Time-dependent deformation in high concrete-faced rockfill dam

合集下载

力学拉伸曲线 英文

力学拉伸曲线 英文

力学拉伸曲线英文Mechanical Tensile Strength Curve.The mechanical tensile curve, often referred to as the stress-strain curve, is a graphical representation that illustrates the relationship between stress and strain in a material under tension. This curve provides valuable insights into the material's behavior and performance under tensile loading conditions. Understanding the tensile curve is crucial for engineers, designers, and materialscientists who need to predict the material's response to various loads and design safe and efficient structures.The tensile curve typically consists of severaldistinct regions, each representing a unique phase of material behavior. Let's explore each of these regions in detail.1. Elastic Region: At the initial stage of loading, the material exhibits elastic behavior. In this region, thestress and strain are directly proportional to each other, following Hooke's law. The slope of the curve in thisregion represents the elastic modulus of the material,which quantifies its stiffness or resistance to deformation. If the load is removed, the material returns to itsoriginal shape without any permanent deformation, as the elastic energy stored within the material is released.2. Yield Point: As the stress increases beyond the elastic limit, the material enters the plastic region. The yield point marks the beginning of this transition, wherethe material experiences a sudden drop in stress with a small increase in strain. This drop in stress is known asthe yield strength or yield point stress. After reachingthe yield point, the material no longer follows Hooke's law, and permanent deformation begins to occur.3. Plastic Region: In the plastic region, the material continues to deform plastically with increasing stress. The strain accumulates even after the load is removed,resulting in permanent deformation. The slope of the curvein this region represents the tangent modulus, whichquantifies the material's stiffness during plastic deformation. The plastic region is further characterized by the ultimate tensile strength (UTS), which is the maximum stress the material can withstand before failing.4. Failure Region: Beyond the UTS, the material reaches its failure point. This region is marked by a rapid decrease in stress as the material ruptures or fractures. The failure mode can vary depending on the material type and loading conditions, such as ductile failure (necking and tearing) or brittle failure (sudden cracking).The mechanical tensile curve provides valuable information about a material's mechanical properties, such as elasticity, plasticity, strength, and ductility. These properties are crucial for designing safe and efficient structures that can withstand various loads and environmental conditions.In addition to understanding the individual regions of the tensile curve, it's also important to consider factors that can influence the curve's shape and characteristics.These factors include material composition, microstructure, temperature, loading rate, and stress state (such as tension, compression, or shear).For example, changes in material composition can affect the elastic modulus, yield strength, and UTS. Similarly,the microstructure of the material, such as grain size and phase composition, can influence its mechanical properties. Temperature plays a significant role in the material's behavior, affecting both the elastic and plastic regions of the tensile curve. As temperature increases, the material's stiffness and strength typically decrease, leading to a softer and more ductile material.Loading rate, or the speed at which the load is applied, can also affect the tensile curve. At higher loading rates, the material may exhibit higher strength and stiffness dueto inertia effects. Conversely, lower loading rates maylead to time-dependent deformation mechanisms such as creep or relaxation.The stress state of the material is another crucialfactor. Tensile testing typically involves uniaxial loading, where the stress is applied in a single direction. However, real-world structures often experience multiaxial stress states, where stress is applied in multiple directions simultaneously. These complex stress states cansignificantly affect the material's behavior and failure modes.In summary, the mechanical tensile curve is a fundamental tool for understanding and characterizing a material's mechanical properties. By analyzing thedifferent regions of the curve and considering influencing factors such as composition, microstructure, temperature, loading rate, and stress state, engineers and material scientists can gain valuable insights into a material's behavior under tensile loading conditions. This information is crucial for designing safe and efficient structures that can withstand various loads and environmental conditions.。

科技英语翻译 课后答案

科技英语翻译  课后答案

科技英语翻译1.1 翻译的标准第1节翻译练习1The power plant is the heart of a ship.The power unit for driving the machines is a 50-hp induction motor.动力装置是船舶的心脏。

驱动这些机器的动力装置是一台50马力的感应电动机。

第1节翻译练习2Semiconductor devices, called transistors, are replacing tubes in many applications.Cramped conditions means that passengers’ legs cannot move around freely.All bodies are known to possess weight and occupy space.半导体装置也称为晶体管,在许多场合替代电子管。

我们知道,所有的物体都有重量并占据空间。

空间狭窄,旅客的两腿就不能自由活动。

第1节翻译练习3The removal of minerals from water is called softening.A typical foliage leaf of a plant belonging to the dicotyledons is composed of two principal parts: blade and petiole.去除水中的矿物质叫做软化。

双子叶植物典型的营养叶由两个主要部分组成:叶片和叶柄。

1.2 对译者的要求第4节翻译练习1Einstein’s relativity theory is the only one which can explain such phenomena.All four (outer planets) probably have cores of metals, silicates, and water.爱因斯坦的相对论是能解释这种现象的唯一理论。

仿真建模实践和理论 英文文献

仿真建模实践和理论  英文文献

properties is decisive to get a simulation model with the required accuracy [10]. But the assumption that the values are constant has only a marginal influence on the overall shape of the airbag at the end of the inflation.
article info
Article history: Received 21 December 2007 Received in revised form 14 March 2008 Accepted 26 March 2008 Available online 1 April 2008
Keywords: Passenger safety Airbag Out-of-position Fluid–structure interaction Fixed rectangular grid
1.2. Finite pointset method (FPM)
The FPM method was originally developed by Kuhnert [11] and is a grid free method which is based on the Lagrange approach. The values which describe the gas flow (velocity, density and temperature) are stored on freely positioned particles. These particles move with the local flow velocity. Due to the fact that the FPM needs no grid the FPM method is suitable for applications in which the geometry of the flow area changes strongly over time. A lot of integration points (smoothing length of about 15 mm [6]) are required for adequate results, thus the calculation time is considerably greater.

CALPHAD软件介绍

CALPHAD软件介绍

Abstract
The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative. c 2007 Elsevier Ltd. All rights reserved.

材料科学与工程专业英语1-18单元课后翻译答案

材料科学与工程专业英语1-18单元课后翻译答案

材料科学与工程专业英语1-18单元课后翻译答案Unit 1Translation.1.“材料科学”涉及到研究材料的结构与性能的关系。

相反,材料工程是根据材料的结构与性质的关系来涉及或操控材料的结构以求制造出一系列可预定的性质。

2.实际上,所有固体材料的重要性质可以分为六类:机械、电学、热学、磁学、光学、腐蚀性。

3.除了结构与性质,材料科学与工程还有其他两个重要的组成部分,即加工与性能。

4.工程师或科学家越熟悉材料的各种性质、结构、性能之间的关系以及材料的加工技术,根据以上的原则,他或她就会越自信与熟练地对材料进行更明智的选择。

5.只有在少数情况下,材料才具有最优或最理想的综合性质。

因此,有时候有必要为某一性质而牺牲另一性能。

6.Interdisciplinary dielectric constant Solid materials heat capacity Mechanical property electromagnetic radiation Material processing elastic modulus7.It was not until relatively recent times that scientists came to understand therelationships between the structural elements of materials and their properties.8. Materials engineering is to solve the problem during the manufacturing andapplication of materials.9.10.Mechanical properties relate deformation to an applied load or force.Unit 21. 金属是电和热很好的导体,在可见光下不透明;擦亮的金属表面有金属光泽。

微纳米力学测试

微纳米力学测试
Aluminum
30 25 Load (mN) 20 15 10 5 0 0 500 1000 1500 2000
Fused silica(熔融石英), typical of (熔融石英) ceramic behavior, shows large elastic recovery upon unloading
100
Time-dependent recovery 50
Large time-dependent recovery
0 0 4000 8000 12000 Displacement (nm) 16000
中山大学环境材料所
Continuous Stiffness Measurement Technique 连续刚度测量技术CSM) (连续刚度测量技术 )
中山大学环境材料所
Stiffness Calculation by CSM Technique
1 1 S = − Fo cos φ + mω 2 − K S K f Z o
−1
Dsω =
Fo sin φ − Diω Zo
中山大学环境材料所
Benefits of CSM
Patented Method for the Continuous Determination of the Elastic Stiffness of Contact Between Two Bodies “Frequency-Specific(固定频率), Depth-Sensing Indentation.”
P max hc = ht − ε S
中山大学环境材料所
Contact Area (the tip function)
The “tip function” for the ideal Berkovich(玻氏) tip (玻氏)

工程力学专业英语_词汇

工程力学专业英语_词汇

1.Energy Release Rate: 能量释放率2.Brittle Material: 脆性材料3.Strain Energy: 应变能4.Ductile Matetrial 韧性材料5.Strength Criterion: 强度判据/强度准则6.Crack tip 裂纹顶端7.Homogeneous 各向同性8.Principle of Virtual Work: 虚功原理9.Time-Dependent Deformation: 时间相关变形10.Fatigue in Metals: 金属的疲劳11.damage and Fracture 损伤与断裂12 . stress concentration .应力集中13. crack propagation 裂纹传播14.stress intensity factor 应力强度因子15.brittle fracture 脆性断裂16.ductile fracture 韧性断裂17.Fatigue life 疲劳寿命18.creep deformation 蠕变变形19.plastic deformation 塑性变形20.constitutive relationship 本构关系31. longitudinal 纵向32. transverse 横向33. horizontal 水平的34 . resistance 抵抗力35. ultimate 终极的36. isotropic 各向同性37. deviatoric 偏量的38. assumption 假设39. bind 结合40. blunt 钝的41 FRACTURE TOUGHNESS 断裂韧性42 POLYCRYSTALLINE MATERIALS 多晶体材料43 Single Crystalline materials 单晶体材料43 AMORPHOUS MATERIALS 非晶态材料44 CRYSTAL STRUCTURE 晶体结构45 Linear Elastic Fracture Mechanics 线弹性断裂力学46 theory of elasticity 弹性理论47 homogeneous state of stress 均匀应力状态48 stress invariant 应力不变量49 strain invariant 应变不变量50 strain ellipsoid 应变椭球51 homogeneous state of strain 均匀应变状态52 equation of strain compatibility 应变协调方程accumulated damage累积损伤brittle damage脆性损伤ductile damage延性损伤macroscopic damage宏观损伤microscopic damage细观损伤microscopic damage微观损伤damage criterion损伤准则damage evolution equation损伤演化方程damage softening损伤软化damage strengthening损伤强化damage tensor损伤张量damage thresh old损伤阈值damage variable损伤变量damage vector损伤矢量damage zone损伤区Fatigue疲劳low cycle fatigue低周疲劳stress fatigue应力疲劳random fatigue随机疲劳creep fatigue蠕变疲劳corrosion fatigue腐蚀疲劳fatigue damage疲劳损伤fatigue failure疲劳失效fatigue fracture疲劳断裂fatigue crack疲劳裂纹fatigue life疲劳寿命fatigue rupture疲劳破坏fatigue strength疲劳强度fatigue striations疲劳辉纹fatigue threshold疲劳阈值alternating load交变载荷alternating stress交变应力stress amplitude应力幅值strain fatigue应变疲劳stress cycle应力循环stress ratio应力比safe life安全寿命overloading effect过载效应cyclic hardening循环硬化cyclic softening循环软化environmental effect环境效应crack gage裂纹片crack growth, crack Propagation裂纹扩展crack initiation裂纹萌生。

