连接AD ,下列条件中能够判定四边形ACED 为菱形的是( )A .AB =BC B .AC =BC C .∠B =60°D .∠ACB =60°3.(长春中考)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC 交CD于点G.求证:四边形ACGF是菱形.知识点2对角线互相垂直的平行四边形是菱形4.(潍坊中考)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形.(只需添加一个即可)5.已知▱ABCD两对角线AC、BD相交于点O,AC=12 cm,BD=16 cm,AD=10 cm,则▱ABCD为.6.如图,在▱ABCD中,O是AC与BD的交点,过点O的直线分别与AB、CD的延长线交于点E、F,当AC与EF满足什么条件时,四边形AECF是菱形?请给出证明.知识点3四边相等的四边形是菱形7.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( )A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形02中档题8.如图是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断( )A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误9.(十堰中考)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是 (只填写序号).10.(荆门中考)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD是菱形.11.(黔南中考改编)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.求证:(1)△AED≌△CFD;(2)四边形AECF是菱形.03综合题12.(泰安中考改编)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE 交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形.第3课时 菱形的性质与判定的运用01 基础题知识点1 与菱形有关的计算1.如图,在菱形ABCD 中,对角线AC 、BD 的长分别是8和6,则菱形的周长等于( ) A .12 B .16 C .20 D .242.如图,在▱ABCD 中,AC 平分∠DAB ,AB =2,则▱ABCD 的周长为( ) A .4 B .6 C .8 D .123.如图,菱形ABCD 的周长为16,∠ABC =120°,则AC 的长为( ) A .4 3 B .4 C .2 3 D .24.(枣庄中考)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( ) A.245 B.125C .5D .45.如图,在△ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 的中点. (1)求证:四边形BDEF 是菱形;(2)若AB =10 cm ,求菱形BDEF 的周长.知识点2 菱形的判定6.如图,添加下列条件仍然不能使▱ABCD 成为菱形的是( )A .AB =BC B .AC ⊥BD C .∠ABC =90° D .∠1=∠27.如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为菱形,应添加的条件是( )A .AB ∥DC B .AB =DC C .AC ⊥BD D .AC =BD8.如图,在△ABC 中,AB <BC <AC ,小华依下列方法作图:①作∠C 的平分线交AB 于点D ;②作CD 的中垂线,分别交AC ,BC 于点E ,F ;③连接DE ,DF.根据小华所作的图,下列说法中一定正确的是( )A .四边形CEDF 为菱形B .DE =DAC .DF ⊥CBD .CD =BD9.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,点E ,F 分别为边AB ,AD 的中点,连接EF ,OE ,OF ,求证:四边形AEOF 是菱形.02中档题10.(兰州中考)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E、F,连接EF,则△AEF的面积是( )A.4 3 B.3 3 C.2 3 D. 311.如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是.(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.12.如图,在▱ABCD中,EF垂直平分AC交BC于E,交AD于F.(1)求证:四边形AECF为菱形;(2)若AC⊥CD,AB=6,BC=10,求四边形AECF的面积.03综合题13.(临沂中考)对一张长方形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.求证:(1)∠ABE=30°;(2)四边形BFB′E为菱形.。

北师大版九年级数学上册--第一章 1.1《菱形的性质与判定》同步练习题(含答案)

北师大版九年级数学上册--第一章  1.1《菱形的性质与判定》同步练习题(含答案)

1.1菱形的性质与判定练习一、选择题1、如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A .AO =BOB .AC =AD C .AB =BC D .OD =AC题1图 题2图 题6图2、如图,要想证明平行四边形ABCD 是菱形,下列条件中不能添加的是( )A .∠ABD =∠ADB B .AC ⊥BD C .AB =BC D .AC =BD3、平面直角坐标系中,四边形ABCD 的顶点坐标分别是A (﹣3,0),B (0,2),C (3,0),D (0,﹣2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形4、下列不能判定一个四边形是菱形的是( )A.有一组邻边相等的平行四边形是菱形B.对角线互相垂直的平行四边形是菱形C.四条边都相等的四边形是菱形D.对角线相等的平行四边形是菱形5、下列条件:①四边相等的四边形; ②对角线互相垂直且平分的四边形; ③一组邻边相等的四边形; ④一条对角线平分一组对角的平行四边形。

其中能判断四边形是菱形的有( )A.1个B.2个C.3个D.4个6、如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( )A.75°B.65°C.55°D.50°7、若菱形ABCD 的周长为16,∠A:∠B=1:2,则菱形的面积为( ) A.32 B.33 C.34 D.38题7图 题8图 题9图8、如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍9、如图,菱形ABCD 的周长为16,∠ABC=120°,则AC 的长为( ) A.34 B.4 C.32 D.2二、填空题1、一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为________。

