高三数学期中考试题:检测试题
山东省名校考试联盟2024-2025学年高三上学期期中检测数学试题
山东省名校考试联盟2024-2025学年高三上学期期中检测数学试题一、单选题1.已知集合{}2|log 2A x x =<,{}2|230B x x x =--<,则A B = ()A .{|4}x x <B .{|13}x x -<<C .{|03}x x <<D .{|34}x x <<2.若1i +(i 为虚数单位)是关于x 的方程20(,)x ax b a b ++=∈R 的一个根,则b =()A .0B .2C .3D .43.已知向量a ,b不共线,2AB a b λ=+ ,AC a b μ=+ ,若A ,B ,C 三点共线,则λμ=()A .2-B .1-.C .1D .24.设a ,b ∈R ,则使a b >成立的一个充分不必要条件是()A .33a b >B .n 0()l a b ->C .22a b >D .||a b>5.已知数列{}n a 满足11a =,112n n n n a a a a ++-=,则数列{}1n n a a +的前8项和为()A .817B .1225C .78D .896.若sin 25α=,sin()10βα-=,且,42ππα⎡⎤∈⎢⎥⎣⎦,3,2βππ⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .43πB .53πC .74πD .116π7.用min{,,}a b c 表示a ,b ,c 中的最小数,若函数()f x 为偶函数,且当0x ≥时,{}2()min 1,1,6f x x x x x =+-+-+,则()f x 的极值点的个数为()A .2B .3C .4D .58.若定义在R 上的函数()f x 满足(2)()(4)f x f x f ++=,(21)f x +是奇函数,112f ⎛⎫= ⎪⎝⎭,则5112k k f k =⎛⎫-= ⎪⎝⎭∑()A .2B .3C .4D .5二、多选题9.已知函数()sin(2)1(0,||π)f x x ωθωθ=++><,两条相邻对称轴之间的距离为π2,且π()6f x f ⎛⎫≤ ⎪⎝⎭,则()A .1ω=B .π6θ=C .()f x 关于π,012⎛⎫- ⎪⎝⎭对称D .()f x 在π0,6⎛⎫⎪⎝⎭上单调递增10.记ABC V 内角A ,B ,C 的对边分别为a ,b ,c ,已知4c =,2b =,若O 为ABC V 的外心,则()A .||||||OA OB OC == B .60OA BC ⋅+=C .()0OA OB AB +⋅= D .0aOA bOB cOC ++= 11.如图,已知正方体1111ABCD A B C D -的棱长为2,M ,N 分别为CD ,11A B 的中点,点P 为MN 上一动点,则()A .存在点P 使得AP BP ⊥B .1PA PD +的最小值为C .以MN 为直径的球面与正方体每条棱的交点总数为12D .已知球O 为正方体1111ABCD A B C D -的内切球,若在正方体内部与球O 外部之间的空隙处放入一个小球,则放入的小球体积最大值为(1043π-三、填空题12.已知函数23,()1e ,02,xf x x x x ⎧≤<⎪=⎨+≤<⎪⎩则1(e)e f f ⎛⎫+= ⎪⎝⎭.13.数列{}n a 的前n 项和为n S ,且满足2(1)2nn n a a n ++-=+,49S =,则1a =.14.已知函数3()e 3xx f x m =+,曲线()y f x =在不同的三点处的切线斜率均为3,则实数m 的取值范围是.四、解答题15.如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,AD AB ⊥,//AB CD ,1AB AD ==,2CD =,PD PC ==E 在棱PA 上,且2PE EA =.(1)求证:平面PAD ⊥平面DBE ;(2)求平面PAB 与平面ABCD 所成角的大小.16.已知锐角ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos sin 0a C C b c --=,角A 的平分线交BC 于D ,2AD =.(1)求A ;(2)求BD CD ⋅的取值范围.17.将2n 个实数排成n 行n 列的数阵形式如下;11121312122232123n n n n n nna a a a a a a a a a a a(1)当7n =时,若每一行每一列均构成等差数列,且445a =,求该数阵中所有数的和M ;(2)若0(,1,2,,)ij a i j n >= ,且每一行均为公差相同的等差数列,每一列均为公比为q 的等比数列.已知2310a =,2518a =,4688a =,设1122nn S a a a =+++ ,求S 的值.18.已知函数3()2sin f x ax x x =+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当1a =时,讨论()f x 的单调性;(3)当0x ≥时,()0f x ≥,求a 的取值范围.19.已知集合{}()*0,1,2,,5nS n =∈N ,集合T S ⊆,记T 的元素个数为T .若集合T 中存在三个元素a ,b ,()c a b c <<,使得23c a b +>,则称T 为“理想集”.(1)若1n =,分别判断集合1{0,2,3,5}T =,2{0,1,2,5}T =是否为“理想集”(不需要说明理由);(2)若1n =,写出所有的“理想集”T 的个数并列举;(3)若||42T n =+,证明:集合T 必为“理想集”.。
福建省三明第一中学2024-2025学年高三上学期11月期中考试数学试题(解析)
三明一中2024-2025学年上学期半期考高三数学试卷(考试时间:120分钟 试卷满分:150分)第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数3i 1i z =++在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】根据复数的运算法则化简z ,再写出其对应的点即得.【详解】3i 1iz =++()()()()31i 331i i 1i i 1i 1i 222-=+=+-=-+-,故其在复平面对应的点为31,22⎛⎫- ⎪⎝⎭,在第四象限.故选:D.2. 设,a b 均为单位向量,则“a b a b -=+ ”是“a b ⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据向量的运算法则和公式22a a = 进行化简,结合充分条件和必要条件的判定方法,即可求解.【详解】由a b a b -=+ ,则22a b a b -=+ ,即222222a b a b a b a b +-⋅=++⋅,可得0a b ⋅= ,所以a b ⊥,即充分性成立;反之:由a b ⊥ ,则0a b ⋅=,可得2222()a b a b a b -=-=+ 且2222()a b a b a b +=+=+ ,所以a b a b -=+,即必要性成立,综上可得,a b a b -=+ 是a b ⊥的充分必要条件.故选:C.3. 已知数列{}n a 满足()111n n a a +-=,若11a =-,则10a =( )A. 2 B. ―2C. 1- D.12【答案】C 【解析】【分析】根据递推式求出2a ,3a ,4a 的值,可以发现数列为周期数列,从而推出10a 的值.【详解】因为111n n a a +=-,11a =-,所以212a =,32a =,41a =-,所以数列{}n a 的周期为3,所以101a =-.故选:C .4. 已知实数1a >,0b >,满足3a b +=,则211a b+-的最小值为( )A.B.C.D.【答案】B 【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求解即得.【详解】实数1a >,0b >,由3a b +=,得(1)2a b -+=,因此211211211[(1)]()(3)(3121212b a a b a b a b a b -+=-++=++≥+---,当且仅当211-=-b a a b,即14a -==-所以211a b +-.故选:B5. 中国古建筑的屋檐下常系挂风铃,风吹铃动,悦耳清脆,亦称惊鸟铃.若一个惊鸟铃由铜铸造而成,且可近似看作由一个较大的圆锥挖去一个较小的圆锥,两圆锥的轴在同一条直线上,截面图如下,其中1320cm O O =,122cm O O =,16cm AB =,若不考虑铃舌,则下列数据比较接近该惊鸟铃质量的是(参考数据:π3≈,铜的密度为8.963g /cm )( )A. 1kgB. 2kgC. 3kgD. 0.5kg【答案】A 【解析】【分析】根据圆锥的体积公式,结合质量公式求解即可.【详解】由题意可得惊鸟铃的体积约为长()22311π820π818128cm 33⨯⨯⨯-⨯⨯⨯=,所以该惊鸟铃的质量约为()1288.961146.88g 1⨯=≈(kg ).故选:A .6. 已知函数()()sin 10f x x ωω=+>在区间()0,π上有且仅有2个零点,则ω的取值范围是( )A. 711,22⎡⎫⎪⎢⎣⎭B. 711,22⎛⎤ ⎥⎝⎦C. [)3,5D. (]3,5【答案】B 【解析】【分析】利用三角函数的性质结合整体思想计算即可.【详解】因为0πx <<,所以0πx <ω<ω,令()sin 10f x x ω=+=,则方程sin 1x ω=-有2个根,所以711πππ22ω<≤,解得71122ω<≤,则ω的取值范围是711,22⎛⎤ ⎥⎝⎦.故选:B7. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222a c b +-==sin 21cos 2CC+,则角A 的大小为( )A.π12B.5π12C.7π12D.3π4【答案】B 【解析】【分析】借助余弦定理计算可得π6B =,4BC π⎛⎫=- ⎪⎝⎭,代入计算即可得角A 的大小.【详解】因为222a c b +-=,由余弦定理得2cos ac B =,所以cos B =(0,π)B ∈,所以π6B =,2sin 22sin cos sin 1cos 22cos cos C C C CCC C ===+,所以cos cos sin sin C A C C A C +=-,)sin cos A C C C +=-,又πA C B +=-4B C π⎛⎫=- ⎪⎝⎭,所以π4B C =-或π4B C π+-=(舍),所以56412C πππ=+=,所以5561212A B C πππ=π--=π--=.故选:B.8. 已知函数()()()e ln 0xf x a ax a a a =--+>,若存在x 使得关于x 的不等式()0f x <成立,则实数a 的取值范围( )A. ()20,eB.()e0,e C.()2e ,+∞ D.()ee ,+∞【答案】C 【解析】【分析】将不等式变形为()ln eln 1ln 1x ax a x x -+-<-+-,构造函数()ln g x x x =+,分析可知该函数为增函数,可得出()ln ln 1a x x >--,求出函数()()ln 1h x x x =--的最小值,可得出关于实数a 的不等式,即可得出实数a 的取值范围.【详解】因为0a >,由0ax a ->可得1x >,即函数()f x 的定义域为()1,+∞,()()e ln ln 10xf x a a a x a =---+<可得()e ln ln 11x a x a-<--,即()ln eln 1ln 1x ax a x x -+-<-+-,构造函数()ln g x x x =+,其中0x >,则()110g x x'=+>,故函数()g x 在()0,∞+上单调递增,所以,()()ln e 1x agg x -<-,可得ln e1x ax -<-,则()ln ln 1x a x -<-,即()ln ln 1a x x >--,其中1x >,令()()ln 1h x x x =--,其中1x >,则()12111x h x x x -'=-=--,当12x <<时,()0h x '<,此时函数()h x 单调递减,当2x >时,()0h x '>,此时函数()h x 单调递增,所以,()()min ln 22a h x h >==,解得2e a >.故选:C.【点睛】关键点点睛:解本题的关键在于将不等式变形为()ln eln 1ln 1x ax a x x -+-<-+-,结合不等式的结果构造函数()ln g x x x =+,转化为函数()g x 的单调性以及参变量分离法求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 若//a b ,//b c,则//a cB. 若ABC V 是锐角三角形,则sin cos A B>C. 若点G 为ABC V 的重心,则0GA GB GC ++=D. 命题:x ∀∈R ,21x >-的否定是:x ∃∈R ,21x ≤-.【答案】BCD 【解析】【分析】若0b =可判断A ;根据正弦函数单调性和诱导公式可判断B ;由重心的向量表示可判断C ;由全称命题的否定可判断D.【详解】对于A ,若0b = ,则,a c不一定平行,故A 不正确;对于B ,若ABC V 是锐角三角形,则可得π2A B +>且π,0,2A B ⎛⎫∈ ⎪⎝⎭,可得2A B π>-,且0,22B ππ⎛⎫-∈ ⎪⎝⎭,根据正弦函数的单调性,可得πsin sin 2A B ⎛⎫>-⎪⎝⎭,所以sin cos A B >,所以B 正确;对于C ,分别取BC ,AC ,AB 中点D ,,E F ,则2GB GC GD +=,G 为ABC V 的重心,2GD AG ∴=,20GA GB GC GA GD ∴++=+=,故C 正确;对于D ,根据全称命题的否定可得:x ∀∈R ,21x >-的否定是:x ∃∈R ,21x ≤-,故D 正确.故选:BCD.10. 已知数列{}n a 的前n 项和为2113622n S n n =-+,则下列说法正确的是( )A. 7n a n =- B.23344556111145a a a a a a a a +++=C. 使0n S >的最小正整数n 为13 D.nS n的最小值为3-【答案】BCD 【解析】【分析】对A ,根据n S 与n a 关系,求出通项n a 判断;对B ,利用裂项求和得解可判断;对C ,令0n S >求得答案;对D ,求出nS n,利用对勾函数单调性求最值.【详解】对于A ,由2113622n S n n =-+,当1n =时,110a S ==,当2n ≥时,()()221113113611672222n n n a S S n n n n n -⎛⎫=-=-+----+=- ⎪⎝⎭,0,17,2n n a n n =⎧∴=⎨-≥⎩,故A 错误;对于B ,因为()()111118787n na a n n n n -==-----,2n ≥,所以23344556111111111111411453423255a a a a a a a a +++=-+-+-+-=-=,故B 正确;对于C ,由0n S >,即21136022n n -+>,解得12n >,故C 正确;对于D ,101S =,2n ≥时,1613112132222n S n n n n n ⎛⎫=+-=+- ⎪⎝⎭,因为函数12y x x =+在(0,上单调递减,在()∞+上单调递增,∴当3n =或4时,n Sn取得最小值为3-,故D 正确.故选:BCD.11. 已知函数()ln 1x xf x x -=+,则下列结论中正确的是( )A. 函数()f x 有两个零点B. ()13f x <恒成立C. 若方程()2k f x x x =+有两个不等实根,则k 的范围是10,2e ⎛⎫⎪⎝⎭D. 直线14y x =-与函数()f x 图象有两个交点【答案】BCD 【解析】【分析】分01x <<和1x >两种情况探讨()f x 的符号,判断A 的真假;转化为研究函数()11ln 33g x x x x =++的最小值问题,判断B 的真假;把方程()2k f x x x=+有两个不等实根,为2ln k x x =-有两个根的问题,构造函数()2ln m x x x =-,分析函数()m x 的图象和性质,可得k 的取值范围,判断C 的真假;直线14y x =-与函数()f x 图象有两个交点转化为11ln 044x x --=有两解,分析函数()11ln 44n x x x =--的零点个数,可判断D 的真假.【详解】对A :当01x <<时,()0f x >;当1x >时,()0f x <;1x =时,()0f x =,所以函数()f x 只有1个零点.A 错误;对B :欲证()13f x <,须证ln 113x x x -<+⇔11ln 033x x x ++>在()0,∞+上恒成立.设()11ln 33h x x x x =++,则()4ln 3h x x '=+,由()0h x '>⇒43e x ->;由()0h x '<⇒430e x -<<.所以()h x 在430,e -⎛⎫ ⎪⎝⎭上单调递减,在43e ,-⎛⎫+∞ ⎪⎝⎭上单调递增.所以()h x 的最小值为443343111e e 33e h --⎛⎫=-=- ⎪⎝⎭,因为433e <,所以43e 0h -⎛⎫> ⎪⎝⎭.故B 正确;对C :()2k f x x x=+⇒()1ln 1x x k x x x =++-⇒2ln k x x =-.设()2ln m x x x =-,0x >则()()2ln 2ln 1m x x x x x x '=--=-+,0x >.由()0m x '>⇒120e x -<<;由()0m x '<⇒12e x ->.所以()m x 120,e -⎛⎫ ⎪⎝⎭上单调递增,在12e ,-⎛⎫+∞ ⎪⎝⎭单调递减.所以()m x 的最大值为:121e 2em -⎛⎫= ⎪⎝⎭,又当120,e x -⎛⎫∈ ⎪⎝⎭时,()0m x >.如图所示:所以2ln k x x =-有两个解时,10,2e k ⎛⎫∈ ⎪⎝⎭.故C 正确;对D :问题转化为方程:ln 114x x x x -=-+有两解,即11ln 044x x --=有两解.设()11ln 44n x x x =--,0x >,所以()11444xn x x x-'=-=.由()0n x '>⇒04x <<;由()0n x '<⇒4x >.所以()n x 在()0,4上单调递增,在()4,+∞上单调递减.所以()n x 的最大值为()54ln 44n =-.因为82256=,53243=,所以85523e >>⇒454e >⇒544e >⇒5ln 44>在所以()54ln404n =->.且当0x >且0x →时,()0n x <;x →+∞时,()0n x <.所以函数()11ln 44n x x x =--的图象如下:所以11ln 044x x --=有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12. =______.【答案】12##0.5【解析】【分析】利用二倍角公式结合诱导公式化简,即可求得答案.sin50sin 40cos40sin 40cos10cos10===sin 80cos1012cos102cos102=== .故答案为:1213. 已知集合2{|290}A x x x a =-+-=,2{|4100}B x ax x a =-+=≠,,若集合A ,B 中至少有一个非空集合,实数a 的取值范围_______.【答案】{8a a ≥或4a ≤且}0a ≠【解析】【分析】先考虑A ,B 为空集得出a 的范围,再利用补集思想求得结果.【详解】对于集合A ,由()Δ4490a =--<,解得8a <;对于集合B ,由1640a ∆=-<,解得4a >.因为A,B 两个集合中至少有一个集合不为空集,所以a 的取值范围是{8a a ≥或4a ≤,且}0a ≠故答案为:{8a a ≥或4a ≤且}0a ≠14. 在四面体V ABC -中,VA VB ==3VC =,4CA CB ==,VC 的中点为P ,AB 的中点为Q ,则PQ 的取值范围为______.【答案】43⎛ ⎝【解析】【分析】设出线段AB 的长度,然后利用勾股定理表示出QV 和QC ,进而利用2221)4||QP QP QV QC ==(+ 表示出线段PQ 的长度,然后转化为函数求最值即可,但是要注意确定解析式中自变量的取值范围.【详解】如图所示,连接VQ 和CQ,根据VA VB ==4CA CB ==可知,VQ AB ⊥和CQ AB ⊥.不妨设2AB x =,则根据勾股定理可知VQ =,CQ =,其中根据三角形中三边的长度关系可知,0280233x x <<⎧⎪<<⎪>-<,解得2287036x <<.因为12QP QV QC =(+) ,所以22222222113123944442||||||||||||||||||QV QC QP QV QC QV QC QV QC x QV QC +-=(+)=(++⋅⋅)=(-)⋅.因2287036x <<,所以2163994||QP <<,即43QP <<.为。
北京市朝阳区2024-2025学年高三上学期期中检测数学试卷含答案
【解析】
【分析】根据函数的奇偶性以及单调性,结合基本初等函数的性质,即可逐一判断.
【详解】对于 A,函数 y 2x 为指数函数,不具备奇偶性,故 A 错误;
对于 B,函数 y ln | x | 的定义域为{x | x 0},
由于 f (x) ln | x | ln | x | f (x) 为偶函数,故 B 错误;
所以 A B x 1 x 2 .
故选:A.
2. 若函数 f (x) x 4 (x 0) 在 x a 处取得最小值,则 a ( ) x
A. 1
B. 2
C. 2
D. 4
【答案】C
【解析】
【分析】因为 x 0 ,所以用基本不等式求得最小值,并找到最小值点为 x 2 ,得出结果 a 2 . 【详解】∵ x 0 ,∴ 4 0 ,
对于 C,函数 y tan x ,由正切函数的性质可知 y tan x 为奇函数,
且在
π 2
kπ,
π 2
kπ
,
k
Z
单调递增,故
C
错误;
对于 D,函数 y x 2 的定义域为{x | x 0}, x
由
f
(x)
x
2 x
x
2 x
(x
2) x
f
(x)
,故函数
y
x
2 x
为奇函数,
因为
f (x) 1
然后得出 u 的值.
【详解】如图,棱 OA , OB , OC 两两垂直, 可以 O 为坐标原点, AO 为 x 轴, OB 为 y 轴, OC 为 z 轴,建立空间直角坐标系.