大型空间结构热致动态响应研究综述

大型空间结构热致动态响应研究综述

2020年第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀空间电子技术SPACE ELECTRONIC TECHNOLOGY大型空间结构热致动态响应研究综述①冯雨晴,马小飞∗,李㊀洋(中国空间技术研究院西安分院,西安㊀710000)㊀㊀摘㊀要:大型柔性空间结构在轨运行进出地球阴影区时,受突变热流的影响,结构内部会产生时变温度梯度,从而产生不均匀的热应变以及热应力,引发结构的热致结构响应,最终影响航天器的正常工作㊂本文首先对空间轨道热载荷进行了简要分析,随后以Boley系数为牵引与基础,综述了当今国内外热致动态响应以及热颤振准则的研究进展,最后对热致动态响应的未来研究趋势进行了展望㊂关键词:大型柔性空间结构;热致振动;Boley系数;热颤振;发展历程中图分类号:TN98㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1674-7135(2020)06-0013-09D O I:10.3969/j.issn.1674-7135.2020.06.003Review of Thermally-Induced Dynamic Responsesof Large Space StructuresFENG Yuqing,MA Xiaofei∗,LI Yang(China Academy of Space Technology(Xi an),Xi an㊀710000,China)Abstract:During the orbital moving in or out of the earth's shadow region,under the suddenly changed thermal load-ing,time-dependent temperature gradients are generated in the large flexible space structure.This causes non-uniform ther-mal strain and thermal stress,triggering the thermally induced structural responses,which would probably affect normal oper-ations of the spacecraft.The thermal environment of space orbit is analysed in this paper at first.Then,based on Boley coeffi-cient,some progresses in thermally induced dynamic responses and thermal flutter criterions at home and abroad are re-viewed.At last,the future research trends of thermally induced dynamic responses are prospected.Key words:LFSS;Thermally induced vibration;Boley coefficient;Thermal flutter;Development process0㊀引言航天器上的空间桅杆㊁太阳翼以及天线等柔性附件由于具有尺寸大㊁质量轻㊁刚度小以及热容较小的特点,被统称为大型柔性空间结构(Large FlexibleSpace Structure,简称LFSS)㊂太空中的载荷环境极其恶劣,LFSS在轨运行时,不仅要长期承受失重㊁低温以及真空的影响,还会受到周围环境如太阳㊁行星以及自身设备的周期性加热冷却,尤其是在进出地球阴影区时会受到突变的太阳热流,导致其结构的受照面与非受照面温差可达200K以上㊂温差大以及温度的不均匀分布都会对LFSS产生影响,不均匀的温度分布会使得LFSS产生不均匀的热应变,从而产生不均匀的热应力,最终引发LFSS的热致结构响应(Thermally-Induced Structure Responses),影响航31①收稿日期:2020-07-31;修回日期:2020-10-30㊂基金项目:国家自然科学基金(编号:U1537213),新型星载大型网状可展开天线(编号:2017-JCJQ-ZQ-028)㊂作者简介:冯雨晴(1997 ),硕士在读,研究方向为空间柔性结构热致振动㊂E-mail:fengyq0216@ 通讯作者∗:马小飞(1980 ),博士/研究员,研究方向为空间可展开结构和网状结构技术㊂E-mail:maxf041600@天器在轨运行时的正常工作㊂热致结构响应按照结构响应的不同情况,可以分为以下五种:热碾轧㊁热弹性冲击㊁热致变形㊁热致振动以及热颤振[1]㊂其中,热致振动与热颤振统称为热致结构动态响应(Thermally-Induced Structure Dynamic Responses),这两者均是由于外界温度突变导致的振荡运动,该振荡运动是准静态变形与周期性振荡运动的叠加㊂而热致振动与热颤振的区别在于,前者是稳定的结构振动响应,后者是在特定条件下,结构振动与热载荷相互耦合引发的不稳定结构振动响应㊂热致动态响应对航天器危害很大,一方面会影响结构自身的精度,另一方面该结构的振动频率可能会与其他附件产生共振,除此之外由于航天器角动量守恒,附件的热致动态响应也会影响航天器本体的姿态,严重时可能导致航天器的失效,例如1960年,OGO-IV卫星在昼夜交替时,附件梁产生了热致振动,导致任务失败;1990年发射的哈勃太空望远镜(HST)在进出地球阴影时,太阳翼发生了弯扭耦合的热致振动,导致成像畸变㊁图像质量下降[2];同年10月6日发射的Ulysses宇宙飞船在太阳热流的加热下,7.5m长的天线吊杆横截面内产生温度梯度,导致天线产生弯曲振动,由于角动量守恒,引起飞船本体的振动[3]㊂除此之外,Apollo15㊁GGSE III-VI㊁Voyager等航天器在轨运行时,也均产生了热致动态响应㊂由此可见,对突变热流作用下的LFSS进行热致动态响应分析是十分必要的㊂本文以LFSS为研究对象,结合空间轨道热环境的背景,简述了判断结构是否发生热致振动的关键参数:Boley系数,对空间柔性结构热致动态响应以及热颤振准则的研究进展进行了调研汇总与综述,并在此基础上,对未来研究发展的趋势进行了展望㊂1㊀空间轨道热载荷分析航天器在轨运行时,处于真空㊁低温与电磁辐射的环境中㊂在真空环境中,由于不存在气体,故不考虑对流换热,航天器与空间环境的热交换只考虑辐射换热与热传导㊂其次,宇宙空间的背景温度约为4K,属于超低温,也被称为 低温热沉 ㊂太阳以5777K等效黑体以电磁辐射形式向外发射能量,达到地球附近的平均太阳辐射强度称为太阳常数,约为1367W/m2㊂地球等效黑体温度约为250K[4]㊂空间结构在轨运行时受到的热载荷按照来源可以分为两种:从外界环境中吸收的热流以及航天器自身的产热㊂对于地球轨道航天器,从外界环境中吸收的热流是电磁辐射的热能,主要包括三个部分:太阳电磁辐射㊁地球反射的太阳辐射以及地球红外辐射㊂故热平衡方程为:Q1+Q2+Q3+Q4-Q R=Q5(1)㊀㊀上式中:Q1为太阳辐射热能;Q2为地球反射热能;Q3为地球红外热能;Q4为内热源热能;Q R为航天器向外辐射热能;Q5为航天器内能的变化㊂航天器在轨运行时,会周期性地经过光照区㊁半阴影区㊁阴影区以及半阴影区,如图1所示㊂在光照区,航天器可以直接受到太阳辐射的热流而不受地球的影响,然而对于空间结构而言,当其处于光照区,只有向阳的一面受太阳辐射,背阳的一面仍不受照射;在半阴影区,只能受到一部分太阳辐射的热流;而在阴影区,由于地球的遮挡,航天器无法受到太阳辐射热流㊂图1㊀Fig.1㊀Earth’s Shadow Region图1中可以看出:经历半影区的时间长短主要是由轨道高度决定,对于低轨运行的航天器,经历的半影区时间较短,在进出地影时,热流加载与卸载速度较快;而对于高轨运行的航天器,经历的半影区时间较长,在进出地影时,热流加载与卸载的速度较慢㊂因此,不同轨道的航天器在进出地影时,热致动态响应是不同的㊂2㊀Boley系数判定方法1956年,Boley[5]从理论上研究单面受突加热流的简支矩形截面梁时,首次引入了惯性项,提出了空间结构热致振动的概念,并提出了无量纲Boley系数B㊂随后,1972年,Boley[6]又定义结构发生热致振动的无量纲参数B为热特征时间与结构特征时间41空间电子技术2020年第6期的比值:B=t T tw(2)上式中:t T为结构的热特征时间(对于矩形截面梁, t T=h2/κ,h为梁的高度,κ为截面高度方向的导温系数);t w为结构特征时间(正比于结构第一阶固有频率的倒数)㊂Boley还提出了放大因子,用以近似计算温度突变引起的结构最大动态位移与最大准静态位移的比值:w dyn/w st=1+11+B2(3)上式中:w dyn为考虑了惯性项的结构最大动态位移; w st为最大准静态位移㊂由式(3)可以看出:w dyn/w st<2,也就是说振动的振幅恒小于其准静态值;当B≫1时,w dynʈw st,在分析突变热流作用下结构的热致响应时,可以不考虑惯性项,采用热致变形的分析方法即可;当B≪1时,w dynʈ2w st,此时不能忽略惯性项的影响,结构的热致动态响应应该为准静态变形与周期性振动的叠加㊂事实上,上述公式只对非耦合的热致振动近似成立,而在耦合分析中可能出现热颤振,w dyn/w st可能远大于2㊂由于大多数航天器上柔性附件振动的模态与悬臂梁较为接近,故Boley系数也能够很好地反应航天器上柔性附件的热致振动情况㊂然而,最新试验表明,较大的Boley系数仍可能引起结构的热致振动[7]㊂3㊀空间结构热致动态响应与热颤振准则研究进展3.1㊀热致动态响应研究进展3.1.1㊀国外研究进展上世纪50年代之前,人们对热-结构关系的认识还只是简单的热致变形,从1956年Boley提出热致振动概念后,才引起人们的关注㊂Boley[5,6]在研究梁与薄板的热致振动时,首次引入惯性项,将瞬态热弯矩代入其动力学方程中,从理论上提出了可用来判断结构是否会发生热致振动的无量纲Boley系数㊂在Boley基础上,不断有学者对梁㊁板㊁壳的热致动态响应情况进行研究㊂Seibert和Rice[8]㊁Mano-lis和Beskos[9]等也都对梁的热致振动进行了理论分析,但导热方程中均不含有高度非线性的辐射换热项㊂Jones[10]考虑了剪切变形㊁转动惯量以及梁轴力,研究了Rayleigh梁和Timoshenko梁在简支条件下轴向与弯曲的热诱发振动㊂Kraus[11]对简支非浅球壳的热致振动情况进行了研究,并指出球壳得出了与梁㊁板完全不同的解,最大位移与准静态位移的稳定值没有同时达到㊂Ray与Lovell[12]研究了薄壁圆柱壳在轴对称突加热载荷作用下的结构响应㊂Tauchert[13]研究了具有两个平行简支边的正交各向异性板表面在快速加热载荷作用下的热致动态响应情况㊂Thornton与Foster[14]研究了热-结构非耦合时悬臂梁的热致动态响应,并指出热流密度越大,结构越不稳定㊂以上学者都只是从理论上证明结构可能会发生热致振动,直到1968年,NASA观测到OGO-IV卫星在昼夜交替时,附件梁产生了热致振动,才证实了Boley理论㊂同年,Beam[15]首次在实验室发现了开口悬臂梁不稳定的弯扭耦合热致振动现象,证实热颤振是存在的㊂该试验具有十分重要的意义,因为在此之前,学者们都只考虑稳定的热致振动情况㊂两个月后, Augusti[16,17]考虑了热-结构耦合,即认为结构变形后,热流的入射角会发生相应改变,如图2所示,首次从理论上证明了开口薄壁杆发生弯扭耦合热颤振是可能的㊂(a)变形前(a)Orginal structuret(b)变形后(b)After deformation图2㊀结构弯曲变形对热流入射角的影响Fig.2㊀Influence of bending deformation onincident angle of heat flow512020年第6期冯雨晴,等:大型空间结构热致动态响应研究综述㊀㊀自从1990年HST在进出地球阴影时,太阳翼发生弯扭耦合的热致振动,此后吸引了更多学者对此进行研究㊂Thornton与Kim[18]研究了HST太阳翼的左/右对称梁在热-结构非耦合与热-结构耦合状态下的热致振动情况㊂他们将截面内的温度拆分为平均温度与摄动温度两项:T(ϕ,t)=T-(t)+T m(t)cosϕ(4)㊀㊀并给出了相应的热颤振准则㊂他们指出:当不考虑热-结构耦合时,梁的热致振动是稳定的;考虑热-结构耦合时,梁可能发生热颤振㊂然而不足的是,他们只是从理论上研究了梁的弯曲振动,实际中太阳翼为弯扭耦合振动㊂Chung与Thornton[19]对HST的太阳翼进行了模态分析,研究表明其最低阶扭转频率0.027Hz远小于最低阶弯曲频率0.097 Hz,根据式(2)可知,该太阳翼很容易被激发扭转形态的热致振动㊂Murozono与Thornton[20]对HST太阳毯中线偏离左/右梁中线55.5mm的非对称左/右梁(图3)进行了屈曲以及准静态热-结构响应的分析㊂研究表明,太阳毯的一阶模态受扭转变形影响,二阶模态主要为弯曲,也包含较小的扭转变形分量,较高的模态则受到弯扭耦合的影响㊂该屈曲结果形式上符合其真实破坏情况,但是不足之处为研究中使用闭口薄壁杆近似代替实际的开口薄壁杆㊂zyLbb1b2Inner BISTEMSolar BlanketOuter BiSTEMSpreader图3㊀HST太阳翼几何非对称模型Fig.3㊀Geometric Asymmetry Model of HST solar array以上文献都是结构热致动态响应理论解,可以发现,以上理论解大多都是建立在简单梁的模型基础上,但是真实的空间结构是十分复杂的,单纯用理论解已经很难完成,除非做很多的简化,这时数值解就应运而生了㊂Mason[21]首次将有限元法引入到结构的热致振动分析中㊂他以简支梁与简支板为模型,首先采用二维平面单元计算出随时间变化的温度梯度,然后将温度场分析得到的等效温度载荷作为节点力施加在结构上,从而求得结构的热致动态响应,并且把有限元方法计算出的结果与理论解进行比对,证明该方法具有可行性㊂Frisch[22]提出在对复杂结构计算热致动态响应时,可以采用商业软件进行分析,如NASTRAN㊁SBAR㊁SINDA㊁TRASYS㊁DISCOS等,但是使用时存在一定的条件,需要确保与时间无关的辐射系数保持恒定㊂Namburu与Tamma[23]使用有限元方法对受线性/非线性热效应和任意热载荷作用下的热致结构动态结构响应进行了分析,但他们使用了普通的三维单元计算,运算量较大,不适用于复杂结构㊂Givoli与Rand[24]发展了一种新的温度单元,他们将温度Fourier展开为平均温度与摄动温度,以此来进行结构温度场的计算,最重要的是这种方法可以使用同一套网格进行温度场与变形场的计算,大大减小了计算量,但是计算过程中平均温度与摄动温度没有解耦,计算效率不够高㊂Chen等[25]采用三维单元先求出结构温度场,随后将其等效为节点力作用在梁结构上,进而求得结构热致动态响应㊂但是他们在进行热分析与结构分析时采用的模型不相同,导致计算量较大,并且只适用于热-结构非耦合的情况㊂可以看出,该方法与Mason[21]方法较为相似,区别在于前者为三维单元,后者为二维单元㊂基于上述基础,Azadi等[26]研究了太阳翼表面压电作动器不同位置以及输入电压对其热致振动的影响㊂Javani等[27]建立了一维瞬态Fourier导热方程,随后采用直接积分法得到了环形扇形板在突加热流作用下任一时刻的位移矢量㊂3.1.2㊀国内研究进展从2000年左右起,国内一些高校与科研机构才开始对空间结构的热致动态响应进行研究㊂虽然起步较晚,却取得了一定的成绩㊂安翔[28]提出了边界耦合的概念,首次给出了空间悬臂梁完整的稳定性条件,并分析了影响悬臂梁稳定性的关键因素㊂目前,清华大学薛明德课题组在该领域颇有建树,他们提出的Fourier温度有限元法可以使结构的温度单元与结构单元共用一套网格并且平均温度与摄动温度解耦,将热致动态响应由理论阶段加速进入了工程阶段㊂薛明徳与丁勇等[29]提出了一种可用来计算薄壁圆杆温度场的Fourier温度有限元法㊂沿杆轴向采用有限元离散,沿周向Fourier展开为三61空间电子技术2020年第6期角函数:T (s ,ζ,t )ʈT 0(ζ,t )+ðNn =1[T Cn(ζ,t )cos nϕ+T Sn(ζ,t )sin nϕ](5)㊀㊀这样一来,圆管温度单元的每个节点有三个自由度:平均温度㊁余弦分布温度幅与正弦分布温度幅㊂且在每个时间步内,这三个自由度互相解耦,从而得到结构温度场㊂该方法相比商业软件,可以减少计算时间㊂不足的是只适用于闭口薄壁杆件,不适用于开口薄壁杆㊂姚海民等[30]在Fourier 温度有限元基础上,求解了结构的动力学响应㊂程乐锦与薛明德[31]发展了一种热-动力学耦合的有限元方法,并研究了热颤振机理㊂李伟等[32,33]将Fourier 温度管单元推广至任意截面形状的闭口薄壁管,并且对卫星刚体-结构附件耦合系统的热-动力学运动稳定性进行了分析㊂段进[34]将Fourier 温度单元推广至单支开口薄壁管,并且考虑了梁单元大转动与截面翘曲的影响,发展了几何非线性热-结构耦合有限元方法㊂图4所示为HST 左右梁开口方向相差20ʎ且热流入射角为80ʎ时,左右梁端部挠度响应图㊂可以看出,线性分析与非线性分析得出完全不同的结果,几何非线性会对其稳定性造成明显的影响㊂范立佳[35]基于前人热致振动的分析方法,发展了一种稳健性优化设计方法来解决LFSS 热致响应的被动控制问题㊂上述研究成果均建立在 截面内温差引起热致动态响应 的理论之上,然而Shen 等[36]指出对于复杂的环形桁架结构,热致振动很可能是由轴向温度梯度引起而非横截面内温差引起,却并未进一步分析论证㊂----- ()/m m 040080012001600/syx图4㊀线性与非线性端部挠度对比图Fig.4㊀Comparison of linear and nonlinearend deflection of beam㊀㊀蒋卓良[37]对太阳能帆板的主梁进行了模态分析,研究表明当主梁的密度与弹性模量随温度升高而降低时,固有频率也相应地降低㊂张海涛[38]综合了天线吸收-发射比㊁约束方式以及阻尼三因素,采用正交试验法对多因素影响下的天线热振动进行了研究㊂Shen 等[39]针对空间可展结构在展开过程中,热载荷对大位移㊁大旋转结构的影响,提出了一种基于绝对节点坐标系的耦合热效应梁模型㊂薛碧洁[40]对索梁结构的热振动进行了研究,她指出Boley 系数不仅适用于线性系统热振动分析,也适用于索梁结构这种非线性系统的热振动分析㊂耿盛韦[41]对考虑几何刚度的柔性太阳翼热致动态响应进行了研究㊂他指出,柔性太阳翼属于大挠性空间结构,柔性阵面无刚框,需作用张紧力来维持阵面刚度,从而引起几何刚度㊂王祥[42]基于Fourier 有限元方法,分析了口径为12.5m 的环形桁架受突加太阳辐射时的热-结构响应㊂左亚帅与刘锦阳[43]以低轨运行的卫星-太阳能帆板为研究对象,提出了一种可以分析其在宇宙空间各种热流作用下刚-柔-热耦合动力学特性的建模方法㊂郑士昆等[44]将结构的应变看作弹性应变与热应变的线性叠加,得到环形桁架天线索网-框架组合结构的热-弹耦合动力学方程㊂Liu 等[45]基于Hamilton 原理,建立了航天器刚-柔耦合动力学模型,并对比了单㊁双太阳能帆板热致动态响应情况㊂当结构发生不受期待的热致振动时,便需要对此进行控制㊂Zhang 等[46]通过在空间结构表面施加控制热流,改变结构内的温度梯度,使结构本身产生受控的热弯矩与热轴力,从而对其热致动态响应进行主动控制㊂何鹏[47]使用作动器并采用新型快速模型预测控制算法(NFMPC)对星载天线的热振动现象进行了主动控制㊂可以看出,目前学者的研究大多集中在理论研究以及计算分析上,进行的相关试验非常少㊂Su 等[7]首次在国内开展了热致动态响应的试验,这也是公开文献中第一个关于复杂结构的热致动态响应试验㊂他们基于薛明德课题组提出的Fourier 有限元程序[29-35],合理设计了空间桁架结构,如图5所示,并对其进行了11种不同工况下的热致动态响应试验㊂试验中观测到与背景温度㊁热流密度以及真空度之间的关系与理论预测一致,并且测得的结构振动频率与理论计算结果一致,验证了理论模型与Fourier 有限元方法的正确性㊂Fan 等[48]通过对一712020年第6期冯雨晴,等:大型空间结构热致动态响应研究综述端固支的细长薄壁管加载与卸载热流,来模拟空间结构进入与离开地影区时的热致振动现象㊂综上所述,热致动态响应的研究大体经过了三个阶段:理论解-数值解-试验㊂frameInclined drawing lock LongeronOriented wheel Fig.5㊀Appearance of space truss3.2㊀热颤振准则研究进展从物理上来说,热致振动的稳定性源于热-结构耦合的影响,其原理为:结构的变形改变了热流入射角,从而改变结构温度,进而影响等效热载荷(包括热轴力㊁热弯矩和热双力矩等),使结构产生了载荷增量㊂若该载荷增量与速度方向一致,则会加剧结构振动,振动是不稳定的即产生热颤振,反之,振动是稳定的[34]㊂Yu [49]以不考虑扭转㊁只考虑弯曲振动并带有末端质量的悬臂梁为模型,得到了热颤振准则㊂然而,Graham [50]指出Yu [49]对边界条件的近似产生了错误的准则,并得到了与Yu[49]完全相反的悬臂梁热颤振准则:当悬臂梁从固定端指向自由端的轴线指向太阳时,结构产生稳定的热致振动;而当轴线背离太阳时,结构产生热颤振㊂Thornton 与Kim [18]给出了HST 太阳翼发生热颤振的准则,他们肯定了Gra-ham [50]的理论,同时又提出从固定端指向自由端的轴线与太阳垂直时,结构产生稳定的热致振动㊂然而,Rimrott 与Abdel-Sayed [51]在实验室中发现了一个与上述准则矛盾的现象:当热流垂直入射时,悬臂梁发生热颤振㊂李伟等[32]针对大型空间结构耦合非线性振动问题,提出了稳定准则的确定方法,并对比了热流入射角以及阻尼比对系统稳定性的影响㊂张军徽[52]指出Graham 与Thornton 提出的热颤振准则是错误的,因为他们在分析非线性系统的稳定性时,没有在系统稳定状态附近分析,却错误地在初始状态附近分析,错误地应用了Lyapunov 稳定性第一方法㊂随后,他得到了空间热流作用下悬臂梁新的热颤振准则:悬臂梁结构不发生热颤振的条件为,空间热流的入射角大于在该入射角下稳定状态时梁自由端的准静态转角㊂Yuan 与Xiang [53]研究了开口悬臂梁的稳定性准则㊂值得注意的是,他们指出在不考虑阻尼时,即使开口悬臂梁初始只发生纯弯曲振动,后期也可能出现扭转失稳,如图6所示㊂nz ZA A-Oy YRZAS 0n YO(a)open beam exposed to solar heat flux0.0.- .0- .0015003000450060007500G e n e r a l d i s p l a c e m e n tTime s/x()rad ()m ()m 10-10336036403920×10-3(b)热致动态响应情况(b)thermally induced dymanic response of open 图6㊀纯弯曲状态下开口梁发生热颤振Fig.6㊀Thermal flutter occurs in the open beam underpure bending state以上热颤振准则都是针对单独附件而言,但真实航天器上的柔性附件与舱体之间是具有耦合效应的,樊孝清[54]从理论上推导出带有柔性附件的航天器热颤振准则,并讨论了热流入射角㊁舱体质量特性㊁设备特性以及阻尼比对热颤振的影响,但不足之处为没有考虑沿梁轴向的导热㊂4㊀未来研究发展趋势因此,针对大型空间结构热致动态响应,未来研81空间电子技术2020年第6期究趋势可能有:(1)学者对于悬臂梁热致动态响应的研究是很多的,但是对于板㊁壳结构的研究较少,主要是因为板㊁壳结构相对于梁结构较复杂,但航天器上的板㊁壳结构也面临热致动态响应情况,故在此方面需进一步深入;(2)以往学者在进行热致动态响应的基础理论研究时,均以单根悬臂梁作为研究对象,故认为结构横截面内存在温差时才会引起热振动,但对空间组合细长杆-梁结构而言,忽略截面内温差的情况是否也会引起热致动态响应尚无学者进行研究,可以对此进行进一步分析;(3)对于复杂结构而言,实际中还存在着部件之间的遮挡效应,影响结构温度的分布,但目前对此方面研究的几乎没有,还需进一步研究; (4)前人对航天器上单独附件的热致动态响应研究较多,而对于航天器舱体-附件耦合热致振动的研究较少㊂然而由于角动量守恒,附件的振动势必会引起航天器舱体姿态的变化,这是未来需要着重考虑的;(5)几何刚度对柔性体(如太阳翼上柔性阵面)的固有模态影响较大,未来在对柔性体进行热致动态响应分析时,需要考虑几何刚度的影响; (6)目前针对复杂结构的研究中,大多没有考虑结构与结构之间的连接情况,例如结构与结构㊁结构与舱体之间多为铰链连接,铰链之间的空隙可能会对热阻产生较大影响,需要进一步研究; (7)目前,针对柔性结构的热致动态响应研究还停留在理论研究方面,国内外相关的试验较少㊂但是理论计算与数值模拟终究需要试验来验证,在地面模拟真实的太空环境(失重㊁低温㊁真空等)需要在真空罐中进行试验,除此之外,真实结构由于尺寸过大,无法放入有限体积真空罐中,故使用局部等效整体(模拟全尺寸结构的频率㊁刚度以及转动惯量等)进行试验是未来的发展趋势㊂5 总结过去的几十年间,在进行航天器发射时,大型的空间结构已经多被折叠成为体积较小的结构,例如可展开太阳能帆板以及可展开天线等,并且未来这些结构将向着尺寸更大㊁质量更轻的方向发展㊂这将不可避免地导致大型空间结构刚度越来越小,当这些结构进出地球阴影时,可能在突变热流作用下产生稳定的热致振动或不稳定的热颤振㊂文中综述了目前国内外学者对热致动态响应研究的最新进展,同时也指出了该领域尚未解决的问题以及未来的发展趋势,包括组件间相互作用对结构热致振动的影响㊁遮挡效应研究㊁舱体-附件耦合研究㊁几何刚度研究㊁铰链连接研究以及相关试验等㊂相信对该领域的研究未来一定具有重要的意义㊂参考文献:[1]㊀Johnston J D,Thornton E A.Thermally induced dynamicsof satellite solar panels[J].Journal of Spacecraft andRockets,2000,37(5):604-613.[2]㊀Foster C L,Tinker M L,Nurre G S,et al.Solar-array-in-duced disturbance of the Hubble Space Telescope pointingsystem[J].Journal of Spacecraft and Rockets,1995,32(4):634-644.[3]㊀Gulick D W,Thornton E A.Thermally-induced vibrationsof a spinning spacecraft boom[J].Acta Astronautica,1995,36(3):163-176.[4]㊀胡其正,杨芳.宇航概论[M].北京:中国科学技术出版社,2010:225-227.[5]㊀Boley B A.Thermally induced vibrations of beams[J].Journal of The Aeronautical Sciences,1956,23(2):179-181.[6]㊀Boley B A.Approximate analyses of thermally induced vi-brations of beams and plates[C]//Journal of Applied Me-chanics,1971:212-216.[7]㊀Su X M,Zhang J H,Wang J,et al.Experimental investiga-tion of the thermally induced vibration of a space boomsection[J].Science China-Physics Mechanics&Astrono-my,2015,58(4):1-9.[8]㊀Seibert A G,Rice J S.Coupled thermally induced vibra-tions of beams[J].AIAA Journal,1973,11(7):1033-1035.[9]㊀Manolis G D,Beskos D E.Thermally induced vibrations ofbeam structures[J].Computer Methods in Applied Me-chanics and Engineering,1980,21(3):337-355. [10]㊀Jones J P.Thermoelastic vibrations of a beam[J].TheJournal of the Acoustical Society of America,1966,39(3):542-548.[11]㊀Kraus H.Thermally induced vibrations of thin nonshallowspherical shells[J].AIAA Journal,1966,4(3):500-505.[12]㊀Ray H,Lovell E G.Thermal vibrations of thin cylindrical912020年第6期冯雨晴,等:大型空间结构热致动态响应研究综述。