1.1 菱形的性质与判定 第2课时 菱形的判定 学案 2024-2025北师大版九年级数学上册

1.1 菱形的性质与判定  第2课时 菱形的判定 学案  2024-2025北师大版九年级数学上册

1菱形的性质与判定第2课时菱形的判定1.理解并掌握菱形的判定方法.2.会用这些判定方法进行有关的论证和计算.(重点)3.经历探索菱形判定条件的过程,领会菱形的概念以及判定方法,体会说理的基本方法.(难点)一、复习导入菱形的定义:有一组邻边相等的平行四边形叫做菱形.菱形的性质:1.四条边都相等;2.两条对角线互相垂直;3.菱形是轴对称图形.二、探索新知活动一除了运用菱形的定义,你能找出判定菱形的其他方法吗?猜想1如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证:▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴▱ABCD是菱形(菱形的定义).判定定理1对角线互相垂直的平行四边形是菱形.设计意图:教材提出的问题具有一定的开放性.由于要判定的图形是平行四边形,因此若考虑边,则容易想到满足的条件是一组邻边相等,这就是定义;若考虑对角线,则可能受性质的启发,想到满足的条件是对角线互相垂直.教学时应鼓励学生积极探索,大胆猜想,在此基础上再进行严格的证明.活动二除了运用对角线,你还有其他判定菱形的方法吗?猜想2四边相等的四边形是菱形.已知:如图,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形(菱形的定义).思考:这里的条件能否再减少一些呢?能否像类似对矩形的讨论那样,有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立的.判定定理2四边相等的四边形是菱形.证明思路:先证明四边形是平行四边形,再证明它是菱形.教学时应鼓励学生先独立完成,再进行展示交流.活动三如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?有同学是这样做的:先将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,将纸展开,就得到了一个菱形.你知道其中的道理吗?设计意图:鼓励学生利用菱形的判定方法,设计制作菱形的方案,并说明已知制作菱形方案的正确性.三、掌握新知例已知:如图,在▱ABCD中,对角线AC与BD相交于点O,AB=√5,OA=2,OB=1.求证:▱ABCD是菱形.证明:在△AOB中,∵AB=√5,OA=2,OB=1,∴AB2=OA2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴▱ABCD是菱形(对角线垂直的平行四边形是菱形).设计意图:这是菱形判定定理的直接应用,教学时关注证明思路的探寻与分析:已知四边形ABCD是平行四边形,再具备什么条件就可以成为菱形呢?由已知条件可以证明邻边相等吗?可以证明对角线垂直吗?四、巩固练习1.已知:如图,在▱ABCD 中,对角线AC 的垂直平分线分别与AD ,AC ,BC 相交于点E ,O ,F .求证:四边形AFCE 是菱形.证明:∵EF 垂直平分AC ,∴AO =CO ,∠AOE =∠COF =90°.∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AE ∥FC .∴∠AEO =∠CFO .∴△AEO ≌△CFO .∴OE =OF .又∵AO =CO ,∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形.2.已知:如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点.求证:四边形EFGH 是菱形.证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC ,OB =OD .又∵点E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,∴OE =12OA ,OG =12OC ,OF =12OB ,OH =12OD .∴OE =OG ,OF =OH .∴四边形EFGH 是平行四边形(对角线互相平分的四边形是平行四边形). 又∵AC ⊥BD ,即EG ⊥HF ,∴四边形EFGH 是菱形(对角线互相垂直的平行四边形是菱形).五、归纳小结。

1.1 菱形的性质和判定 课时练习(含答案解析)

1.1 菱形的性质和判定 课时练习(含答案解析)