b2 c2 1
设 P a,b, c ,由题意可得: a2 c2 4 ,∴ a2 b2 c2 9 ,
镇江市2023-2024学年高三上学期期中考试数学试卷(含答案)
江苏省镇江市2023-2024学年高三上学期期中考试数学试卷姓名一、单选题:本大题共8小题,每题5分,共40分.在每小题提供的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 1,230,A x x B x x x A B =<=+-=⋃=则 ( ) A .(3,2)-B.C .(0,2)D .2.已知复数(12)2,z i z i z -=+=满足则 ( ) A .15B.C .1D .3.已知ABC G ABC ∆∆中,点为所在平面内一点,则“30AB AC AG +-=uu u r uu u r uuu r r”是“G ABC ∆点为重心”的A .充分不必要条件B.C .充要条件D .4.已知26,13x y x y x y+=+均为正数,且,则的最小值为 ( ) A .12B.C .20D .5.已知函数()sin().()f x x y f x θ=+=甲:函数数()f x 为偶函数;丙:当()x f x π=时,函数取得极值;丁:函数()y f x =图象的一个对称中心为(,0)π.甲、乙、丙、丁四人对函数()f x 的论述中有且只有两人正确,则实数θ的值为 ( )A .()2k k Z π∈ B. C .1()2k k Z π+∈ D . 6.棱长都相等的正四棱锥的侧面与底面所成的二面角大小为α,两相邻侧面所成的二面角大小为β,则( )A .4πα<B.C .2αβα<<D .7.已知330,sin sin ,3ln sin 3ln sin ,3sin 3sin 2a b c παββαβαβα<<<==-=-则下列选项正确的是A .b c a >>B.C .b a c >>D .( )8.等比数列{}10121011101212121111,,()()()0n n na a a a a a a a a a =>-+-++->中,则满足L 的最大整数n 为 A .2021B.C .2023D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的是 ( ) A .若0,c ca b c a b>>>>则B .C .若1,1,22a ba b a b ⋅+=>为正数满足则 D .若2,,2a b aba b a b+≥+为正数则10.已知函数3()1()f x x x f x αβ'=-++的导函数为,两个极值点为,,则 ( )A .()f x 有三个不同的零点B .C .()()1f f αβ+=D .的切线11.已知数列{}11003,n n a a d n S ==-中,,公差前项和为,则 ( ) A .数列n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .当值取得最大C .存在不同的正整数,i j i j S S =,使得D .值最大12.在正三棱柱111112312,ABC A B C AB AA P AP AB AC AA λλλ-===++中,已知空间点满足uu u r uu u r uu u r uuu r,则( )A .当1231112P B BCC λλλ===时,为正方形对角线交点B .当C .当313P ABC λ=-时,三棱锥的体积为D .当1312,1P AP BC λλλλ=+=⊥且时,有且仅有一个点,使得三、填空题:本大题共4小题,每小题5分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.13.已知向量(3,1),(1,0),(1,2),()=a b c c a mb m ===⊥+若,则r r r r r r.14.已知三个互不相等的一组实数,,a b c 成等比数列,适当调整顺序后,这三个数又能成等差数列,满足条件的一组实数,,a b c 为 .15.半径为32r O r O O 的球内有一圆锥的高为,底面圆周在球的球面上,则求的体积与该圆锥的体积之比为 .16.海岛上有一座高塔,高塔顶端是观察台,观察台海拔1000m .在观察台上观察到有一轮船,该轮船航行的速度和方向保持不变,上午11时,测得该轮船在海岛北偏东060,俯角为030处,11时20分测得该轮船在海岛北偏西060,俯角为060处,则该轮船的速度为 /m h ,再经过 分钟后,该轮船到达海岛的正西方向.四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知集合{}2221210.2A x B x x x m x ⎧⎫=≥=--+<⎨⎬-⎩⎭,集合(1)若2()R m C A B =⋂,求;(2)若 ,求实数m 的取值范围.在以下两个条件中任选一个补充在第(2)问中,并给出解答 . ①“x A ∈”是“x B ∈”的充分不必要条件;②.A B B ⋂=18.设函数3()log (933)x x f x k k =-⋅-,其中为常数.(1)当2()k f x =时,求的定义域;(2)若对任意[1,)()x x f x x k ∈+∞≥,关于的不等式恒成立,求实数的取值范围.19.在1,,cos sin()sin sin().632ABC A B C a b c C A C A ππ∆+--=中,角,,对边分别, (1)求B ;(2)若1ABC AC ABC ∆=∆为锐角三角形,且,求周长的取值范围.20.已知数列{}13.12nn n na a n N a a *+∈=+对任意满足(1)如果数列{}n a 为等差数列,求1a ;(2)如果132a =,①是否存在实数λ,使得数列1n a λ⎧⎫-⎨⎬⎩⎭为等比数列?如果存在,请求出所有的λ,如果不存在,请说明为什么?②求数列{}n a 的通项公式.21.如图,四棱锥.P ABCD PD ABCD -⊥的底面为平行四边形,底面 (1)若平面PDB PBC BC BD ⊥⊥平面,证明:; (2)若四边形32ABCD PD DC M PC PM MC N PB ===是正方形,,点在棱上,且满足,点是棱上的动点,问:当点N PD DMN 在何处时,直线与平面所成角的正弦值取最大值.22.已知函数()ln .1a f x x x =-+ (1)若函数()f x 存在两个不同的极值点12,x x a ,求实数的取值范围; (2)在(1)的条件下,不等式12()()412ln02f x f x kke k x x +-+≥+-恒成立,求实数的最小值,并求此时a 的值.镇江市2023-2024学年高三上学期期中考试数学试卷姓名一、单选题:本大题共8小题,每题5分,共40分.在每小题提供的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 1,230,A x x B x x x A B =<=+-=⋃=则 ( A ) A .(3,2)-B.C .(0,2)D .2.已知复数(12)2,z i z i z -=+=满足则 ( C ) A .15B.C .1D .3.已知ABC G ABC ∆∆中,点为所在平面内一点,则“30AB AC AG +-=uu u r uu u r uuu r r”是“G ABC ∆点为重心”的A .充分不必要条件B.C .充要条件D .4.已知26,13x y x y x y+=+均为正数,且,则的最小值为 ( D ) A .12B.C .20D .5.已知函数()sin().()f x x y f x θ=+=甲:函数数()f x 为偶函数;丙:当()x f x π=时,函数取得极值;丁:函数()y f x =图象的一个对称中心为(,0)π.甲、乙、丙、丁四人对函数()f x 的论述中有且只有两人正确,则实数θ的值为 ( B )A .()2k k Z π∈ B. C .1()2k k Z π+∈ D . 6.棱长都相等的正四棱锥的侧面与底面所成的二面角大小为α,两相邻侧面所成的二面角大小为β,则( D )A .4πα<B.C .2αβα<<D .7.已知330,sin sin ,3ln sin 3ln sin ,3sin 3sin 2a b c παββαβαβα<<<==-=-则下列选项正确的是A .b c a >>B.C .b a c >>D .( A )8.等比数列{}10121011101212121111,,()()()0n n na a a a a a a a a a =>-+-++->中,则满足L 的最大整数n 为 A .2021B.C .2023D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的是 ( BCD ) A .若0,c ca b c a b>>>>则B .C .若1,1,22a ba b a b ⋅+=>为正数满足则 D .若2,,2a b aba b a b+≥+为正数则10.已知函数3()1()f x x x f x αβ'=-++的导函数为,两个极值点为,,则 ( BD )A .()f x 有三个不同的零点B .C .()()1f f αβ+=D .的切线11.已知数列{}11003,n n a a d n S ==-中,,公差前项和为,则 ( ABD ) A .数列n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .当值取得最大C .存在不同的正整数,i j i j S S =,使得D .值最大12.在正三棱柱111112312,ABC A B C AB AA P AP AB AC AA λλλ-===++中,已知空间点满足uu u r uu u r uu u r uuu r,则( ACD )A .当1231112P B BCC λλλ===时,为正方形对角线交点 B .当 C .当32313P ABC λ=-时,三棱锥的体积为D .当1312,1P AP BC λλλλ=+=⊥且时,有且仅有一个点,使得三、填空题:本大题共4小题,每小题5分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.13.已知向量(3,1),(1,0),(1,2),()=a b c c a mb m ===⊥+若,则r r r r r r3- .14.已知三个互不相等的一组实数,,a b c 成等比数列,适当调整顺序后,这三个数又能成等差数列,满足条件的一组实数,,a b c 为 4,2,1-- .15.半径为32r O r O O 的球内有一圆锥的高为,底面圆周在球的球面上,则求的体积与该圆锥的体积之比为329. 16.海岛上有一座高塔,高塔顶端是观察台,观察台海拔1000m .在观察台上观察到有一轮船,该轮船航行的速度和方向保持不变,上午11时,测得该轮船在海岛北偏东060,俯角为030处,11时20分测得该轮船在海岛北偏西060,俯角为060处,则该轮船的速度为 100039 /m h ,再经过 10 分钟后,该轮船到达海岛的正西方向.四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知集合{}2221210.2A x B x x x m x ⎧⎫=≥=--+<⎨⎬-⎩⎭,集合(1)若2()R m C A B =⋂,求;(2)若 ,求实数m 的取值范围.在以下两个条件中任选一个补充在第(2)问中,并给出解答 . ①“x A ∈”是“x B ∈”的充分不必要条件;②.A B B ⋂=17.解:(1)22,12m A x=≥-中:18.设函数3()log (933)x xf x k k =-⋅-,其中为常数.(1)当2()k f x =时,求的定义域;(2)若对任意[1,)()x x f x x k ∈+∞≥,关于的不等式恒成立,求实数的取值范围. 18.解:(1)32()log (9233)x x k f x ==-⋅-时,,19.在1,,cos sin()sin sin().632ABC A B C a b c C A C A ππ∆+--=中,角,,对边分别, (1)求B ;(2)若1ABC AC ABC ∆=∆为锐角三角形,且,求周长的取值范围.19.解:(1)有条件得1cos cos()sin sin(A )332C A C ππ---=,20.已知数列{}13.12nn n na a n N a a *+∈=+对任意满足(1)如果数列{}n a 为等差数列,求1a ;(2)如果132a =,①是否存在实数λ,使得数列1n a λ⎧⎫-⎨⎬⎩⎭为等比数列?如果存在,请求出所有的λ,如果不存在,请说明为什么?②求数列{}n a 的通项公式.20.解:(1)112112311211933129,6121218112a a a a a a a a a a a a +====+++++,21.如图,四棱锥.P ABCD PD ABCD -⊥的底面为平行四边形,底面 (1)若平面PDB PBC BC BD ⊥⊥平面,证明:; (2)若四边形32ABCD PD DC M PC PM MC N PB ===是正方形,,点在棱上,且满足,点是棱上的动点,问:当点N PD DMN 在何处时,直线与平面所成角的正弦值取最大值.21.证明:(1)PD ABCD ⊥底面Q ,22.已知函数()ln .1a f x x x =-+ (1)若函数()f x 存在两个不同的极值点12,x x a ,求实数的取值范围; (2)在(1)的条件下,不等式12()()412ln02f x f x kke k x x +-+≥+-恒成立,求实数的最小值,并求此时a 的值.22.解:(1)2221(2)1()0(1)x(1)a x a x f x x x x +++'=+==++,。
山东省济宁市兖州区2023-2024学年高三上学期期中考试 数学含解析
2023-2024学年第一学期期中质量检测高三数学试题(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为U ,集合M ,N 满足M N U ⊂⊂,则下列运算结果为U 的是()A .M N⋃ B.()()UUN M 痧 C.()U M Nð D.()U N Mð2.命题p :n ∃∈N ,22n n ≥,则命题p 的否定为()A .n ∀∈N ,22nn ≤ B.n ∃∈N ,22n n ≤C.n ∀∈N ,22n n < D.n ∃∈N ,22n n <3.函数()f x =的单调递增区间为()A.1,4⎛⎤-∞ ⎥⎝⎦B.(,1)-∞- C.3,2⎡⎫+∞⎪⎢⎣⎭D.1,4⎡⎫+∞⎪⎢⎣⎭4.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的(注:三角形的三条高线交于一点,此点为三角型的垂心)A.重心外心垂心 B.重心外心内心C.外心重心垂心D.外心重心内心5.2023年8月6日2时33分,山东平原县发生里氏5.5级地震,8月8日3时28分,菏泽市牡丹区发生2.6级地震,短时间内的两次地震引起了人们对地震灾害和避险方法的关注.地震发生时会释放大量的能量,这些能量是造成地震灾害的元凶.研究表明地震释放的能量E (单位:焦耳)的常用对数与震级M 之间满足线性关系,若4级地震所释放的能量为106.310⨯焦耳,6级地震所释放的能量为136.310⨯焦耳,则这次平原县发生的地震所释放的能量约为()(参考数据:lg 6.30.8≈,0.0510 1.1≈)A.11810⨯焦耳B.111.110⨯焦耳C.12810⨯焦耳D.131.110⨯焦耳6.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件7.已知()f x 的定义域为()R,21y f x =-为奇函数,()1y f x =+为偶函数,若当()1,1x ∈-时,()e x f x =,则()194f =()A.1eB.0C.1D.e8.已知ω是正整数,函数()()sin f x x ωω=+在()0,πω内恰好有4个零点,其导函数为()f x ',则()()f x f x '+的最大值为()A.2B.C.3D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数21iz =+(i 是虚数单位),则下列命题中正确的是()A.z = B.z 在复平面上对应点在第二象限C.1iz =+ D.z 的虚部为1-10.下列命题中正确..的是()A.若向量()1,2a =r ,()3,1b = ,则,a b可作为平面向量的一组基底B.若四边形ABCD 为平行四边形,且()()()5,1,1,7,1,2A B C --,则顶点D 的坐标为(7,6)-C.若ABC 是等边三角形,则π,3AB BC = .D.已知向量,a b 满足()1,1a = ,4b = ,且π,4a b = ,则b 在a 上的投影向量的坐标为(2,2)11.若,,a b c ∈R ,则下列说法不成立的是()A.若0ab ≠且a b <,则11a b> B.若c b a <<且0ac <,则22cb ab <C.若01a <<,则3a a< D.若0a b >>,则11b ba a+<+12.已知函数32()1f x x ax bx =-++,则下列说法正确的是()A.当0b =时,()f x 有两个极值点B.当0a =时,()f x 的图象关于()0,1中心对称C.当24a b =,且4a >-时,()f x 可能有三个零点D.当()f x 在R 上单调时,23a b≥三、填空题:本题共4小题,每小题5分,共20分.13.已知23,25a b ==,则2log 45=___________.(用,a b 表示)14.曲线2x 1y x 2-=+在点()1,3--处的切线方程为__________.15.如图,,αβ是九个相同的正方形拼接而成的九宫格中的两个角,则αβ+=______.16.如图,已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作圆弧交AD 于点F ,若P 为劣弧EF 上的动点,则PC PD ⋅的最小值为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知不等式2(21)(1)0x a x a a -+++≤的解集为集合A ,集合(2,2)B =-.(1)若2a =,求A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.18.已知a 、b是非零向量,()a ab ⊥- ,且a = 、4b = .(1)求a 与b的夹角θ;(2)求32a b -.19.已知()1f x a b =⋅- ,其中向量(sin 2,2cos ),)(R)a x x b x x ==∈,(1)求()f x 的最小正周期和最小值;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若4A f ⎛⎫= ⎪⎝⎭,a =,8b =,求边长c 的值.20.已知数列{}n a 的前n 项和,232-=n n nS .(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对N ,4n n t T *∀∈≤恒成立,求实数t 的最大值.21.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如下图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要30min.(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求高度差的最大值.(参考公式:sin sin 2cossin ,cos cos 2sin sin 2222θϕθϕθϕϕθθϕθϕ+-+--=-=)22.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.2023-2024学年第一学期期中质量检测高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为U ,集合M ,N 满足M N U ⊂⊂,则下列运算结果为U 的是()A.M N ⋃B.()()UUN M 痧 C.()U M Nð D.()U N Mð【答案】D 【解析】【分析】由题意作出Venn 图,再由集合的运算逐一判断即可【详解】全集U ,集合M ,N 满足M N U ⊂⊂,绘制Venn 图,如下:对于A :M N N ⋃=,A 错误;对于B :()()U UUN M M =痧,B 错误;对于C :()U M N ðU ⊂,C 错误;对于D :()U N M U ⋃=ð,D 正确.故选:D.2.命题p :n ∃∈N ,22n n ≥,则命题p 的否定为()A.n ∀∈N ,22n n ≤B.n ∃∈N ,22n n ≤C.n ∀∈N ,22n n <D.n ∃∈N ,22nn <【答案】C 【解析】【分析】由存在量词命题的否定为全称量词命题,判断命题p 的否定形式.【详解】存在量词命题的否定为全称量词命题,所以命题p 的否定应该为n ∀∈N ,22n n <.故选:C .3.函数()f x =的单调递增区间为()A.1,4⎛⎤-∞ ⎥⎝⎦B.(,1)-∞- C.3,2⎡⎫+∞⎪⎢⎣⎭D.1,4⎡⎫+∞⎪⎢⎣⎭【答案】C 【解析】【分析】由根式性质求定义域,结合二次函数和幂函数的性质确定增区间.【详解】由题意,令223t x x =--=()()2310x x -+≥,即1x ≤-或32x ≥,根据二次函数性质知:223t x x =--在(,1]-∞-上递减,在3,+2⎡⎫∞⎪⎢⎣⎭上递增又y =在定义域上递增,故()f x =3,+2⎡⎫∞⎪⎢⎣⎭.故选:C4.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的(注:三角形的三条高线交于一点,此点为三角型的垂心)A.重心外心垂心 B.重心外心内心C.外心重心垂心 D.外心重心内心【答案】C 【解析】【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++= ,则NA NB NC +=- ,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN = ,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅= ,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.5.2023年8月6日2时33分,山东平原县发生里氏5.5级地震,8月8日3时28分,菏泽市牡丹区发生2.6级地震,短时间内的两次地震引起了人们对地震灾害和避险方法的关注.地震发生时会释放大量的能量,这些能量是造成地震灾害的元凶.研究表明地震释放的能量E (单位:焦耳)的常用对数与震级M 之间满足线性关系,若4级地震所释放的能量为106.310⨯焦耳,6级地震所释放的能量为136.310⨯焦耳,则这次平原县发生的地震所释放的能量约为()(参考数据:lg 6.30.8≈,0.0510 1.1≈)A.11810⨯焦耳B.111.110⨯焦耳C.12810⨯焦耳D.131.110⨯焦耳【答案】D 【解析】【分析】根据对数的运算性质即可代入数据求解 1.5 4.810M E +=,进而可求解.【详解】由题意可设lg E M λμ=+,则()()1013lg 6.3104lg 6.3106λμλμ⎧⨯=+⎪⎨⨯=+⎪⎩,解得 1.54.8λμ=⎧⎨=⎩,所以lg 1.5 4.8E M =+,所以 1.5 4.810M E +=,所以当 5.5M =时, 1.55.54.813.050.05131310101010 1.110E ⨯+===⨯≈⨯焦耳.故选:D.6.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+,则11(1)222n S n d d a d n a n -=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}n Sn 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+,即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立,于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件.故选:C7.已知()f x 的定义域为()R,21y f x =-为奇函数,()1y f x =+为偶函数,若当()1,1x ∈-时,()e x f x =,则()194f =()A.1eB.0C.1D.e【答案】C 【解析】【分析】根据函数的奇偶性可以求出函数的周期,利用周期运用代入法进行求解即可.【详解】()21y f x =-为奇函数,即()()21210f x f x -+--=,所以()f x 关于()1,0-中心对称,则()(2)f x f x =---,()1y f x =+为偶函数,即()()1()1(2)f x f x f x f x +=-+⇒-=,所以(2)(2)(2)(2)(4)()f x f x f x f x f x f x -=---⇒+=--⇒+=-,故()()()84f x f x f x +=-+=,即()f x 是周期为8的周期函数,所以()()()()1948242201f f f f =⨯+===,故选:C【点睛】关键点睛:本题的关键是利用函数的奇偶性求出函数的周期.8.已知ω是正整数,函数()()sin f x x ωω=+在()0,πω内恰好有4个零点,其导函数为()f x ',则()()f x f x '+的最大值为()A.2B.C.3D.【答案】B 【解析】【分析】根据函数零点的定义,导数的运算公式,结合正弦型函数的最值性质进行求解即可.【详解】因为()f x 在()0,πω内恰好有4个零点,所以35π022T T ω<-≤,即3π5ππωωω<≤,所以235ω<≤,又N ω+∈,所以2ω=,所以()()sin 22f x x =+,()()2cos 22f x x '=+,所以()()()22f x f x x ϕ'+=++≤πtan 20,2ϕϕ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数21iz =+(i 是虚数单位),则下列命题中正确的是()A.z = B.z 在复平面上对应点在第二象限C.1i z =+ D.z 的虚部为1-【答案】ACD 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可判断A 选项;利用复数的几何意义可判断B选项;利用共轭复数的定义可判断C 选项;利用复数的概念可判断D 选项.【详解】因为()()()21i 21i 1i 1i 1i z -===-++-.对于A 选项,z =A 对;对于B 选项,z 在复平面上对应点的坐标为()1,1-,位于第四象限,B 错;对于C 选项,1i z =+,C 对;对于D 选项,z 的虚部为1-,D 对.故选:ACD.10.下列命题中正确..的是()A.若向量()1,2a =r ,()3,1b = ,则,a b可作为平面向量的一组基底B.若四边形ABCD 为平行四边形,且()()()5,1,1,7,1,2A B C --,则顶点D 的坐标为(7,6)-C.若ABC 是等边三角形,则π,3AB BC = .D.已知向量,a b 满足()1,1a = ,4b = ,且π,4a b = ,则b 在a 上的投影向量的坐标为(2,2)【答案】ABD 【解析】【分析】对于A ,由基底的定义分析判断,对于B ,由AB DC =可求出点D 的坐标,对于C ,由向量夹角的定义分析判断,对于D ,由数量积的几何意义分析判断.【详解】对于A ,因为()1,2a =r ,()3,1b = ,且满足1231≠,所以,a b 不共线,所以,a b可作为平面向量的一组基底,所以A 正确,对于B ,设(,)D x y ,因为四边形ABCD 为平行四边形,所以AB DC =,所以(6,8)(1,2)x y -=--,解得7,6x y ==-,所以顶点D 的坐标为(7,6)-,所以B 正确,对于C ,因为ABC 是等边三角形,所以32π,AB BC = ,所以C 错误,对于D ,因为向量,a b 满足()1,1a = ,4b = ,且π,4a b = ,所以b 在a上的投影向量的坐标为cos ,4(2,2)2a b a b a⋅=⨯=,所以D 正确,故选:ABD11.若,,a b c ∈R ,则下列说法不成立的是()A.若0ab ≠且a b <,则11a b > B.若c b a <<且0ac <,则22cb ab <C.若01a <<,则3a a< D.若0a b >>,则11b b a a+<+【答案】ABD【解析】【分析】A.由0,0a b <>判断;B.由0b =判断;C.作差法判断;D 作差法判断.【详解】A.若0,0a b <>得不到11a b>,故错误;B.若0b =时,不成立,故错误;C.因为01a <<,所以()()3110a a a a a -=+-<,故正确;D.()()10111b b ab a ab b a b a a a a a a ++----==>+++,所以11b b a a+>+,故错误;故选:ABD.12.已知函数32()1f x x ax bx =-++,则下列说法正确的是()A.当0b =时,()f x 有两个极值点B.当0a =时,()f x 的图象关于()0,1中心对称C.当24a b =,且4a >-时,()f x 可能有三个零点D.当()f x 在R 上单调时,23a b≥【答案】BC【解析】【分析】特殊值法可排除A 项,利用函数的对称性可判定B ,取特殊值结合导数研究函数的单调性、极值与最值可判定C ,利用导函数非负结合判别式可判定D .