非均质材料等效力、热分析综述

非均质材料等效力、热分析综述

非均质材料等效力、热分析综述任懿;杨海天;汪春霆【摘要】实际工程问题中常会涉及非均质材料时间相关的力学、传热分析.这类问题的数值模拟具有重要的工程应用背景与理论探讨价值.一种直接的方式是分别考虑非均质材料组分的物理/几何特性,将问题在空间/时域离散后进行计算,这往往会导致计算量过大,甚至不可行.一个变通的策略是将非均质材料考虑成一种宏观均质材料,进行等效求解,从而大幅降低计算量.分别以粘弹性节理岩体及非均质线性瞬态热传导问题为研究对象,探讨了非均质材料时间相关的等效数值求解方法.【期刊名称】《功能材料》【年(卷),期】2013(044)006【总页数】5页(P761-765)【关键词】时域;非均质;粘弹性;瞬态热传导;材料【作者】任懿;杨海天;汪春霆【作者单位】中国电子科技集团公司第五十四研究所,河北石家庄050081;大连理工大学工业装备结构分析国家重点实验室,辽宁大连116024;中国电子科技集团公司第五十四研究所,河北石家庄050081【正文语种】中文【中图分类】TB3031 引言工程中经常涉及到非均质材料时间相关的力学和热学问题求解。

如粘弹性节理岩体、聚合物复合材料、水泥/沥青混凝土、生物体的肌肉、骨骼等的受力变形分析[1],又如泡沫金属、颗粒增强橡胶、纤维增强塑料、纺织品、层压板、功能梯度材料、超轻材料、仿生材料等的瞬态热传导分析[2]等。

非均质材料时间相关的力、热学分析,一般需进行数值求解。

如在数值计算过程中分别考虑各非均质组分的物理/几何特性,加之时域上的计算,将导致计算量过大,甚至难以承受。

一种变通的方法是采用某种等效方法,将非均质问题转化为一种宏观均质的等效材料/场进行求解,以期大大降低计算量[3]。

本文以粘弹性节理岩体及非均质材料线性瞬态热传导问题为背景,探讨了与时间相关的非均质材料等效分析的数值求解方法。

以下分别对相关的研究现状进行综述。

2 研究进展和现状2.1 粘弹性节理岩体的等效分析粘弹性节理岩体与时间相关的变形特性是相关建筑物基础、边坡、围岩、地下结构物设计与使用中必须计及的重要因素[1],粘弹性节理岩体的数值分析具有重要的实际工程应用价值[3](图1)。

锦屏深埋大理岩破裂扩展的时间效应试验及特征研究_刘宁

锦屏深埋大理岩破裂扩展的时间效应试验及特征研究_刘宁

Experimental research on time-dependent behavior of crack propagation in Jinping deep marble
LIU Ning,ZHANG Chun-sheng,CHU Wei-jiang
(HydroChina Huadong Engineering Corporation, Hangzhou 310014, Ch断扩展,导致强度 随时间的延长而弱化的行为。破裂发展往往发生在 应力水平低于围岩峰值强度,甚至处于弹性状态的 情况下。而这种力学行为最终将导致锚杆可能承受
脆性岩石的时间效应具体到锦屏大理岩的时间 效应是指锦屏大理岩在深埋洞段,当应力达到一定
收稿日期:2011-04-02 基金项目:国家自然科学基金项目(No. 51109221);浙江省博士后科研项目择优资助(No. 2011-bsh-019);中国博士后基金面上项目(No. 20100471757)。 第一作者简介:刘宁,男,1981 年生,博士,高级工程师,主要从事岩石力学与地下工程方面的研究工作。E-mail: liu_n@ 通讯作者:张春生,男,1964 年生,硕士,教授级高工,主要从事水利工程方面的设计与研究工作。E-mail: zhang_cs@
Fig.1
图 1 边墙围岩破裂情况 Failure state of surrounding rock
目前关于脆性岩石的破坏研究的出发点主要是 岩石强度问题。 加拿大 URL 在 20 世纪 90 年代针对 Lac du Bonnet 花岗岩强度进行了系统地试验研究, 确定岩石的起裂强度 ci 和损伤强度 cd ,通过起裂 强度和损伤强度来描述岩石的破裂特性
2438

高分子材料与工程专业英语课文

高分子材料与工程专业英语课文

UNIT 22 Mechanical Properties of Polymers聚合物的力学性能The mechanical properties of polymers are of interest in all applications where polymers are used as structural materials. Mechanical behavior involves the deformation of a material under the influence of applied forces.聚合物的力学性能感兴趣的所有应用中聚合物被用作结构材料。

机械行为涉及材料形变的影响下,施加的力。

The most important and most characteristic mechanical properties are called moduli. A modulus is the ratio between the applied stress and the corresponding deformation. The re-ciprocals of the moduli are called compliances. The nature of the modulus depends on the na-ture of the deformation. The three most important elementary modes of deformation and the moduli (and compliances) derived from them are given in Table 22.1, where the definitions of the elastic parameters are also given. ® Other very important, but more complicated, de-formations are bending and torsion. From the bending or flexural deformation the tensile modulus can be derived. The torsion is determined by the rigidity.最重要和最具特色的机械特性被称为模。