北师大版数学九年级上册第一章第一节菱形的性质与判定课时练习一、单选题(共15题)1.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.43B.33C.23D.3答案:B解析:解答:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=23∴EF=AE=23过A作AM⊥EF,∴AM=AE•sin60°=3,∴△AEF的面积是:12EF•AM=12×23×3=33故选:B.分析: 首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积2. 如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG ∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF 与四边形CGOH的周长之差为12时,AE的值为()A.6.5 B.6 C.5.5 D.5答案:C解析:解答: ∵四边形ABCD是菱形,∴AD=BC=AB=CD,AD∥BC,AB∥CD,∵EG∥AD,FH∥AB,∴四边形AEOF与四边形CGOH是平行四边形,∴AF=OE,AE=OF,OH=GC,CH=OG,∵AE=AF,∴OE=OF=AE=AF,∵AE=AF,∴BC-BH=CD-DG,即OH=HC=CG=OG,∴四边形AEOF与四边形CGOH是菱形,∵四边形AEOF与四边形CGOH的周长之差为12,∴4AE-4(8-AE)=12,解得:AE=5.5,故选C分析: 根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可3. 如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A.12B.2 C.33D.3答案:D解析:解答: ∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴BE=12 BC∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan∠BFE的值为3故选D.分析: 首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案4.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14答案:A解析:解答: ∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.分析: 根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可5.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18 B.183C.36 D.363答案:B解析:解答: 过点A作AE⊥BC于E,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠ABC=60°∴∠BAE=30°,∵AE⊥BC,∴AE=33∴菱形ABCD的面积是6×33=183故选B分析: 本题考查了菱形的邻角互补的性质,作辅助线求出菱形边上的高线的长度是解题的关键6.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.63米B.6米C.33米D.3米答案:A解析:解答: ∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA=2263-=33(米),则AC=2OA=63米,故选A.分析: 由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长7. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为()A.-12 B.-27 C.-32 D.-36答案:C解析:解答:解:∵A(-3,4),∴OA=2234+=5,∴CB=OC=5,则点B的横坐标为-3-5=-8,故B的坐标为:(-8,4),将点B的坐标代入y=kx得,4=8k解得:k=-32.故选C.分析: 根据点A的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可8.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD的周长为()A.4 B.43C.47D.28答案:C解析:解答: ∵E,F分别是AB,BC边上的中点,EF=3∴AC=2EF=23∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=3,OB=12BD=2,∴AB=22AO BO=7∴菱形ABCD的周长为47故选:C.分析: 首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可9. 菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直答案:D解析:解答: A.不正确,两组对边分别平行;B.不正确,两组对角分别相等,两者均有此性质正确,;C.不正确,对角线互相平分,两者均具有此性质;D.菱形的对角线互相垂直但平行四边形却无此性质.故选D.分析: 根据菱形的特殊性质可知对角线互相垂直10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m答案:C解析:解答: 如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选:C.分析:根据题意和正六边形的性质及等边三角形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长11. 如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°答案:B解析:解答: 连接PA,如图所示:∵四边形ABCD是菱形,∴∠ADP=∠CDP=12∠ADC=36°,BD所在直线是菱形的对称轴,∴PA=PC,∵AD的垂直平分线交对角线BD于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.分析: 本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形是等腰三角形是解决问题的关键12.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.60°B.55°C.45°D.30°答案:A解析:解答: 如图,连接AC,∵AE⊥BC,点E是BC的中点,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴△ABC是等边三角形,∴∠CAE=30°,同理可得∠CAF=30°,∴∠EAF=∠CAE+∠CAF=30°+30°=60°.故选A.分析: 连接AC,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=AC,然后求出△ABC是等边三角形,再根据等边三角形的性质求出∠CAE=30°,同理可得∠CAF=30°,然后根据∠EAF=∠CAE+∠CAF计算即可得解13.菱形的两条对角线长分别为6和8,则菱形的面积是()A.10 B.20 C.24 D.48答案:C解析:解答:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:12×6×8=24.故选C.分析: 由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.14. 在菱形ABCD中,下列结论错误的是()A.BO=DO B.∠DAC=∠BAC C.AC⊥BD D.AO=DO答案: D解析:解答:∵四边形ABCD是菱形,∴AC⊥BD,∠DAC=∠BAC,BO=DO,故A,B,C正确,D错误.故选D.分析: 根据菱形的两条对角线互相垂直且平分,并且每一条对角线平分一组对角;即可求得答案15.如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是()A.30 B.24 C.18 D.6答案:B解析:解答:由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD 的周长=6×4=24,故选B.分析: 根据题意得PQ是△ADC的中位线,从而可求得菱形的边长,则菱形的周长就不难求得了二、填空题(共5题)16.如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF是菱形.答案:AB=AC或∠B=∠C解析:解答: 需加条件AB=AC,这样可根据三线合一的性质,得出D是BC的中点,根据中位线定理可得,DE平行且等于AF,则AEDF为平行四边形,又可得AE=AF,则四边形AEDF为菱形.则添加条件:AB=AC.当∠B=∠C时,四边形AEDF是菱形.故答案为:AB=AC或∠B=∠C.分析:由三角形的中位线的性质,可得四边形AEDF为平行四边形,如AE=AF,则四边形AEDF为菱形,则添加条件:AB=AC17. 如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________就可以证明这个多边形是菱形答案:AB=AC,答案不唯一解析:解答: 添加:AB=AC,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵E、F、D分别是AB、AC、BC上的点,∴DE=12AC,DF=12AB,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形.故答案为:AB=AC.分析:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形18.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:_________,使四边形ABCD成为菱形.答案:AB=AD,答案不唯一解析:解答: 添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD分析: 由条件OA=OC,OB=OD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定19. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是_________答案:菱形解析:解答:∵分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC是菱形.故答案为:菱形.分析: 根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形20.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:__________ ,可使它成为菱形答案:AB=BC|AC⊥BD等解析:解答:∵四边形ABCD是平行四边形,∴当AB=BC时,平行四边形ABCD是菱形,当AC⊥BD时,平行四边形ABCD是菱形.故答案为:AB=BC或AC⊥BD等分析: 菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,进而得出答案三、解答题(共5题)21.如图,已知△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.(1)求证:四边形ADCE是菱形;(2)求证:BC=ED.答案:(1)证明:∵∠C=90°,点E为AB的中点,∴EA=EC,∵△ACD与△ACE关于直线AC对称.∴△ACD≌△ACE,∴EA=EC=DA=DC,∴四边形ADCE是菱形;(2)证明:∵四边形ADCE是菱形,∴CD∥AE且CD=AE,∵AE=EB,∴CD∥EB且CD=EB∴四边形BCDE为平行四边形,∴DE=BC.解析:分析:(1) 利用直线对称性得出△ACD≌△ACE,进而得出EA=EC=DA=DC,求出即可;(2)利用平行四边形的判定得出四边形BCDE为平行四边形,进而得出答案22. 如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.答案:解答:(1)证明:∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E、F分别为AC、BC的中点∴EF=12AB,EC=12AC,FC=12BC∴EF=EC=FC∴EF=FC=ED=DC,∴四边形EFCD是菱形.(2)解:连接DF,与EC相交于点G,∵四边形EFCD是菱形∴DF⊥EC,垂足为G∵EF=12AB=4,EF∥AB∴∠FEG=∠A=60°在Rt△EFG中,∠EGF=90°∴DF=2FG=2×4sin∠FEC=8sin60°=43解析:分析:(1)利用三角形的中位线定理即可得到四边形EFCD的四边相等,即可证得;(2)连接DF,与EC相交于点G,△EFC是等边三角形,则△EFG是直角三角形,利用三角函数即可求得GF的长,根据DF=2GF即可求得23.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.答案:解答:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.解析:分析: (1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.24.如图,四边形ABCD中,AB∥CD,CE∥AD交AB于E,AE=AD.求证:四边形AECD 是菱形答案:解答:证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形,∵AE=AD,∴四边形AECD是菱形;解析:分析: 首先根据定义证明四边形AECD是平行四边形,则以及菱形的定义即可证得25. 如图,由两个等宽的矩形叠合而得到四边形ABCD.试判断四边形ABCD的形状并证明答案:解答:四边形ABCD是菱形.理由:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形解析:分析: 作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AP=AQ得平行四边形ABCD是菱形。