【详解】对于A ,当0b =时,32()1f x x ax =-+,2()32f x x ax '=-,若0a =时,2()30f x x '=≥,则()f x 在定义域内单调递增,无极值点,故A 错误;对于B ,当0a =时,3()1f x x bx =++,3()1f x x bx -=--+,则()()2f x f x +-=,所以()f x 的图象关于()0,1中心对称,故B 正确;对于C 项,当24a b =时,232()14a f x x ax x =-++,22()323462a a a f x x ax x x '⎛⎫⎛⎫=-+=-- ⎪⎪⎝⎭⎝⎭,取4a -<<-,即36454a -<<-时,此时62a a >,所以当2a x <时,()0f x '>,所以()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上单调递增,当26a a x <<时,()0f x '<,所以()f x 在,26a a ⎛⎫ ⎪⎝⎭上单调递减,当6a x >时,()0f x '>,所以()f x 在,6a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以函数极小值为310654a a f ⎛⎫=+< ⎪⎝⎭,函数极大值为102a f ⎛⎫=> ⎪⎝⎭,即026a a f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,26a a ⎛⎫ ⎪⎝⎭有一个零点,又因为325()1042a f a =+<-<,()39104a f a -=-+>,所以()f x 在,6a a ⎛⎫- ⎪⎝⎭有一个零点,在,2a a ⎛⎫ ⎪⎝⎭有一个零点,即当4a -<<-时,()f x 有三个零点,故C 正确;对于D 项,若()f x 在定义域R 上是单调函数,则2()320f x x ax b '=-+≥恒成立,所以2Δ4120a b =-≤,解得23a b ≤,所以D 错误,故选:BC .【点睛】关键点睛:本题C 项,利用导数研究函数的零点个数,结合极大小值的正负及取特殊点判断函数值符合是关键.三、填空题:本题共4小题,每小题5分,共20分.13.已知23,25a b ==,则2log 45=___________.(用,a b 表示)【答案】2a b +##2b a+【解析】【分析】根据指数式与对数式的互化,求出22log 3,log 5a b ==,结合对数的运算法则化简,即可得答案.【详解】因为23,25a b ==,所以22log 3,log 5a b ==,故2222log 45log 59log 52log 322b a a b =⨯=+=+=+,故答案为:2a b+14.曲线2x 1y x 2-=+在点()1,3--处的切线方程为__________.【答案】520x y -+=【解析】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当=1x -时,=3y -,故点在曲线上.求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=.故答案为:520x y -+=.15.如图,,αβ是九个相同的正方形拼接而成的九宫格中的两个角,则αβ+=______.【答案】π4【解析】【分析】结合图形,可得1tan 3α=,1tan 2β=,利用正切的和角公式,即可得出答案.【详解】由图得:1tan 3α=,1tan 2β=,所以1132tan()111132αβ++==-⨯,又因为,αβ为锐角,从而π4αβ+=.故答案为:π4.16.如图,已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作圆弧交AD 于点F ,若P 为劣弧EF 上的动点,则PC PD ⋅ 的最小值为__________.【答案】5-【解析】【分析】建立直角坐标系,设(cos ,sin )(0)2P πθθθ≤≤,利用坐标运算求出PC PD ⋅ ,再利用辅助角公式即可求解.【详解】解:如图所示:建立平面直角坐标系,则(2,2)C ,(0,2)D ,由题意可设:(cos ,sin )(0)2P πθθθ≤≤,则(2cos ,2sin )PC θθ=-- ,(cos ,2sin )PD θθ=-- ,PC PD ⋅ 2cos (2cos )(2sin )θθθ=--+-2cos 4sin 5θθ=--+5)θφ=-+,其中1tan 2φ=,∴PC PD ⋅ 的最小值为5-.故答案为:5-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知不等式2(21)(1)0x a x a a -+++≤的解集为集合A ,集合(2,2)B =-.(1)若2a =,求A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.【答案】(1)(]2,3A B ⋃=-(2){|3a a ≤-或}2a ≥【解析】【分析】(1)可得出[],1,2A a a a =+=时,可得出集合A ,然后进行并集的运算即可;(2)根据[],1,(2,2)A a a B =+=-,并且A B ⋂=∅即可得出12a +≤-或2a ≥,从而可得出a 的取值范围.【小问1详解】2a =时,2(21)(1)0x a x a a -+++≤解得23x ≤≤,[]2,3A =,且(2,2)B =-,∴(]2,3A B =- ;【小问2详解】由2(21)(1)0x a x a a -+++≤解得1a x a ≤≤+,[],1A a a =+,(2,2)B =-,且A B ⋂=∅,12a ∴+≤-或2a ≥,3a ∴≤-或2a ≥,∴实数a 的取值范围为{|3a a ≤-或}2a ≥.18.已知a 、b 是非零向量,()a ab ⊥- ,且a = 、4b = .(1)求a 与b的夹角θ;(2)求32a b - .【答案】(1)6π(2)【解析】【分析】(1)依题意可得()0a a b ⋅-= ,根据数量积的运算律求出a b ⋅ ,再根据cos a b a b θ⋅=⋅ 计算可得;(2)根据32a b -= 及数量积的运算律计算可得;【小问1详解】解:因为()a a b ⊥- ,所以()0a a b ⋅-= ,即20a a b -⋅= ,即212a b a ⋅== ,所以cos 2a b a b θ⋅⋅=== ,因为[]0,θπ∈,所以6πθ=;【小问2详解】解:32a b -====19.已知()1f x a b =⋅-,其中向量(sin 2,2cos ),)(R)a x x b x x ==∈ ,(1)求()f x 的最小正周期和最小值;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若4A f ⎛⎫=⎪⎝⎭,a =,8b =,求边长c 的值.【答案】(1)最小正周期为π,最小值为2-.(2)2或6.【解析】【分析】(1)利用向量的数量积化简()f x 的解析式,进而可得()f x 的最小正周期和最小值;(2)先由4A f ⎛⎫= ⎪⎝⎭求得π3A =,再利用余弦定理列方程,即可求得边长c 的值.【详解】(1)()1f x a b =⋅-(sin 2,2cos ))1x x x =⋅-2π22cos 12cos 22sin 26x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭则()f x 的最小正周期2ππ2T ==,最小值为2-.(2)ππ2sin 22sin 64426A A A f ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪⎝⎭⎝⎭⎝⎭,则2πsin 62A ⎛⎫+= ⎪⎝⎭,又0πA <<,则ππ2π6632A <+<,故32ππ6A +=,解之得π3A=又a =,8b=,由余弦定理得(22218282c c =+-⨯⨯,即28120c c -+=,解之得2c =或6c =.经检验,均符合题意.20.已知数列{}n a 的前n 项和,232-=n n n S .(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对N ,4n n t T *∀∈≤恒成立,求实数t 的最大值.【答案】(1)32n a n =-(2)1【解析】【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得t 的最大值.【小问1详解】当1n =时,由111a S ==;当2n ≥时,22133(1)(1)3222n n n n n n n a S S n -----=-=-=-,又11a =满足上式,所以{}n a 的通项公式为32n a n =-.【小问2详解】由32n a n =-,可得()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,则12...n n T b b b =+++1111111...3447323131n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦.因为()()()1110311313134n n n n T T n n n n ++-=-=>+++++,所以1n n T T +>,所以数列{}n T 是递增数列,所以1141444n n t t t T T T t ≤⇔≤⇔≤=⇔≤,所以实数t 的最大值是1.21.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如下图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要30min .(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求高度差的最大值.(参考公式:sin sin 2cos sin ,cos cos 2sin sin 2222θϕθϕθϕϕθθϕθϕ+-+--=-=)【答案】(1)45sin 55152ππH t ⎛⎫=-+ ⎪⎝⎭,[]0,30t ∈(2)π2π45cos 153h t ⎛⎫=-⎪⎝⎭,[]0,30h ∈;45m 【解析】【分析】(1)设sin()H A t B ωϕ=++π20,ωϕ⎛>≤⎫ ⎪⎝⎭,根据所给条件求出A 、B 、ω、ϕ;(2)由题意得:1号与9号座舱的角度差为π3,不妨假设1号座舱出发早于9号座舱,t min 时1号与9号的高度分别为19,H H ,即可得到19πππ5π45sin sin 152156h H H t t ⎛⎫⎛⎫=-=---⎪ ⎪⎝⎭⎝⎭,再由和差化积公式得到π2π45cos 153h t ⎛⎫=-⎪⎝⎭,[]0,30t ∈,最后根据余弦函数的性质计算可得.【小问1详解】设sin()H A t B ωϕ=++π20,ωϕ⎛>≤⎫ ⎪⎝⎭,则2ππ15T ω==,令0=t 时,sin 1ϕ=-,π2ϕ=-,又100451055A B A A B B +==⎧⎧⇒⎨⎨-+==⎩⎩,所以45sin 55152ππH t ⎛⎫=-+⎪⎝⎭,[]0,30t ∈.【小问2详解】由题意得:1号与9号座舱的角度差为π3.不妨假设1号座舱出发早于9号座舱,t min 时1号与9号的高度分别为19,H H ,则145sin 55152ππH t ⎛⎫=-+ ⎪⎝⎭,9πππ45sin 551523H t ⎛⎫=--+ ⎪⎝⎭,所以高度19πππ5π45sin 55sin 55152156h H H t ⎛⎫⎛⎫=-=-+--- ⎪ ⎪⎝⎭⎝⎭πππ5π45sin sin 152156t t ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,由参考公式得,上式为π2πππ2π90cos sin 45cos 1536153t t ⎛⎫⎛⎫-=- ⎪ ⎝⎭⎝⎭,从而高度差为π2π45cos 153h t ⎛⎫=- ⎪⎝⎭,[]0,30t ∈;当π2πcos 1153t ⎛⎫-= ⎪⎝⎭,即π2ππ153t k -=,N k ∈,解得1015t k =+,N k ∈,又[]0,30t ∈,所以10t =min 或25t =min ,此时高度差h 的最大值为45m.22.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1xh x x =--,证得e 1x x ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【小问1详解】因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10x f x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:由(1)得,()()()ln min 2ln ln ln e1a f a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1xh x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则202a <<;令()0g a '>,则22a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 2212ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.。
北京市朝阳区2023-2024学年高三上学期期中质量检测数学试题及答案
北京市朝阳区2023~2024学年度第一学期期中质量检测高三数学(考试时间120分钟满分150分)本试卷分为选择题40分和非选择题110分第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =Z ,集合{}{}22,1,0,1,2A x x B =∈-<<=-∣Z ,则()U A B ⋂=ð()A.{}1,2- B.{}1 C.{}0,1 D.{}2【答案】D 【解析】【分析】根据题意可知{}1,0,1A =-,再由补集以及交集定义可得结果.【详解】由题可知{}{}221,0,1A x x =∈-<<=-∣Z,易知{}U A x x A =∈∉∣Zð,所以(){}U 2A B ⋂=ð.故选:D2.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是()A.lg y x =B.3y x =C.1y x x=+D.22x xy -=+【答案】B 【解析】【分析】根据函数的奇偶性和单调性逐一判断即可.【详解】对于A :因为lg y x =的定义域为()0,∞+,所以不是奇函数,所以A 错误;对于B :令()3f x x =,则()()()33f x x x f x -=-=-=-,所以是奇函数,又在()0,∞+上单调递增,B 正确;对于C :1y x x=+在()0,1上递减,在()1,+∞上递增,所以C 错误;对于D :因为()22xxf x -=+,()()22xx f x f x --=+=,所以是偶函数,所以D 错误,故选:B3.若sin θθ=,则tan 2θ=()A.3-B.3C.2-D.2【答案】C 【解析】【分析】根据sin θθ=得到tan θ=,再利用二倍角公式得到答案.【详解】sin tan θθθ=∴=,22tan tan 21tan 42θθθ===---故选:C【点睛】本题考查了二倍角公式,意在考查学生的计算能力.4.已知0.50.65log 0.5,5,0.5a b c ===,则()A.a c b <<B.a b c<< C.c<a<bD.b<c<a【答案】A 【解析】【分析】利用指对数函数性质判断大小关系即可.【详解】由0.600.5055log 0.5log 100.55150.5a c b <==<=<<===,即a c b <<.故选:A5.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是()A.π6x =-B.0x = C.π6x =D.π2x =【答案】C 【解析】【分析】将各项对应自变量代入解析式求函数值,判断2y =±是否成立即可.【详解】π6x =-时π2sin 26π3y ⎛⎫=+≠± ⎪⎝⎭-,不是对称轴;0x =时π2sin 260y ⎛⎫=+≠± ⎪⎝⎭,不是对称轴;π6x =时π2sin 2π36y ⎛⎫=+= ⎪⎝⎭,是对称轴;π2x =时π2sin 26πy ⎛⎫=+≠± ⎪⎝⎭,不是对称轴;故选:C6.设x ∈R ,则“()10x x +>”是“01x <<”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据题意解出不等式比较两范围大小即可得出结果.【详解】解不等式()10x x +>可得0x >或1x <-;显然{}1|0x x <<是{0x x 或}1x <-的真子集,所以可得“()10x x +>”是“01x <<”的必要不充分条件.故选:B7.已知平面内四个不同的点,,,A B C D 满足22BA DB DC =-,则AC BC=()A.23B.32C.2D.3【答案】D 【解析】【分析】将条件22BA DB DC =-变形,得到,BC AC 的关系,进而可得AC BC的值.【详解】22BA DB DC =-,()22BC CA DC DC CB -∴=++ ,即3BC AC =,3BC AC ∴= 3AC BC∴= .故选:D.8.已知一个圆锥的高与其底面圆的半径相等,且体积为8π3.在该圆锥内有一个正方体,其下底面的四个顶点在圆锥的底面内,上底面的四个顶点在圆锥的侧面上,则该正方体的棱长为()A.23B.1C.2D.4-【答案】D 【解析】【分析】根据题意,求得圆锥的高与底面圆的半径为2,作出组合体的轴截面,结合1SO D SOA ∽,列出方程,即可求解.【详解】因为圆锥的高与其底面圆的半径相等,设圆锥的高为h ,底面圆的半径为r ,则r h =,又因为圆锥的体积为8π3,可得23118πππ333r h r ==,解得2r =,则2h =,设圆锥的顶点为S ,底面圆心为O ,则高为2SO =,SO 与正方体的上底面交点为1O ,在该圆锥内有一个正方体,其下底面的四个顶点在圆锥的底面内,上底面的四个顶点在圆锥的侧面上,取其轴截面,如图所示,设正方体的棱长为a,可得CD =,由1SO D SOA ∽,可得11SO O D SO OA=,即22222a a -=,解得4a ==-所以该正方体的棱长为4-故选:D.9.已知函数211,(,0)(),()44ln(1),[0,)x x f x g x x x x x ∞∞⎧+-∈-==--⎨+∈+⎩,设R b ∈,若存在R a ∈,使得()()0f a g b +=,则实数b 的取值范围是()A.[1,5]-B.(,1][5,)-∞-⋃+∞C.[1,)-+∞D.(,5]-∞【答案】A 【解析】【分析】根据题意,求得函数()f x 的值域为[1,)-+∞,结合题意转化为()1g b -≥-,列出不等式,即可求解.【详解】由题意,作出函数()y f x =的图象,如图所示,所以,当(,0)x ∈-∞时,()()11f x f ≥-=-;当[0,)x ∈+∞时,()()00f x f ≥=,可函数()f x 的值域为[1,)-+∞,设R b ∈,若存在R a ∈,使得()()0f a g b +=成立,即()()f a g b =-,只需()1g b -≥-,即对于R b ∈,满足2441b b -++≥-成立,即2450b b --≤,解得15b -≤≤,所以实数b 的取值范围为[1,5]-.故选:A.10.已知点集{}{}Λ(,)|Z,Z ,(,)Λ|15,15x y x y S a b a b =∈∈=∈≤≤≤≤.设非空点集ΛT ⊆,若对S 中任意一点P ,在T 中存在一点Q (Q 与P 不重合),使得线段PQ 上除了点,P Q 外没有Λ中的点,则T 中的元素个数最小值是()A.1 B.2C.3D.4【答案】B 【解析】【分析】根据整点(,),(,)a b c d 的连线内部没有其它整点,当且仅当a c -与b d -互为素数,讨论T 只有一个点(,)x y 得到矛盾,进而有T 中元素不止一个,取{(2,6),(3,6)}T =分析是否满足要求即可.【详解】对于整点(,),(,)a b c d 的连线内部没有其它整点,当且仅当a c -与b d -互为素数,若T 只有一个点(,)x y ,取S 的点(,)a b 使,a x 和,b y 分别同奇偶,,a x b y --有公因子2(或重合),不合题意,故T 中元素不止一个,令{(2,6),(3,6)}T =,对于S 的点(,)P a b ,当1a =或3时,取(2,6)Q ;当2a =或4时,取(3,6)Q ;由于P 、Q 横坐标之差为1±,故PQ 内部无整点;当5a =,{1,3,5}b ∈时,取(3,6)Q ,此时横坐标之差为2,纵坐标之差为奇数,二者互素;当5a =,{2,4}b ∈时,取(2,6)Q ,此时横坐标之差为3,纵坐标之差为4,2--,二者互素;综上,T 中的元素个数最小值是2.故选:B【点睛】关键点睛:根据题设分析出整点(,),(,)a b c d 的连线内部没有其它整点,当且仅当a c -与b d -互为素数为关键.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知函数()sin πcos πf x x x =+,则()f x 的最小正周期是__________.【答案】2【解析】【分析】化简函数为π())4f x x =+,结合最小正周期的计算公式,即可求解.【详解】由函数π()sin πcos π4f x x x x =+=+,所以()f x 的最小正周期为2π2πT ==.故答案为:2.12.已知单位向量a ,b 满足()22a a b ⋅+= ,则向量a与向量b 的夹角的大小为__________.【答案】3π【解析】【分析】根据向量的数量积运算,结合单位向量模长为1,代值计算即可.【详解】因为a ,b均是单位向量,故可得1,1a b == ,故可得()222,2a a b a a b cos b ⋅+=+=,即2, 1cos a b = ,解得1, 2cos a b = ,又因为向量夹角的范围为[]0,π,故,a b的夹角为3π.故答案为:3π.【点睛】本题考查向量数量积的运算,属基础题.13.设公差为d 的等差数列{}n a 的前n 项和为()*N n S n ∈,能说明“若0d <,则数列{}nS 是递减数列”为假命题的一组1,a d 的值依次为__________.【答案】12a =,1d =-(答案不唯一)【解析】【分析】由等差数列前n 项和公式有21()22n d dS n a n =+-且0d <,结合二次函数性质找到一个满足{}n S 不是递减数列的1,a d 即可.【详解】由211(1)(222n n n d dS na d n a n -=+=+-,其对称轴为112a n d=-,且0d <,结合二次函数性质,只需1113122a a d d-≥⇒≤-,即1a d ≥-,此时{}n S 不是递减数列,如12a =,1d =-,则21525()228n S n =--+,显然12S S <.故答案为:12a =,1d =-(答案不唯一)14.古希腊数学家托勒密对三角学的发展做出了重要贡献,他的《天文学大成》包含一张弦表(即不同圆心角的弦长表),这张表本质上相当于正弦三角函数表.托勒密把圆的半径60等分,用圆的半径长的160作为单位来度量弦长.将圆心角α所对的弦长记为crd α.如图,在圆O 中,60 的圆心角所对的弦长恰好等于圆O 的半径,因此60 的圆心角所对的弦长为60个单位,即crd 6060= .若θ为圆心角,()1cos 01804θθ=<<,则crd θ=__________【答案】【解析】【分析】根据度量弦长的定义,利用余弦定理求出1cos 4θ=时圆心角θ所对应的弦长2l r =,结合60 的圆心角所对的弦长为60个单位即可求出结果.【详解】设圆的半径为r ,1cos 4θ=时圆心角θ所对应的弦长为l ,利用余弦定理可知2222232cos 2l r r r r θ=+-=,即可得2l r =又60 的圆心角所对的弦长恰好等于圆O 的半径,60 的圆心角所对的弦长为60个单位,即与半径等长的弦所对的圆弧长为60个单位,所以602l =⨯=故答案为:15.如图,在棱长为1的正方体1111ABCD A B C D -中,点M 为AD 的中点,点N 是侧面11DCC D 上(包括边界)的动点,且1B D MN ⊥,给出下列四个结论:①动点N 的轨迹是一段圆弧;②动点N 的轨迹与1CD 没有公共点;③三棱锥1N B BC -的体积的最小值为112;④平面BMN 截该正方体所得截面的面积的最大值为98.其中所有正确结论的序号是__________.【答案】②③④【解析】【分析】作出与1B D 垂直的平面MPQ ,即可得动点N 的轨迹是两平面的交线在侧面内的线段PQ ,可知①错误;显然1//PQ CD ,即②正确;当N 点与P 点重合时到平面1B BC 的距离最小时,此时最小值为112,所以③正确;易知当N 点与Q 点重合时,截面为等腰梯形1BMQC ,此时面积最大为98.【详解】取1,CD DD 的中点分别为,P Q ,连接,,,MP MQ PQ BD ,如下图所示:由正方体性质可知1BB MP ⊥,又因为AC BD ⊥,//MP AC ,所以MP BD ⊥,又1BB BD B ⋂=,1,BB BD ⊂平面1BB D ,所以MP ⊥平面1BB D ;又1B D ⊂平面1BB D ,所以1MP B D ⊥;同理可得11,MQ B D QP B D ⊥⊥,因此1B D ⊥平面MPQ ,若1B D MN ⊥,所以N ∈平面MPQ ,又点N 是侧面11DCC D 上(包括边界)的动点;所以动点N 的轨迹是两平面的交线在侧面内的线段,即PQ ,可知①错误;由于,P Q 是1,CD DD 的中点,所以1//PQ CD ,即动点N 的轨迹与1CD 没有公共点;所以②正确;易知三棱锥1N B BC -的底面1B BC 的面积为定值,即1111122B BC S =⨯⨯= ,当N 点到平面1B BC 的距离最小时,即与P 点重合时,距离最小为12,此时体积值最小为111132212V =⨯⨯=,所以③正确;显然当N 点与Q 点重合时,截面面积最大,此时截面即为四边形1BMQC ,如下图所示:易知1//MQ BC ,且12BM QC ==,1,2MQ BC ==;即四边形1BMQC 为等腰梯形,易知其高为324h ==,所以其面积为192248⎛+⨯=⎝;即④正确.故答案为:②③④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知{}n a是递增的等比数列,其前n项和为()*nS n∈N,满足236,26a S==.(1)求{}n a的通项公式及n S;(2)若2024n nS a+>,求n的最小值.【答案】(1)123nna-=⨯;31nnS=-.(2)7【解析】【分析】(1)根据等比数列的通项公式以及求和的定义,建立方程,求得公比,可得答案;(2)根据对数的性质,可得答案.【小问1详解】设等比数列{}n a的公比为q,由数列{}n a是递增数列,则1q>,由26a=,则216aaq q==,326a a q q==,由312366626S a a a qq=++=++=,整理可得231030q q-+=,则()()3130q q--=,解得3q=,易知22126323n n nna a q---==⨯=⨯,()()1121331113n nnna qSq-⨯-===---.【小问2详解】由(1)可得:1131235312024n n nn nS a--+=-+⨯=⨯->,整理可得1532025n-⨯>,13405n->,61713243405,3729405--==,故n的最小值为7.17.在ABC中,222b c a bc+-=.(1)求A∠;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使ABC存在且唯一确定,求ABC的面积.条件①:11cos 14B =;条件②:12a b +=;条件③:12c =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.【答案】(1)π3(2)答案见解析【解析】【分析】(1)根据题意,利用余弦定理求得1cos 2A =,即可求解;(2)根据题意,若选择①②,求得sinB ,由正弦定理求得7,5a b ==,再由余弦定理求得8c =,结合面积公式,即可求解;若①③:先求得sin 14B =,由sin sin()14C A B =+=,利用正弦定理求得212a =,结合面积公式,即可求解;若选择②③,利用余弦定理,列出方程求得0b =,不符合题意.【小问1详解】解:因为222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,又因为(0,π)A ∈,所以π3A =.【小问2详解】解:由(1)知π3A =,若选①②:11cos 14B =,12a b +=,由11cos 14B =,可得53sin 14B ==,由正弦定理sin sin a b A B =,可得214=7a =,则125b a =-=,又由余弦定理2222cos a b c bc A =+-,可得249255c c =+-,即25240c c --=,解得8c =或3c =-(舍去),所以ABC的面积为11sin 58222S bc A ==⨯⨯⨯=.若选①③:11cos 14B =且12c =,由11cos 14B =,可得sin 14B ==,因为πA BC ++=,可得()111sin sin 2142147C A B =+=⨯+⨯=,由正弦定理sin sin a c A C =,可得27=,解得212a =,所以ABC的面积为1121sin 12222142S ac b ==⨯⨯⨯=.若选:②③:12a b +=且12c =,因为222b c a bc +-=,可得22212(12)12b b b +--=,整理得2412b b =,解得0b =,不符合题意,(舍去).18.如图,在三棱锥-P ABC 中,PA ⊥平面,2,ABC PA AC BC PB ====(1)求证:BC ⊥平面PAC ;(2)求二面角A PB C --的大小;(3)求点C 到平面PAB 的距离.【答案】(1)证明见解析;(2)60︒;(3.【解析】【分析】(1)利用线面垂直的性质判断异面直线垂直,再由勾股定理证明线线垂直,根据线面垂直的判定证明即可;(2)建立空间直角坐标系,分别求法向量,求出二面角;(3)应用等体积法求点到面的距离即可.