建筑专业英语词汇T

建筑专业英语词汇T

建筑专业英语词汇(T)t beam 字形梁t beam with double reinforcement 复筋丁字梁t beam with single reinforcement 单筋丁字梁t head t形头部t hinge t 型铰链t joist 形托梁t shaped pier 型截面墩t shore 型支柱table 表table of quantities 工卓项目表table vibrator 振动台tack claw 钉爪tack coat 粘结层tackle 复滑车tailbeam 梁尾端tailure in buckling 压曲破坏tall building 高层建筑物tall structures 高层结构物tamped concrete 捣实混凝土tamper 夯具tamper finisher 夯捣式整面机tamping 夯实tamping rod 捣棒tampping beam finisher 夯捣式整面机tangent modulus of elasticity 切线弹性模量tangential flow fan 横羚机tank 箱tap 旋塞tap cock 检查旋塞tap water 自来水tape 带tape measure 卷尺tapered haunch 加腋tar 沥青tar bitumen binder 焦油沥青结合料tar concrete 焦油混凝土tar felt 焦油沥青毡tar paper 焦油沥青毡tarpaulin 焦油帆布team 班technical cadre 技术干部technical condition 技术条件technical design 技术设计technical order 技术规程technical supervision 技术监督technician 技术人员technics 技术technique 技术technology 科学技术tecnical regulations 技术规程tectonics 建筑学tee 三通tee beam 字形梁tee beam and slab construction 形梁板结构tee hinge t 型铰链teegrid 装配式形铺板telemechanics 远动学telemetering 远距离测量telephone 电话机telephone booth 电话亭telephone cable 电话电缆telescopic crane 伸缩吊杆式起重机telescopic metal joist 伸缩式钢铁梁telescoping formwork 伸缩式模板telescoping shoring column 可伸缩支架telpher 小吊车temperate climate 温带气候temperature 温度temperature action 温度酌temperature condition 温度条件temperature control 温度第temperature pick up 温度传感器temperature rebars 温度钢筋temperature reinforcement 温度钢筋temperature shrinkage 温度收缩temperature stresses 温度应力tempered glass 强化玻璃tempered hardboard 加压纤维板template 模板temple 寺templet 模板temporary assembly 临时组合temporary building 临时建筑物temporary construction 临时构筑物temporary dormitory 临时宿舍temporary dwelling 临时性住宅temporary encroachment 临时围护物temporary erection 临时架设temporary fence 临时围栏temporary restroom 临时性休息室temporary services 临时工程设施temporory structure 临时设施tendency 倾向tender 投标tenderer 投标者tendon 钢筋束tendon profile 预应力钢筋腱外形tenement 租用房屋tenement buildings 公寓tenon 榫头tensile capacity 受拉承载能力tensile failure 拉伸破坏tensile forces 拉力tensile reinforcement 受拉钢筋tensile splitting strength 拉裂强度极限tensile strength 抗拉强度tensile stress 抗拉应力tensile test 拉力试验tensile zone 受拉区域tension 拉张tension area 张拉面积tension member 受拉杆件tension pile 受拉桩tension stress 抗拉应力tensioning apparatus 张拉设备tensioning equipment 张拉设备tensioning jack 液压拉伸器tensor 张量tensor analysis 张量分析tent 帐蓬tent barrack 帐蓬工棚tent roof 帐篷状屋顶tentative assembly 试行装配tentative specifications 暂行技术规程terminal 终点站terrace 平台terrace roof 平屋顶terraced garden 平台园terraced houses 台阶式房屋terrazzo concrete 水磨石terrazzo slab 水磨石平板territory 地域territory planning 地域规划tertiary beam 竖向补助梁test 试验test beam 试验梁test certificate 试验证瞄test conditions 试验条件test cube 立方体试块test cylinder 圆柱状试块test data 试验资料test load 试验荷载test pit 探坑test room 试验室testing site 试验现场testing table 试验桌tetragon 四角形tetrahedron 四面体tetrapod 四脚体texture 组织texture brick 起纹砖texturing 织纹状饰面thatch roof 茅草屋顶theatre 剧场theodolite 经纬仪theorem 定理theoretical mechanics 理论力学theory 理论theory of construction 构造理论theory of plastic behavior 塑性理论theory of plasticity 塑性理论theory of plates 板块理论theory of shells 薄壳理论thermal accumulator 蓄热器thermal balance 热量平衡thermal barrier 热障thermal building insulation 建筑物热绝缘thermal comfort 热舒适thermal deformation 热变形thermal dilatation 热膨胀thermal energy 热能thermal expansion 热膨胀thermal field 温度场thermal foil 绝热薄板thermal insulation 热绝缘thermal insulation material 绝热材料thermal insulation slab 绝热板thermal sensation 热感觉thermal shrinkage 热缩thermal stability of heating system 采暖系统的热稳定性thermal storage heating system 贮热式采暖系统thermal stresses 温度应力thermal wheel 滚动式热交换器thermoactive shuttering 传热模板thermocompressor 热压缩机thermodynamic heating system 热泵采暖系统thermodynamical parameter 热力学参数thermodynamics 热力学thermometer 温度计thermoplasticity 热塑性thermosite foam concrete 热矿碴泡沫混凝土thermostat 恒温器thermostatic control 恒温控制thermostatic mixing valve 恒温搅拌阀门thick 厚的thick arch dam 重力拱坝thickness 厚度thickness of section 截面厚度thin 薄的thin consistency 稀粘滞度thin film 薄膜thin shell construction 薄壳结构thin shell precast units 薄壳装配件thin shell structures 薄壳结构thin slab construction 薄板构造thin slab structure 薄板构造thin wall construction 薄壁结构thin walled steel structure 薄壁钢结构thinner 稀释剂thixotropic liquid method 触变液体法thixotropic suspension 触变性悬液thole 圆形房物threaded anchorage 带螺纹的锚杆three bay frame 三跨框架three compartment bin 三室式斗仓three dimensional analysis 三维分析three dimensional module 三维模数three dimensional module house building 立体模数住宅建筑three hinged arch 三铰拱three hinged arch bridge 三铰拱桥three hinged frame 三铰框架three layer construction 三层结构three pined frame 三铰框架three pipe heat supply system 三管式供热系统three quarter bat 砖three quarter brick 砖three way cock 三通阀threshold 阈through beam 贯通梁through tenon 贯穿榫thrust 推力thunderstorm 雷暴tidal marsh 海涂tidal mud flat 海涂tidal power plant 潮汐发电站tidal wave 潮汐波tides 潮汐tie beam 系梁tie element 连系杆件tie wire 绑扎铁丝tied column 箍筋柱tier building 多层建筑物tight working space 有限工住地tightness 气密性tile 瓷砖tile adhesive 花砖胶粘剂tile fixing 贴瓷砖tile floor 瓷砖地板tile mastic 花砖胶粘剂tile roof 瓦屋顶tiled finish 花砖装修tiler work 镶面工作tiling 贴砖tilt up method 立墙平浇建筑法tilting concrete mixer 翻斗式混凝土拌合机tilting drum 倾斜鼓筒tilting force 翻转力tilting load 倾斜载荷tilting mixer 翻斗式混凝土拌合机timber 木材timber boarding 安装木板timber building 木房屋timber connectors 木结构结合件timber construction 木质构造物timber dryer 木材干燥器timber floor 木地板timber frame 木构架timber framed stone construction 木构架石料结构timber grade 木材等级timber pile 木桩timber sheet piling 木板桩timber structure 木结构timbered area 木材林铺盖面积timbre 音色time 时间time card 记时卡片time dependent analysis 非定常解析time dependent deformation 与时间有关的变形time dependent strain 与时间有关的变形time lag 时滞time of setting 凝结时间time schedule 工坐度表time settlement graph 沉陷时间曲线tinners snip 镀锡铁皮剪刀tinning 镀锡tint 色调tinted paint 色辉涂料tip cart 翻斗手推车toe shooting 坝趾填筑爆破法toe wall 坝趾墙toeboard 围护侧板toggle joint 舌槽式接合toilet 盥洗室tone 音质tongue 榫tongue and groove joint 舌槽式接合tool 工具top 顶top bars 上层钢筋top beam 顶梁top edge of foundation 基础的上部边缘top fiber 上层纤维top flange 上翼缘top form 屋顶梁模板top frame member 顶框梁top hinged window 顶铰窗top lighting 上部照明top overhaul 大修理top rail 上横梁top reinforcement 上层钢筋top running crane beam 行行走起重机梁top surface of the beam 梁顶面torpedo gravel 粗粒砂torque 扭转载荷torsion 扭转torsion failure 扭转破坏torsion reinforcement 抗扭配筋torsion strength 扭转强度torsional capacity 扭转载力torsional cracking 扭转开裂torsional load 扭转载荷torsional moment 扭转力矩torsional stiffness 扭转刚度torsional stress 扭转应力total cost 总成本total energy 总能量total floor area 总建筑搞面积total floor area of house 住宅的建筑搞面积total load 总荷载total prefabricated construction 全装配式建筑total strain energy 总应变能量total stress 总应力tough aggregate 硬骨料toughness 粘性tourist city 观光域市tower 塔tower building 塔式建筑tower crane 塔吊tower dwelling 塔式住宅tower gantry crane 塔式龙门起重机tower slewing crane 塔式回转吊机town 城市town center 城镇中心town greenery 城市绿化区town hall 市政厅town house 城市住房town landscaping 市镇风景布置town planner 城市规划者town planning 城镇规划town planning act 城镇规划法town planning area 城镇规划区townlet 小城镇townsfolk 城市居民traced drawing 描图tracery 花纹tracing 描图tracing paper 描图纸track 路径tractor 拖拉机trade effluent 工业废水trade wastes 工业废水trading city 商业城市traffic 交通traffic protection construction 交通保护设施traffic structure 交通结构train 列车trajectory 轨道transfer 传递transfer bond 传递粘结力transfer girder 维持中间柱的骨架桁transfer strength 传递强度transformation 变换transformed composite cross section 换算截面transformed section 换算截面transformer 变压器变换器transit 经纬仪transit mix concrete 运拌混凝土transit mixer 混凝土搅拌车transit mixing 在途搅拌混合料transmissibility 传递率transmission 传导transmission coefficient 渗透系数transmission zone 传送带transom 横梁transom light 镶玻璃气窗transparency 透萌transport 运输transport cost 运输费transporter 运送机transporting cableway 轻便死transverse beam 横梁transverse bending 横向弯曲transverse construction 横断工事transverse contraction 横向收缩transverse cracks 横向裂纹transverse flow fan 横羚机transverse joint 横向接缝transverse load 横向荷载transverse member 横向构件transverse prestress 横向预应力transverse reinforcement 横向钢筋transverse strength 横向强度trapezoid 梯形trass cement 火山灰水泥trass concrete 火山灰混凝土traveling agitator 移动式搅拌器traveling cradle 移动式吊架traveling crane 移动式吊车traveling formwork 活动模板traveling load 移动荷载traveling shuttering 移动式模板traveling stage 移动式脚手架traverse 横梁tread 楼梯踏步板tread width 楼梯级宽treated joint 密封处理的接缝treated pile 防腐处理过的木桩treating load 净化结构载荷treating with concrete 混凝土处理treatment 加工treatment facilities 净化结构treatment plant 净化结构treatment works 净化结构tree and shrub planting 绿化示和乔木栽种tremie 混凝土导管tremie concrete 导管灌注混凝土tremie concreting 用串筒灌注水中混凝土trench 沟trench excavator 挖沟机trench jack 挖沟起重器trencher 挖沟机trenching machine 挖沟机trestle 栈桥trestle bridge 栈桥trestle concreting 栈桥灌筑混凝土trestle ladder 架台梯子trial batch 试拌trial erection 试装配trial load 试验荷载trial mix 试拌trial pit 探坑triangle 三角形triangle of forces 力的三角形triaxial compression test 三轴压缩试验triaxial diagram 三轴图triaxial prestress 三轴预应力triaxial stress state 三轴应力状态triaxial test 三轴压缩试验trickling filter 滴滤器trief cement 湿磨矿渣硅酸盐水泥trimming 镶边triple mould 三层造型triumphal arch 凯旋门troffer 天花板凹槽trolley 手推车trolley ladder 吊梯子trough 槽trough mixer 竖桶式拌和机trowel 泥刀trowel finish 抹光面trowelability 抹光性能troweling 抹灰troweling machine 抹灰机truck 载重汽车truck crane 汽车式起重机truck mixed concrete 运拌混凝土truck mixer 混凝土搅拌车truck mounted distributor 自动配水器truck mounted placing boom 装在汽车的灌筑吊杆truck transit mixer 混凝土搅拌车true azimuth 直方位角true stress 实际应力truncated cone 截锥truncated pyramid 截棱锥trunk road 干线汽车路truss 桁架truss bars 桁架钢筋truss web 桁架梁腹trussed beam 桁梁trussed bridge 桁架桥trussed construction 桁架结构trussed joist 桁架托梁trussed partition 桁架隔墙trussed system 桁架形体系tub 浴盆tub mixer 竖桶式拌和机tubbing 管支柱tube 管;隧道tube and coupler scaffold 有连接钩的管形脚手架tube and coupler shoring 管形有连接钩的支撑tube pile 管桩tube plate 管板tube structure 筒体结构tubular construction 筒体结构tubular design 管结构tubular leg 管状支柱tubular pile 管桩tubular scaffolding 管子脚手架tubular structure 管结构tufa cement 凝灰岩水泥tunnel 隧道tunnel concreting train 隧道管筑混凝土移动式综合装置tunnel form 隧道模板tunnel liner 隧道衬砌机tunnel lining 隧道衬砌tunnel lining machine 隧道衬砌机tunnel machine 隧道掘进机tunnel portal 隧道洞口tunnel work 开挖隧道tunneling 开挖隧道tunneling formwork 隧道模板turbidity 浊度turbidmeter fineness 浊度分析turbine 涡轮turbine mixer 涡轮式拌和机turbine pit 水轮机坑turfed area 铺草皮的面积turfing 铺草皮turn bridge 旋桥turn key type building 一揽子承包式房屋turn key type of contract 整套承包合同turn out wall 翼墙turnover 劳力怜twenty eight day cube strength 二十八天试块强度twin box girder 双箱形梁twin shaft paddle mixer 双轴式桨叶拌和机twin shaft pan mixer 双轴式桨叶拌和机twin twisted bars 双股扭合钢筋twin twisted reinforcement 双股扭合钢筋twin webbed t beam 双腹板梁twist 捻twisted bar 扭杆twisted column 绞绳形柱twisted steel fabric 扭转钢筋网twisting 绞合twisting moment 扭矩twisting moment diagram 扭矩图two aisle building 带两披间的房层two brick wall 两砖墙two coat paint 涂二层漆two coat plastering 抹二层灰two coat work 抹二层灰two family house 双户住宅two hinged arch 双铰拱two hinged structure 双铰结构two leafs door 双扉门two panel door 两格式门two pipe system 双管系统two point suspension scaffold 两点悬挂架空脚手板two point workability test 由双因素试验施工和易性two room dwelling 双房间一户住宅two span bridge 双跨度桥two stage curing 两段养护处理two story bent 两层排架two way reinforced concrete 双向配筋的钢筋混凝土two way reinforcement 双向配筋two way ribbed slab 双向肋板two way slab 双向配筋板two way system 双向配筋twofold window 双折窗扇tying wire 系结钢丝type 型type design 标准设计type house 标准房屋typical apartment building 标准住宅typical construction 标准结构typical floor 标准层。

岩爆

岩爆

观测或预期变形率 u a / a SI = = 极限应变 ε cr
分级 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 挤压程度描述 无挤压 轻度挤压 一般挤压 严重挤压 非常严重挤压
ε cr = 5.84
0 σ ci.88
Q 0.12 Ei0.63
SI
SI<1.0 1.0<SI<2.0 2.0<SI<3.0 3.0<SI<5.0 5.0<SI
Goel & Singh(1999) 根据相对变形对围岩挤压变形程度进行了分级. 指标 相对变形/u/r% 大变形分级 Ⅰ微弱挤压 1.0~3.0 Ⅱ中等挤压 3.0~5.0 Ⅲ高度挤压 >5.0
Singh等(2007)认为极限应变值的确定应当取决于岩块和岩体的性质,并将 隧道周边切向应变的经验值,可通过数值模拟或现场监测分析得 其定义为隧道周边切向应变的经验值 隧道周边切向应变的经验值 到,然后监测得到的应变值与极限应变值之比可被用来量化挤压变形潜势 和修改支护设计.
什么是挤压性围岩? 什么是挤压性围岩?国内外学者从不同角度进行了不同定 义.国外对挤压性围岩的研究比较早也比较系统: 国外对挤压性围岩的研究比较早也比较系统:
1. Terzaghi (1946)—挤压性岩石仅仅指那些含有相当多粘土的岩石 含有相当多粘土的岩石,粘土可 含有相当多粘土的岩石 能是原生的如页岩内的,也可以是蚀变产物.这类岩石可能主要是高岭土类, 或者蒙脱石类的.因此,挤压性岩石范围可能很宽.挤压性岩石缓慢地向隧 道内移动,但并没有明显的体积增加.挤压的首要条件是云母类矿物或粘土 矿物含量高但膨胀能力却很低. 2. Gioda(1982)—挤压意味着时间相依性的变形 时间相依性的变形,是由开挖空间周围的剪应 时间相依性的变形 力集中造成的.偏应变和体积变形都可能出现,后者与岩土介质的膨胀有关. 3. Tanimoto(1984)则假设挤压变形现象是围岩的一种弹塑性行为 弹塑性行为,并认为当 弹塑性行为 岩石应变到其残余塑性状态 残余塑性状态时将发生挤压变形 残余塑性状态 4. O'Rourke(1984)—挤压性地层是指因荷载强度超过其强度 荷载强度超过其强度而在隧道附近出 荷载强度超过其强度 现时间相依性变形 时间相依性变形的地层.挤压性地层的结果是隧道支护结构将在数周甚至 时间相依性变形 数月内经受比初始荷载高数倍的不断增加的荷载.

土木工程专业词汇

土木工程专业词汇

土木工程专业词汇土木(Civil),土木工程(Civil engineering),规划(planning),设计(design),施工(construction),结构(structures),土木工程师(Civil engineers),公共设施(public facilities),隧道(tunnels),大坝(dams),海港(harbors),电厂(power plants),给水(water),排水(sewage),公共交通(mass transit),管线(pipelines),工业的(industrial)、商业的(commercial),住宅的(residential),大型结构(large structures),专业(specialties),专业人员(specialists),电力管线(power lines),场地(site),测量(survey),绘(地形)图(map),岩土的(geotechnical),土工试验(soil experiments),环境的(environmental),地下水(groundwater ),交通(transportation ),结构的(structural),详细设计(detailed designs),设计图(plans),(设计)说明(specifications),施工管理(construction management),监督(supervise),协调(coordinate),材料(materials),人工(labor),费用(costs),估算(estimate)结构工程(structural engineering),设备基础(supports for equipment),滨海(offshore),项目(projects),特种结构(special structures ),发射塔(transmission towers),承受(resist),外力(forces ),自重(the own weight),风(wind),飓风(hurricane),温度(temperature),膨胀(expand),收缩(contract),地震(earthquake),砼(concrete),沥青(asphalt),砖(brick),水利工程(water resources engineering),防洪(prevent floods),供水(supply water ),灌溉(irrigation),维护(maintain ),运河(canals),水闸(locks),大型水电坝(huge hydroelectric dams),水围堰(water impoundments ),岩土工程(Geotechnical engineering),岩土特性分析(analyze the properties of soils and rocks),沉降(settlement),估计(evaluate),加强(strengthen),坡体(slopes),填土(fills),稳定(stability),结构抗震(protect structures against earthquakes),环境工程(environmental engineering),处理(treatment),指定倾倒场(special dump sites),清洁垃圾填埋(sanitary landfills),交通工程(transportation engineering),城市规划师(urban planners),管道工程(Pipeline engineering),安装(installation),强度(strength),压力(pressure)运输工程(transportation engineering),城市规划师(urban planners),管道工程(Pipeline engineering),安装(installation),强度(strength),压力(pressure),施工工程(construction engineering),业主(owners),小区与城市规划(Community and urban planning),开发(develop),摄像(Photogrametry),工程管理(engineering management),工程教学(engineering teaching),咨询(consultants)。