九年级上册第一章1 菱形的性质与判定第2课时

九年级上册第一章1 菱形的性质与判定第2课时

素养当堂测评 (10分钟·15分) 1.(4分·几何直观、推理能力)依据所标识的数据,下列平行四边形一定为菱形的 是 (C)
A
3.(7分·几何直观、推理能力)(2023·沈阳中考)如图,在△ABC中,AB=AC,AD是BC边 上的中线,点E在DA的延长线上,连接BE,过点C作CF∥BE交AD的延长线于点F, 连接BF,CE.求证:四边形BECF是菱形. 【证明】∵AB=AC,AD是BC边上的中线, ∴AD垂直平分BC,∴EB=EC,FB=FC, ∵CF∥BE,∴∠BED=∠CFD,∠EBD=∠FCD, ∵DB=DC,∴△EBD≌△FCD(AAS), ∴BE=CF,∴EB=BF=FC=EC,∴四边形BECF是菱形.
1 菱形的性质与判定 第2课时
课时学习目标 1.理解并掌握菱形的判定方法,会用这些 判定方法进行有关的论证和计算 2.掌握菱形的面积求法
素养目标达成 几何直观、推理能力、运算能力 抽象能力、运算能力、应用意识
基础主干干落实 新知要点 1.菱形的判定方法
文字语言
对点小练
1.(1)在下列条件中,能判定平行四边形ABCD为菱形的是
A.AB⊥BC
B.AC=BD
(C)
C.AB=BC
D.AB=AD
(2)数学课上,老师让同学们判断一个四边形是否为菱形,下面是某合作小组4位
同学拟定的方案,其中正确的是
(D)
A.测量对角线是否相等
B.测量对角线是否垂直
C.测量一组对角是否相等
符号语言
定义 对角线 四条边
一组____邻__边____相等的 ∵▱ABCD中,AB=BC,∴▱ABCD是菱形
平行四边形
对角线___互__相__垂__直___ ∵▱ABCD中,AC⊥BD,