【小问1详解】因为PA ⊥平面ABC ,BC ⊂平面ABC ,BA ⊂平面ABC ,所以,PA BC PA BA ⊥⊥,又,2PA PB ==,所以AB ==,又因为2AC BC ==,222AC BC AB +=,所以BC AC ⊥,因为AC ⊂平面PAC ,PA ⊂平面PAC ,且AC PA A ⊂=,所以BC ⊥平面PAC ;【小问2详解】过C 作CM //PA ,则CM ⊥平面ABC ,又由(1)知BC AC ⊥,所以以,,CA CB CM 为,,x y z轴建立空间直角坐标系,如下图,则()()()()2,0,0,2,0,2,0,2,0,0,0,0A P B C ,设平面APB 的法向量为()111,,m x y z = ,又()()0,0,2,2,2,0AP AB ==- ,所以1112002200z m AP x y m AB ⎧=⋅=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩ 令11x =,则11y =,则()1,1,0m =u r ,设平面PBC 的法向量为()222,,x n y z = ,又()()2,0,2,0,2,0CP CB == ,所以2222200200x z n CP y n CB ⎧+=⋅=⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ ,令21x =,则21z =-,则()1,0,1n =- ,令二面角A PB C --的平面角为θ,则1cos cos ,2m n m n m n θ⋅=== ,由图知此二面角为锐二面角,所以60θ=︒,故二面角A PB C --为60︒;【小问3详解】设点C 到平面PAB 的距离为h ,122ABC S AC BC =⨯⨯= ,所以1433P ABC ABC V PA S -=⨯⨯=△,又12PBC S PA AB =⨯⨯=△,所以13C PAB PBC P ABC V h S V --=⨯⨯==△,解得h =C 到平面PAB .19.已知函数2()e sin (R)x f x x ax a =--∈.(1)若0a =,求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最小值和最大值;(2)若12a <,求证:()f x 在0x =处取得极小值.【答案】(1)最小值为(0)1f =,最大值为π2π()e 12f =-;(2)证明见解析.【解析】【分析】(1)利用导数研究()e sin x f x x =-在π0,2⎡⎤⎢⎥⎣⎦上的单调性,即可求最值;(2)由题设()e cos 2x f x x ax '=--,易得(0)0f '=,构造()e cos 2x g x x ax =--利用导数可得(0)0g '>,得到()f x '在0x =处有递增趋势,即可证结论.【小问1详解】由题设()e sin x f x x =-,则()e cos x f x x '=-,在π0,2⎡⎤⎢⎥⎣⎦上()e cos 0x f x x '=->,即()f x 递增,所以最小值为0(0)e sin 01f =-=,最大值为ππ22ππ()e sin e 122f =-=-.【小问2详解】由题意()e cos 2x f x x ax '=--,则0(0)e cos 000f '=--=,令()e cos 2x g x x ax =--,则()e sin 2x g x x a '=+-,且12a <.所以0(0)e sin 02120g a a '=+-=->,即()f x '在0x =处有递增趋势,综上,若0x ∆>且x ∆无限趋向于0,在(,0)x x ∈-∆上()0f x '<,()f x 递减,在(0,)x x ∈∆上()0f x '>,()f x 递增,所以()f x 在0x =处取得极小值.20.已知函数2()ln 1()f x mx x x m =-+∈R .(1)当1m =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()0f x ≤在区间[1,)+∞上恒成立,求m 的取值范围;(3)试比较ln 4的大小,并说明理由.【答案】(1)10x y +-=(2)(],2-∞(3)ln 4<【解析】【分析】(1)根据导数的几何意义即可求解;(2)将()0f x ≤在区间[)1,+∞上恒成立,转化为1ln 0m x x x -+≤,令()1ln g x m x x x =-+,问题转化为()max 0g x ≤,利用导数求函数()max g x 即可得解;(3)由(2)知,2m =时,()0f x ≤在区间[)1,+∞上恒成立,取x =.【小问1详解】当1m =时,()2n 1l f x x x x -+=,()ln 12f x x x '∴=+-,所以曲线()f x 在点()()1,1f 处切线的斜率()11k f '==-,又()10f =,所以曲线()f x 在点()()1,1f 处切线的方程为()1y x =--即10x y +-=.【小问2详解】()0f x ≤在区间[)1,+∞上恒成立,即2ln 10mx x x -+≤,对[)1,x ∀∈+∞,即1ln 0m x x x -+≤,对[)1,x ∀∈+∞,令()1ln g x m x x x =-+,只需()max 0g x ≤,()222111m x mx g x x x x-+-'=--=,[)1,x ∞∈+,当0m ≤时,有0mx ≤,则()0g x '<,()g x ∴在[)1,+∞上单调递减,()()10g x g ∴≤=符合题意,当0m >时,令()21h x x mx =-+-,其对应方程210x mx -+-=的判别式24m ∆=-,若0∆≤即02m <≤时,有()0h x ≤,即()0g x '≤,()g x ∴在[)1,+∞上单调递减,()()10g x g ∴≤=符合题意,若0∆>即m>2时,()21h x x mx =-+-,对称轴12m x =>,又()120h m =->,方程210x mx -+-=的大于1的根为02m x -=,()01,x x ∴∈,()0h x >,即()0g x '>,()0,x x ∈+∞,()0h x <,即()0g x '<,所以函数()g x 在()01,x 上单调递增,()()10g x g ∴>=,不合题意.综上,()0f x ≤在区间[)1,+∞上恒成立,实数m 的取值范围为(],2-∞.【小问3详解】由(2)知,当2m =时,()0f x ≤,在区间[)1,+∞上恒成立,即22ln 1x x x ≤-,对[)1,x ∀∈+∞,取x =代入上式得1<,化简得ln 4<.21.已知1,11,21,2,12,22,,1,2,(2)m m m m m m m a a a a a a A m a a a ⎛⎫ ⎪ ⎪=≥ ⎪ ⎪ ⎪⎝⎭是2m 个正整数组成的m 行m 列的数表,当1,1i s m j t m ≤<≤≤<≤时,记(),,,,,,,i j s t i j s j s j s t d a a a a a a =-+-.设*n ∈N ,若m A 满足如下两个性质:①{},1,2,3;,(1,2,,;1,2,,)i j a n i m j m ∈== ;②对任意{}1,2,3,,k n ∈ ,存在{}{}1,2,,,1,2,,i m j m ∈∈ ,使得,i j a k =,则称m A 为Γn 数表.(1)判断3123231312A ⎛⎫ ⎪= ⎪ ⎪⎝⎭是否为3Γ数表,并求()()1,12,22,23,3,,d a a d a a +的值;(2)若2Γ数表4A 满足(),1,1,1(1,2,3;1,2,3)i j i j d a a i j ++===,求4A 中各数之和的最小值;(3)证明:对任意4Γ数表10A ,存在110,110i s j t ≤<≤≤<≤,使得(),,,0i j s t d a a =.【答案】(1)是;5(2)22(3)证明见详解【解析】【分析】(1)根据题中条件可判断结果,根据题中公式进行计算即可;(2)根据条件讨论1,i j a +的值,根据(),,,,,,,i j s t i j s j s j s t d a a a a a a =-+-,得到相关的值,进行最小值求和即可;(3)当2i r ≥时,将横向相邻两个k 用从左向右的有向线段连接,则该行有1i r -条有向线段,得到横向有向线段的起点总数,同样的方法得到纵向有向线段的起点总数,根据条件建立不等关系,即可证明.【小问1详解】3123231312A ⎛⎫ ⎪= ⎪ ⎪⎝⎭是3Γ数表,()()1,12,22,23,3,,23 5.d a a d a a +=+=【小问2详解】由题可知(),,,,,,,1i j s t i j s j s j s t d a a a a a a =-+-=(1,2,3;1,2,3)i j ==.当1,1i j a +=时,有(),1,1,1,1,(1)(1)1i j i j i j i j d a a a a ++++=--=,所以,1,13i j i j a a +++=.当1,2i j a +=时,有(),1,1,1,1,(2)(2)1i j i j i j i j d a a a a ++++=--=,所以,1,13i j i j a a +++=.所以,1,13(1,2,3;1,2,3).i j i j a a i j +++===所以1,12,23,34,4336,a a a a +++=+=1,32,43,14,23, 3.a a a a +=+=1,22,33,4314a a a ++=+=或者1,22,33,4325a a a ++=+=,2,13,24,3314a a a ++=+=或者2,13,24,3325a a a ++=+=,1,41a =或1,42a =,4,11a =或4,12a =,故各数之和633441122≥++++++=,当41111122212111212A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭时,各数之和取得最小值22.【小问3详解】由于4Γ数表10A 中共100个数字,必然存在{}1,2,3,4k ∈,使得数表中k 的个数满足25.T ≥设第i 行中k 的个数为(1,2,,10).i r i =⋅⋅⋅当2i r ≥时,将横向相邻两个k 用从左向右的有向线段连接,则该行有1i r -条有向线段,所以横向有向线段的起点总数1210(1)(1)10.i i i i r R r r T =≥=∑-≥∑-=-设第j 列中k 的个数为(1,2,,10)j c j =⋅⋅⋅.当2j c ≥时,将纵向相邻两个k 用从上到下的有向线段连接,则该列有1j c -条有向线段,所以纵向有向线段的起点总数1210(1)(1)10.j j j j c C c c T =≥=∑-≥∑-=-所以220R C T +≥-,因为25T ≥,所以220200R C T T T T +-≥--=->.所以必存在某个k 既是横向有向线段的起点,又是纵向有向线段的终点,即存在110110,u v p q <<≤<<≤,使得,,,u p v p v q a a a k ===,所以(),,,,,,,0u p v q u p v p v p v q d a a a a a a =-+-=,则命题得证.。
山东省德州市2024-2025学年高三上学期期中考试数学试题
山东省德州市2024-2025学年高三上学期期中考试数学试题一、单选题1.已知集合{}13A x x =-≤,{}28xB x =<,则A B = ()A .[]2,4-B .(]2,4-C .[]2,3-D .[)2,3-2.以下有关不等式的性质,描述正确的是()A .若a b >,则11a b<B .若22ac bc <,则a b <C .若0a b c <<<,则a a cb b c+<+D .若0a >,0b >,4a b +<,4ab <,则2a <,2b <3.已知向量()1,2a =- ,(),1b m = ,若a b +与3a b - 平行,则m =()A .12-B .14-C .32D .724.已知等差数列{}n a 的前n 项和为n S ,3136a a +=,1517a =,则22S =()A .180B .200C .220D .2405.已知p :x a ≤,q :1202xx -≤+,若p 是q 的充分不必要条件,则a 的取值范围是()A .2a <-B .2a ≤-C .12a <D .12a ≤6.已知关于x 的函数()212log 1y x ax a =++-在[]3,2--上单调递增,则实数a 的取值范围是()A .4a ≤B .4a <C .3a ≤D .3a <7.已知函数()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,若方程()12f x =在区间()0,2π上恰有3个实数根,则ω的取值范围是()A .2531,2424⎛⎫⎪⎝⎭B .3137,2424⎛⎤ ⎥⎝⎦C .3147,2424⎛⎤ ⎥⎝⎦D .3161,2424⎛⎫ ⎪⎝⎭8.已知函数()122ln ,282x f x x x ≤<=⎨⎪≤≤⎪⎩,若函数()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是()A .ln 21,4e ⎡⎫⎪⎢⎣⎭B .ln 21,42e ⎡⎫⎪⎢⎣⎭C .ln 21,22e ⎛⎤⎥⎝⎦D .ln 21,2e ⎛⎤⎥⎝⎦二、多选题9.下列结论正确的是()A .1cos 2cos x x+≥B .()0,3x ∀∈,()934x x -≤C .若0x >,0y >,2x yy x +≥D[)2,+∞10.已知函数()()221f x x x =-,则()A .函数()f x 有两个零点B .13x =是()f x 的极小值点C .11,55f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭是()f x 的对称中心D .当34x <<时,()()123f x f x +>-11.已知数列{}n a 的各项均为负数,其前n 项和n S 满足()11,2,4n n a S n ⋅==⋅⋅⋅,则()A.214a =B .1n a ⎧⎫⎨⎬⎩⎭为递减数列C .{}n a 为等比数列D .{}n a 存在大于11000-的项三、填空题12.已知正三角形ABC 的边长为2,O 为BC 中点,P 为边BC 上任意一点,则AP AO ⋅=.13.设()2π2sin cos 2sin 4f x x x x ⎛⎫=-- ⎪⎝⎭,当ππ,62x ⎛⎫∈ ⎪⎝⎭时,()13f x =-,则cos 2x =.14.已知函数()f x 的定义域为R ,()()()113f x f x f -++=,()22f x -+为偶函数,且312f ⎛⎫= ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭,()20251112k k f k =⎛⎫+-=⎪⎝⎭∑.四、解答题15.已知ABC V 中的三个角,,A B C 的对边分别为,,a b c,且满足sin cos a B A =.(1)求A ;(2)若A 的角平分线AD 交BC 于D ,2AD =,求ABC V 面积的最小值.16.某企业计划引入新的生产线生产某设备,经市场调研发现,销售量()q x (单位:台)与每台设备的利润x (单位:元,0x >)满足:()25252250,225x q x a x x <≤=-<≤⎨⎪>⎪⎪⎩(a ,b 为常数).当每台设备的利润为36元时,销售量为360台;当每台设备的利润为100元时,销售量为200台.(1)求函数()q x 的表达式;(2)当x 为多少时,总利润()f x (单位:元)取得最大值,并求出该最大值.17.在数列{}n a 中,11a =,其前n 项和为n S ,且()()1111n n n n nS S n S a ----=-+(2n ≥且*n ∈N ).(1)求{}n a 的通项公式;(2)设数列{}n b 满足213n n n b a ⎛⎫=-⨯ ⎪⎝⎭,其前n 项和为n T ,若()()23931n n n T n n λ-≤+⨯-恒成立,求实数λ的取值范围.18.已知函数()()()12ln 1e x f x x ax a +=+-∈R .(1)当1a =时,求函数()f x 在点()()0,0f 处的切线方程;(2)当0a <时,求()f x 的单调区间;(3)若函数()f x 存在正零点0x ,求a 的取值范围.19.已知数列{}n a ,从中选取第1i 项、第2i 项、…第m i 项()12m i i i <<⋅⋅⋅<,顺次排列构成数列{}k b ,其中k k i b a =,1k m ≤≤,则称新数列{}k b 为{}n a 的长度为m 的子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的子列.(1)写出2,8,4,7,5,6,9的三个长度为4的递增子列;(2)若数列{}n a 满足31n a n =-,*n ∈N ,其子列{}k b 长度4m =,且{}k b 的每一子列的所有项的和都不相同,求12341111b b b b +++的最大值;(3)若数列{}n a 为等差数列,公差为d ,0d ≠,数列{}k b 是等比数列,公比为q ,当1a d为何值时,数列{}k i 为等比数列.。
安徽省黄山市屯溪2024-2025学年高三上学期11月期中数学试题含答案
屯溪2024-2025学年度第一学期期中质量检测高三数学试题(答案在最后)命题人:(考试时间:120分钟满分:150分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集{}{}{}0,1,2,3,4,0,1,4,1,3U A B ===,则()U A B =ð()A.{}2,3 B.{}1,3,4 C.{}1,2,3 D.{}0,1【答案】C 【解析】【分析】根据给定条件,利用补集、并集的定义直接求解即可.【详解】由{}{}0,1,2,3,4,0,1,4U A ==,得{2,3}U A =ð,而{}1,3B =,所以{}3()1,2,U B A = ð.故选:C2.已知命题2:1,1p x x ∀<->,则p ⌝是()A.21,1x x ∃<-≤B.21,1x x ∀≥->C.21,1x x ∀<->D.21,1x x ∃≤-≤【答案】A 【解析】【分析】运用全称命题的否定,否定结论,全称量词换成存在量词即可解题.【详解】全称命题的否定,否定结论,全称量词换成存在量词.则G ∀<−1,2>1,则p ⌝是21,1x x ∃<-≤.故选:A.3.设各项均为正数的等比数列{}n a 满足41082a a a ⋅=,则()2121011log a a a a 等于()A.102B.112 C.11D.10【答案】C 【解析】【分析】等比数列中若+,,,N m n p q ∈,m n p q +=+,则m n p q a a a a ⨯=⨯.我们先根据此条性质和已知条件求出6a 的值,最后运用对数性质计算即可.【详解】在等比数列{}n a 中,8462108a a a a a ==⋅,得62a =.根据等比数列性质,2211121039485762a a a a a a a a a a a ======.所以1210111112103948576()()()()()a a a a a a a a a a a a a a a = 5116262()a a ==⨯,1121210112log ()log (2)11a a a a == .故选:C.4.若()()220,cos 2,cos 2m n m n αβαβ-≠-=+=,则tan tan αβ=()A.2m nm n +- B.m n m n +-C.2m n m n-+ D.m n m n-+【答案】D 【解析】【分析】由两角和差的余弦展开式求出cos cos ,sin sin m n m n αβαβ=+=-,再由同角的三角函数关系求解即可;【详解】因为()()cos cos cos sin sin 2,cos cos cos sin sin 2m n αβαβαβαβαβαβ-=+=+=-=,所以cos cos ,sin sin m n m n αβαβ=+=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.故选:D.5.已知函数()f x 与其导函数()f x '的图象的一部分如图所示,则关于函数()()e xf xg x =的单调性说法正确的是()A.在(1,1)-单调递减B.在(0,2单调递减C.在[2单调递减 D.在[1,2]单调递减【答案】B 【解析】【分析】根据图象判断出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,求导得到()()()exf x f xg x '-'=,()g x在(1,2x ∈-上单调递减,在2x ⎡⎤∈⎣⎦上单调递增,得到答案.【详解】从图象可以看出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,()()()e xf x f xg x '-'=,当(1,2x ∈-时,()()0f x f x '-<,故()0g x '<,()()ex f x g x =在(1,2x ∈-上单调递减,当2x ⎡⎤∈-⎣⎦时,()()0f x f x '-≥,故()0g x '≥,()()ex f x g x =在2x ⎡⎤∈⎣⎦上单调递增,ACD 错误,B 正确,故选:B6.若对任意实数b ,关于x 的方程()212ax b x x ++-=有两个实根,则实数a 的取值范围是()A.02a <≤B.01a <≤ C.10a -≤< D.11a -≤≤且0a ≠【答案】B 【解析】【分析】根据方程有两个根,利用判别式可转化为关于实数b 的不等式恒成立,即可求解.【详解】关于x 的方程()212ax b x x ++-=有两个实根,即方程()2120ax b x b +-+-=有两个实根,所以()()210Δ1420a b a b ≠⎧⎪⎨=---≥⎪⎩,即()20212810a b a b a ≠⎧⎨-+++≥⎩对任意实数b 恒成立,所以()()220Δ4124810a a a ≠⎧⎪⎨=+-+≤⎪⎩,即200a a a ≠⎧⎨-≤⎩,得01a <≤.故选:B.7.直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,则ω=()A.13B.23C.32D.3【答案】B 【解析】【分析】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,再结合条件,即可求解.【详解】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到π1sin 62x ω⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,又直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,显然最小值在一个周期内取到,不妨取0k =,得到0x =或2π3x ω=,所以2ππ3ω=,解得23ω=,故选:B.8.已知定义在(0,)+∞上的函数()f x 满足(()()xf yf x xf y y=-,且当1x >时,()0f x >,则()A.2()2()f x f x ≥B.322()()()f x f x f x ≥C.2()2()f x f x ≤D.322()()()f x f x f x ≤【答案】D 【解析】【分析】应用赋值法构造出23(),(),()f x f x f x 的等量关系,再结合不等式性质判断即可.【详解】由题意,0,0x y >>,()()()x f yf x xf y y=-.赋值1x y ==,得1(1)(1(1)1(1)01f f f f ==⋅-⋅=;赋值1x =,得1(1)1()()f yf f y f y y ⎛⎫=-⋅=- ⎪⎝⎭,即1()f f x x ⎛⎫=- ⎪⎝⎭,当1x >时,()0f x >,当01x <<时,则11x >,所以1()0f f x x ⎛⎫=-> ⎪⎝⎭,即()0f x <;赋值2x y =,得()222()()y f f y yf y y f y y ⎛⎫==- ⎪⎝⎭,解得21()()f y y f y y ⎛⎫=+ ⎪⎝⎭,即21()()f x x f x x ⎛⎫=+⎪⎝⎭;AC 项,由21()()f x x f x x ⎛⎫=+⎪⎝⎭,0x >,得()212()2()f xf x x f x x ⎛⎫-=+- ⎪⎝⎭,其中由0x >,可知1220x x +-≥=,当1x >时,1()0,2()0f x x f x x ⎛⎫>+-≥ ⎪⎝⎭,即()22()f x f x ≥;当01x <<时,1()0,2()0f x x f x x ⎛⎫<+-≤ ⎪⎝⎭,即()22()f x f x ≤;故AC 错误;BD 项,21,x x y x ==,得232222111()()()()1x f f x f x x f f x x f x x x x x ⎛⎫ ⎪⎛⎫==-=+ ⎪ ⎪⎝⎭ ⎪⎝⎭;又21()()f x x f x x ⎛⎫=+ ⎪⎝⎭,所以3222211()()()1()f x f x x f x x f x x x ⎛⎫=+=++ ⎪⎝⎭,则322222222211()()()1()2()()0f x f x f x x f x x f x f x x x ⎛⎫⎛⎫-=++-++=-≤ ⎪ ⎪⎝⎭⎝⎭,故322()()()f x f x f x ≤,且()f x 不恒为0,故B 错误,D 正确.故选:D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错或不选的得0分)9.给出下列四个关系式,其中正确的是()A.2024∈RB.0∈∅C.∈Z QD.∅{}【答案】AD 【解析】【分析】根据R,Z,Q 表示的数集,结合空集的性质、真子集的定义逐一判断即可.【详解】因为2024是实数,因此选项A 正确;因为空间集中没有元素,显然0∈∅不正确,因此选项B 不正确;因为所有的整数都是有理数,因此整数集是有理数集的子集,所以选项C 不正确;因为空集是任何非空集合的真子集,所以选项D 正确,故选:AD10.(多选)下列说法不正确的是()A.已知{}{}260,10A xx x B x mx =+-==-=∣∣,若B A ⊆,则m 组成集合为11,23⎧⎫-⎨⎩⎭B.不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<C.()f x 的定义域为()1,2-,则()21f x -的定义域为()3,3-D.不等式20ax bx c ++>解集为()(),23,-∞-⋃+∞,则0a b c ++>【答案】ACD 【解析】【分析】A 选项,考虑B =∅时,0m =,满足要求,可判断A ;B 选项,考虑0k =时,0k ≠两种情况讨论可得充要条件为30k -<≤,可判断B ;C 选项,由1212x -<-<,可求定义域判断C ;D 选项,根据不等式的解集得到0a >且2,3-为方程20ax bx c ++=的两个根,由韦达定理得到的关系,,a b c ,计算可判断D.【详解】A 选项,{}2,3A =-,又{}10B xmx =-=∣,当0m =时,B =∅,满足B A ⊆,当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,当12m =时,{}2B =,满足B A ⊆,当13m =-时,{}3B =-,满足B A ⊆,综上,m 组成集合为110,,23⎧⎫-⎨⎬⎩⎭,A 说法不正确;B 选项,当0k =时,不等式为308-<恒成立,可得23208kx kx +-<对一切实数x 恒成立,当0k ≠时,由23208kx kx +-<对一切实数x 恒成立,可得20342()08k k k <⎧⎪⎨-⨯⨯-<⎪⎩,解得30k -<<,综上所述:不等式23208kx kx +-<对一切实数x 恒成立的充要条件是30k -<≤,所以不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<,故B 正确;C 选项,因为()f x 的定义域为()1,2-,所以1212x -<-<,解得302x <<,故()21f x -的定义域为30,2⎛⎫⎪⎝⎭,C 说法不正确;D 选项,不等式20ax bx c ++>解集为−∞,−2∪3,+∞,则0a >且2,3-为方程20ax bx c ++=的两个根,故23,23b c a a-+=--⨯=,则,6b a c a =-=-,故60a b c c a ++==-<,D 说法不正确.故选:ACD.11.如图,心形曲线22:()1L x y x +-=与y 轴交于,A B 两点,点P 是L上的一个动点,则()A.点,02⎛⎫⎪ ⎪⎝⎭和−1,1均在L 上B.点PC.O 的最大值与最小值之和为3D.PA PB +≤【答案】ABD 【解析】【分析】点代入曲线判断A ,根据曲线分段得出函数取得最大值判断B ,应用三角换元再结合三角恒等变换求最值判断C ,应用三角换元结合椭圆的方程得出恒成立判断D.【详解】令0x =,得出1y =±,则()()1,0,1,0,A B -对于A :2x =时,21122y ⎛⎫+-= ⎪ ⎪⎝⎭得0y =或y =,=1x -时,()2111y +-=得1y =,所以,02⎛⎫ ⎪ ⎪⎝⎭和()1,1-均在L 上,A 选项正确;对于B :因为曲线关于y 轴对称,当0x ≥时,()221x y x+-=,所以y x =+()()222221112y y x x x x =+=+-+≤++-=,所以2x =时,y 最大,最大值为22+=B 选项正确;对于C :OP =,因为曲线关于y 轴对称,当0x ≥时,设cos ,sin x y x θθ=-=,所以()2222222cos cos sin 2cos sin 2sin cos OP x y θθθθθθθ=+=++=++()1cos231351sin2cos2sin2sin 222222θθθθθϕ+=++=++=+,因为θ可取任意角,所以OP 12=,OP 512+=,C 选项错误;对于D :PA PB +≤等价为点P 在椭圆22132y x +=内,即满足()222cos sin 3cos 6θθθ++≤,即()()31+cos221sin 262θθ++≤,整理得4sin23cos25θθ+≤,即()sin 21θβ≤+恒成立,故D 选项正确.故选:ABD.【点睛】方法点睛:应用三角换元,再结合三角恒等变换化简,最后应用三角函数值域求最值即可.三、填空题(本题共3小题,每小题5分,共15分.)12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.【答案】2-【解析】【分析】根据函数为奇函数,利用()()f x f x -=-求解.【详解】由题意得,(2)2222f =-=+.∵()f x 是定义在R 上的奇函数,∴(2)(2)2f f -=-=-.故答案为:2-.13.函数()sin cos f x x x =+在()0,2π上的极小值点为:__________.