安捷伦纳米压痕仪G200用户手册说明书

安捷伦纳米压痕仪G200用户手册说明书

Features and Benefits• Simple determination of indenter area function and frame stiffness• Accurate, repeatable results compliant with ISO 14577 standard• Electromagnetic actuation allows unparalleled dynamic range in force and displacement• Confi gurable for routine testing or new applications• Modular options for high-speed, scratch, high-temperature, and dynamic testing• Outstanding software with real-time experimental control, easy test protocol development, and precision drift compensation Applications• Semiconductor, thin fi lms,MEMs (wafer applications)• Hard coatings, DLC fi lms• Composite materials,fi bers, polymers• Metals, ceramics• Lead-free solder• Biomaterials, biological andartifi cial tissue OverviewThe culmination of decades of research and development, the Agilent Nano Indenter G200 is the world’s most accurate, fl exible, and user-friendly instrument for nanoscale mechanical testing. Electromagnetic actuation allows the Nano Indenter G200 to achieve unparalleled dynamic range in force and displacement.The Nano Indenter G200 enables users to measure Young’s modulus and hardness in compliance with ISO 14577. The G200 also enables measurement of deformation over six orders of magnitude (from nanometers to millimeters). Furthermore, modular options can be added to accommodate a variety of applications. The capabilities of the G200 can be extended to facilitate high-speed mechanical-properties mapping, frequency-specifi c testing, quantitative scratch and wear testing, integrated probe-based imaging, high-temperature testing, expanded load capacity up to10N, and customizable test protocols. With the Nano Indenter G200, users are able to quantify the relationship between structure, properties, and performance of their materials quickly and easilywith minimal sample preparation.The user-friendly design of the G200 simplifi es training requirements — standard tests can be run on the same day the instrument is installed. EveryG200 is backed by highly responsive Agilent Technologies customer service personnel. Knowledgeableand experienced regional applications engineers are available to guide users through more advanced testing, provide outstanding technical support, and offer unmatched applications expertise.Agilent Nano Indenter G200Data SheetPrecise mechanical testing in the micro- tonano-range of loads and displacements.Figure 1. Schematic diagram of the actuatingand sensing mechanisms of the NanoIndenter G200.2to enhance its actual displacementmeasurement capability. Using standard methods, the displacement resolution of the DCM II is 0.0002nm (0.2 picometers). Even more importantly, real-world testing shows that the noise levels are typically less than an angstrom, ensuring the best resolution of any indenter on the market today. The DCM II has the lowest noise fl oor of any instrument of its type.Continuous StiffnessMeasurement (CSM) OptionIn conventional quasi-static indentation testing, the stiffness of contact is determined by analyzing the force vs. displacement curve during unloading. This depth-sensing method provides a single measurement for the given indentation depth. The AgilentContinuous Stiffness Measurement (CSM) technique, which is compatible with both the XP and the DCM II indentation heads, satisfi es application requirements that must take intoaccount dynamic effects, such as strain rate and frequency.The CSM option offers a means of separating the in-phase and out-of-phase components of the load-displacement history. This separation provides an accuratemeasurement of the location of initial surface contact and continuous measurement of contact stiffness asa function of depth or frequency, thus eliminating the need for unloading cycles.This makes CSM a powerful tool not only for stiff materials such as metals, alloys, and ceramics but also fortime-dependent materials like polymers, structural composites, and biomedical materials.The state-of-the-art CSM option provides the only means available to both fully characterize dynamic properties in the nanometer range and accurately characterize viscoelastic materials providing values such asstorage modulus. Indentation tests using CSM can be controlled with a constant strain rate, a critical test parameter for material systems such as pure metals or low-melting-point alloys, and polymer fi lms and fi lm / substrate systems.Ultra-Fast Express Test OptionDesigned for exclusive use with the G200, Agilent’s new Express Test option allows 100 indents to be performed at 100 different surface sites in 100 seconds! Highly versatile, easy-to-use Express Test methods are ideal forapplications that involve metals, glasses, ceramics, structural polymers, thin fi lms, and low-k materials. And now with NanoSuite 6.2 users can automatically generate histograms and 3D mechanical-properties maps. Graphs and supporting data are easily exported to Excel. In order to achieve these revolutionary measurements, the G200 must be confi gured with a DCM II indentation head, Agilent’s NanoVision stage option, and the new Express Test option.Lateral Force Measurement (LFM) OptionThere are several additionalperformance-extending Nano Indenter G200 options available for use with the standard XP indentation head. The Agilent Lateral Force Measurement(LFM) option provides three-dimensional quantitative analysis for scratch testing, wear testing, and MEMS probing. This option enables force detection in the XAdvanced DesignAll nanoindentation experiments rely on the accuracy of the fundamental load and the displacement data, requiring the highest precision control of load applied to the sample. The Nano Indenter G200 is powered by electromagnetic actuation-based force transducers to ensure precise measurements. The instrument’s unique design avoids lateral displacement artifacts.Among the many benefi ts of the Nano Indenter G200 design are convenient access to the entire sample tray,excellent sample positioning accuracy, easy viewing of the sample position and the sample work area, and simplicity in sample height adjustment to speed test throughput. A modular controller design is optimized for future upgrading. In addition, the G200 conforms toISO 14577 to ensure data integrity, gives users the ability to program experiments with each force transducer and switch between them at any time, and has an optimized lateral footprint to conserve lab spaceNew Enhanced DynamicContact Module II OptionThe Nano Indenter G200 standard confi guration utilizes the Agilent XP indentation head, which delivers <0.01nm displacement resolution and >500µm maximum indentation depth. To extend the range of load-displacement experimentation to the surface contact level, the G200 can be equipped with the new Agilent Dynamic Contact Module II (DCM II) option. This option offers all of the impressive performance afforded by Agilent’s original DCM option as well as several new advantages, including 3x higher loading capability (30mN max load), easy tip exchange for quick removal and installation of application-specifi c tips, and a full 70µm range of indenter travel.With the DCM II option, researchers can study not only the fi rst few nanometers of an indentation into the surface of a material, but even the pre-contact mechanics. At this scale, the noise level of the indentation system is optimizedFigure 2. This SEM image shows indents made at the base of a cantilever beam. The Nano Indenter G200 is uniquely suited for testing both MEMS and component materials for two reasons. First, the actuating and sensing mechanisms allow an unparalleled combination of range and resolution. Second, the controlling software is test-method based — there is no confi guration or calibration of hardware.3and Y directions to examine shear forces. Tribological studies benefi t greatly from the LFM option for determination of the critical load and coeffi cient of friction over the scratch length.High Load OptionThe capabilities of the Nano Indenter G200 can also be enhanced via the Agilent High Load option. Designed for use with the standard XP indentation head, this option expands the load capabilities of the Nano Indenter G200 up to 10N of force, allowing the complete mechanical characterization of ceramics, bulk metals, andcomposites. The High Load option has been engineered to avoid sacrifi cing the instrument’s load and displacement resolutions at low forces while seamlessly engaging at the point in the test protocol when extra force is required.Heating Stage Option This option, which is compatible with the standard XP indentation head, facilitates the study of materials of interest as they are heated from room temperature to as high as 350ºC. To ensure reliable data, the system’s software compensates for drift associated with heating.New Enhanced NanoSuite 6.2 Professional SoftwareEvery Nano Indenter G200 comes withAgilent NanoSuite 6.2 Professionalsoftware, a premium-performancepackage that gives researchers inscientifi c and industrial settings anunprecedented combination of speed,fl exibility, and ease of use. NanoSuite 6.2 offers a variety of prewritten testmethods, including an exclusivenanoindentation technique for makingsubstrate-independent measurements of thin fi lm materials, several noveltechniques for testing polymers,and improved scratch test methods.Agilent’s fi eld-proven method for testingin compliance with ISO 14577, theinternational standard for indentation testing, is provided as well.NanoSuite 6.2 includes a fully integrated tool that greatly simplifi es thedetermination of indenter area functionand load-frame stiffness. Once a ratherinvolved and time-consuming endeavor,this process now requires only a coupleof mouse-clicks within the NanoSuite 6.2 program. Prewritten methods for testing gels (DCM II indentation head and CSM option required) and for measuring strain-rate sensitivity (XP indentationhead and CSM option required) areincluded in NanoSuite 6.2.Additional new capabilities allow a standard batch of tests comprising 25 or more samples to be set up in 5minutes or less, 2D and 3D graphs, and histograms to be plotted on-screenand exported directly to Microsoft Excel while preserving all labels and scales,and sample fi les to be organized byproject and subproject. NanoSuite 6.2 also provides Microsoft Windows 7(32-bit) compliance for current systems and a convenient PDF printer to replace hardware printers.As in the package’s previous iteration, an intuitive interface allows users to set up and run experiments quickly— changing test parameters as often as desired — with just a few clicks. NanoSuite 6.2 offers support of small force/displacement measurements,surface topology, stiffness mapping, scratch tests, and more. Versatile imaging capabilities, a survey scanning option, and streamlined test method development help researchers get from testing to results in record time.NanoVision OptionThe Agilent NanoVision option for the Nano Indenter G200 is used to probe the surface of a sample, generating a 3D map of the surface. Backed by decades of nanomechanical testing experience, the NanoVision nanomechanical microscopy option delivers quantitative imaging by coupling a linear electromagnetic actuation-basedindentation head with a closed-loop nanopositioning stage. NanoVision allows users to create quantitative high-resolution images using a Nano Indenter G200, target indentation test sites with nanometer-scale precision, and examine residual impressions in order to quantify material response phenomena such as pile-up, deformed volume, and fracture toughness. This option also lets users target and characterize individual phases of complex materials.Nanoindentation instruments from Agilent Technologies conform to the ISO 14577 standard (Metallic materials — Instrumented indentation test forhardness and materials parameters), delivering confi dence in test accuracy andrepeatability. These state-of-the-art solutions ensure reliable, high-precisionmeasurement of nanomechanical properties for research and industry.Figure 3. Fracture toughness by Nanoindentation. Left image: A 24 x 24µm scan of a 1200nm deep indent in silica. Crack features accentuated. Right image: An enlarged image of the indent taken straight from the NanoSuite 6.2 review page.Agilent Nano Indenter G200 SpecificationsStandard XP Indentation HeadDisplacement resolution <0.01nmTotal indenter travel 1.5mmMaximum indentation depth >500µmLoad application Coil / magnet assembly Displacement measurement Capacitance gaugeLoading capabilityMaximum load (standard) 500mNMaximum load with DCM II option 30mNMaximum load with High Load option 10NLoad resolution 50nNContact force <1.0µNLoad frame stiffness ~5 x 106N/mIndentation placementUseable surface area 100mm x 100mmPosition control Automated remote with mouse Positioning accuracy 1µmMicroscopeVideo screen 25x (x objective mag.)Objective 10x and 40xDCM II Indentation Head OptionDisplacement resolution 0.0002nm (0.2 picometers) Range of indenter travel 70µmLoading column mass <150mgLoad application Coil / magnet assembly Displacement measurement Capacitance gaugeTypical leaf spring stiffness ~100N/mTypical damping coeffi cient 0.02Ns/mTypical resonant frequency 120HzLateral stiffness 80,000N/mLoading capabilityMaximum load 30mN (13gm)Load resolution 3nN (0.3µgm)LFM OptionMaximum lateral force >250mNLateral resolution <2µNMaximum scratch distance >100mmScratch speed 100nm/s up to 2mm/sHigh Load OptionMaximum force 10NLoad resolution ≤1mNMaximum indentation depth ≥500µmDisplacement resolution 0.01nmFrame stiffness ≥5 x 106N/mNanoVision OptionX-Y scan range 100µm x 100µmZ scan range Indentation head dependent Positioning accuracy ≤2nmResonant frequency >120Hz Nano Mechanical Systems from Agilent TechnologiesAgilent Technologies, the premier measurement company, offers high-precision, modular nano-measurement solutions for research, industry, and education. Exceptional worldwide support is provided by experienced application scientists and technical service personnel. Agilent’s leading-edge R&D laboratories ensure the continued, timely introduction and optimization of innovative, easy-to-use nanomechanical system technologies. /find/nanoindenter AmericasCanada (877) 894 4414 Latin America 305 269 7500 United States (800) 829 4444Asia Pacifi cAustralia 1 800 629 485 China 800 810 0189Hong Kong 800 938 693India 1 800 112 929 Japan 0120 (421) 345 Korea 080 769 0800 Malaysia 1 800 888 848 Singapore 180****8100T aiwan 0800 047 866 Thailand 1 800 226 008 Europe & Middle EastAustria 43(0)136****1571 Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15 Finland 358 (0) 10 855 2100 France 0825 010 700**0.125 €/minute Germany 49 (0) 7031 464 6333 Ireland 1890 924 204Israel 972-3-9288-504/544 Italy 39 02 92 60 8484 Netherlands 31 (0) 20 547 2111 Spain 34 (91) 631 3300 Sweden 0200-88 22 55 Switzerland 0800 80 53 53 United Kingdom 44 (0) 118 9276201 Other European Countries:/fi nd/contactus Product specifi cations and descriptions in this document subject to change without notice.© Agilent Technologies, Inc. 2013 Printed in USA, March 1, 20135990-4172EN Rev.E。