教学课件02+菱形的性质与判定2023-2024学年九年级数学核心知识点与常见题型通关讲解练

教学课件02+菱形的性质与判定2023-2024学年九年级数学核心知识点与常见题型通关讲解练
第一章 特殊平行四边形
2菱形的性质与判定(第2课时)
目录
1 学习目标 3 新课讲解 5 当堂小练 7 拓展与延伸
2 新课导入 4 课堂小结 6 巩固提升
学习目标
1. 由对角线的位置关系判定菱形(重点、难点) 2. 由边的数量关系判定菱形 3.理解并掌握菱形的定义及两个判定方法;会用这些判定 方法进行有关的论证和计算. 4.在菱形的判定方法的探索与综合应用中,培养学生的观 察能力、动手能力及逻辑思维能力.
证明: ∵四边形ABCD是平行四边形, ∴OA=OC. 又∵AC⊥BD, ∴BD所在直线是线段AC的垂直平分线, ∴AB=BC, ∴四边形ABCD是菱形(有一组邻边相等的平行四
边形是菱形).
新课讲解
讨论
已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为
菱形的一条对角线吗?
结论
1. 判定定理:对角线互相垂直的平行四边形是菱形. 2. 规律导引:若用对角线进行判定:先证明四边形是平行四 边形,再证明对角线互相垂直,或直接证明四边形的对角线 互相垂直平分.
(2)解:四边形 AFBE 是菱形,理由如下: ∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形 AFBE 是平行四边形,又∵EF⊥AB, ∴四边形 AFBE 是菱形.
3.(岳阳中考)求证:对角线互相垂直的平行四边形是菱形. 小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全 已知和求证,并写出证明过程.
新课讲解
典例分析
例 4.如图,▱ABCD的对角线AC,BD相交于点O,请你添加一 个适当的条件__A_C__⊥__B_D__使其成为菱形(只填一个即可).
新课讲解
练一练
1 已知:如图,在□ABCD中,对角线AC⊥BD.

菱形的性质与判定(二)

菱形的性质与判定(二)

试一试
对角线互相垂直的平行四边形是菱形吗? 已知:如图1-3,在□ABCD中,对角线AC与 BD交于点O,AC⊥BD. 求证: □ABCD是菱形 证明:∵四边形ABCD是平行四边形 ∴OA=OC 又∵AC⊥BD ∴BD是线段AC的垂直平分线 ∴BA=BC ∴四边形ABCD是菱形(菱形定义)
定理
对角线互相垂直的平行四边形是菱形
第一章 特殊平行四边形
第1节 菱形的性质与判定(二)
温故知新
1.菱形的定义? 2.如图,已知四边形ABCD是一个平行四边 形,则只需补充 就可以判定它是 一个菱形. 3.如图,已知菱形ABCD的对角线AC、BD相 交于点O,并且AC=6cm,BD=8cm,则菱形 ABCD的周长为 cm.
知识链接:
小明的想法
平行四边形的不少性质定理与判定 定理都是互逆命题.受此启发,我猜想: 四边相等的四边形是菱形,对角线垂直 的平行四边形是菱形.
小颖的想法
我觉得,对角线互相垂直的平行四 边形有可能是菱形.但“四边相等的平 行四边形是菱形”嘛……实际上与“邻 边相等的平行四边形是菱形”一样.
你是怎么想的?你认为小明的想法 如何?与同伴交流一下.
1、什么是菱形? 2、平行四边形有哪些判别方法?
导学案:自学课本5-7页内容
1、菱形的判定方法有哪些? 2、完成议一议、做一做。 3、自学例2. 自学要求:先独学5分钟后对子互助,如有疑 问组内解决,4分钟后进行班级展示。
探索新知
根据菱形的定义,邻边相等的平行 四边形是菱形.除此之外,你认为还有什 么条件可以判断一个平行四边形是菱形? 先想一想,再与同伴交流.
∴四边形ABCD是平行四边形
又∵AB=BC ∴四边形ABCD是菱形(菱形定义)

2019秋九年级数学上册第一章特殊平行四边形1菱形的性质与判定第2课时菱形的判定练习1(新版)新人教版

2019秋九年级数学上册第一章特殊平行四边形1菱形的性质与判定第2课时菱形的判定练习1(新版)新人教版

第7题第2课时 菱形的判定1、能够判别一个四边形是菱形的条件是( )A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形ABCD 的两条对角线AC 、BD 相交于点O, AB=5, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?3、 如左下图,AD 是△ABC 的角平分线。

DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F.四边形AEDF 是菱形吗?说明你的理由。

4、如右上图,□ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?5、已知DE ∥AC 、DF ∥AB ,添加下列条件后,不能判断四边形DEAF 为菱形的是( ) A. AD 平分∠BACB. AB =AC =且BD =CDC. AD 为中线D. EF ⊥AD6、 如右图,已知四边形ABCD 为菱形,AE =CF. 求证:四边形BEDF 为菱形。