【答案】5π4【解析】【分析】法一,由辅助角公式得π()4f x x ⎛⎫=+ ⎪⎝⎭,利用函数()f x 与π4f x ⎛⎫- ⎪⎝⎭图象的平移关系可得所求;法二,利用导函数,求出导函数的零点按零点分区间,分析导函数符号与原函数单调性即可求解极值点.【详解】法一:()πsin cos 4f x x x x ⎫⎛=+=+ ⎪⎝⎭,()0,2πx ∈,由()f x 的图象向右平移π4个单位可得到函数π4f x x ⎛⎫-= ⎪⎝⎭,π9π,44x ⎛⎫∈ ⎪⎝⎭的图象.而函数y x =在π9π,44⎛⎫⎪⎝⎭的极小值点为3π2,故函数()f x 的极小值点即为3ππ5π244-=.法二:()sin cos f x x x =+,()0,2πx ∈,则π()cos sin 4f x x x x ⎛⎫'=-=+ ⎪⎝⎭,由()0,2πx ∈,则ππ9π,444x ⎛⎫+∈ ⎪⎝⎭,令()0f x '=,得ππ42x +=或3π2,解得π4x =或5π4x =.则(),()f x f x '的变化情况如下表:xπ0,4⎛⎫ ⎪⎝⎭π4π5π,44⎛⎫ ⎪⎝⎭5π45π,2π4⎛⎫ ⎪⎝⎭()f x '+0-0+()f x极大值极小值()f x 在()0,2π上的极小值点为5π4.故答案为:5π4.14.函数,0ky k x=>与ln yx =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,设ln y x =在A 处的切线1l 的倾斜角为α,e x y =在B 处的切线2l 的倾斜角为β,若2βα=,则k =________.【答案】【解析】【分析】由对称性可得21ex x =,利用导数求切线1l 和2l 的斜率,得tan β和tan α,由2βα=解出1x ,再由11ln kx x =求出k 的值.【详解】函数,0ky k x=>与ln y x =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,则111ln k y x x ==,222e x ky x ==,函数,0ky k x=>的图象关于直线y x =对称,函数ln y x =和e x y =的图象也关于直线y x =对称,所以11(,)A x y ,22(,)B x y 两点关于直线y x =对称,有221e xy x ==,函数ln y x =的导数为1y x'=,函数e x y =的导数为e x y '=,则11tan x α=,2tan e x β=,由2βα=,有22tan tan tan 21tan αβαα==-,即211212e 1x x x x ==-,由1>0x ,解得1x =所以11l n k x x ==.【点睛】关键点点睛:本题除了导数和倍角公式的运用,关键点在于运用函数的对称性或对数式的运算,得到21e x x =.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N ,数列{}n b 为单调递增等比数列,22b =,且1b ,2b ,31b -成等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)21n a n =-,12n n b -=;(2)232n n n T -=【解析】【分析】(1)根据()*12n n a a n +=+∈N 得到{}na 为公差为2的等差数列,利用等差数列求通项公式求出21n a n =-,再设{}nb 的公比为q ,列出方程,求出2q =,得到通项公式;(2)化简得到32n c n =-,故{}n c 为公差为3的等差数列,利用等差数列求和公式得到答案.【小问1详解】因为()()**1122n n n n a a n a a n ++=+∈⇒-=∈N N ,故{}n a 为公差为2的等差数列,所以()()12112121n a a n n n =+-=+-=-,又1b ,2b ,31b -成等差数列,故21321b b b =+-,设{}n b 的公比为q ,其中22b =,则2421q q =+-,解得2q =或12,当2q =时,11b =,此时1112n n n b b q --==,为递增数列,满足要求,当12q =时,14b =,此时31112n n n b b q --⎛⎫== ⎪⎝⎭,为递减数列,舍去,综上,21n a n =-,12n n b -=;【小问2详解】212log 1322n n c n n -=+--=,则13n n c c +-=,故{}n c 为公差为3的等差数列,故()2121323143222n n n n n n T c c c n +--=+++=+++-== .16.记ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 1.a C b =+(1)求证:2;C B =(2)若3cos 4B =,6c =,求ABC 的面积.【答案】(1)证明见解析(2)4【解析】【分析】(1)利用正弦定理以及两角和与差的正弦公式可证2C B =;(2)由正弦定理及三角形面积公式可得答案.【小问1详解】由正弦定理sin sin a b A B =,知sin sin a A b B =,所以2cos 1a C b =+,即为sin 2cos 1sin A C B =+,所以sin 2sin cos sin A B C B =+,即()sin 2sin cos sin B C B C B +=+,所以()sin sin cos cos sin sin .B BC B C C B =-+=-因为0πB <<,ππC B -<-<,所以B C B =-或()πB C B +-=,即2C B =或πC =(舍去);【小问2详解】由2C B =,得21cos cos22cos 18C B B ==-=,所以52cos 14a C b =+=,即5.4a b =由余弦定理,得2222cos c a b ab C =+-,即22225513621648b b b =+-⨯⨯,解得=4,所以 5.a =又由1cos 8C =,可得π0<2<C ,得37sin 8C ==,所以ABC V 的面积1137157sin 54.2284S ab C ==⨯⨯⨯=17.如图,在四棱锥P ABCD -中,底面四边形ABCD 是直角梯形,224,AD AB BC AB ===⊥,,AD AB BC E ⊥是AD 的中点,PC BE ⊥.(1)证明:BE ⊥平面PAC .(2)若PA PC ==B PA D --的正弦值.【答案】(1)证明见解析(2).7【解析】【分析】(1)连接CE ,通过四边形ABCE 是正方形,得到BE AC ⊥,进而可求证;(2)作BH PA ⊥,垂足为H ,连接,EH PE .先证明PA ⊥平面BEH ,得到BHE ∠是二面角B PA D --的平面角,在判断四棱锥P ABCE -为正四棱锥,求得2EH BH ==,再由余弦定理即可求解.【小问1详解】证明:连接CE .因为E 是AD 的中点,所以2AD AE =.分因为224AD AB BC ===,且,AB AD AB BC ⊥⊥,所以四边形ABCE 是正方形,则BE AC ⊥.因为,,PC BE PC AC ⊥⊂平面PAC ,且PC AC C ⋂=,所以BE ⊥平面PAC .【小问2详解】解:作BH PA ⊥,垂足为H ,连接,EH PE .由(1)可知BE ⊥平面PAC .又PA ⊂平面PAC ,所以PA BE ⊥.因为,BH BE ⊂平面BEH ,且BH BE B = ,所以PA ⊥平面BEH .因为EH ⊂平面BEH ,所以PA EH ⊥,则BHE ∠是二面角B PA D --的平面角.记AC BE O =I ,连接OP ,则O 是AC 的中点.因为PA PC =,且O 是AC 的中点,所以OP AC ⊥.因为BE ⊥平面PAC ,且OP ⊂平面PAC ,所以BE OP ⊥.连接PE .因为,AC BE ⊂平面ABCE ,且AC BE O =I ,所以OP ⊥平面ABCE ,则四棱锥P ABCE -为正四棱锥,故PA PB PE ===.因为PAB 的面积1122S AB PA BH ==⋅,即11222BH ⨯=⨯,所以2BH =.同理可得2EH BH ==.在BEH △中,由余弦定理可得2221cos 27BH EH BE BHE BH EH +-∠==-⋅,则sin 7BHE ∠=,即二面角B PA D --的正弦值为718.已知函数()e xx f x =.(1)求()f x 在区间[]22-,上的最大值和最小值;(2)若0x =是函数()()()sin g x f a f x x =⋅+的极值点.(ⅰ)证明:2ln20a -<<;(ⅱ)讨论()g x 在区间()π,π-上的零点个数.【答案】(1)最大值为1e -,最小值为22e -;(2)(ⅰ)证明见解析;(ⅱ)2【解析】【分析】(1)求导得到导函数,根据导函数的正负确定在[]22-,上的性,再计算最值得到答案;(2)(ⅰ)计算得到1()cos e ea x a x g x x -'=⋅+,确定e 0a a +=,设()e x F x x =+,根据函数的单调性结合()01F =,()2ln 20F -<得到证明;(ⅱ)求导得到导函数,考虑()π,0x ∈-,0x =,∈0,π三种情况,构造()e sin xF x x x =-,确定函数的单调区间,根据()00F =,()00F x >,()π0F <得到零点个数.【小问1详解】()e x x f x =,1()e xx f x -'=,令1()0e x x f x -'==得到1x =,当()2,1x ∈-时,′>0,函数单调递增,当()1,2x ∈时,′<0,函数单调递减,又()22222e e f ---==-,()1111e e f -==,()22222e ef -==,故()f x 在区间[]22-,上的最大值为1e -,最小值为22e -;【小问2详解】(ⅰ)()()()sin sin e e a xa x g x f a f x x x =⋅+=⋅+,1()cos e e a xa x g x x -'=⋅+,(0)10e a a g '=+=,故e 0a a +=,设()e x F x x =+,函数单调递增,()010F =>,()2ln 212ln 2e 2ln 2ln 404F --=-=-<.根据零点存在定理知2ln 20a -<<;(ⅱ)()sin e x x g x x =-+,()00g =,1()cos e x x g x x -'=+,设1()cos e x x h x x -=+,2()sin e xx h x x -'=-,当()π,0x ∈-时,20,sin 0e x x x -><,故()0h x '>,()g x '单调递增,()()0110g x g <=-+'=',故函数()g x 单调递减,()()00g x g >=,故函数在()π,0-上无零点;当∈0,π时,()1()sin e sin e e x x x x g x x x x =-+=-,设()e sin x F x x x =-,()()esin cos 1x F x x x =+-',设()()esin cos 1x k x x x =+-,则()2e cos x k x x '=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=>,当π,π2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=<故()k x 在π0,2⎛⎫ ⎪⎝⎭单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,()00k =,π2πe 102k ⎛⎫=-> ⎪⎝⎭,()ππe 10k =--<,故存在0π,π2x ⎛⎫∈ ⎪⎝⎭使()00k x =,当∈0,0时,()0k x >,单调递增;当()0,πx x ∈时,()0k x <,单调递减.()00F =,故()00F x >,()ππ0F =-<,故函数在()0,πx 上有1个零点.综上所述:()g x 在区间()π,π-上的零点个数为2.【点睛】关键点点睛:本题考查了利用导数解决函数的单调性和极值,根据极值求参数,零点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论是解题的关键,三角函数的有界性和正负交替是经常用到的关键思路.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N 阶“曼德拉数列”是等比数列,求该数列的通项n a(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N 阶“曼德拉数列”是等差数列,求该数列的通项n a (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k -=--(2)()()*1,211n n a n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k =-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101k k a q a a a q -++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。
2024-2025学年重庆市高三上学期11月期中数学调研检测试题
2024-2025学年重庆市高三上学期11月期中数学调研检测试题注意事项:1.答题前,考生务必将自己的准考证号、姓名、班级填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,,则( )i 112i z =+z =A. B.15132.已知集合,,则(){}0,1,2,3,4,5M =()(){}130N x x x =+-≤M N = A.B.C.D.{}3{}2,3{}1,2,3{}0,1,2,33. 已知,,则( )a b >0c d <<A. B. C. D. a c b d+>+22a cb d+>+ac bd >22ac bd>4. 已知数列满足:,,则( ){}n a 13a =1111n n a a ++=6a =A. B. C. 2 D. 332235. 已知平面上的两个非零向量,满足,则( )a b ()()22a b a b a b b -⋅+=⋅= ,a b = A. B. C. D. π6π4π3π26. 已知实数,且,若函数在上存在零点,则()0a >1a ≠()log x a f x a x=+()1,2A. B. C.D.2log 20a a +<22log 0a a -<4log 20a a +>log 20a a -<7.设的三个内角A ,B ,C 的对边分别为a ,b ,c ,若,且ABC V sin2B =,则( )2222690a ac c c -+-+=b =A. B. 4C. 8.已知实数a ,b ,c 满足:,,,则2229a b +=223448b c +=225651c a +=的最大值为( )32a b c -+A. 6B. 9C. 10D. 15二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9. 已知p :“,是奇数”,q :“,是偶数”,则( )x ∀∈N 21x +x ∃∈N 31x +A. :,是偶数” B. :“,是偶数”p ⌝x ∀∈N 21x +p ⌝x ∃∈N 21x +C. :“,是奇数”D. :“,是奇数”q ⌝x ∃∈N 31x +q ⌝x ∀∈N 31x +10. 已知等比数列的公比,其前n 项和记为,且,则( ){}n a 12q =-n S 621S =A.B.C.D.481a a =2n a a ≥21n S ≤16n S ≥11.设,函数,则( )a ∈R ()32f x x x a =-+-A. 当时,函数为单调递增函数0a <()f x B. 点为函数图象的对称中心()0,2-()y f x =C. 存在,使得函数图象关于直线对称,a b ()y f x =x b =D. 函数有三个零点的充要条件是()f x 3a >三、填空题:本题共3小题,每小题5分,共15分.12. 已知平面直角坐标系中,向量,单位向量满足,则x()1,2a =-(),b x y =a b a b+=- 的值可以是__________.(写出一个正确结果即可)13. 已知为定义在上的奇函数,且当时,,则()f x R 0x <()1e2x f x x+=+__________.()1f =14. 已知函数,.若的零点恰为的零点,则a 的()sin f x a x=a ∈Z ()()y f f x =()y f x =最大值是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 已知非零等差数列满足:,.{}n a 10982a a a =-1670a a a +=(1)求数列的通项公式;{}n a (2)记的前n 项和为,求的最小值.{}n a n S n S 16. 已知函数.()22f x x x a=++(1)讨论的奇偶性;()f x (2)若在上具有单调性,求实数的取值范围.()f x ()1,1-a 17. 在中,已知,.ABC V π3A B +>2sin 2cos cos tan 2sin 2cos sin A B AB B A A -+=-+(1)证明:;1sin 1cos 2C C=+(2)若,求面积的最大值.2AB =ABC V 18. 已知函数().()()ln f x x a x x=+-a ∈R (1)当时,求曲线在点处的切线方程;1a =()y f x =()()1,1f (2)若函数有两个极值点,求a 的取值范围;()f x (3)在(2)的条件下,确定函数零点的个数.()f x 19. 已知,表示不超过x 的最大整数,如,,.x ∈R []x []33=1=[]1.52-=-(1)若,,,且是无穷数列,求的取值范围;10a >[]11n n a a +=n +∈N {}n a 1a (2)记.[]x x x =-①若,,,求;11a =22a =21n n n a a a ++=+505014422log log k k k a a a a +=⎡⎤+⎢⎥⎣⎦∑②设,,,证明:,使得时,.1a =m +∈N []1n n n a a a +=⋅k +∃∈N n k ≥0n a =。
湖北省黄冈市部分普通高中2023-2024学年高三上学期期中考试数学试题答案
2023年秋季黄冈市部分高中阶段性质量检测高三数学试题参考答案一、单项选择题(本题共8小题,每小题5分,共40分).12345678DCABABBD二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分).9101112ABCABDADACD三、填空题.13.7414.[)ππ2,15.716.[)∞+,1部分小题解析:8.对R x ∈∀,都有)(-11-1-1-)-(x f x x x x x f =+-=--+=所以0)()(,=-+∈∀x f x f R x ,)(x f 为奇函数,A 错;⎪⎩⎪⎨⎧>--+≤<--+=--+=>1,1110,1111)(,0x x x x x x x x x f x 时易知)(x f 在(]10,上单调递增,此时(20)(,∈x f 当11211)(,1-++=--+=>x x x x x f x 时∴)(x f 在()∞+,1上单调递减,此时()20)(,∈x f ∴0>x 时,(20)(,∈x f ∴0<x 时,[)02-)(,∈x f 而0)0(=f ,所以0m =,方程m x f =)(仅有一根,B 错;()1,0∈x 时,()+∞∈,1-2x ,此时()()121211)2(-)(---+----+=-x x x x x f x f =xx x x x x --+=-+----+311311而函数x x x p --+=31)(在()10,上单调递增,得()1,0∈x 时,0)1()(=<p x p ())2()(,10x f x f x -<∈∀∴,对,C 错;综上,0≤a 时,2-2≥a ,此时)2(0)(a f a f -<≤()1,0∈a 时,()+∞∈,1-2a ,此时)2()(a f a f -<1≥a 时,()10-2,∈a ,此时)2()(a f a f -≥,D 对9.提示:因b b a -≥>,所以0>+b a ,A 对因33b a b a b b a >>≥>,,,B 对由上,,02>+>>b a a b a 所以,ab a 211>+C 对由于()4)(2,0,0,10>-+-+=--->-<-=>b aab b b a a b a b a b ab a ,所以,ba b a ->-411D 错10.提示:C 项:6,32ππ==B A 时,sin cos A B =,C 错11.提示:)6cos()(πωω-='x x f Z k k x ∈=-,26ππω得)(x f '取得最大值时的Z k k x ∈+=,26ωππ结合)(x f 'ωπ2==T AC ωπ323B ==T C ωπ362B ==T C ∴Z k k k x c ∈+=++=,22326ωππωπωππ∴)(c x f 'Z k k k ∈==+=-+⋅=,12)23cos()622cos(ωππωπωππωω∴2=ω12.提示: x x x f x f x x x f 1)()()(2=-'='⎪⎭⎫ ⎝⎛∴可设C x xx f +=ln )((其中C 为常数)又对任意的正数n m ,恒有mnn mf m nf mn f ++=)()()(xy=1ABC∴对任意的正数n m ,恒有1)()()(++=nn f m m f mn mn f ∴()1ln ln ln ++++=+C n C m C mn ∴1-=C ,x x x x f x xx f -=-=ln )(,1ln )(其中D 项:22ln )()(x x x x x x f x p +-=+=,xx x p 2ln )(+=' )(x p '在()∞+,0上单调递增,且021)1(<+-='e e p ,02)1(>='p 所以⎪⎭⎫⎝⎛∈∃1,1e x o 使)(x p 在()o x ,0上单调递减,)(x p 在()+∞,o x 上单调递增∴o x x =为函数)(x p 的极小值点且满足02ln 0=+x x o ,⎪⎭⎫⎝⎛∈1,1e x o ∴()0)1(2222ln 3000200000>-=+-=+=+x x x x x x x x x f o 16.提示:由a x eaxln ≥恒成立可得0>a ,此时直线a x y 1+=恒在直线x y =上方∴不等式a x a x e ax ln 1≥+≥恒成立只需不等式ax e ax1+≥恒成立即可⎪⎭⎫ ⎝⎛+-=a x e x p ax 1)(令,1)(-='ax ae x p 则∴)(x p 在⎪⎭⎫ ⎝⎛-∞-a a ln ,上单调递减,在⎪⎭⎫⎝⎛∞+-,a a ln 上单调递增∴0ln ln ()(min ≥=-=aa a a p x p ∴1≥a 四、解答题.17.(1)βααββα+=∠-=∠=∠=∠BAC B CAD BAD ,,则设,102)sin(102)(os =--=+∴αββα,c 20,0ππ<∠<<∠<B BAC 1027)cos(,1027)sin(=-=+∴αββα2524)sin()cos()cos()sin()]()sin[(2sin =-++-+=-++=∴αββααββααββαβ25242sin C sin ==∴β5224sin sin =⇒=∆AB C AB B AC ABC 中,在(5分)(2))]()cos[(2cos αββαα--+=0)sin()sin()cos()cos(=-++-+=αββααββα42222020ππαπαπα=∠∴=∠=∴<<∴∈=∠BAD BAD BAD ,(而(10分)18.(1)由题可知:选择新能源汽车选择传统汽车合计40岁以下703010040岁以上(包含40岁)4060100合计11090200零假设为0H :选择新能源汽车与车主性别相互独立,即选择新能源汽车与车主年龄无关.所以,828.1018.18211200901101001004030-607020022>≈=⨯⨯⨯⨯⨯⨯=)(χ所以依据小概率值0.001α=的独立性检验,我们推断0H 不成立.由此推断犯错误的概率不大于0.001α=,故至少有99.9%的把握认为选择新能源汽车与年龄有关.(6分)(2)相关系数为()()niix x y y r--=∑b =所以14.7 4.70.940.95r ==⨯=>,故y 与x 线性相关较强.(12分)19.(1)1112=,21)1(211log 2+=-+=∴n n n T n 2)1(2+=∴n n n T (3分)nnn n n n n n T Ta n 2222)1(2)1(1===≥∴--+-时,符合上式又1122==a n n a 2=∴(6分)(2)nn n n b )21(21)1(1--=⋅-=+])21(1[31)21(1])21(1[21n n n S --=----=∴(8分))211(31�n n S n +=为奇数时,当为单调递减数列此时n S 21S 311=≤<∴S n 此时211(31�n n S n -=为偶数时,当为单调递增数列此时n S 31S 412<≤=∴n S 此时综上①②n S 的最小值为41,最大值为21(12分)(2),设α=∠BOM ααcos 11os =∴==∆OM OM OM OB c BOM Rt ,中,在62πααπ+=∠-=∠∆ONC NOC NOC ,中,在)6sin(22sin sin πα+=∠=ON ONC OC C ON ,得由)6sin(cos 4321παα+⋅=⋅=∴∆ON OM S OMN (8分)αααπαα2cos 2cos sin 32)6sin(cos 4+=+⋅=t 令1)62sin(212cos 2sin 3++=++=πααα32ta 20=∠<∠≤≤AOB n AOB 其中πα33)(,36262min max ====+∴∆OMN S t 时,παππα(12分)22.(1)方程xe x=-ln 1xa x e x +=-⇔ln 1a x x xe x +=-⇔ln ax x e x x =+-⇔+)ln (ln 令x x t ln +=,函数x x t ln +=在()+∞∈,0x 单调递增且R t ∈∴方程xax x f +=ln )(在()+∞∈,0x 有两根21,x x可转化方程a t e t =-在R t ∈有两根21,t t ,其中222111ln ,ln x x t x x t +=+=令t e t p t -=)(,则1)(-='t e t p ∴)(t p 在()0,∞-∈t 为减函数,在()+∞∈,0t 为增函数∴1)0()(min ==p t p 又-∞→x 时,+∞→)(t p ;+∞→x 时,+∞→)(t p ∴),1(+∞∈a (6分)(2)不妨设两根21t t <,则210t t <<,)()(21t p t p =令0,2)()()()()(>--=+--=--=--t t e e t e t e t p t p t q t t t t 则02)(>-+='-t t e e t q ∴)(t q 在()+∞∈,0t 单调递增∴0>t 时,0)0()(=>q t q 由02>t 得0)()()(222>--=t p t p t q ∴)()()(221t p t p t p ->=而)(t p 在()0,∞-∈t 单调递减,且0021<-<t t ,所以02121<+-<t t t t ,所以0ln ln 221121<+++=+x x x x t t 2121212122112ln 2)ln(ln ln x x x x x x x x x x x x +≥++=+++∴0ln 2121<+x x x x 又021111ln>-=+e e e ∴ee x x x x 11lnln 2121+<+而x x y +=ln 在()+∞∈,0x 单调递增∴e x x 121<∴ex x 121<(12分)。
2025届北京市海淀区高三数学上学期期中练习试卷及答案解析