建筑材料的一些专业英语5

建筑材料的一些专业英语5

[1]property:[ ‘pr opəti ]n.性能、性质、特性[2]hardened concrete:硬化混凝土[3]fresh concrete:新拌混凝土[4]deformation:[ ,di:fo:'mei∫ən ]n.变形,形变;畸变,失真[5]load:[ 'ləud ] n.荷载,装载,荷重,载重,负荷[6]durability:[ ,djuərə'biliti ] n.耐久性[7]permeability:[ ,pə:miə'biliti ]n.渗透性,透气性,道磁性,渗透性,透水性,渗透率[8]shrinkage:[ '∫rinkidЗ ]n.收缩,下沉[9]water-retaining structures:挡水结构[10]objective:[ əb'dЗektiv ] n.物镜,目标,目的[11]concrete in situ:现浇混凝土;in situ:在现场,就地[12]nondestructive [ ,nondis'trΛktiv ] test:非破坏性试验,无损检验[13]stress:[ stres ] n.应力[14]compression:[ kəm'pre∫(ə)n ] n.加压,压力,压缩,压缩,背震中,压型化石[15]specification:[ ,spesifi'kei∫ən ]n.详述, 规格, 说明书, 规范[16]brittle[ 'britl ]adj.脆的,易碎的[17]tension:[ 'ten∫ən ] n.张力,拉力[18]mix proportions:配合比[19]compaction:[ kəm'pæk∫ən ]n. 压实,致密,紧束之状态[20]curing:[ 'kjuəriŋ ]n.养护;固化[21]pavement:[ 'peivmənt ]n. 铺砌层, 路面, 铺地材料;人行道, 公路[22]steel reinforcement:钢筋[23]BS:abbr. 英国标准(British Standard)[24]specimen:[ 'spesimin, -mən ] n.试件,样品,样本[25]curing tank:养护池,腌缸, 腌制槽[26]flexural ['flek∫ərəl] strength:抗折强度,抗弯曲强度,挠曲强度[27]modulus of rupture:挠曲(极限)强度,折断系数,断裂(弯折,挠折)模量,断裂模数;modulus:[ 'modjuləs ]n.系数, 模数,模量,率值[28]split cylinder test:劈裂圆柱试验;split:[ split ]v.劈开, (使)裂开, 分裂, 分离;cylinder:[ 'silində ]n.圆筒, 圆柱体, 辊,滚柱;量筒;钢瓶[29]plane:[ plein ]n.平面, 飞机, 水平, 程度, 刨[30]diameter:[ dai'æmitə ]n.直径[31]simply supported plain concrete beam:简支素混凝土梁;plain concrete:素混凝土,无筋混凝土[32]its third points:它的每个三分之一处[33]as a guide:原则上[34]constituent:[ kən'stitjuənt]n.成分,组分,构成[35]fineness:[ 'fainnis ]n. 细度, 纯度;fine:[ fain ]adj. 细的, 美好的, 杰出的, 稀薄的[36]chemical composition:化学成分[组成][37]tricalcium silicate:n.硅酸三钙(C3S);tricalcium:[ trai'kælsiəm ]n.三钙;silicate:[ 'silikit ]n.[化]硅酸盐[38]dicalcium silicate:n.硅酸二钙(C2S);dicalcium:[ dai'kælsiəm ]n.二钙[39]eventually:[i'ventjuəli]adv.最后, 终于[40]gel:[ dЗel ]n.凝胶体,凝胶[41]water-cement ratio:水灰比(w/c);ratio:[ 'rei∫iəu ]n.比, 比率;the ratio of sth. to sth.:…与…之比[42]void:[ void ]n. 空隙,孔隙;adj. 空白的,空的[43]facilitate:[ fə’siliteit ]vt.(不以人作主语的)使容易, 使便利, 推动, 帮助, 促进[44]placing:n.浇筑,安装[45]in excess of:超过(多于),较...为多[46]porous:[ 'po:rəs ]adj.多孔的,多孔状,疏松的[47]with a view to:着眼于, 以...为目的, 考虑到[48]illustrate:[ 'iləstreit ]vt.举例说明, 图解, 说明[49]matrix:[ 'meitriks ] n.胶结材料,填充料,基质[50]interface:[ 'intə(:),feis ] n.界面,分界面,接触面[51]bond:[ bond ] n.结合,连接,粘结[52]surface texture:表面状态, 表面特性, 表面质量, 表面结构;texture:[ 'tekst∫ə ]n.结构,组织,饰纹,纹理,网纹[53]cleanliness:[ 'klenlinis ] n.清洁度,净度[54]rounded:[ 'raundid ]adj.全面的, 圆形的[55]angular:[ 'æŋgjulə ] adj.角的,有棱角的,带角的,棱角状的[56]irregular:[ i'regjulə ]adj.不规则的, 无规律的[57]rough:[ rΛf ] adj.粗糙的,不平的,粗制的[58]workability:[ ,wə:kə'biliti ]n.和易性,工作性,可加工性,可成形性[与可塑性有关],可操作性[59]coating:[ 'kəutiŋ ]n.涂料;涂层,粘胶;(回转窑)窑皮[60]silt:[ silt ]n.粉砂,淤泥[61]clay:[ klei ] n.粘土,泥土[62]weathered:[ 'weðəd] adj.风化的[63]decomposed:[ ,di:kəm'pəuzd ] adj.已分解的,已风化的[64]sound:[ saund ] adj.健全的,强壮的; n.声音,音响[65]beneath:[ bi'ni:θ ] prep.劣于,在...之下,不配; adv.在下面[66]be opposed [ ə'pəuzd ] by:被……抵消[67]available:[ ə'veiləbl ]adj.可用到的, 有效的, 可利用的, 有空的[68]optimum:[ 'optiməm ]adj.最佳,最适宜的[69]richness:[ 'rit∫nis ]n. 丰富,富饶,富度,丰满度[70]grading:[ 'g reidiŋ ]n.颗粒级配,分等,分级[71]provided:[ prə:'vaidid ]conj.只要,倘若;预备好的[72]due:[ dju: ] adj.应得的, 应付的, 正当的, 预期的, (车、船预定)应到的[73]segregation:[ ,segri'g ei∫ən ]n.分层,离析[74]suitability:[ ,sju:tə'biliti ]n.合适, 适当, 相配, 适宜性,适应性,适用性[75]to some extent:在某种程度上,有点儿[76]alkaline:[ 'ælkəlain ]adj.[化]碱的, 碱性的[77]usage:[ 'ju:zidЗ ] n.使用,习惯,用法[78]accelerator [ æk'seləreitə ]:n.早强剂;促凝剂;促进剂[79]air-entraining [ in'treiniŋ ] agent:air entrainer [ in'treinə ],加气剂[80]concrete:[ 'konkri:t ]adj.具体的,有形的;n.混凝土;v.用混凝土修筑,浇混凝土,凝结[81]dosage:[ 'dəusidЗ ]n. 配料量;剂量,用量[82]effectiveness:[ i'fektivnis ] n.效率,有效性,能行性[83]constant:[ 'konstənt ]n.[数、物]常数, 恒量;adj.不变的, 持续的, 坚决的[84]air content:含气量[85]preparation:[ ,prepə'rei∫ən ] n.预加工,配制,准备工作[86]consistent:[ kən'sistənt ] adj.一致的(相容的,坚实的)[87]homogeneous:[ ,homəu'dЗi:njəs ] adj.均匀的,均质的,均一的[88]probability:[ ,probə'biliti ]n.可能性, 或然性, 概率[89]bleeding:[ 'bli:diŋ ]n.泌水性;析水;色料渗开;印流[涂料][90]honeycombing:[ 'hΛnikəumiŋ ]n.蜂窝结构,蜂窝麻面[91]operative:[ 'opərətiv, 'opəreitiv ] n.职工,技工[92]prerequisite:[ 'pri:'rekwizit ] n.先决条件[93]moisture:[ 'mo ist∫ə ]n. 湿度,水分,潮湿,湿气[94]evaporation:[ i,væpə'rei∫ən ]n.蒸发(作用)[95]relative humidity:相对湿度;humidity:[ hju:'miditi ]n. 湿度,湿气,潮湿[96]velocity:[ vi'lositi ] n.速度, 速率,周转率[97]initial:[ i'ni∫əl ] adj.初始的,最初的,开始的[98]moist curing:湿养护,雾室养护;water curing:水处理,水养护[99]apparent [ ə'pærənt ] strength:表观强度[100]resumption:[ ri'zΛmp∫ən ] n.收回,恢复,重新开始[101]the product of age and curing temperature:时度积;product:n.产品,产物,乘积[102]maturity:[ mə'tjuəriti ] n.成熟度,熟成度,老化[103]applicability:[ ,æplikə'biləti ] n.适用性,适应性[104]interpret:[ in'tə:prit ] v.解释, 说明, 口译, 通译[105]square prism:正四棱柱体;prism:[ 'prizəm ]n.[物]棱镜, [数]棱柱[106]height-diameter ratio:高度-直径比[107]platen:[ 'plætən ] n.压板,台板,压机压板[108]slenderness:[ 'slendənis ] n.细长度[109]moisture content:含水量[110]correction factor:修正系数,修正因数,校正系数;correction:[ kə'rek∫ən ]n.改正, 修正[111]air-dry:[ 'εədrai ] adj.完全风干状态的[112]saturated:[ 'sæt∫əreitid ]adj.饱和的,渗透的,深颜色的[113]wet concrete:塑性混凝土,水灰比高的混凝土[114]differential shrinkage:不均匀收缩,差示收缩量,差异收缩量;differential:[ ,difə'ren∫əl ]n.有差别的,差动的,微分的[115]lateral confining pressure:侧限压力;lateral:[ 'lætərəl ] adj.横(向)的, 侧面的;confining:[ kən'fainiŋ ] adj.限制的;拘束的;狭窄的;偏狭的[116]static loading:静载荷, 静负荷;static:[ 'stætik ]adj.静态的, 静力的[117]nominal strength:标称强度;nominal:[ 'nominl ] adj.额定的,标称的,名义上的[118]extent:[ iks'tent ]n.广度, 宽度, 长度, 范围, 程度, 区域[119]predominantly:[ pri'dominəntli ] adv.主要地;最显著地;占优势地[120]fatigue:[ fə'ti:g ] n.疲劳,疲乏[121]static strength:静力强度,静强度[122]frequency:[ 'fri:kwənsi ] n.频率,同率,次数[123]sustained load:持续载荷,持久加载,持续荷载;sustained:[ səs'teind ]adj.持续的,持久的[124]duration:[ djuə'rei∫ən ] n.持续,持续时间[125]consolidation:[ kən,soli'dei∫ən ] n.强化,固结[126]elastic deformation:弹性变形,弹性挠度;elastic:[ i'læstik]adj.弹性的[127]time-dependent deformation:时间相关的变形[128]creep:[ kri:p ] n.徐变,蠕变[129]nonlinear:[ 'non'liniə ] adj.非线性的,非直线的[130]quasi [ 'kwa:zi(:), 'kweisai ] -elastic:adj.准弹性的,似弹性的[131]modulus of elasticity:弹性模量,弹性系数,杨氏模量;elasticity:[ ilæs'tisiti ]n.弹性,弹力[132]Poisson’s ratio:泊松比,横向变形系数[133]strain:[ strein ] n.应变,变形,形变,过滤[134]deflection:[ di'flek∫ən ] n.挠度,变位,偏转[135]initial tangent modulus:初始切线模量,原切模数;tangent modulus:切线模量,切线模数,切向模量;tangent:[ 'tændЗənt ] n.切线, [数]正切[136]the secant modulus:割线模量,割线[正割]模数;secant:[ 'si:kənt ] n.割线, 正割[137]take into account:考虑(注意),顾及[138]stress-strain curve:应力—应变曲线[139]axial:[ 'æksiəl, -sjəl ] adj.轴的,轴向的[140]laterally:[ 'lætərəli ] adv.在侧面,横向地[141]multiphase:[ 'mΛl tifeiz ] n.多相; adj.多相的[142]stiffness:[ 'stifnis ] n.劲度,刚度,硬度[143]uniaxial:[ 'ju:ni'æksiəl ] adj.单轴的,同轴的[144]instantaneous:[ ,instən'teinjəs ] adj.瞬间的, 即刻的, 即时的[145]gradual:[ 'grædjuəl ] adj.逐渐的,逐步的,渐进的[146]creep recovery[ ri'kΛvəri ]:徐变(蠕变)回复[147]reversible:[ ri'və:səbl ] adj.可逆的[148]permanent:[ 'pə:mənənt ] adj.永久的,持久的[149]underestimate:[ '5Λndər'estimeit ] n.估计不足,低估[150]stability:[ stə'biliti ]n.稳定性,稳定度[151]prestressed [ 'pri:'stresd ] concrete:预应力混凝土[152]allowance:[ ə'lauəns ] n.允许,考虑,容限,间隙,修正量,补助,容许[153]prestressing tendons:预应力钢筋,预应力钢丝束;tendon:[ 'tendən ] n.[解]腱;钢丝束,锚索[154]with respect to:prep.关于,就...而论,相对于[155]be directly proportional to:正比于,与...成正比[156]equation:[ i'kwei∫ən ]n.相等, 平衡, 综合体, 因素, 方程式, 等式[157]assumption:[ ə'sΛmp∫ən ]n.假定, 设想, 假设[158]deterioration:[ di,tiəriə'rei∫ən ]n.变坏, 退化, 堕落[159]weathering:[ 'weðəriŋ ]n.侵蚀,风化,老化,风蚀,[玻璃]失去光泽[160]wear:[ wiə ]n.磨损,磨蚀,损耗[161]alkali-aggregate reaction:碱-集料反应, 碱-骨料反应;alkali:[ 'ælkəlai ]n.[化]碱,碱金属;adj.碱性的[162]absorption:[ əb'so:p∫ən ]n.吸收(作用)[163]permeability:[ ,pə:miə'biliti ]n.渗透性,透气性[164]freezing and thawing:冻融;thawing:[ 'θo:iŋ ]n.熔化;融化[165]pore water:孔隙水,间隙水;pore:[ po: ] n.细孔,孔隙,气孔,微孔[166]hydraulic pressure:水压,液压;hydraulic:[ hai'dro:lik ]adj.水力的, 液压的[167]kerb:[ kə:b ] (=curb) n.路边石,路缘,路缘石[168]slab:[ slæb ] n.平板,铺石板,厚片[169]dam:[ dæm ] n.水坝,堤,水闸,坝,水闸[170]reservoir:[ 'rezəvwa: ] n.水库, 蓄水池[171]susceptible:[ sə'septəbl ]adj.易受影响的, 易感动的, 容许...的[172]frost:[ frost, fro:st ]n.霜, 霜冻, 严寒[173]impermeability:[im,pə:mjə'biliti]n.抗渗性,不渗透性[174]de-icing:n.除冰,防冻[175]drainage:[ 'dreinidЗ ] n.排水, 排泄, 排水装置, 排水区域, 排出物, 消耗[176]joint:[ dЗoint ]n.接头,接缝,结点,结合,节理[177]leaching:[ 'li:t∫iŋ ] n.浸出,浸析,溶析[178]sulphate attack:硫酸盐侵蚀;sulphate:[ 'sΛlfeit ]n.[化]硫酸盐[179]dissolve:[ di'zolv ]n.溶解,解散,熔化[180]hydraulic structure:水工建筑物,水工结构[181]construction joint:施工缝,工作缝, 结构缝,伸缩缝;construction:[ kən'strΛk∫ən ]n.建筑, 建筑物, 解释, 造句[182]dense:[ dens ] adj.致密的,稠密的[183]cracking:[ 'krækiŋ ] n.裂缝,裂纹[184]sulphoaluminate:[ ,sΛlfə,ə'lju:mineit ] n.硫代铝酸盐[185]intensity:[ in'tensiti ]n.强度,烈度,亮度[186]magnesium sulphate:硫酸镁;magnesium:[ mæg'ni:zjəm ]n.[化]镁[187]vigorous:[ 'vigərəs ]adj.精力旺盛的, 有力的, 健壮的[188]supersulphated[ sju:pə'sΛlfeit id ] cement:高硫酸盐(石膏矿渣)水泥[189]high-alumina cement:高铝水泥;alumina:[ ə'lju:minə ]n.[化]氧化铝(亦称矾土) [190]impermeable:[ im'pə:mjəbl ]adj.不能渗透的, 不渗透性的[191]CP:(the Code [ kəud ] of Practice)实施法规[192]house:[ haus ] vt.收容(收藏)[193]bitumen:[ 'bitjumin ]n.沥青[194]tar:[ ta: ]n.焦油,柏油[195]epoxide[ e'poksaid ] resin[ 'rezin ]:环氧树脂[196]cavitation:[ ,kævi'tei∫ən ] n.空洞现象,空洞,成穴,空蚀,气穴[197]cavitation erosion:气蚀, 空隙腐蚀;erosion:[ i'rəuЗən ]n.腐蚀,风化[198]be lined with:排有,排满[199]abrasion:[ ə'breiЗən ]n.磨损,磨蚀[200]tough:[ tΛf ] n.坚韧的,不易磨损的[201]silica gel:硅胶;silica:[ 'silikə ]n.硅石,二氧化硅[202]disintegration:[ dis,inti'g rei∫ən ]n.瓦解[203]chert:[ t∫ə:t ]n.燧石, 黑硅石[204]siliceous limestones:硅质灰岩;siliceous:[ si'li∫əs ]adj.硅质的,含硅的,硅酸的;limestone:[ 'laimstəun ]n.石灰石,石灰岩[205]volcanic rocks:火山岩;volcanic:[ vol'kænik ]adj.火山的, 象火山的[206]soda:[ 'səudə ] n.苏打,纯碱,碳酸钠[207]equivalent:[ i'kwivələnt ]n.相等物,当量[208]pozzolanic:[ ,potsə'la:nik ]adj. 火山灰质的,凝硬性的,火山灰的[209]plastic state:塑(性状)态[210]watertightness:[ 'wo:tətaitnis ] n.不透水性,防水性,水密性[211]porosity:[ po:'rositi ]n.孔隙率,多孔性, 有孔性[212]settlement:[ 'setlmənt ]n.沉降,沉积,下沉[213]plastic shrinkage:塑性收缩[214]autogenous [ o:'to dЗinəs ] shrinkage:自生收缩,自然收缩[215]drying shrinkage:干燥收缩,干缩[216]movement joint:活动缝,施工缝[217]hessian:[ 'hesiən ] n.粗麻布[218]polythene:[ 'poli,θi:n ] n.聚乙烯[219]membrane curing:薄膜养护;membrane:[ 'membrein ]n.膜, 隔膜[220]net:[ net ] adj.净余的, 纯粹的[221]as the name implies:顾名思义[222]draw out:拔出, 抽出,拉长[223]capillary pore:毛细管,毛细孔;capillary:[ kə'piləri ]n.毛细管;adj.毛状的, 毛细管的[224]immersion:[ i'mə:∫ən ] n.沉浸[225]distribution:[ ,distri'bju:∫ən ] n.分布,分配,分类[226]be inversely proportional to:反比于,与...成反比[227]aggregate-cement ratio:集灰比,骨料水泥比[228]be compatible [ kəm'pætəbl ] with:和...相适合,不矛盾[229]swelling:[ 'sweliŋ ]n.膨胀,肿胀[230]deflection:[ di'flek∫ən ] n.挠度,变位,偏转[231]specific surface area:比表面积;specific:[ spi'sifik ]adj.比…,单位…;特殊的,对比的;特定的,特效的[232]overshadow:[ ,əuvə'∫ædəu ] v.遮蔽, 使...失色[233]ignition loss:灼烧损失,烧失量;ignition:[ ig'ni∫ən ] n.点火,着火,灼烧[234]reinforced [ ,ri:in'fo:sd ] concrete:钢筋混凝土[235]vibrational [ vai'brei∫ənəl ] methods:振动法[236]uniformity:[ ,ju:ni'fo:miti ]n. 均匀性, 一致性, 统一性[237]flaw:[ flo: ]n.裂缝,缺陷,瑕疵[238]hardness methods:硬度法;hardness:[ 'ha:dnis ]n.硬度[239]resonance method:共振法,谐振法;resonance:[ 'rezənəns ]n.共鸣, 回声, 反响, 中介, 谐振, 共振[240]dynamic modulus of elasticity:动弹性模量;dynamic:[ dai'næmik ]adj.动力的, 动力学的, 动态的[241]well-defined:adj.意义明确的,轮廓分明的[242]longitudinal:[ lo ndЗi'tju:dinl ]adj.经度的, 纵向的[243]torsional:[ 'to:∫ənəl ] adj.扭转的; 扭力的[244]exciter:[ ik'saitə ]激振器,励磁机,激励器[245]pick-up units:检测装置[246]bring into contact with:使接触,使与...联系[247]variable-frequency oscillator:变频振荡器;oscillator:[ 'osileitə ]n.振荡器[248]amplification:[ ,æmplifi'kei∫ən ] n.放大,扩大,推广[249]amplitude:[ 'æmplitju:d ] n.振幅,幅度[250]meter:[ 'mi:tə ]n.米,仪器,仪表[251]natural frequency:固有频率[252]density:[ 'densiti ]n.密度,浓度,稠度[253]static modulus of elasticity:静弹性模量;static:[ 'stætik ]adj.静态的, 静力的[254]ultrasonic pulse method:超声脉冲法;ultrasonic:[ 'Λltrə'sonik ]adj.超音速的, 超声的;n.超声波;pulse:[ pΛls ]n.脉搏, 脉冲[255]apparatus:[ ,æpə'reitəs ] n.器械,设备,仪器[256]electro-acoustical transducer:电声换能器;electro-acoustical:[ i,lektrəuə'ku:stik(ə)l ] adj.电声学的,电声的;transducer:[ trænz'dju:sə ]n. 转换器,换能器,传感器[257]electrical[ i'lektrik(ə)l ] timing unit:电动计时装置[258]accuracy:[ 'ækjurəsi ] n.精确性, 正确度[259]sharpness:[ '∫a:pnis ] n.锐度,清晰度[260]comparative:[ kəm'pærətiv ] adj.比较的, 相当的[261]inferior:[ in'fiəriə ] n.劣等的,下级的,初等的[262]media:[ 'mi:djə ] n.媒体,介质[263]continuous assessment:连续评估[264]Schmidt rebound hammer:施密特回弹仪;rebound hammer:回弹仪;rebound:[ ri'baund ]n.&v.回弹[265]instrument:[ 'instrumənt ] n.仪器,仪表;器械,器具;工具;装置[266]kinetic energy:动能;kinetic:[ kai'netik ]adj.(运)动的, 动力(学)的[267]plunger:[ 'plΛndЗə ]n.柱塞,冲杆[268]impinge:[ im'pindЗ ] v.碰撞,冲击[269]rider:[ 'raidə ] n.游码[270]empirical:[ em'pirikəl ]adj.完全根据经验的, 经验主义的, [化]实验式[271]rebound number:回弹数[272]secondhand:[ 'sekənd'hænd ] adj.第二手的,间接的[273]calibration:[ ,kæli'brei∫ən ] n.标度,刻度,校准[274]mineralogy:[ ,minə'rælədЗi ]n.矿物学[275]bear in mind:记住[276]locate:[ ləu'keit ] vt.定位(探测,设置)[277]gamma ray:伽玛射线,γ射线;gamma:[ 'gæmə ]n.100万分之1克, 微克,伽玛[278]electrical method:电法[279]electromagnetic method:电磁法;electromagnetic:[ ilektrəu'mægnitik ]adj.电磁的。