7、已知ABCD 为平行四边形纸片,要想用它剪成一个菱形。

小刚说只要过BD 中点作BD 的垂线交AD 、BC 于E 、F ,沿BE 、DF 剪去两个角,所得的四边形BFDE 为菱形。

你认为小刚的方法对吗?为什么?8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?为什么?9、如左下图,四边形ABCD 中,对角线AC 和BD 相交于点O ,且AC ⊥BD ,点M 、N 分别在BD 、AC 上,且AO =ON =NC ,BM =MO =OD. 求证:BC =2 DN第6题DACF H E B10、如右上图,已知四边形ABCD 为矩形,AD =20㎝、AB =10㎝。

M 点从D 到A ,P 点从B 到C ,两点的速度都为2㎝/s ;N 点从A 到B ,Q 点从C 到D ,两点的速度都为1㎝/s 。

若四个点同时出发。

(1)判断四边形MNPQ 的形状。

九上数学 第1讲 1.1菱形的性质和判定【培优】

九上数学 第1讲 1.1菱形的性质和判定【培优】

学大教育2019暑期九上数学课程第1讲《特殊的平行四边形》培优训练菱形的性质与评定第1课时菱形的概念及其性质知识点1 菱形的定义及对称性1、定义:有一组邻边相等的平行四边形叫做菱形2、性质:(1)菱形的四条边都相等。