北京市海淀区2024-2025学年高三上学期期中练习数学试题本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合{0A x x =£或x >1},{}2,0,1,2B =-,则A B =I ( )A. {}2,2- B. {}2,1,2- C. {}2,0,2- D. {}2,0,1,2-【答案】C 【解析】【分析】利用交集的定义可求得集合A B Ç.【详解】因为集合{0A x x =£或x >1},{}2,0,1,2B =-,则{}2,0,2A B =-I .故选:C.2. 若复数z 满足i 1i z ×=-,则z =( )A. 1i +B. 1i-+ C. 1i- D. 1i--【答案】D 【解析】【分析】根据给定条件,利用复数乘法运算计算即得.【详解】由i 1i z ×=-,得2i (1i)(i)z -×=-×-,所以1i z =--.故选:D3. 若0a b <<,则下列不等式成立的是( )A. 22a b < B. 2a ab< C.b a a b> D.2b a a b+>【答案】D 【解析】【分析】根据不等式的性质及基本不等式,逐项分析即可得解.【详解】因为0a b <<,所以0a b ->->,所以()()22a b ->-,即22a b >,故A 错误;因为0a b <<,所以2a ab >,故B 错误;由A 知22a b >,两边同乘以正数1ab ,则>a b b a,故C 错误;因为0a b <<,所以0,0a b b a >>,所以2b a a b +³=(a b ¹,等号不成立),故2b aa b+>,故D 正确.故选:D 4. 已知()sin cos x f x x =,则π4f æö¢=ç÷èø( )A. 1 B. 2C. 1- D. 2-【答案】B 【解析】【分析】求出函数的导函数,计算得解.【详解】因为()sin cos xf x x=,所以2222cos sin ()cos 1cos x x f x x x+¢==,所以π12142f æö¢==ç÷èø,故选:B5. 下列不等式成立的是( )A. 0.3log 0.21< B. 0.20.31< C. 0.3log 0.20< D. 0.30.21>【答案】B 【解析】【分析】根据指数函数和对数函数的单调性判断各选项即可.【详解】因为函数0.3log y x =在()0,¥+上单调递减,所以0.30.3log 0.2log 0.31>=,0.30.3log 0.2log 10>=,故AC 错误;因为函数0.3x y =在R 上单调递减,所以0.200.30.31<=,故B 正确;因为函数0.2x y =在R 上单调递减,所以0.300.20.21<=,故D 错误.故选:B.6. 若()2,,23,x x a f x x x aì³=í+<î在R 上为增函数,则a 的取值范围是( )A. [1,¥+)B. [3,)+¥ C. [1,3]- D. (,1][3,)-¥-+¥U 【答案】B 【解析】【分析】根据分段函数的单调性列式运算得解.【详解】因为()f x 是R 上单调递增函数,所以2023a a a ³ìí³+î,解得3a ³.所以实数a 的取值范围为[)3,+¥.故选:B.7. 已知向量(,1),(1,)a x b y ==-r r,则下列等式中,有且仅有一组实数x ,y 使其成立的是( )A. 0a b ×=r rB. ||||2a b +=r rC. ||||a b =r rD. ||2a b +=r r【答案】B 【解析】【分析】根据向量的坐标运算,向量的模,向量的数量积,建立方程,分析方程的解的个数即可得出答案.【详解】当 0a b ×=r r时,0x y -+=,有无数组解,故A 错误;当||||2a b +=r r2+=1³³,2³,当且仅当0x y ==时,等号成立,故方程有且仅有一组解,故B 正确;当||||a b =r r=,当x y =或x y =-时方程成立,方程有无数组解,故C 错误;当||2a b +=r r2=,即()()22114x y -++=,方程有无数组解,故D 错误.故选:B8. 大面积绿化可以增加地表的绿植覆盖,可以调节小环境的气温,好的绿化有助于降低气温日较差(一天气温的最高值与最低值之差).下图是甲、乙两地某一天的气温曲线图.假设除绿化外,其它可能影响甲、乙两地温度的因素均一致,则下列结论中错误的是( )A. 由上图推测,甲地的绿化好于乙地B. 当日6时到12时,甲地气温的平均变化率小于乙地气温的平均变化率C. 当日12时到18时,甲地气温的平均变化率小于乙地气温的平均变化率D. 当日必存在一个时刻,甲、乙两地气温的瞬时变化率相同【答案】C 【解析】【分析】结合图中数据分析一一判断各选项即可.【详解】对于A ,由图可知,甲地的气温日较差明显小于乙地气温日较差,所以甲地的绿化好于乙地,故A 正确;对于B ,由图可知,甲乙两地的平均变化率为正数,且乙地的变化趋势更大,所以甲地气温的平均变化率小于乙地气温的平均变化率,故B 正确;对于C ,由图可知,甲乙两地的平均变化率为负数,且乙地的变化趋势更大,所以甲地气温的平均变化率大于乙地气温的平均变化率,故C 错误;对于D ,由图可知,存在一个时刻,使得甲、乙两地气温的瞬时变化率相同,故D 正确.故选:C.9. 设无穷等差数列{}n a 的前n 项积为n T .若10a <,则“n T 有最大值”是“公差0d ³”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】分析公差0,0,0d d d >=<三种情况,当0,0d d =<时n T 无最大值,当0d >时,不一有最大值,即可得出论【详解】对于无穷等差数列{a n },由于10a <,当0d >时,若数列中小于0的项为偶数项,且数列中无0时,显然n T没有最大值,.当0d =时,数列为常数列,当1a 不等于1-时,1nn T a =,无最大值,所以公差0d ³不能推出n T 有最大值,当0d <时,0n a <,所以n T 趋于正无穷,{}n T 为正负间隔的摆动数列,没有最大值,所以当n T 有最大值时,只能0d ³,综上,“n T 有最大值”是“公差0d ³”的充分不必要条件,故选:A10. 已知数列{}n a 满足()111(1,2,3,),(0,1)n n n a ra a n a +=-=ÎL ,则( )A. 当2r =时,存在n 使得1n a ³B. 当3r =时,存在n 使得0n a <C. 当3r =时,存在正整数N ,当n N >时,1n n a a +>D. 当2r =时,存在正整数N ,当n N >时,112024n n a a +-<【答案】D 【解析】【分析】需要根据给定的r 值,分析数列{}n a 的性质.通过对递推式的分析和一些特殊情况的探讨,结合二次函数的性质来判断每个选项的正确性.【详解】对于A 选项,当2r =时,12(1)n n n a a a +=-.令2()2(1)22f x x x x x =-=-+,(0,1)x Î.对于二次函数222y x x =-+,其对称轴为12x =,最大值为11(22f =.因为1(0,1)a Î,由递推关系可知(0,1)n a Î,所以不存在n 使得1n a ³,A 选项错误.对于B 选项,当3r =时,13(1)n n n a a a +=-.令1(0,1)a x =Î,23(1)33y x x x x =-=-+.因为233y x x =-+的值域为3(0,]4,且1(0,1)a Î,所以由递推关系可知(0,1)n a Î,不存在n 使得0n a <,B 选项错误.对于C 选项,当3r =时,13(1)n n n a a a +=-.令1(0,1)a x =Î,23(1)33y x x x x =-=-+.设213(1)23n n n n n n n a a a a a a a +-=--=-.令2()23g x x x =-,(0,1)x Î,()g x 对称轴为13x =,()g x 在1(0,3上递增,在1(,1)3上递减.当(0,1)x Î时,()g x 的值不是恒大于0的,所以不存在正整数N ,当N n >时,1n n a a +>,C 选项错误.对于D 选项,当2r =时,12(1)n n n a a a +=-.设212(1)2n n n n n n n n b a a a a a a a +=-=--=-.因为(0,1)n a Î,22y x x =-+在1(0,)4上递增,在(1,14)上递减.当n 足够大时,n a 会趋近于某个值a (01a <<),此时1n n n b a a +=-会趋近于0.所以存正整数N ,当n >N 时,112024n n a a +-<,D 选项正确.故选:D.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 已知102,105a b ==,则a b +=____________.【答案】1【解析】【分析】根据对数的运算求解.【详解】因为102,105a b ==,所以lg 2,lg 5a b ==,故lg 2lg 5lg101a b +=+==,故答案为:112. 在平面直角坐标系xOy 中,角a 的终边经过点(2,1)P .若角a 的终边逆时针旋转π2得到角b 的终边,则sin b =____________.在【解析】【分析】根据三角函数的定义及诱导公式求解.【详解】因为角a 的终边经过点(2,1)P ,所以cos a ==又π2b a =+,所以πsin sin cos 2b a a æö=+==ç÷èø.13. 如图所示,四点,,,O A B C 在正方形网格的格点处.若OC OA OB l m =+uuu ruuu ruuu r,则l =________,m =________.【答案】 ①.23②.13【解析】【分析】建立平面直角坐标系,利用向量的坐标运算得解.【详解】建立平面直角坐标系,如图,则()()()()0,0,3,6,4,5,6,3O A C B ,所以()()()4,5,3,6,6,3OC OA OB ===uuu r uuu r uuu r,由OC OA OB l m =+uuu r uuu r uuu r可得()()()4,53,66,3u l =+,即364635u u l l +=ìí+=î,解得12,33u l ==,故答案为:23;1314. 已知函数π()sin()0,||2w j w j æö=+><ç÷èøf x x 满足()2(0)f x f ³-恒成立.①j 的取值范围是____________;②若2π2(0)3f f æö=-ç÷èø,则w 的最小值为____________.【答案】 ①.ππ62j £< ②. 2【解析】【分析】根据题意可知()201f -£-,解不等式可得j 的取值范围,由2π2(0)3f f æö=-ç÷èø确定2π13f æö=-ç÷èø,解出w ,由0w >可得最小值.【详解】因为()sin()f x x w j =+,所以()min 1f x =-所以由()2(0)f x f ³-可得2(0)1f -£-,即()10sin 2f j =³,由π||2j <可知,ππ62j £<,因为()1012f £<,所以()2201f -<-£-,因为()11f x -££,所以由2π2(0)3f f æö=-ç÷èø可知()201f -=-,即()10sin 2f j ==,π6j =,此时2π2ππsin 1336f w æöæö=+=-ç÷ç÷èøèø,所以2πππ2π,Z 362k k w +=-+Î,解得31,Z k k w =-Î,又0w >,所以min 2w =.故答案为:ππ62j £<;2【点睛】关键点点睛:本题关键点在于对正弦函数最值的理解,理解了正弦函数最值就能根据()2(0)f x f ³-恒成立转化为2(0)1f -£-,也能根据2π2(0)3f f æö=-ç÷èø转化出2π13f æö=-ç÷èø.15. 已知函数ln(1)()ln x f x x+=,其定义域记为集合,,D a b D Î,给出下列四个结论:①{0D xx =>∣且1}x ¹;②若1ab =,则|()()|1f a f b ->;③存在a b ¹,使得()()f a f b =;④对任意a ,存在b 使得()()1f a f b +=.其中所有正确结论的序号是____________.【答案】①②④【解析】【分析】根据解析式求定义域判断①,利用对数运算化简及对数函数的单调性判断②,求函数导数,利用导数分析函数的单调性及范围可判断③,取1b a=后利用对数运算化简可判断④.【详解】由ln(1)()ln x f x x +=知,100x x +>ìí>î且1x ¹,解得0x >且1x ¹,所以{0D xx =>∣且1}x ¹,故①正确;当1ab =时,()()11ln 1ln 1ln 1ln 1()()1ln ln ln a a a a f a f b a a aæöæö++++ç÷ç÷+èøèø-=-=1ln 21log 2ln a a a a a a æö++ç÷æöèø==++ç÷èø,因为112a a a ++>,当01a <<时,1log 21a a a æö++<-ç÷èø,当1a <时,因为12a a a ++>,1log 21a a a æö++>ç÷èø,所以1log 21a a a æö++>ç÷èø,故②正确;()()()22ln ln(1)ln 1ln 11()ln 1ln x x x x x x x x f x x x x x+--+++==+¢,当01x <<时,ln 0x x <,()()1ln 10x x ++>,所以()()ln 1ln 10x x x x -++<,又()21ln 0x x x +>,所以()0f x ¢<,()f x 在(0,1)上单调递减,当1x >时,ln y x x =单调递增,所以()()ln 1ln 1x x x x <++,同理可得()0f x ¢<,()f x 在(1,+∞)上单调递减,又0x →时,()ln 0,ln 10x x +,所以ln(1)()0ln x f x x +=<,当x →+¥时,()ln 1ln 0x x +>>,所以ln(1)()1ln x f x x+=>,即当01x <<时,函数图象在x 轴下方单调递减,当1x >时,函数图象在1y =上方单调递减,所以不存在a b ¹,使得()()f a f b =,故③错误;由②可联想考虑当1b a =时,()()11ln 1ln 1ln 1ln 1ln ()()11ln ln ln ln a a a a a f a f b a a a aæöæö++-+ç÷ç÷+èøèø+=+===,即对任意a ,存在1b a=使得()()1f a f b +=,故④正确.故答案为:①②④【点睛】关键点点睛:判断③时,关键在于求导数后,能分类讨论得到导数的符号,判断出函数的单调性,再分析两段函数图象的上下界,才能作出正确的结论.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知无穷等比数列{}n a 的前n 项和为3nn S b =+.(1)求1,b a 的值;(2)设221,1,2,3,n n c a n n =+-=L ,求数列{}n c 前n 项和n T .【答案】(1)11,2b a =-= (2)()23914nn -+【解析】【分析】(1)根据等比数列中,n n a S 的关系可得解;(2)根据分组求和,利用等比数列、等差数列求和公式得解.【小问1详解】当2n ³时,1123n n n n a S S --=-=´,的因为{}n a 是等比数列,所以12a =,又因为113a S b ==+,所以1b =-.【小问2详解】由(1)知123n n a -=´,因为26a =,且2229n na a +=,所以{}2n a 是以6为首项,9为公比的等比数列,()()2421321n n T a a a n éù=+++++++-ëûL L ()29123691.9124n n n n n -×=´+=-+-17. 设函数2()sin 22sin 1(0)f x A x x A =-+>,从条件①、条件②、条件③这三个条件中选择一个作为已知.(1)求A 的值;(2)若()f x 在(0,)m 上有且仅有两个极大值点,求m 的取值范围.条件①:π7π0412f f æöæö+=ç÷ç÷èøèø;条件②:将()f x 的图象向右平移π12个单位长度后所得的图象关于原点对称;条件③:对于任意的实数()()1212,,x x f x f x -的最大值为4.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1(2)7π13π66,æùçúèû【解析】【分析】(1)化简()f x 后,选条件①,根据π7π0412f f æöæö+=ç÷ç÷èøèø化简得解;选条件②,由平移可知π012f æö-=ç÷èø2=得解;(2)由正弦型函数性质求出极大值点,再根据题意知7π6在区间内,13π6不在区间内即可得解.【小问1详解】条件①()sin 2cos 2f x A x x =+,所以π7πππ7π7πsin cos sin cos 04122266f f A A æöæö+=+++=ç÷ç÷èøèø,所以02A A --=,解得A =条件②()sin 2cos 2f x A x x =+,所以()f x 的图象向右平移π12后所得图象关于原点对称,所以π012f æö-=ç÷èø,即ππsin cos 0662A A æöæö-+-=-=ç÷ç÷èøèø,解得A =,经验证:A =.条件③()sin 2cos 2f x A x x =+,所以()()2f x x j =+,其中1πtan ,0,2A j j æö=Îç÷èø,由题意知,()()max min 4f x f x -=2=,因为0A >,所以A =【小问2详解】()π2cos 22sin 26f x x x x æö=+=+ç÷èø,当ππ22π,Z 62x k k +=+Î时,()f x 取得极大值,即ππ,Z.6x k k =+Î因为()f x 在()0,m 上有且仅有两个极大值点,所以0,1k =符合题意,所以7π13π,.66m æùÎçúèû18. 已知函数2()ex x a f x -=.曲线()y f x =在点(0,(0))f 处的切线方程为3y kx =-.(1)求,a k 的值;(2)求()f x 的最小值.【答案】(1)3a k ==(2)2e-【解析】【分析】(1)求出导函数,根据题意列出方程即可求解;(2)求出导函数的零点,列表即可得出函数最小值.【小问1详解】()()()()()()222222e e 2e e 2e e e x xx x xx x x a x a x x a x x a f x ¢-×--××--×-++===¢,依题意,()()030f a f a k ì=-=-ïí==¢ïî,解得3a k ==.【小问2详解】由(1)得()23.e xx f x -=()()()21323e ex x x x x x f x -+=¢--++=,令()0f x ¢=,解得1x =-或3,(),(),x f x f x ¢的变化情况如下表:x (,1)¥--1-(1,3)-3(3,)+¥()f x ¢-0+0-()f x ]极小值Z 极大值]由表格可知,()f x 有极小值()12e f -=-,因为当(3,)x Î+¥时,()0f x >,所以()f x 最小值为2e -.19. 如图所示,某景区有,MN PQ 两条公路(,MN PQ 在同一平面内),在公路上有两个景点入口,,A C 游客服务中心在点B 处,已知1km,120,cos BC ABC BAC °=Ð=Ð=cos ACQ Ð=.(1)已知该景区工作人员所用的对讲机是同一型号,该型号对讲机的信号有效覆盖距离为3km.若不考虑其他环境因素干扰,则A 处的工作人员与C 处的工作人员能否用对讲机正常通话?(2)已知一点处接收到对讲机的信号强度与到该对讲机的距离的平方成反比.欲在公路CQ 段上建立一个志愿服务驿站D ,且要求在志愿服务驿站D 接收景点入口A 处对讲机的信号最强.若选址D 使2km CD =,请判断该选址是否符合要求【答案】(1)A 处工作人员对讲机能与C 处工作人员正常通话(2)D 点选址符合要求【解析】【分析】(1)由正弦定理求出AC ,与3比较大小即可得出结论;(2)由余弦定理求出AD ,可证明AD PQ ⊥,即可得解.【小问1详解】因为cos 0BAC Ð=>, 所以BAC Ð为锐角,所以sin BAC Ð==在ABC V 中sin sin AC BC ABC BAC =ÐÐ,所以sin sin BC ABC AC BAC Ð==Ð,3<,所以A 处工作人员对讲机能与C 处工作人员正常通话.【小问2详解】由余弦定理,2222cos 74223AD AC CD AC CD ACD =+-××Ð=+-=因为222347AD CD AC +=+==,所以AD 的长为点A 与直线PQ 上所有点的距离的最小值,所以D 点选址符合要求.20. 已知函数21()ln()(21),02f x a x a x a x a =-+-+>.(1)若()f x 在4x =处取得极大值,求(4)f 的值;(2)求()f x 的零点个数.【答案】(1)20-(2)1【解析】【分析】(1)求出函数导数,利用极值点导数为0求出a ,再检验即可得解;(2)分01,1,1a a a <<=>三种情况讨论,讨论时,列出当x 变化时,()(),f x f x ¢的变化情况,再由零点存在性定理判断零点个数即可.【小问1详解】()f x 的定义域为(),a +¥.()()()()()2221312221x a x a x a x a a a f x x a x a x a x aéù--+-+++ëû¢=+-+==---因为4是()f x 的极大值点,所以()40f ¢=,即()()4230a a --=,解得2a =或3a =当2a =时,当x 变化时,()(),f x f x ¢的变化情况如下表:x ()2,33()3,44()4,+¥()f x ¢+0-0+()f x Z 极大值]极小值Z此时,4是()f x 的极小值点,不符合题意;当3a =时,当x 变化时,()(),f x f x ¢的变化情况如下表:x()3,44()4,66()6,+¥()f x ¢+0-0+()f x Z 极大值]极小值Z此时4是()f x 的极大值点,符合题意.因此3a =,此时()420f =-.【小问2详解】①当01a <<时,当x 变化时,()(),f x f x ¢的变化情况如下表:x(),2a a 2a ()2,1a a +1a +()1,a ¥++()f x ¢+0-0+()f x Z 极大值]极小值Z()22ln 220f a a a a a =--<,因此],(1x a a Î+时,()0f x <,又()(42)ln 320f a a a +=+>,因此()f x (1,)a ++¥上有且仅有一个零点,因此()f x 的零点个数是1.②当1a =时,对任意1,()0x f x ¢>³,()f x 在(1,)+¥上是增函数,又(2)10(6)l ,n 50f f =-<=>,由零点存在定理知,有1个零点,因此()f x 的零点个数是1.③当1a >时,当x 变化时,()(),f x f x ¢的变化情况如下表:在x(),1a a +1a +()1,2a a +2a ()2,a +¥()f x ¢+0-0+()f x Z 极大值]极小值Z()()3111022f a a a æö+=--+<ç÷èø,因此(],2x a a Î时,()0f x <,又()(42)ln 320f a a a +=+>,因此()f x 在()2,a +¥上有且仅有1个零点,因此()f x 的零点个数是1.综上,当0a >时,()f x 的零点个数是1.21. 对于n 行n 列(2)n ³的数表111212122212n n n n nn a a a a a a A a a a éùêúêú=êúêúëûL L M M O M L ,定义T 变换:任选一组,,i j 其中{1,2,,},{1,2,,}ÎÎL L i n j n ,对于A 的第i 行和第j 列的21n -个数,将每个数同时加1,或者将每个数同时减1,其余的数不变,得到一个新数表.(1)已知对1111éùêúëû依次进行4次T 变换,如下:123411002120,11010202T T T T a b c d éùéùéùéùéù¾¾¾¾¾→¾¾¾¾¾→¾¾¾¾¾→¾¾¾¾¾→êúêúêúêúêúëûëûëûëûëû第次变换第次变换第次变换第次变换写出a b c d ,,,值;(2)已知000111000,111000111A B éùéùêúêú==êúêúêúêúëûëû.是否可以依次进行有限次T 变换,将A 变换为B ?说明理由;(3)已知11行11列的数表000000000C éùêúêú=êúêúëûL M O M M L L ,是否可以依次进行k 次T 变换,将其变换为111011*********D -éùêúêú=-êúêú--ëûL M O M M L L ?若可以,求k 的最小值;若不可以,说明理由.的【答案】(1)1 3.,,11,a b c d ====(2)不能,理由见解析(3)可以,k 的最小值400【解析】【分析】(1)根据变换的定义直接得解;(2)根据变换的规律,分析变换前后数字和的规律得解;(3)由题意,讨论三种选取,i j 方式,求出加1与减1变换次数之差,由题意得出k 满足条件即可.【小问1详解】根据变换的定义,可得1 3.,,11,a b c d ====【小问2详解】不可以,理由如下:由题可知每次变换T ,数表中所有数的和增加或减少5.因为A 中所有数的和为0,所以其经过有限次变换T 后各数和为5的倍数.而 B 中所有数的和为9,不符合,故无法通过有限次变换T ,将A 变换为B .【小问3详解】可以,且k 的最小值为 400当所选{},1,2,,10i j ÎL 时,所有加l 的变换T 与减1的变换T 次数之差设为x ;当所选11=i 且{}0,,121,j ÎL 或者{}0,,121,i ÎL 且11j =时,所有加1的变换T 与减1的变换T 次数之差设为y ;当所选11i j ==时,加1的变换T 与减1的变换T 次数之差设为z .考虑变换T 对上述三部分各数之和的影响,可知191010021020200100x y x y z y z +=ìï++=-íï+=î,解得100200100x y z =-ìï=íï=-î,所以||||||400k x y z ++=³,其中符合题意的 400 次变换T 构造如下:当所选{},1,2,,10i j ÎL 时,各进行一次减1的变换T ;当所选11=i 且{}0,,121,j ÎL 或者{}0,,121,i ÎL 且11j =时,各进行10次加l 的变换T ;当所选11i j ==时,进行100次减l 的变换T .【点睛】关键点点睛:解决本题的关键在于理解T 变换含义,即一个数表通过T 变换后得到什么数表,核心是理解新定义.。
2025届青岛市58中高三数学上学期期中考试卷附答案解析
2025届青岛市58中高三数学上学期期中考试卷本卷满分150分,考试时间120分钟2024.11第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N ,{}15Q x x =-≤<,则P Q = ()A.{}1,2,3 B.{}0,1,2 C.{}1,2,5 D.{}0,1,2,52.已知i22iz =-,则z =()A.2B.1C.4D.23.已知1a b == .若()2a b a +⊥ ,则cos ,a b =()A.3-B.2-C.3D.24.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的()A.必要不充分条件B.充分不必要条件C 充要条件D.既不充分也不必要条件5.体积为()A.B.C.D.6.已知函数()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩则()f x 图象上关于原点对称的点有()A.1对B.2对C.3对D.4对7.已知函数()2211cos sin cos 222222x x x xf x =-+,函数的图象各点的横坐标缩小为原来的12(纵坐标不变),再向左平移π12个单位长度,得到函数=的图象.若方程()21g x m -=在7π0,12x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解1x ,2x ,则12x x +的值为()A.π6B.π3C.π2D.π8.若关于x 不等式()ln ax x b ≤+恒成立,则当1e ea ≤≤时,1e lnb a +-的最小值为()A.11e+ B.e 1- C.1 D.e 二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9.已知3515a b ==,则下列结论正确的是()A.lg lg a b> B.a b ab+= C.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D.49a b +>10.若数列满足11a =,21a =,12n n n a a a --=+(3n ≥,n +∈N ),则称数列为斐波那契数列,又称黄金分割数列,则下列结论成立的是()A.713a = B.222n n n a a a -+=+(3n ≥,n +∈N )C.135********a a a a a ++++= D.24620242025a a a a a ++++= 11.如图,在边长为4的正方体1111ABCD A B C D -中,E ,F 分别是棱11B C ,11C D 的中点,P 是正方形1111D C B A 内的动点,则下列结论正确的是()A.若//DP 平面CEF ,则点P 的轨迹长度为B.若AP =,则点P 的轨迹长度为2πC.若P 是正方形1111D C B A 的中心,Q 在线段EF 上,则PQ CQ +的最小值为D.若P 是棱11A B 的中点,则三棱锥P CEF -的外接球的表面积是41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12.曲线32374y x x x =+++的所有切线中,斜率最小的切线的方程是_______.13.为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且50AB BC ==米,则塔的高度OP =________米.14.已知121A A =,当2n ≥,*N n ∈时,1n A +是线段1n n A A -的中点,点P 在所有的线段1n n A A +上,若1A P λ≤,则λ的最小值是________.四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知数列{}n a 的前n 项和为n S ,且22n n S a +=.(1)求2a 及数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使得这()2+n 个数依次组成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .16.设ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且有π2cos 3b A a c ⎛⎫-=+ ⎪⎝⎭,(1)求角B :(2)若AC 边上的高34h =,求cos cos A C .17.如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE V 沿AE 折起,连结BD ,CD ,且4BD =,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE 所成的角的正弦值为3010,求点F 到平面DEC 的距离.18.已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x ⎡⎤∈⎢⎥⎣⎦时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.19.对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.2025届青岛市58中高三数学上学期期中考试卷第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N ,{}15Q x x =-≤<,则P Q = ()A.{}1,2,3 B.{}0,1,2 C.{}1,2,5 D.{}0,1,2,5【答案】B【解析】【分析】首先把集合P 用列举法表示出来,再运用交集的运算进行求解即可.【详解】若61y x =+,y ∈N ,则1x +是6的正因数,而6的正因数有1,2,3,6,所以{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N ,因为{}15Q x x =-≤<,所以{}0,1,2P Q ⋂=,故选:B.2.已知i22iz =-,则z =()A.2B.1C.4D.2【答案】C 【解析】【分析】根据复数的运算法则计算出复数z ,再计算复数的模.