加味逍遥丸对肝郁脾虚型功能性消化不良的治疗效果

加味逍遥丸对肝郁脾虚型功能性消化不良的治疗效果

65现代养生 2021年6月第21卷第12期中医药学与中西医结合加味逍遥丸对肝郁脾虚型功能性消化不良的治疗效果高会超【摘要】 目的 探讨加味逍遥丸对肝郁脾虚型功能性消化不良的治疗效果。

方法 选取医院2019年10月—2020年12月诊治的肝郁脾虚型功能性消化不良患者60例作为研究对象,按照年龄、病程等均衡可比的原则分为观察组和对照组,各30例。

对照组采用常规西药进行治疗,观察组则在此基础上联合中药加味逍遥丸进行治疗,比较两组患者治疗效果。

结果 观察组患者总治愈率为96.67%高于对照组的73.33%,差异有统计学意义(P <0.05)。

观察组患者的焦虑程度较对照组明显改善,生活质量较对照组明显提高,差异有统计学意义(P <0.05)。

观察组患者的不良反应发生率为3.33%,低于对照组的23.33%;中医症状积分明显优于对照组,差异均有统计学意义(P <0.05)。

结论 针对肝郁脾虚型功能性消化不良患者采用中药加味逍遥丸进行治疗效果显著,可提高患者的有效率,减少不良反应的发生,明显改善患者消化不良症状,起到健胃脾、疏肝解郁的作用,安全性高,有利于患者日常生活质量恢复。

【关键词】 加味逍遥丸;肝郁脾虚型;功能性消化不良;治疗效果中图分类号 R259 文献标识码 A 文章编号 1671-0223(2021)12-065-03作者单位:100094 北京市海淀区上庄镇社区卫生服务中心功能性消化不良属于临床上比较普遍存在的一类消化系统疾病,该疾病病因复杂,主要与胃肠蠕动功能障碍,胃酸分泌异常,从而导致食物在胃底的容受性功能下降[1]。

当前情况下,对于功能性消化不良疾病的治疗尚且缺乏特效药物,多给予西药进行对症治疗,可帮助胃肠蠕动,短期治疗取得一定成效,但长时间持续性治疗,极易产生耐药性,且不良反应较多,短期效果达不到满意效果[2]。

中医认为肝郁脾虚型功能性消化不良根据体征,可纳入“痞满、呃逆、胃脘痛”等范畴,认为可能与情志失调、肝郁气滞、饮食不节,从而导致脾胃失降等相关症状的发生[3]。

水下物体非接触爆炸损伤过程的数值计算

水下物体非接触爆炸损伤过程的数值计算

水中物体在运动过程中极有可能遭受水雷、炸弹等非接触爆炸的冲击,为了保证冲击后不发生破坏,物体自身必须具有一定的抗水下非接触爆炸能力。

物体承受水下非接触爆炸,是一种在很短的时间内,对冲击作用的复杂动态响应过程。

和其它力学过程一样,水下非接触爆炸分析方法主要有解析法、试验法和数值法。

鉴于非接触爆炸过程的复杂性,想得到解析解十分困难,而试验法需要大量的时间和经费,而随着计算机技术的发展,数值计算能力不断提高,数值法逐渐成为主要分析方法。

有限元法(FEM )就是数值法的一种,其基本思想是将复杂结构离散成有限个简单的单元,在求解过程中反复迭代,通过对各单元力学行为的分析计算得到整体结构在载荷作用下的响应结果[1]。

为了建立包含结构的无限声介质模型,有限元法中考虑了无限元或非反射边界[2,3]。

另一方面,边界元法以自然的方式处理无限边界。

因此,使用边界元法的近似技术-双渐近近似(doubly asymptotic approximation,DAA )被开发出来[4,5]。

Abaqus 软件采用基于连续介质的有限元技术来处理流体,以取代DAA 方法的假设。

为此,本文使用Abaqus 建立水下物体在爆炸冲击波作用下的有限元模型,对爆炸问题进行分析。

1控制方程在本文的数值分析中用有限元法建立待分析的结构模型,而用边界元法建立周边水介质模型。

本文将水波处理成声介质,其中爆炸载荷位于离结构较远处。

笔者用DAA 近似技术建立起壳结构和声学水介质的相互作用模型[4,5],以此减少建立声学介质所需要的单元数量。

有限元离散的结构运动方程:1.91550部队,大连116021;2.海军装备部驻沈阳地区军事代表局驻齐齐哈尔地区军事代表室,齐齐哈尔161000;3.91550部队,大连116021。

水下物体非接触爆炸损伤过程的数值计算王劲夫1,周传晟2,苏里阳3摘要:为了研究水下物体在非接触爆炸作用下的损伤过程,基于声-固耦合建立起水下物体在非接触爆炸作用下的有限元模型,在物体上设置3个测点,对测点随时间变化的位移和速度进行计算。

可平移负荷和可转换负荷的补贴系数

可平移负荷和可转换负荷的补贴系数

可平移负荷和可转换负荷的补贴系数英文回答:Subsidy Factors for Translatable and Convertible Loads.Introduction.In the context of structural engineering, subsidy factors are used to account for the reduced loading on a structure due to the effects of creep and shrinkage. Creep is the time-dependent deformation of a material under sustained load, while shrinkage is the reduction in volume of a material over time due to drying or other factors.Subsidy Factors for Translatable Loads.Translatable loads are loads that can move or shift in the horizontal direction. Examples of translatable loads include wind loads and earthquake loads. The subsidy factor for translatable loads is typically called the "creepfactor" or "shrinkage factor." This factor is used toreduce the magnitude of the translatable load to accountfor the expected deformation of the structure over time.Subsidy Factors for Convertible Loads.Convertible loads are loads that can change from one type to another over time. Examples of convertible loads include live loads and dead loads. The subsidy factor for convertible loads is typically called the "load conversion factor." This factor is used to convert the convertibleload to an equivalent static load that can be used for structural analysis.Determination of Subsidy Factors.The determination of subsidy factors is a complex process that involves a number of factors, including the material properties of the structure, the duration of the load, and the expected environmental conditions. In general, the subsidy factor will be lower for materials with a high creep coefficient and a long duration of load. The subsidyfactor will also be lower for structures that are exposed to high temperatures and humidity.Use of Subsidy Factors.Subsidy factors are an important tool for structural engineers to ensure that structures are designed to safely withstand the loads that they will be subjected to over time. By accounting for the effects of creep and shrinkage, subsidy factors help to ensure that structures are not overloaded and that they have a long service life.中文回答:可平移负荷和可转换负荷的补贴系数。