(2)菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角。

(3)菱形是轴对称图形,也是中心对称图形。

3、判定:(1)有一组邻边相等的平行四边形叫做菱形。

(2)四条边都相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

1.如图1-1-1,在▱ABCD中,若添加下列条件:①AB=CD;②AB=BC;③∠1=∠2.其中能使▱ABCD成为菱形的有()A.0个B.1个C.2个D.3个2.菱形OACB在平面直角坐标系中的位置如图1-1-2所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A.(3,1) B.(3,-1) C.(1,-3) D.(1,3)1-1-2 图1-1-33.如图1-1-3,P是菱形ABCD对角线BD上的一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是________cm.知识点2 菱形的边的性质4.如图1-1-4,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是() A.25 B.20 C.15 D.101-1-41-1-55.如图1-1-5,在菱形ABCD中,对角线AC,BD相交于点O,H为AD边的中点.若菱形ABCD的周长为32,则OH的长为________.6.如图1-1-6,在△ABC中,AB=AC,四边形ADEF是菱形.求证:BE=CE.知识点3 菱形的对角线的性质7.如图1-1-7,在菱形ABCD中,AC=6,BD=8,则菱形ABCD的边长为()A.5 B.10 C.6 D.88.已知菱形的边长是2 cm,一条对角线长是2 cm,则另一条对角线长是()A.4 cm B.2 3 cm C. 3 cm D.3 cm1-1-71-1-89.如图1-1-8,在菱形ABCD中,AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°. 10.如图1-1-9,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为()图1-1-9 A.(-5,4) B.(-5,5) C.(-4,4) D.(-4,3)11.一个菱形的边长为4 cm,且有一个内角为60°,则这个菱形的面积是________.12.如图1-1-10,在菱形ABCD中,∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE =BO,则∠EOA=________°.1-1-10图1-1-1113.如图1-1-11,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为________.14.如图1-1-12所示,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是________.15.如图1-1-13,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.16.如图1-1-14所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,请你猜想CE与CF在数量上有什么关系,并证明你的猜想.图1-1-1417.如图1-1-15,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=CE;(2)若∠E=50°,求∠BAO的度数.图1-1-15第2课时菱形的判定知识点1由菱形的定义作判定1.如图1-1-16,要使▱ABCD成为菱形,则需添加的一个条件是()图1-1-16A.AC=AD B.BA=BC C.∠ABC=90°D.AC=BD2.如图1-1-17,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图1-1-17 知识点2根据菱形的对角线作判定3.下列命题中,正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形图1-1-184.如图1-1-18,在▱ABCD中,AB=13,AC=10,当BD=________时,四边形ABCD 是菱形.5.教材例2变式题如图1-1-19,在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.求证:四边形ABCD是菱形.图1-1-19知识点3根据菱形的边作判定6.用直尺和圆规作一个菱形,如图1-1-20,能判定四边形ABCD是菱形的依据是()图1-1-20A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7.如图1-1-21,在△ABC中,AB=AC,∠B=60°,∠F AC,∠ECA是△ABC的两个外角,AD平分∠F AC,CD平分∠ECA.求证:四边形ABCD是菱形.图1-1-28.如图1-1-22所示,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判定四边形AECF为菱形的是()A.AE=AF B.EF⊥AC C.∠B=60°D.AC是∠EAF的平分线1-1-221-1-23 9.如图1-1-23,D,E,F分别是△ABC的边AB,BC,AC的中点.若四边形ADEF 是菱形,则△ABC必须满足的条件是()A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC10.顺次连接对角线相等的四边形的各边中点,所形成的四边形是________.图1-1-2411.如图1-1-24,E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA的中点,当四边形ABCD的边满足条件____________时,四边形EFGH是菱形.12.如图1-1-25,在△ACB中,∠ACB=90°,∠B=60°,作边AC的垂直平分线l 交AB于点D,过点C作AB的平行线交l于点E,判断四边形DBCE的形状,并说明理由.图1-1-2513.如图1-1-26,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图1-1-2614.某校九年级学习小组在探究学习过程中,用两块完全相同且含60°角的三角板ABC 与三角板AEF按如图1-1-27①所示方式放置,现将三角板AEF绕点A按逆时针方向旋转α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,判断四边形ABPF的形状,并说明理由.图1-1-27第3课时菱形的性质与判定的综合应用知识点1菱形的面积1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是()A.192 B.96 C.48 D.40图1-1-282.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A.6 B.12C.24 D.483.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.图1-1-29知识点2菱形的性质与判定的应用4.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD 的周长为()A.4 B.6 C.8 D.121-1-301-1-315.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=BCC.AB=CD,AD=BCD.∠DAB+∠BCD=180°6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1 B.2 C.3 D.41-1-31-1-337.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.1-1-31-1-359.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.11.如图1-1-37,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD的周长为()A.52 cm B.40 cmC.39 cm D.26 cm12.如图1-1-38,在给定的一张平行四边形纸片ABCD上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于点M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于点E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误图1-1-3913.如图1-1-39,菱形ABCD的边长为8 cm,∠A=60°,DE⊥AB于点E,DF⊥BC 于点F,则四边形BEDF的面积为________ cm2.14.如图1-1-40,在菱形ABCD中,P是AB上的一个动点(不与点A,B重合),连接DP交对角线AC于点E,连接BE.(1)求证:∠APD=∠CBE;(2)试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的14,为什么?图1-1-4015.2017·贺州如图1-1-41,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2 5,求四边形ABCD的面积.图1-1-4116.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.(1)请你帮助明明证明四边形ABCD是菱形;(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD 的周长最大,求此时菱形ABCD 的周长.图1-1-42菱形的判定练习判别方法:(1)一组邻边相等的平行四边形是菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形 基础过关1.能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角 2.如图,在ABC 中,点E 、D 、F 分别在边AB 、BC 、CA 上,且DE ∥CA ,DF ∥BA .下列四个判断中,不正确...的是( )A.四边形AEDF 是平行四边形 B.如果∠BAC=90°,那么四边形AEDF 是矩形C.如果AD 平分∠BAC ,那么四边形AEDF 是菱形D.如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是菱形3.已知一个四边形ABCD 的四边的长依次为a 、b 、c 、d ,且a 2+ab-ac-bc=0,b 2+bc-bd-cd=0,那么四边形ABCD 是 ( )A .平行四边形 B. 矩形 C. 菱形 D. 梯形 能力提高4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形; ②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④顺次连结等腰梯形各边中点所得到的四边形是菱形.其中正确的是( ) A.①② B.①②③ C.②③④ D.①②③④5.如图,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 是( )A.平行四边形B.矩形C.菱形D.正方形6. 如图,将一张矩形纸片纸对折,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )AF C D B E(第2题图)A.三角形B.矩形C.菱形D.梯形7.如图, □ABCD 中,AF 、CE 分别是∠BAD 、∠BCD 的平分线.根据现有的图形,请你添加一个条件,使四边形AECF 是菱形.则添加一个条件是___________.(只需写出一个即可,图中不能再添加别的“点”或“线”)8.在四边形ABCD 中,对角线AC 、BD 相交于O 点,从(1)AB=CD ;(2)AB ∥CD ;(3)OA=OC ;(4)OB=OD ;(5)AC ⊥BD ;(6)AC 平分∠BAD 这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5) ⇒四边形ABCD 是菱形四边形;再写出符合要求的两个: ⇒四边形ABCD 是菱形; ⇒四边形ABCD 是菱形.9.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点, 若EFGH 是菱形,则四边形ABCD 符合____________条件.10.如图,矩形ABCD 对角线相交于O ,DE ∥AC ,CE ∥DB ,DE 、CE 交于E.求证:四边形DOCE 是菱形.CFGEH A BD(第7题图)(第8题图)OF EBAC D(9题图)EFHGDCB A(第11题图)O E DA BC11.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,. (1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.12.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.13.如图,在△ABC 中,∠ACB=90°,AD 是角平分线,CH 是高,交AD 于F ,DE ⊥AB 于E.求证:四边形CDEF 是菱形.FDOB EAA BCDEF D ′B FEDGCA14.如图,□ABCD 中,AB ⊥AC ,AB=1,BC=5,对角线AC 、BD 交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC 、AD 于点E 、F.(1)证明:当旋转角度是90°时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC 绕O 点顺时针旋转的度数.EOBACDF。