【详解】由题意知()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+,所以4z ==,故选:C.3.已知1a b == .若()2a b a +⊥ ,则cos ,a b =()A.33-B.2-C.3D.32【答案】B 【解析】【分析】根据向量垂直可得32a b ⋅=- ,代入向量夹角公式即可得结果.【详解】因为()2a b a +⊥,且1a b ==,则()2220a a a a b b +⋅=+⋅= ,可得21322a b a ⋅=-=-r r r ,所以32cos ,2a b a b a b-⋅===-⋅r r r r r r .故选:B.4.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列{}n a 的公比为q ,由()223123111111S a a a a a q a q a q qma =++=++=++=,得21q qm ++=,当7m =时,217q q ++=,解得2q =或3q =-,充分性不成立;当2q =时,217q q m ++==,必要性成立.所以“7m =”是“{}n a 的公比为2”的必要不充分条件.故选:A5.体积为()A.B.C.D.【答案】B 【解析】【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为1111ABCD A B C D -,正四棱锥1O ABCD -,设底边边长AB a =,高1OO =则1O E ==,又正四棱柱的侧面积114S AB OO =⋅=,正四棱锥的侧面积21142S AB O E a =⋅⋅=,则a =,解得a =,所以正四棱锥体积21133ABCD V S OO a =⋅==,故选:B.6.已知函数()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩则()f x 图象上关于原点对称的点有()A.1对B.2对C.3对D.4对【答案】C 【解析】【分析】作出()f x 的图象,再作出函数1,0,2xy x ⎛⎫=≥ ⎪⎝⎭关于原点对称的图象,进而数形结合判断即可.【详解】作出()f x 的图象,再作出函数1,0,2xy x ⎛⎫=≥ ⎪⎝⎭关于原点对称的图象如图所示.因为函数1,0,2xy x ⎛⎫=≥ ⎪⎝⎭关于原点对称的图象与22,0,y x x x =-+<图象有三个交点,故()f x 图象上关于原点对称的点有3对.故选:C7.已知函数()2211cos sin cos 222222x x x xf x =-+,函数的图象各点的横坐标缩小为原来的12(纵坐标不变),再向左平移π12个单位长度,得到函数=的图象.若方程()21g x m -=在7π0,12x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解1x ,2x ,则12x x +的值为()A.π6B.π3 C.π2D.π【答案】A 【解析】【分析】先化简()f x ,根据图象变换求出()g x ,将方程()21g x m -=转化为()12m g x +=,由函数()g x 图象的对称性求出答案.【详解】根据题意可得()1πcos sin sin 226f x x x x ⎛⎫=+=+ ⎪⎝⎭,所以()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,7π012x ≤≤Q ,ππ3π2332x ∴≤+≤,所以()g x 在π0,12⎡⎤⎢⎥⎣⎦上单调递增,在π7π,1212⎡⎤⎢⎥⎣⎦上单调递减,()g x 关于π12x =对称,且()π062g g ⎛⎫==⎪⎝⎭,π112g ⎛⎫= ⎪⎝⎭,7π112g ⎛⎫=- ⎪⎝⎭,方程()21g x m -=等价于()12m g x +=有两个不同的解12,x x ,12ππ2126x x ∴+=⨯=.故选:A.8.若关于x 不等式()ln ax x b ≤+恒成立,则当1e ea ≤≤时,1e lnb a +-的最小值为()A.11e+ B.e 1- C.1D.e【答案】C 【解析】【分析】构建()()ln f x ax x b =--,分析可知()f x 的定义域为0,+∞,且()0f x ≤在0,+∞内恒成立,利用导数可得ln 1a b ≤+,整理可得1e ln ln b a a a +-≥-,构建()1ln ,e eg a a a a =-≤≤,利用导数求其最值即可.【详解】设()()ln f x ax x b =--,因为1e ea ≤≤,可知()f x 的定义域为0,+∞,所以()0f x ≤在0,+∞内恒成立,又因为()111xf x x x-=-=',令′>0,解得01x <<;令′<0,解得1x >;可知()f x 在0,1内单调递增,在1,+∞内单调递减,则()()1ln 10f x f a b ≤=--≤,可得ln 1a b ≤+,则1ln e e b a a +≥=,可得1e ln ln b a a a +-≥-,当且仅当ln 1a b =+时,等号成立,令()1ln ,e e g a a a a =-≤≤,则()111a g a a a'-=-=,令()0g a '>,解得1e a <≤;令()0g a '<,解得11ea <≤;可知()g a 在(]1,e 内单调递增,在1,1e ⎡⎫⎪⎢⎣⎭内单调递减,则()()11g a g ≥=,即1e ln ln 1b a a a +-≥-≥,当且仅当1,1a b ==-时,等号成立,所以1e ln b a +-的最小值为1.故选:C.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9.已知3515a b ==,则下列结论正确的是()A.lg lg a b> B.a b ab+= C.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D.49a b +>【答案】ABD 【解析】【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得33log 15log 310a =>=>,55log 15log 510b =>=>,1515110log 3log 5a b∴<=<=,即110a b <<,所以0a b >>,对于A ,因为0a b >>,所以lg lg a b >,故A 正确;对于B ,15151511log 3log 5log 151a b+=+==Q,a b ab ∴+=,故B 正确;对于C ,因为0a b >>,所以1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 错误;对于D ,因为0a b >>,111a b+=,所以()11444559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b aa b=,即2a b =时等号成立,这与已知35a b =矛盾,所以49a b +>,故D 正确.故选:ABD.10.若数列满足11a =,21a =,12n n n a a a --=+(3n ≥,n +∈N ),则称数列为斐波那契数列,又称黄金分割数列,则下列结论成立的是()A.713a = B.222n n n a a a -+=+(3n ≥,n +∈N )C.135********a a a a a ++++= D.24620242025a a a a a ++++= 【答案】AC 【解析】【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得32a =,43a =,55a =,68a =,713a =,故A 正确;对于B ,因为21112n n n n n n n n a a a a a a a a ++--=+=++=+,又12n n n a a a --=+,所以21213n n n n n a a a a a +---++=+,即223n n n a a a +-=+,故B 错误;对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++L L 2023202131a a a a =++++L ,故C 正确;对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++L 20242022421a a a a a =+++++L ,故D 错误.故选:AC.11.如图,在边长为4的正方体1111ABCD A B C D -中,E ,F 分别是棱11B C ,11C D 的中点,P 是正方形1111D C B A 内的动点,则下列结论正确的是()A.若//DP 平面CEF ,则点P 的轨迹长度为B.若AP =,则点P 的轨迹长度为2πC.若P 是正方形1111D C B A 的中心,Q 在线段EF 上,则PQ CQ +的最小值为D.若P 是棱11A B 的中点,则三棱锥P CEF -的外接球的表面积是41π【答案】ACD【解析】【分析】作出相应图形,先证明平面//BDNM 平面CEF ,再结合给定条件确定动点轨迹,求出长度即可判断A ;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断B ,将平面CEF 翻折到与平面1111D C B A 共面,连接PC ,与EF 交于点Q ,此时PQ CQ +取到最小值,利用勾股定理求出,PQ CQ 即可判断C ,先找到球心,利用勾股定理得出半径,求出外接球的表面积即可判断D .【详解】如图,取11A D ,11A B 的中点为,N M ,连接,,,,MN DN BD BM NE ,11B D ,所以11//MN B D ,又E ,F 分别是棱11B C ,11C D 的中点,所以11//EF B D ,所以//MN EF ,MN ⊄平面CEF ,EF ⊂平面CEF ,//MN ∴平面CEF ,因为,N E 分别是棱11A D ,11B C 的中点,所以//NE CD ,且NE CD =,所以四边形CDNE 为平行四边形,所以//ND CE ,又ND ⊄平面CEF ,CE ⊂平面CEF ,//ND ∴平面CEF ,又MN ND N = ,,MN ND ⊂平面BDNM ,所以平面//BDNM 平面CEF ,点P 是正方形1111D C B A 内的动点,且//DP 平面CEF ,所以点P 的轨迹为线段MN ,由勾股定理得MN ==,故A 正确;如图,以A 为原点,以1,,AB AD AA 所在直线为x 轴,y 轴,z 轴,由题意得(0,0,0)A ,设(,,4)P x y ,AP ==,所以221x y +=,所以点P 的轨迹为1A 为圆心,半径为1的14个圆,所以点P 的轨迹长度为1π2π42⋅=.故B 错误;如图,将平面CEF 翻折到与平面1111D C B A 共面,连接PC ,与EF 交于点Q ,此时PQ CQ +取到最小值,CE CF ===2PE PF ==,所以点Q 为EF 的中点,所以PQ EQ ===所以CQ ===,即PQ CQ +的最小值为C 正确;如图,连接PF ,交11B D 于点1O ,连接PE ,若P 是棱11A B 的中点,则90FEP ∠= ,所以FP 是PEF !外接圆的一条直径,所以1O 是PEF !外接圆的圆心,过点1O 作平面ABCD 的垂线,则三棱锥P CEF -的外接球的球心O 一定在该垂线上,连接OP ,设1OO t =,则2222t R +=,连接OC ,12AC ==,所以()(2224t R -+=,所以()(222224t t +=-+,解得52=t ,所以222541244R =+=,所以三棱锥P CEF -的外接球的表面积为24π41πS R ==,故D 正确.故选:A CD .【点睛】方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12.曲线32374y x x x =+++的所有切线中,斜率最小的切线的方程是_______.【答案】430x y -+=.【解析】【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意223673(1)4y xx x '=++=++,所以1x =-时,min4y '=,又1x =-时,1y =-,所以所求切线的方程为14(1)y x +=+,即430x y -+=.故答案为:430x y -+=.13.为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且50AB BC ==米,则塔的高度OP =________米.【答案】【解析】【分析】设PO h =,在Rt POA △,Rt POB △,Rt POC △分别根据锐角三角函数定义求出,,OA OB OC ,最后利用余弦定理进行求解即可.【详解】设塔的高PO h =,在Rt POA △中,otan 30OP OA ==,同理可得3OB h =,OC h =,在OAC 中,πOBA OBC ∠+∠=,则cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC+-+-∴=-⋅⋅,22222211503503333h h h h +-+-=h =所以塔的高度为.故答案为:.14.已知121A A =,当2n ≥,*N n ∈时,1n A +是线段1n n A A -的中点,点P 在所有的线段1n n A A +上,若1A P λ≤,则λ的最小值是________.【答案】23【解析】【分析】根据中点坐标公式可得()*122n n n a a a n +++=∈N ,进而可得{}1n n a a +-为等比数列,即可利用累加法求解121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由极限即可求解.【详解】不妨设点()10,0A 、()21,0A ,设点()(),0n n A a n *∈N ,则数列满足10a =,21a =,()*122n n n a a a n +++=∈N ,所以,1212n nn n a a a a +++--=-,所以,数列{}1n n a a +-是首项为211a a -=,公比为12-的等比数列,所以,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪ ⎪⎝⎭⎝⎭,当2n ≥时,()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ 1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+,10a =也满足121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,故对任意的n *∈N ,121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以,11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭,故23λ≥故答案为:23.四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知数列{}n a 的前n 项和为n S ,且22n n S a +=.(1)求2a 及数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使得这()2+n 个数依次组成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)24a =,2n n a =,*N n ∈(2)332n nn T +=-【解析】【分析】(1)先将1n =代入题干表达式计算出12a =,再将2n =代入题干表达式即可计算出2a 的值,当2n ≥时,由22n n S a +=,可得1122n n S a --+=,两式相减进一步推导即可发现数列{}n a 是以2为首项,2为公比的等比数列,从而计算出数列{}n a 的通项公式;(2)先根据第()1题的结果写出n a 与1n a +的表达式,再根据题意可得()11n n n a a n d +-=+,通过计算出n d 的表达式即可计算出数列1n d ⎧⎫⎨⎬⎩⎭的通项公式,最后运用错位相减法即可计算出前n 项和n T .【小问1详解】由题意,当1n =时,111222S a a +=+=,解得12a =,当2n =时,2222S a +=,即12222a a a ++=,解得24a =,当2n ≥时,由22n n S a +=,可得1122n n S a --+=,两式相减,可得122n n n a a a -=-,整理,得12n n a a -=,∴数列{}n a 是以2为首项,2为公比的等比数列,∴1222n n n a -=⋅=,*N n ∈.【小问2详解】由(1)可得,2n n a =,112n n a ++=,在n a 与1n a +之间插入n 个数,使得这()2+n 个数依次组成公差为n d 的等差数列,则有()11n n n a a n d +-=+,∴1211nn n n a a d n n +-==++,∴112n nn d +=,∴1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=-,∴332n n n T +=-.16.设ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且有π2cos 3b A a c ⎛⎫-=+ ⎪⎝⎭,(1)求角B :(2)若AC边上的高4h =,求cos cos A C .【答案】(1)π3B =(2)18-【解析】【分析】(1)由正弦定理及两角和的正弦公式可得角B 的大小;(2)由等面积法可得22b ac =,再由正弦定理可得sin sin A C 的值,再由cos cos()B A C =-+,可得cos cos A C 的值.【小问1详解】因为π2cos 3b A a c ⎛⎫-=+ ⎪⎝⎭,由正弦定理可得12sin cos sin sin sin 22B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭,即sin cos sin sin sin()B A A B A A B +=++即sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+,在三角形中,sin 0A >,cos 1B B -=,即π1sin 62B ⎛⎫-= ⎪⎝⎭,因为(0,)B π∈,则ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得ππ66B -=,则π3B =.【小问2详解】因为AC 边上的高4h =,所以2112248ABC S b h b b b =⋅=⋅= ①又11sin 2224ABC S ac B ac ==⨯= ②由①②可得22b ac =,由正弦定理可得2sin 2sin sin B A C =,结合(1)中π3B =可得3sin sin 8A C =,因为()1cos cos cos cos sin sin 2B AC A C A C =-+=-+=,所以1311cos cos sin sin 2828A C A C =-=-=-.17.如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE V 沿AE 折起,连结BD ,CD ,且4BD =,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE所成的角的正弦值为10,求点F 到平面DEC 的距离.【答案】(1)证明见解析(2)15【解析】【分析】(1)连接BE ,利用勾股定理证明,BE DE BE AE ⊥⊥,再根据线面垂直的判定定理证得BE ⊥平面ADE ,再根据面面垂直的判定定理即可得证;(2)以点E 为原点,建立空间直角坐标系,利用向量法求解即可.【小问1详解】连接BE ,由题意2,60,120AD DE ADE BCE ==∠=︒∠=︒,则ADE V 为等边三角形,由余弦定理得2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,所以BE =,则222222,DE BE BD AE BE BD +=+=,所以,BE DE BE AE ⊥⊥,又,,AE DE E AE DE ⋂=⊂平面ADE ,所以BE ⊥平面ADE ,又BE ⊂平面ABCE ,所以平面ADE ⊥平面ABCE ;【小问2详解】如图,以点E 为原点,建立空间直角坐标系,则()()()(()2,0,0,0,,1,,1,0,,0,0,0A B C D E -,设()01DF DB λλ=≤≤,故()((,1,0,,1,EC ED DB =-==--,((()1,1,,AD AD DF λλ=+=-+-=--,因为z 轴垂直平面ABCE ,故可取平面ABCE 的一条法向量为()0,0,1m =,所以cos ,10m AF m AF m AF⋅==,化简得23830λλ+-=,解得13λ=或3λ=-(舍去),所以11,,3333DF DB ⎛⎫==-- ⎪ ⎪⎝⎭,设平面DEC 的法向量为(),,n x y z =,则有0n EC x n ED x ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取)1n =- ,所以点F 到平面DEC的距离为21515DF n n ⋅=.18.已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x ⎡⎤∈⎢⎥⎣⎦时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.【答案】(1)2a =,最大值为0(2)证明见解析(3)2个,证明见解析【解析】【分析】(1)由(0)0f '=求出a 的值,即可得到()f x 解析式,再利用导数求出函数的单调区间,从而求出函数的最大值;(2)依题意即证当π,π6x ⎡⎤∈⎢⎥⎣⎦时1sin ln(1)2x x ++>,记1()sin ln(1)2m x x x =++-,π,π6x ⎡⎤∈⎢⎥⎣⎦,当π5π,66x ⎡⎤∈⎢⎥⎣⎦时直接说明即可,当5π,π6x ⎛⎤∈ ⎥⎝⎦,利用导数说明函数的单调性,即可得证;(3)设()()h x f x x =+,()1,x ∞∈-+,当(1,0)x ∈-时,由(1)知()(0)0f x f <=,则()0f x x +<,当π()0,x ∈时,利用导数说明函数的单调性,结合零点存在性定理判断函数的零点,当[π,)x ∈+∞时,()1ln(1)h x x x ≤++-,令()1ln(1)(π)l x x x x =++-≥,利用导数说明()l x 在区间[π,)+∞上单调递减,即可得到()0l x <,从而说明函数在[π,)+∞无零点,即可得解.【小问1详解】由题意知,(0)0f =且(0)0f '=,1()cos 1f x x a x '=+-+ ,(0)20f a '∴=-=,解得2a =,()sin ln(1)2f x x x x ∴=++-,()1,x ∞∈-+,则1()cos 21f x x x '=+-+,当0x ≥时,cos 1≤x ,111x ≤+.故()0f x '≤,所以()f x 在区间[0,)+∞上单调递减,所以()(0)0f x f £=.当10x -<<时,令1()cos 21g x x x =+-+,则21()sin (1)g x x x '=--+,sin (0,1)x -∈ ,211(1)x >+,()0g x '∴<,()f x '∴在区间(1,0)-上单调递减,则()(0)0f x f ''>=,()f x ∴在区间(1,0)-上单调递增,则()(0)0f x f <=,则()()max 00f x f ==.综上所述,2a =,()f x 的最大值为0.【小问2详解】因为()sin ln(1)2f x x x x =++-,要证当π,π6x ⎡⎤∈⎢⎥⎣⎦时1()22f x x +>,即证1sin ln(1)2x x ++>,记1()sin ln(1)2m x x x =++-,π,π6x ⎡⎤∈⎢⎥⎣⎦,当π5π,66x ⎡⎤∈⎢⎥⎣⎦时,1sin 12x ≤≤,ln(1)0x +>,1()sin ln(1)02m x x x ∴=++->;当5π,π6x ⎛⎤∈ ⎥⎝⎦时,1()cos 1m x x x '=++,记1()()cos 1n x m x x x '==++,则21()sin 0(1)n x x x '=--<+,()m x '∴在区间5π,π6⎛⎤ ⎥⎝⎦上单调递减,则5π6()0625π6m x m ⎛⎫<=-+< '+⎝'⎪⎭,则()m x 在区间5π,π6⎛⎤ ⎥⎝⎦上单调递减,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->,综上所述,当π,π6x ⎡⎤∈⎢⎥⎣⎦时,1()22f x x +>.【小问3详解】设()()sin ln(1)h x f x x x x x =+=++-,()1,x ∞∈-+,1()cos 11h x x x '∴=+-+,当(1,0)x ∈-时,由(1)知()(0)0f x f <=,故()()0f x x f x +<<,故()0f x x +=在区间(1,0)-上无实数根.当0x =时,(0)0h =,因此0为()0f x x +=的一个实数根.当π()0,x ∈时,1()cos 11h x x x '=+-+单调递减,又(0)10h '=>,1(π)20π1h '=-<+,∴存在0(0,π)x ∈,使得()00h x '=,所以当00x x <<时ℎ′>0,当0πx x <<时ℎ′<0,()h x ∴在区间()00,x 上单调递增,在区间()0,πx 上单调递减,()0(0)0h x h ∴>=,又(π)ln(π1)π2π0h =+-<-<,()0f x x ∴+=在区间()0,πx 上有且只有一个实数根,在区间(]00,x 上无实数根.当[π,)x ∈+∞时,()1ln(1)h x x x ≤++-,令()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++,故()l x 在区间[π,)+∞上单调递减,()(π)ln(1π)π13π0l x l ≤=+-+<-<,于是()0f x x +<恒成立.故()0f x x +=在区间[π,)+∞上无实数根,综上所述,()0f x x +=有2个不相等的实数根.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19.对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.【答案】(1)2和5为两个质数“理想数”(2)m 的值为12或18(3)证明见解析【解析】【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道9m a m =-必为奇数,则m 必为偶数,结合整除知识得解;(3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】20以内的质数为2,3,5,7,11,13,17,19,212=,故21a =,所以2为“理想数”;33110⨯+=,而1052=,故3不是“理想数”;35116⨯+=,而41612=,故5是“理想数”;37122⨯+=,而22112=,故7不是“理想数”;311134⨯+=,而34172=,故11不是“理想数”;313140⨯+=,而4058=,故13不是“理想数”;317152⨯+=,而52134=,故17不是“理想数”;319158⨯+=,而58292=,故19不是“理想数”;2∴和5为两个质数“理想数”;【小问2详解】由题设可知9m a m =-必为奇数,m ∴必为偶数,∴存在正整数p ,使得92p m m =-,即9921p m =+-:921p ∈-Z ,且211p -≥,211p ∴-=,或213p -=,或219p -=,解得1p =,或2p =,1991821m ∴=+=-,或2991221m =+=-,即m 的值为12或18.【小问3详解】显然偶数"理想数"必为形如()*2k k ∈N 的整数,下面探究奇数"理想数",不妨设置如下区间:((((022*******,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦ ,若奇数1m >,不妨设(2222,2k k m -⎤∈⎦,若m 为"理想数",则(*3112s m s +=∈N ,且)2s >,即(*213s m s -=∈N ,且)2s >,①当(*2s t t =∈N ,且)1t >时,41(31)133t t m -+-==∈Z ;②当()*21s t t =+∈N 时,2412(31)133tt m ⨯-⨯+-==Z ;(*413tm t -∴=∈N ,且)1t >,又22241223t k k --<<,即1344134k t k -⨯<-≤⨯,易知t k =为上述不等式的唯一整数解,区间(2222,2k k -]存在唯一的奇数"理想数"(*413k m k -=∈N ,且)1k >,显然1为奇数"理想数",所有的奇数"理想数"为()*413k m k -=∈N ,∴所有的奇数"理想数"的倒数为()*341k k ∈-N ,1133134144441k k k ++<=⨯--- 1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭21111171111124431124⎛⎫<⨯++++<+⨯= ⎪⎝⎭-- ,即()*73n S n <∈N .【点睛】知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。
上海市2023-2024学年高三上学期期中考试 数学含解析