循环粘塑性本构关系

循环粘塑性本构关系

·3·
·4·
Байду номын сангаас
xx=xx+0.5d0*(tvs(j)-ah(j))**2
220 continue
fy=sqrt( 1.5d0*xx )-qiso*1.00001
**: <Plastic corrector>
if (fy .gt. 0.0d0) then
ip=1
fakn=0
odp=0.0d0
do 310 i=1,mah
thi(i)=1.0d0
310 continue
**: <return mapping>
1000 call krmap( dp,dsnp,tvsa,tvs,bhi,thi,zi,sg,ri,
&
dtime,vk,vn,mah,ndi,nshr,ntens,
&
qiso,tsef,vsef )
call kaccel( dp,dsnp,xakn,fakn,ntens )
ktnpt=0 endif if (kinc .eq. 0) then
ktnpt=ktnpt+1 endif kctnpt=kctnpt+1 ************************************************************************ **: <Labeling on state variables> ************************************************************************ k=1 pacc=statev(k) k=k+1 do 10 j=1,ntens
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layerBingyin Zhang a ,J.G.Wangb,*,Ruifeng ShiaaDepartment of Hydraulic Engineering,Tsinghua University,Beijing 100084,ChinabTropical Marine Science Institute,National University of Singapore,10Kent Ridge Crescent,Singapore 119260,SingaporeReceived 12January 2004;received in revised form 8July 2004;accepted 27July 2004Available online 14October 2004AbstractThe contact behavior between concrete face slab and dam body is important to the safety of concrete-faced rockfill dams.The deficient of dam body and the separation of concrete slab from cushion layer during construction and in operation are the main concerns.This paper proposes a contact analysis method to study the effect of non-linearity and time-dependent deformation on the separation and the deficient.This contact analysis method regards dam body and concrete slab as two independent deformable bodies.These two deformable bodies follow Coulomb friction law at contact interface when they contact each other.The rockfill materials in dam body are assumed to be non-linear and time-dependent but concrete slab is elastic.As an example,a high concrete-faced rockfill dam of Tianshengqiao-I in China is numerically analyzed,and the numerical results are compared with in situ meas-urements.The results reveal that whether the deformation of dam body is non-linear or time-dependent,this contact analysis method can effectively simulate the separation between concrete slab and cushion layer without the drawbacks of interface element methods.Ó2004Elsevier Ltd.All rights reserved.Keywords:High concrete-faced rockfill dam;Concrete face slab;Contact analysis;Finite element method;Non-linearity;Creep deformation;Separation1.IntroductionConcrete-faced rockfill dam (CFRD)is quickly devel-oped in recent decades [1]due to its good adaptability to topography,geology and climate and easily available construction materials.China constructs higher and higher CFRDs in recent years.For example,Tians-hengqiao-I CFRD (called as TSQ-I CFRD later)is 178m high.It locates on the Nanpan river in southwest-ern China and is the highest CFRD in China so far.Construction of such a high CFRD confronts some technical problems during construction and in operation stage:the deficient of dam body and the separation ofconcrete face slab from cushion layer.The separation may produce major cracks in the concrete face slab and thus reduce the safety factor due to seepage failure [2].Post-failure investigation [3]reveals that leakage-in-duced failure is a serious issue not only for CFRDs but also for concrete dams.In order to avoid this potential risk in high CFRDs,it is necessary to understand the mechanisms for the deficient of dam body and the sepa-ration of concrete face slabs from cushion layer.The separation of concrete face slab from cushion layer is inevitable due to the difference settlement or deformation of dam body and concrete slabs [4].This separation is not salient when the stress level in dam body is low.With the increase of dam height,the stress level increases and the deformation of rockfill materials becomes strongly non-linear and time-dependent.These mainly contribute the deficient of dam body and thus0266-352X/$-see front matter Ó2004Elsevier Ltd.All rights reserved.doi:10.1016/pgeo.2004.07.004*Corresponding author.Tel.:+6568746591;fax:+6567791635.E-mail address:tmswjg@.sg (J.G.Wang)./locate/compgeoComputers and Geotechnics 31(2004)559–573cause the separation of concrete face slabs from cushion layer.How the non-linear and time-dependent deforma-tion induces the separation has not been well studied for high CFRDs.This paper focuses on the effects of non-linearity and time-dependent deformation of rockfill materials on the deficient and the separation for TSQ-I CFRD.Being different from the conventional FEM with interface element[5],a contact analysis method is proposed in this paper.This contact analysis method re-gards concrete face slab and dam body as two independ-ent deformable bodies.When the two bodies contact each other,contact mechanics[6]is applied to treat the interface,thus the slab can separate from cushion layer without the limitation of small deformation.Contact analysis is of highly non-linearity.When two deformable bodies contact,the contacting part or inter-face is movable with loading.The physical and mechan-ical properties at the interface may be non-linear or elastoplastic[7],too.The numerical algorithm for con-tact analysis should accurately track the motion of mul-tiple bodies and detect their movable interface in each loading increment.Therefore,contact analysis is to de-tect the motion of bodies,apply constraints along inter-face to avoid penetration and apply appropriate dynamic conditions to simulate the frictional property of rough interfaces.Several methods have been proposed to treat contact problems such as augmented Lagrangian methods[8], penalty methods or interface element[5,9]and direct constraints method[6].Lagrangian multiplier technique is the most elegant algorithm to implement mathemati-cal constraints.However,Lagrangian multiplier introduces a non-positive definite system even for well-posed physical problems due to diagonal zeros.This im-poses additional numerical difficulties in computational procedure[10].Interface elements are widely employed to describe the contact properties in geotechnical prob-lems[5,11–15].Interface element is based on continuum mechanics[7]and described by node pairs.This imposes some limitations on the relative motion of bodies.For example,interface element cannot describe the disconti-nuity at large slide or separation.Direct constraints method is the best choice.When contact occurs,kine-matic and dynamic constraints are imposed as direct constraints.This method is accurate if the contact can be accurately detected.In addition,direct constraints method can include complex contact conditions at any time and at any location.Because no interface element is used in this method,the node distribution on both sides of the interface may not match.This paper proposes a contact analysis method to de-scribe the contact behavior of concrete slab and rockfill dam body.This contact analysis method regards con-crete slab and rockfill dam body as independent deform-able continuums.The contact parts between concrete slab and rockfill dam body may be in contact or detach-ing but without penetration.The separation magnitude has no limitation such as small deformation,and the friction properties along the interface are easily imple-mented.Furthermore,rockfill materials may be linear or non-linear and creep.With this contact analysis method,this paper will study the deficient of dam body and the separation of the concrete slab from the cushion layer for the TSQ-I dam at both construction and oper-ation stages.The numerical results are compared with in situ measurements.The focus is on the effect of non-lin-earity and creep deformation on the deficient of dam body and the separation of concrete slab from cushion layer.This paper is organized as follows:Section2presents a direct constraint model for two deformable bodies. Section3briefs the constitutive models used for rockfill dam body and concrete slab.Duncan EB model[16]is employed to describe the non-linearity of rockfill mate-rials and an empirical creep model[17]is used to de-scribe the time-dependent or creep deformation. Section4outlines the main features of TSQ-I CFRD in China and in situ observations.Section5numerically studies the effect of non-linear and time-dependent deformation on the deficient and the separation at differ-ent construction phases.Numerical results are com-pared with in situ measurements.The mechanisms for the separation are analyzed.Section6draws conclusions and recommendations for future design and construc-tion of high CFRDs.2.Direct constraint model2.1.Contact analysis methodThis problem occupies domain X which is composed of sub-domains X1(bounded by C1)and X2(bounded by C2)as shown in Fig.1.When the two bodies contact, their potential contacting boundary is C1p in C1and C2p in C2.These potential contacting boundaries can be prescribed to reduce the search time in computation. Based on virtual work principle of elasticity,a discrete560 B.Zhang et al./Computers and Geotechnics31(2004)559–573system equation in each sub-domain is obtained as follows:K11u1þK12u12¼f1for X1;ð1ÞK22u2þK21u21¼f2for X2;ð2Þwhere u1and u2are the displacement increments in X1, X2and the boundaries except potential contacting ones. u12is the displacement increment along C1p and u21is the one along C2p.When the two bodies are not in contact,any deform-able body has no constraint on the other,thus Eqs.(1) and(2)are independent each other.The displacement increments u1and u12are solved from Eq.(1)while u2 and u21are determined by Eq.(2).When the two bodies are in contact,one deformable body imposes constraints on the other.At this time,u12 and u21are no independent any more.The potential contacting boundaries may be partially or fully con-strained.At this time,kinematic and dynamic constraints conditions should be imposed along the interface.As shown in Fig.1,if point A on C1p is coin-cided with point B on C2p,the kinematic constraint is generally expressed asu A12Àu B21ÀÁn6TOL;ð3Þwhere n is the directional cosine of the contact point, and TOL the closure distance or contact tolerance. The dynamic condition is CoulombÕs friction law in our computationf t6ÀlÁf nÁt;ð4Þwhere f t is the tangential friction force,f n the normal force,l the friction coefficient and t the tangential vec-tor which is in the direction of relative velocity.The numerical procedure is shown in Fig.2for this contact analysis method.This procedure includes the definition of contact bodies,the detection of contact, the implementation of constraints,the model of friction, the change of contact constraints,the checking of con-straints and judgment of separation and penetration. This procedure is completed through a non-linear algo-rithm such as improved Newton–Raphson scheme.2.2.Contact deformation and forces of two contact elementsWhen two deformable bodies contact each other,a multipoint constraint is automatically imposed.Because the deformable bodies have been discretized into ele-ments,the contact of bodies becomes the contact of ele-ments as shown in Fig.3.This is a typical node-edge contact mode.In FEM,the edge displacement of an ele-ment can be completely expressed by nodal displace-ments through point interpolation method[18]. Because node1in the element A is contacting with the 5-6edge of the element B,its displacement increment is expressed by the displacement increments of5-6edge if linear interpolation is employedD u1¼0:5ð1ÀnÞD u5þ0:5ð1þnÞD u6;ð5Þwhere n is the natural coordinate of5-6edge and D denotes increment.B.Zhang et al./Computers and Geotechnics31(2004)559–573561Contact force R,its components are(f n,f t),exerts on the contact point1.This force as an unknown is incor-porated into the Eqs.(1)and(2),thus the set of equa-tions include Eqs.(1),(2),and(5).In this set of equations,the unknowns are the displacement incre-ments in Eqs.(1)and(2)as well as the contact force R.They can be completely solved.Above set of equations is strongly non-linear due to sliding and reopening of interface.When the interface slides,the friction law of Eq.(4)is imposed.When the contact reopens or re-closes up,a strongly non-linear equation is introduced.The current contact analysis method employs an iteration procedure to solve this non-linear equation.In computation,potential contact interface is treated as follows:When contact is detected, a reaction force R is given at the contact.This reaction force R is used to balance the internal stress of the ele-ments adjacent to this node.When the contact is de-tected to be open in iteration,this reaction force does not exist.The previous force will be used as a residual force and redistributed in the deformable body.Such an iteration procedure can achieve a new equilibrium state.2.3.Detection of contactDetection of contact is an important issue to affect the computational efficiency of this contact analysis method.In order to improve computational efficiency, incremental procedure is used in computation and the potential contact boundaries are prescribed.Those nodes on the potential contact boundaries are called as potential contact nodes.Each iteration will check every potential contact node to determine whether it falls within a contact segment or not.If potential contact nodes and segments are huge,the efficiency of contact detections is a big problem.In order to speed up this search process,a bounding box algorithm or bucket algorithm[19]is employed in computation.This algo-rithm groups the potential contact nodes andfirst checks whether a node is near a group or not.This can quickly determine the relation of a node and a seg-ment.If the node falls within the bounding box,the search isfinely tuned to determine its exact status.It is noted that numerical analysis uses the contact tolerance in Eq.(3)to justify the contact status.A node is re-garded as in contact with a segment when that node is within the contact tolerance.3.Constitutive models for dam materialsIn this computation,concrete face slab is modeled as linear elastic material with YoungÕs modulus and Pois-son ratio.No failure is allowed.However,rockfill mate-rials are modeled by Duncan EB model[16](called as EB model hereafter).3.1.Outline of EB modelEB model adopts incremental HookeÕs law to de-scribe the non-linearity of rockfill materials and Mohr-CoulombÕs law to model the shear failure.This model uses two moduli,deformation modulus E t and bulk modulus B,which are determined by following hyper-bolic stress–strain curver1Àr3¼e1aþb e1;ð6Þwhere(r1Àr3)is deviatoric stress,and the e1is the cor-responding strain.a and b are soil parameters.The deformation modulus of E t is then obtained from Eq.(6)E t¼E i1ÀR fð1Àsin/Þðr1Àr3Þ2cÁcos/þ2r3sin/!2;ð7Þwhere c is cohesion intercept,/the angle of internal fric-tion,and R f a failure ratio.The E i,initial deformation modulus,expresses the compression-hardening property of rockfill materialsE i¼kÁP ar3P an;ð8Þwhere P a is the standard atmospheric pressure,k and n are soil constants.For rockfill materials,the cohesion intercept c is gen-erally taken as zero.However,the angle of internal fric-tion/changes with compression stress/¼/ÀD/logr3a;ð9Þwhere/0and D/are two constants for soil strength.The bulk modulus B has following form:B¼k b P ar3P am;ð10Þwhere k b and m are soil constants.3.2.Creep model for rockfill materialsThe empirical creep model in[17]is employed in this paper.This model assumes that creep strain e t increases exponentially with time te t¼e f1ÀeÀa tðÞ;ð11Þwhere e f is the ultimate total creep strain.This creep strain e t is decomposed into volumetric strain e v and shear strain c.They have following forms:_e v¼ae vf1Àe vte vf;_c¼acf1Àc tc f;ð12Þ562 B.Zhang et al./Computers and Geotechnics31(2004)559–573e vf ¼br 3P am;c f ¼d Ás L1Às L;ð13Þwhere e vf and c f are ultimate total volumetric and shear strains,respectively.b ,d and m are material parameters,s L is the stress level which is s L ¼ð1Àsin /Þðr 1Àr 3Þ2c Ácos /þ2r 3sin /:ð14ÞIf the principal axes of strain and stress are coaxial,the strain rate is expressed as f _eg ¼13_e v I f g þ_cr sf sg ;ð15Þwhere I is a unit vector,s ij ¼r ij À13r kk d ijthe deviatoric stress tensor,and r s an equivalent stress which is definedr s ¼1ffiffiffi2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr 1Àr 2Þ2þðr 2Àr 3Þ2þðr 3Àr 1Þ2q :ð16ÞInitial strain technique [20]is used to implement this creep model.The time history is divided into several increments D t and e vt and c t is obtained through summatione vt ¼X _e v D t ;c t ¼X_c D t :ð17Þ4.TSQ-I concrete-faced rockfill dam project and in situobservations 4.1.Project outlineTianshengqiao-I hydropower project (TSQ-I project)is on the Nanpan river in southwestern China.The pro-ject layout is shown in Fig.4.Its water retaining struc-ture is a concrete-faced rockfill dam.This dam is 178m high and 1104m long.The rockfill volume of the dam body is about 18million m 3and the area of the con-crete face is 173,000m 2.A surface chute spillway on the right bank allows a maximum discharge of 19,450m 3/s.The tunnel in the right abutment is for emptying reservoir in operation.Left abutment has four power tunnels and a surface powerhouse with a total capacity of 1200MW.4.2.Material zones and construction phasesA typical cross-section is shown in Fig.5(a).The slope is 1:1.4at upstream and 1:1.25at downstream.There are two 10m wide access berms at the down-stream.Table 1lists the main parameters of fillings.The bedding zone IIA has horizontal thickness of 3.0m and is of low permeability.This layer is used as a semi-pervious layer during diversion sequence before casting concrete face slab.A transition zone (also de-noted as IIIA)with a horizontal width of 5.0m is pro-vided between bedding zone and rockfill zone.This can prevent fine particles of the bedding zone from entering the pores of the rockfill.The rockfill zone IIIB at the upstream is the main part of dam body.It pro-vides a support for hydrostatic loads transmitted from the bedding zone and transition zone.The rockfill zone IIID at the downstream is filled with relatively poor quality materials since this zone bears smaller load than zone IIIB.Weathered and fresh mudstone and sand-stone from the excavation of spillway fills the zone IIIC,which is above the water level in the downstream area.The upstream concrete face was divided into 69slabs with vertical joints in 16m spacing.The thickness of the slab is 0.3m at the top elevation of 787.3and 0.9m at the bottom elevation of 616.5m,with a varying relation-ship d =0.3+0.0035H ,where d is the thickness of the slab and H the vertical distance below the top elevation 787.3m.The reinforcement is placed in the center part of the slab.The steel ratio is 0.4%along slope and 0.3%in the horizontal direction.The concrete has mid-dle strength but high seepage resistance.Fig.5(b)shows the construction phases and Table 2gives the construction time of each phase.The dam con-struction commenced in February 1996,and completed in March 1999for dam body and in May 1999for face slabs.Construction stages were planned according to river diversion and utilization of materials from excava-tions.Five blocks were formed at the elevation of El.682m,El.725m,El.748m,El.768m and El.791m.The con-crete slab was cast in three phases.Their top elevations are El.680m,El.746m and El.787.3m.The impounding water level reached El.768m in August 1999.4.3.Observation on separationA complete monitoring system was installed to mon-itor the deformation of dam body in both construction and operation stages.This system also measures theB.Zhang et al./Computers and Geotechnics 31(2004)559–573563separation of concrete face slab from cushion layer.Fig. 6shows the layout of instrument for monitoring the openings between slabs and cushion layer.Nine obser-vation points on Sections0+438m,0+662m and 0+918m were selected to observe the relative displace-ment between face slab and cushion layer.Fig.7shows the distribution of the openings be-tween slabs and dam body.When preparing the slope face for stage-II slab,the constructed cushion layer was observed to be largely below the designed slope due to dam settlement.The maximum deficient reached 43cm at the riverbed section.In addition,at the top area of the stage-I slab,the separation of the slab from the cushion layer was observed with the opening of350 m in length(from slab number L14to R8).Maximum opening reached15cm in width,6.8m in depth and took place in the middle of the riverbed section.The opening gradually decreased near left and right banks. Similar phenomena were also observed in subsequent construction stages.The maximum deficient of stage-III cushion still reached78.4cm although originally the cushion layer had an extra-fill of25cm in thick-ness.The separation of stage-II slab from the cushion layer reached720m long(from L27to R18)and max-imally10cm wide and4.7m deep.The stage-III slabTable1Design parameters of dam materialsMaterial no.Material description Maximum particle size(cm)Dry unit weight(kN/m3)Void ratio(%) IIA Processed limestone822.019IIIA Limestone3021.521IIIB Limestone8021.222IIIC Mudstone and sandstone8021.522IIID Limestone16020.524Table2Construction phase and timeFilling step Time Remark11996.01–1996.06Fill dam body21996.07–1997.02Fill dam body31997.03–1997.05Cast Phase1concrete slab4&61997.02–1997.10Fill dam body51997.05–1997.05Water level rises71997.06–1997.10Water levelfluctuation8&91997.11–1998.01Fill dam body101997.12–1998.05Cast Phase2concrete slab111997.11–1997.12Water level rises121998.02–1998.08Fill dam body131998.06–1998.07Water level rises141998.08–1999.01Fill dam body151999.01–1999.05Cast Phase3concrete slab161999.06–1999.09Store water564 B.Zhang et al./Computers and Geotechnics31(2004)559–573was also separated from the cushion layer and the opening was610m long(from L25to R11)and max-imally15cm wide and10m deep.Being different from the separation at stage-I and stage-II,the separation at stage-III occurred in the riverbed and left bank sections while the maximum opening occurred at a section in the left bank.The opening at section0+630m(in the middle of the riverbed)is only3.5cm wide and about10m deep on February28,2000.Such a separa-tion has caused concentrative cracks in the face slabs near the bottom of the separation areas[21].The crack width increased with further deformation of dam body. This is harmful to the anti-seepage function of the face slabs,thus endangering the dam safety.5.Numerical analysisputational model and procedureA two-dimensionalfinite element analysis was con-ducted.The separation of the concrete slab from the cushion and the deficient of dam body in TSQ-I dam are studied.We take the maximum cross-section(Sec-tion0+630m)for computation.This section is located in the middle of the riverbed and is also the major sec-tion monitored.Finite element model,as shown in Fig.8,has402dam elements and46concrete face ele-ments.Most of the elements are isoparametric quadratic elements but some triangular elements are used in the transition zone.Dam body,stage-I slab,stage-II slab and stage-III slab were considered as four deformable contact bodies.The contact tolerance between concrete face slabs and dam body was taken as1mm and their frictional coefficient was taken as0.3.Because face slabs were well connected at different stages,the slabs have no physical interface.We useÔa glue modelÕalong the inter-face[22].That is,we use the same displacements and stress conditions along two sides of the interface.How-ever,the nodes on both sides are not necessary to be identical or matching in our computation.Dam base is hard gray rock and its deformation monitored is very small,thus being ruled out from the monitored data. Therefore,this computational model setsfixed displace-ments along the rock base.The dam is located in a wide valley(crest length/dam height equals to6.4),thus three-dimensional effect is negligible.The concrete face slab has YoungÕs modulus of3·104MPa and Poisson ratio of0.2.Table3lists the computational parameters of EB model and Table4lists the parameters of creep modelB.Zhang et al./Computers and Geotechnics31(2004)559–573565for rockfill materials.The parameters of EB model are determined by laboratory tests and those of creep model are determined by a back analysis of in situ measure-ments at several points[17].Computational procedure follows the construction sequence as shown in Fig.5(b).Following treatment is used to compute the deficient and the separation.For example,wefirst simulate the blocks1and2of dam body up to El.682m as shown in Fig.5(b).In each block,layer-by-layer elements are reactivated to simu-late the construction process.In each layer,mid-point stiffness is used for the non-linear constitutive model and computation is iterated until an energy error is tol-erable.Impounding process is simulated by increasing 10m water level each increment.Because stage-I con-crete slab just cast,it should strictly contact with the up-stream slope of El.682m.We set the calculated displacements of dam body as zeros and keep the calcu-lated stresses of the dam body.Then activate the ele-ments of stage-I slab and continue to simulate dam construction until El.748m(after construction phase 9in Fig.5(b)and before the construction of stage-II slab).The separation between stage-I face slab and dam body as well as the deficient at the upstream slope for stage-II face slab were acquired.The same procedure is repeated until the completion of whole dam body.It is noted that rockfill materials are not only non-linear but also time-dependent in the computation.parison of numerical results with in situ measurementsThe deformation in construction stage also includes both non-linear and time-dependent components.It is noted that the deformation and separation were mon-itored at the in situ measurement points as shown in Fig.9.These in situ measurements are used to verify the numerical simulations of the contact analysis method. Fig.10compares the settlement in dam body and the horizontal displacement increment at the upstream slope in August1999.Thisfigure shows that numerical results are in good agreement with observations for both settle-ment and horizontal displacement increment at the up-stream slope.The settlements obtained from numerical simulation are slightly bigger than the observations in lower zone but slightly smaller than the observations in the upper zones.Tables5–7qualitatively compare the numerical results and in situ observations.Table5 compares the settlements at different measurement points.Table6compares horizontal displacement incre-ments at four measurement points.Table7compares maximum opening and deficient of stage-I slab and stage-II slab.Above comparisons show that the numer-ical results are in good agreement with in situ measure-ments in construction stage.Fig.11gives the openings (separation)between concrete slabs and cushion layer as well as the deficient of dam body obtained fromTable3EB model parameters of rockfill materialsMaterial no.Density(kg/m3)/0(°)D/(°)k n R f k b mIIA220050.67.010500.350.714800.24 IIIA210052.58.09700.360.764400.19 IIIB210054.013.09400.350.853400.18 IIID205054.013.57200.300.80800À0.18 IIIC215048.010.05000.250.732500.00 Table4Creep model parameters of rockfill materialsIIA IIIA IIIB IIID IIICa0.00350.00350.00350.00360.0038b0.00900.00900.00950.01000.0120d0.00210.00210.00210.00290.0025m0.380.380.380.380.38566 B.Zhang et al./Computers and Geotechnics31(2004)559–573。

相关文档
最新文档