1.1菱形的性质与判定(2)

1.1菱形的性质与判定(2)

九年级数学 1.1菱形的性质和判定(2)学习目标:1、经历探索、猜想和证明菱形判别条件的过程;2、能运用菱形的判定定理证明相关的题目;〖课前准备〗菱形的定义:____________________________________〖课堂探究〗1、菱形的定义也是菱形的判定方法之一,尝试写出符号语言。

菱形的判定方法1:______________________的_______形是菱形符号语言:___________________ ___________自学指导一:自学课本P5-6页做一做之前的内容,完成下列问题(时间8分钟) 小结:菱形的判定方法2:______________________的_______形是菱形符号语言:_____________________ 菱形的判定方法3:______________________的_______形是菱形符号语言:__________________________________________自学检测1:1、画一个菱形,使它的两条对角线的长分别是线段a,b_____________________a______________b2、课本P6页做一做典型例题:1、已知:点D 是BC 上一点,DE//AC 交AB 于E,DF//AB 交于F ,AD 平分∠BAC求证:四边形AEDF 是菱形B AC B A C针对练习:已知:DE//AC 交AB 于E,DF//AB 交于F 、Q 。

△ABC 中AB=AC ,当D 位于BC 什么位置时,四边形AEDF 为菱形典型例题2:已知,如图,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,感悟与收获1、______________________的_______形是菱形2、______________________的_______形是菱形3、______________________的_______形是菱形课堂检测:已知平行四边形ABCD ,EF 垂直平分AB ,求证:四边形AFCE 是菱形作业布置:新课堂4页-5页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时菱形的判定
1、能够判别一个四边形是菱形的条件是()
A. 对角线相等且互相平分
B. 对角线互相垂直且相等
C. 对角线互相平分
D. 一组对角相等且一条对角线平分这组对角
2、平行四边形ABCD的两条对角线AC、BD相交于点O, AB=, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?
3、如左下图,AD是△ABC的角平分线。

DE∥AC交AB于E,DF∥AB交AC于F.
四边形AEDF是菱形吗?说明你的理由。

4、如右上图,□ABCD的对角线AC的垂直平分线与AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?
5、已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是()
A. AD平分∠BAC
B. AB=AC=且BD=CD
C. AD为中线
D. EF⊥AD
6、如右图,已知四边形ABCD为菱形,AE=CF. 求证:四边形BEDF为菱形。

7、已知ABCD为平行四边形纸片,要想用它剪成一个菱形。

小刚说只要过BD中点作BD的垂线交AD、BC
于E、F,沿BE、DF剪去两个角,所得的四边形BFDE为菱形。

你认为小刚的方法对吗?为什么?
8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?为什么?
9、如左下图,四边形ABCD中,对角线AC和BD相交于点O,且AC⊥BD,点M、N分别在BD、AC上,且AO
=ON=NC,BM=MO=OD. 求证:BC=2 DN
10、如右上图,已知四边形ABCD为矩形,AD=20㎝、AB=10㎝。

M点从D到A,P点从B到C,两点的速
度都为2㎝/s;N点从A到B,Q点从C到D,两点的速度都为1㎝/s。

若四个点同时出发。

(1)判断四边形MNPQ的形状。

(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由。

11、【提高题】如图所示,△ABC中,∠ACB=90°,∠ABC的平分线BD•交AC于点D,CH⊥AB于H,且
交BD于点F,DE⊥AB于E,四边形CDEF是菱形吗?请说明理由.
菱形的判定答案
1、【答案】 D
2、【答案】四边形ABCD是菱形.
【提示】对角线互相垂直的平行四边形是菱形,本题还要用到勾股定理的逆定理.
3、【答案】四边形AEDF是菱形
4、【答案】□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC
5、【答案】 C
6、【提示】用对角线来证
7、【答案】对
8、【答案】是菱形.
【提示】
证明方法一:
这个四边形的两组对边分别在纸条的边缘上,它们彼此平行,所以四边形ABCD是平行四边形. 又因为AB乘以AB边上的高、BC乘以BC边上的高都是平行四边形ABCD的面积,而它们的高都是纸条的宽,所以高相等,因此AB=BC,则平行四边形ABCD是菱形.
证明方法二:作出高线,用全等来证邻边相等。

9、【提示】
先证四边形AMND是菱形,再证MN是中位线
10、【答案】
(1)平行四边形;(2)5秒此时为各边中点 MQ=NP=AC=BD=MN=PQ 11、【答案】是菱形。

相关文档
最新文档