2023学年第一学期期中教学评估高三数学试卷(答案在最后)考试时间:120分钟试卷满分:150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一.填空题(共54分,1-6题4分,7-12题5分)1.已知集合{}0,1,2,3A =,(){}40B x x x =-<,则A B ⋃=______.2.若1i 1i ()z -=+,则||z =__________.3.已知平面向量a ,b 的夹角为π4,若1,2a a b =-= ,则b 的值为____________.4.若α是第三象限角,且()()5sin cos sin cos 13αβββαβ+-+=-,则tan α等于_____.5.已知向量()()()1,0,1,1,1,2a b c ===-,且c a b λμ=+,则λμ+=__________.6.在一条直行道路上的十字路口,每次亮绿灯的时长一般为15s ,那么,每次绿灯亮时,请问:会有_________,________等因素会影响在该段时间内,车辆通过的数量.7.若直线()1y k x =-与曲线e xy =相切,则k 的值为___________.8.已知等比数列{}n a 的前n 项和为n S ,若34114,14S a a =-=,则5a=__________.9.设圆222220x y x y +---=的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B两点,若AB =,则直线l 的方程为___________.10.已知直三棱柱111ABC A B C -的6个顶点都在球O的表面上,若12π3AB AC AA BAC ∠====,则球O 的体积为__________.11.已知曲线C:x =l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为.12.已知函数ln xf x x ()=,若关于x 的方程2[()()10f x af x a ]++-=,有且仅有三个不同的实数解,则实数a 的取值范围是______.二.选择题(共18分,13.14每题4分,15.16题每题5分)13.已知23,38xy==,则()A.32x >B.32y <C.3xy =D.x y +>14.某纪念章从某年某月某日起开始上市,通过市场调查,得到该纪念章每1枚的市场价y (单位:元)与上市时间x (单位:天)的数据如下:上市时间x 天41036市场价y 元905190根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价y 与上市时间x 的变化关系()A.y ax b =+B.2y ax bx c =++C.log b y a x=⋅ D.x y k a =⋅;15.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,且在区间[]12,上是减函数,令12121ln2log 24a b c -⎛⎫=== ⎪⎝⎭,,,则()()()f a f b f c ,,的大小关系为()A.()()()f b f c f a <<B.()()()f a f c f b <<C.()()()f c f b f a << D.()()()f c f a f b <<16.如图,己知四棱锥P ABCD -的底面ABCD 是直角梯形,//AD BC ,4=AD ,90ABC ∠= ,PA ⊥平面ABCD ,2PA AB BC ===,下列说法正确的是()A.PB 与CD 所成的角是30B.平面PCD 与平面PBA 所成的锐二面角余弦值是63C.PB 与平面PCD 所成的角的正弦值是36D.M 是线段PC 上动点,N 为AD 中点,则点P 到平面BMN 距离最大值为433三.简答题(共78分,14+14+14+18+18)17.在数列{}n a 中,4m a =,32m a +=-,其中m 为给定的正整数,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,1m =,求13a ;(2)若{}n a 为等差数列,是否存在正整数m ,使得130S =?若存在,求出m 的值;若不存在,请说明理由.18.如图,三棱锥P ﹣ABC 中,PA ,PB ,PC 两两垂直,PA =PB =PC ,且M ,N 分别为线段AB ,PC 的中点.(1)若点K 是线段PM 的中点,求证:直线//NK 平面ABC ;(2)求证:平面P C M ⊥平面ABC .19.在ABC 中,内角A B C ,,所对的边分别为a b c ,,,且sin(2)sin sin A B B A +=-.(1)求C 的大小;(2)若CD 平分ACB ∠交AB 于D 且3CD =ABC 面积的最小值.20.在平面直角坐标系Oxy 中,动圆P 与圆22145:204C x y x ++-=内切,且与圆2223:204C x y x +-+=外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心2C 且与x 轴垂直的直线交轨迹E 于A ,M 两个不同的点,连接2AC 交轨迹E 于点B (i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心1C 的直线交轨迹E 于D ,G 两个不同的点,且AB DG ⊥,求四边形ADBG 面积的最小值.21.已知函数()e 1xf x x =-,()()lng x a x x =+.(1)若2a =,证明:()42g x x ≤-;(2)若不等式()()f x g x ≥恒成立,求正实数a 的值;(3)证明:()2e 2ln 2sin xxx x x >++.2023学年第一学期期中教学评估高三数学试卷考试时间:120分钟试卷满分:150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一.填空题(共54分,1-6题4分,7-12题5分)1.已知集合{}0,1,2,3A =,(){}40B x x x =-<,则A B ⋃=______.【答案】{}04x x ≤<【解析】【分析】对集合(){}40B x x x =-<解一元二次不等式,取并集即可.【详解】∵(){}{}4004B x x x x x =-<=<<,∴{}04A B x x ⋃=≤<.2.若1i 1i ()z -=+,则||z =__________.【答案】1【解析】【分析】根据复数代数形式的除法运算法则化简复数z ,再求出其模.【详解】因为1i 1i ()z -=+,所以()()()221i 1i 12i i i 1i 1i 1i 2z ++++====--+,所以||1z =.故答案为:13.已知平面向量a ,b 的夹角为π4,若1,2a a b =-= ,则b 的值为____________.【答案】【解析】【分析】根据题意,由平面向量数量积的运算律,代入计算,即可得到结果.【详解】由2a b -=r r ()2210a b-= ,222π44441cos 104a ab b b b -⋅+=-⨯⨯⋅+= ,(260,0b b b b --=-=,解得b =故答案为:4.若α是第三象限角,且()()5sin cos sin cos 13αβββαβ+-+=-,则tan α等于_____.【答案】512【解析】【分析】利用差角的正弦公式将已知条件化简后求出sin α,再利用平方关系求出cos α,进而求出tan α.【详解】 ()()5sin cos sin cos 13αβββαβ+-+=-,∴()5sin sin 13αββα+-==-⎡⎤⎣⎦,α是第三象限角,∴12cos 13α==-,∴sin 5tan cos 12ααα==.故答案为:512.5.已知向量()()()1,0,1,1,1,2a b c ===- ,且c a b λμ=+,则λμ+=__________.【答案】1-【解析】【分析】先求得c a b λμ=+的坐标,再利用向量相等求解.【详解】解:因为()()1,0,1,1a b==,所以()c a b λμλμμ=+=+,,又因为()1,2c =-,所以1,2,λμμ+=-⎧⎨=⎩解得3,1λλμ=-∴+=-.故答案为:1-6.在一条直行道路上的十字路口,每次亮绿灯的时长一般为15s ,那么,每次绿灯亮时,请问:会有_________,________等因素会影响在该段时间内,车辆通过的数量.【答案】①.车长②.车速【解析】【分析】由题意求出一辆车通过该路段所需时间表达式,看表达式主要与哪些量有关即可.【详解】设式子路口的宽度、车长、车速为m,m,m /s d l v ,则若车辆在15s 内能够通过该式子路段,需要满足215d lt v+=≤,因此在该段时间内,车辆通过的数量可能会受到车长、车速等因素的影响.故答案为:车长,车速.7.若直线()1y k x =-与曲线e x y =相切,则k 的值为___________.【答案】2e 【解析】【分析】设切点为()00,x y ,利用导数的几何意义结合条件即得.【详解】设切点为()00,x y ,则00e xy =,()001y k x =-,e x y '= ,0e x k ∴=,()000e e 1x x x ∴=-,所以02x =,2e k =.故答案为:2e .8.已知等比数列{}n a 的前n 项和为n S ,若34114,14S a a =-=,则5a =__________.【答案】32【解析】【分析】利用等比数列通项公式11n n a a q -=⋅将4114a a -=化简,再利用等比数列前n 项和的性质将3S 化为123a a a ++,两式联立解方程即可.【详解】设该数列的公比为q ,则()()()()23123132411111411114S a a a a q q a a a q a q q q ⎧=++=++=⎪⎨-=-=++-=⎪⎩,解得12,2q a ==,则45132a a q =⋅=.故答案为:32.9.设圆222220x y x y +---=的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B两点,若AB =,则直线l 的方程为___________.【答案】0x =或34120x y +-=【解析】【分析】当直线l 的斜率不存在时,直线l 的方程为0x =,求出A ,B两点的坐标,再判断AB =是否成立,当直线l 的斜率存在时,设直线:3l y kx =+,利用点到直线的距离公式求出圆心到直线的距离,再利用弦心距,弦和半径的关系列方程可求出k ,从而可求出直线方程【详解】当直线l 的斜率不存在时,直线l 的方程为0x =,由2202220x x y x y =⎧⎨+---=⎩,得01x y =⎧⎪⎨=⎪⎩或01x y =⎧⎪⎨=+⎪⎩,此时AB =.当直线l 的斜率存在时,设直线:3l y kx =+,因为圆222220x y x y +---=的圆心(1,1)C ,半径2r =,所以圆心C 到直线l的距离d ==.因为2222AB d r ⎛⎫+= ⎪⎝⎭,所以222341k k ++=+,解得34k =-,所以直线l 的方程为334y x =-+,即34120x y +-=.综上,直线l 的方程为0x =或34120x y +-=.故答案为:0x =或34120x y +-=10.已知直三棱柱111ABC A B C -的6个顶点都在球O的表面上,若12π3AB AC AA BAC ∠====,则球O 的体积为__________.【答案】3【解析】【分析】根据正余弦定理可得ABC 的外接圆半径,然后根据球的性质结合条件可得球的半径,再利用球的体积公式即得.【详解】因为2π3AB AC BAC ∠===,所以2222cos BC AB AC AB AC BAC =+-⋅⋅∠133232⎛⎫=+--= ⎪⎝⎭,即3BC =,所以ABC 的外接圆半径为12sin BCr BAC∠=⋅=,在直三棱柱111ABC A B C -中,1AA =,设球O 的半径为R ,则R ==因此球O 的体积为34205ππ33V R ==.故答案为:205π3.11.已知曲线C :x =l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为.【答案】[2,3]【解析】【详解】故答案为[2,3].12.已知函数ln xf x x()=,若关于x 的方程2[()()10f x af x a ]++-=,有且仅有三个不同的实数解,则实数a 的取值范围是______.【答案】(,1e)-∞-【解析】【分析】首先利用导函数求f x ()的单调性,作出函数的大致图象,将方程解得问题转换成交点问题即可求解出答案.【详解】解:因为()ln x f x x=,则'2ln 1()(ln )x f x x -=,当01x <<或1e x <<时,()0f x '<,当e x >时,()0f x ¢>,所以()f x 在()0,1和(1,e)上单调递减,在(e,)+∞上单调递增,且当0x →时,()0f x →,(e)e f =,故f x ()的大致图像如图所示:关于x 的方程2[()()10f x af x a ]++-=等价于[()1()1]0f x f x a ][++-=,即()1f x =-或()1f x a =-,由图可得,方程()1f x =-有且仅有一解,则()1f x a =-有两解,所以1e a ->,解得1a e <-,故答案为:(,1e)-∞-二.选择题(共18分,13.14每题4分,15.16题每题5分)13.已知23,38x y ==,则()A.32x >B.32y <C.3xy = D.x y +>【答案】ACD 【解析】【分析】根据指数与对数的互化,求出,x y ,再根据指数的运算,结合换底公式与基本不等式逐个选项判断即可.【详解】由题意,23log 3,log 8x y ==.对A ,222233log 32log 33log 9log 822x >⇔>⇔>⇔>,成立,故A 正确;对B ,333333log 82log 83log 64log 2722y <⇔<⇔<⇔<,不成立,故B 错误;对C ,232lg 3lg8lg8log 3log 8log 83lg 2lg 3lg 2xy ⨯=⨯====,成立,故C 正确;对D ,因为3xy =,故x y +≥=,当且仅当x y ==x y ≠,故x y +>,成立,故D 正确;故选:ACD14.某纪念章从某年某月某日起开始上市,通过市场调查,得到该纪念章每1枚的市场价y (单位:元)与上市时间x (单位:天)的数据如下:上市时间x 天41036市场价y 元905190根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价y 与上市时间x 的变化关系()A.y ax b =+B.2y ax bx c =++C.log b y a x =⋅D.x y k a =⋅;【答案】B 【解析】【分析】由题意观察出y 随x 的变化趋势,对比函数单调性即可得解.【详解】∵随着时间x 的增加,y 的值先减后增,而三个函数中y ax b =+、log b y a x =、x y k a =⋅显然都是单调函数,不满足题意,∴选择2y ax bx c =++.故选:B.15.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,且在区间[]12,上是减函数,令12121ln2log 24a b c -⎛⎫=== ⎪⎝⎭,,,则()()()f a f b f c ,,的大小关系为()A.()()()f b f c f a <<B.()()()f a f c f b <<C.()()()f c f b f a <<D.()()()f c f a f b <<【答案】C 【解析】【分析】由已知得出函数()f x 的图象关于直线1x =对称,这样得出函数在[1,2]上是减函数,再由奇函数得出在[1,1]-上是增函数,利用奇函数得(0)0f =,从而得出(2)0(0)f ==,确定,,a b c 的值或范围后利用单调性可比较大小.【详解】因为()f x 是定义在R 上的奇函数且满足()()2f x f x +=-,(2)()()f x f x f x +=-=-,所以()f x 的图象关于直线1x =对称,()f x 在[1,2]上是减函数,则在[0,1]上是增函数,又()f x 是奇函数,所以()f x 在[1,0]-上是增函数,所以()f x 在[1,1]-上是增函数,()f x 在[1,3]上是减函数,结合奇函数得(0)0f =,所以(2)0f =,121(24b -==,12log 21c ==-,ln 2(0,1)a =∈,所以(1)(0)(ln 2)f f f -<<,即()()()f c f b f a <<,故选:C .16.如图,己知四棱锥P ABCD -的底面ABCD 是直角梯形,//AD BC ,4=AD ,90ABC ∠= ,PA ⊥平面ABCD ,2PA AB BC ===,下列说法正确的是()A.PB 与CD 所成的角是30B.平面PCD 与平面PBA 所成的锐二面角余弦值是63C.PB 与平面PCD 所成的角的正弦值是36D.M 是线段PC 上动点,N 为AD 中点,则点P 到平面BMN 距离最大值为433【答案】C 【解析】【分析】根据题设建立空间直角坐标系,利用空间向量解决线线角、线面角、面面角以及点到面的距离问题.【详解】 90ABC ∠= ,//AD BC ,∴AB AD ⊥,PA ⊥平面ABCD ,∴以A 为原点,AB ,AD ,AP 所在的直线分别为x 轴、y 轴、z轴建立如图所示的空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,4,0)D ,(0,0,2)P ,∴(2,0,2)BP =- ,(2,2,0)CD =-,(2,2,2)PC =- ,对于A , 41cos ,22222BP CD BP CD BP CD ⋅===⨯,且0,180BP CD ≤≤,∴,60BP CD =,∴PB 与CD 所成的角是60 ,故A 错误;对于B ,设平面PCD 的法向量为()1111,,n x y z =,则11111112220,220,n PC x y z n CD x y ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩ 令11x =,则11y =,12z =,所以1(1,1,2)n = ,显然平面PAB 的法向量为(0,1,0)m =,∴111cos ,6m n m n m n ⋅===,∴平面PCD 与平面PBA 所成的锐二面角余弦值是66,故B 错误.对于C,111sin ,6BP n BP n BP n ⋅==,故C 正确;对于D , M 是线段PC 上动点,∴设()()2,2,201PM PC λλλλλ==-≤≤,N 为AD 中点,∴()0,2,0N ,()2,2,0BN =-,∴()22,2,22BM BP PM λλλ=+=-+-,当1λ=时,M 位于C 点,此时点P 到平面BMN 距离为2PA =,当1λ≠时,设平面BMN 的法向量为()2222,,n x y z =,则()()2222222222220,220,n BM x y z n BN x y λλλ⎧⋅=-+++-=⎪⎨⋅=-+=⎪⎩ 令21x =,则21y =,2121z λλ-=-,所以212(1,1,)1n λλ-=- ,∴点P 到平面BMN距离22BP n d n ⋅==,当143λ=,即34λ=时,2min 1123863λλ⎛⎫⋅-+= ⎪⎝⎭,此时maxd==2>,∴点P到平面BMN,故D错误.故选:C.三.简答题(共78分,14+14+14+18+18)17.在数列{}n a中,4ma=,32ma+=-,其中m为给定的正整数,{}n a的前n项和为n S.(1)若{}n a为等比数列,1m=,求13a;(2)若{}n a为等差数列,是否存在正整数m,使得130S=?若存在,求出m的值;若不存在,请说明理由.【答案】(1)14(2)存在,5m=【解析】【分析】(1)利用等比数列任意两项之间的关系求出公比,结合等比数列的通项公式即可得出结果.(2)利用等差数列任意两项之间的关系求出公差,进而求出首项,结合等差数列的求和公式即可.【小问1详解】由题意,14a=,42a=-,设等比数列的公比为q,则34112aqa==-.故41213111424a a q⎛⎫=⋅=⨯-=⎪⎝⎭.【小问2详解】设等差数列{}n a的公差为d,由题意,323m ma ad+-==-.由()11ma a m d=+-可知122a m=+.由()1311312131321002S a d m⨯=+=⨯-=,解得5m=.存在正整数5m=,使得130S=18.如图,三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC,且M,N分别为线段AB,PC的中点.(1)若点K 是线段PM 的中点,求证:直线//NK 平面ABC ;(2)求证:平面P C M ⊥平面ABC .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由题意利用中位线定理知//NK CM ,利用线面平行的判定定理即可证明//NK 平面ABC .(2)由PA ,PB ,PC 两两垂直,可证PC ⊥平面PAB ,进而可得PC AB ⊥,再证明AB ⊥平面PCM ,根据面面垂直判定定理即可证明平面PCM ⊥平面ABC .【小问1详解】因为N 为线段PC 的中点,点K 是线段PM 的中点,所以由中位线定理知//NK CM ,又CM 在平面ABC 内,且NK 在平面ABC 外,因此根据线面平行判定定理得直线//NK 平面ABC ,得证.【小问2详解】因为PA ,PB ,PC 两两垂直,所以PC ⊥PA ,PC ⊥PB ,,,PA PB P PA PB =⊂ 平面PAB ,所以PC ⊥平面PAB ,又AB ⊂平面PAB ,所以PC AB ⊥,又PA =PB ,且M 为线段AB 的中点,所以PM AB ⊥,结合,,PM PC P PM PC =⊂ 平面PCM ,所以AB ⊥平面PCM ,因为AB ⊂平面ABC ,所以平面PCM ⊥平面ABC ,得证..19.在ABC 中,内角A B C ,,所对的边分别为a b c ,,,且sin(2)sin sin A B B A +=-.(1)求C 的大小;(2)若CD 平分ACB ∠交AB 于D且CD =ABC 面积的最小值.【答案】(1)π3C =;(2【解析】【分析】(1)结合三角形的内角和定理、诱导公式化简已知条件,由此求得C .(2)根据已知条件求得a b =或a b ab +=,结合基本不等式求得三角形ABC 面积的最小值.【小问1详解】依题意,sin(2)sin sin A B B A +=-,则()sin()sin sin A B A C A A ++=+-,故()sin(π)sin sin A C C A A +-=+-,则()sin()sin sin C A C A A -=+-,sin cos cos sin sin cos cos sin sin C A C A C A C A A -=+-,2cos sin sin C A A =,由于0,πA C <<,所以sin 0A >,所以1cos 2C =,则C 为锐角,且π3C =.【小问2详解】依题意CD 平分ACB ∠,在三角形ACD 中,由正弦定理得3πsin sin 6AD A =,在三角形BCD中,由正弦定理得πsin sin 6BD B =,所以sin sin AD A BD B ⋅=⋅,由正弦定理得AD bBD a=.在三角形ACD 中,由余弦定理得222π3cos336AD b b b =+-⋅=-+,在三角形BCD 中,由余弦定理得222π3cos336BD a a a =+-⋅=-+,所以2222223333AD b b b BD a a a -+==-+,整理得()()0a b ab a b +--=,所以a b =或a b ab +=.当a b =时,三角形ABC 是等边三角形,CD AB ⊥,1AD BD ==,2AB AC BC ===,所以1π22sin 23ABC S =⨯⨯⨯=当a b ab +=时,2,4ab a b ab =+≥≥,当且仅当2a b ==时等号成立,所以三角形113sin 4222ABC S ab C =≥⨯⨯= .综上所述,三角形ABC20.在平面直角坐标系Oxy 中,动圆P 与圆22145:204C x y x ++-=内切,且与圆2223:204C x y x +-+=外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心2C 且与x 轴垂直的直线交轨迹E 于A ,M 两个不同的点,连接2AC 交轨迹E 于点B (i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心1C 的直线交轨迹E 于D ,G 两个不同的点,且AB DG ⊥,求四边形ADBG 面积的最小值.【答案】(1)22143x y +=(2)28849【解析】【分析】(1)设动圆P 的半径为R ,圆心为(,)x y ,根据题意列出1271||,||22PC R PC R =-=+,即可得12||||4PC PC +=,结合椭圆定义即可求得答案;(2)(i )设直线AB 的方程并联立椭圆方程,可得根与系数的关系,进而利用BM 方程,求出N 点坐标,结合根与系数关系式化简,可得结论;(ii )求出弦长||AB 和||DG ,结合题意可求出四边形ADBG 面积的表达式,利用基本不等式即可求得其最小值.【小问1详解】设动圆P 的半径为R ,圆心为(,)x y ,22145:204C x y x ++-=即22149:(1)4C x y ++=,2223:204C x y x +-+=,即2221:(1)4C x y -+=,而动圆P 与圆22145:204C x y x ++-=内切,且与圆2223:204C x y x +-+=外切,故1271||,||22PC R PC R =-=+,则1212||||4||2PC PC C C +=>=,故动圆P 的圆心的轨迹是以12,C C 为焦点的椭圆,设其方程为()222210x y a b a b +=>>,则23,,24222,a c a b ∴====,故轨迹E 的方程为22143x y +=.【小问2详解】(i )由题意知AB 斜率存在,设其方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则()11,M x y -,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=,由于直线AB 过椭圆焦点,则必有0∆>,则221212228412,4343k k x x x x k k -+==++,直线BM 的方程为()211121y y y y x x x x ++=--,令0y =,可得()()()()2211212211112112121222N k x x x x x x x x x x y x x y y k x x x x ---+-=+=+=++-+-22222241282434348243k k k k k k -⨯-++==-+,即N 为一个定点(4,0);(ii )()222212112||1|14AB k x x k x x x x =+-=++-()22222222121841214.434343k k k k k k k +⎛⎫-=+-⨯ ⎪+++⎝⎭1,DGAB DG k k ⊥∴=- ,同理可得()22121||34k DG k +=+,AB DG ⊥ ,则()()222212112111||||224334ABDGk k SAB DG k k ++=⨯=⨯++四边形22222222272(1)72(1)2884334(43)(34)49()2k k k k k k ++=≥=+++++,当且仅当224334k k +=+,即1k =±时等号成立,即四边形ADBG 的面积的最小值为28849.21.已知函数()e 1xf x x =-,()()lng x a x x =+.(1)若2a =,证明:()42g x x ≤-;(2)若不等式()()f x g x ≥恒成立,求正实数a 的值;(3)证明:()2e 2ln 2sin x x x x x >++.【答案】(1)证明详见解析(2)1a =(3)证明详见解析【解析】【分析】(1)将()42g x x ≤-转化为ln 10x x -+≤,然后利用构造函数法,结合导数证得不等式成立.(2)利用换元法,将不等式()()f x g x ≥恒成立,转化为10t e at --≥恒成立,利用构造函数法,结合导数求得正实数a 的值.(3)结合(1)(2),将所要证明的不等式转化为证明222sin x x x -+>,结合二次函数的性质证得不等式成立.【小问1详解】2a =时,()42ln 10g x x x x ≤-⇔-+≤,设()ln 1t x x x =-+,11()1(0)x t x x x x'-=-=>,所以()t x 在区间()()()'0,1,0,t x t x >递增;在区间()()()'1,,0,t x t x +∞<递减.所以()()10t x t ≤=,即ln 10x x -+≤,所以2a =时,()42g x x ≤-.【小问2详解】依题意,ln e 1(ln )e (ln )10x x x x a x x a x x +-≥+⇔-+-≥,令ln t x x =+,ln y x x =+在()0,∞+上递增,且R t ∈,所以10t e at --≥对任意R t ∈恒成立.设()()()'e 10,e t t h t at a h t a =-->=-,所以函数()h t 在区间()()()',ln ,0,a h t h t -∞<递减;在区间()()()'ln ,,0,a h t h t +∞>递增.所以()()min ln ln 1h t h a a a a ==--,所以ln 10--≥a a a ,111ln 1,ln 1a a a a a+≥≥-,由(1)知ln 10x x -+≤,即ln 1≤-x x ,即11ln1a a≤-,所以11ln 1a a =-,当且仅当11a =,即1a =时成立.【小问3详解】由(2)得,当1a =时,()e (ln )1x f x x x x =-+≥对任意0x >恒成立.所以()0,x ∀∈+∞,e ln 1x x x x ≥++,则()22e ln 0x x x x x x x ≥++>,要证明()()2e 2ln 2sin 0x x x x x x >++>,只需证明2ln (2)ln 2sin (0)x x x x x x x x ++>++>,即证22ln 2sin (0)x x x x x +>+>,由(1)知()ln 10x x x ≤->,所以只需证()22(1)2sin 0xx x x x +>-+>,即证()222sin 0x x x x -+>>,①当1x >时,()221222sin x x x x x -+=-+>≥,不等式成立.②当01x <≤时,221772()244x x x -+=-+≥,π72sin 2sin12sin34x ≤<=<,不等式成立.所以()222sin 0x x x x -+>>成立,所以()()2e 2ln 2sin 0xx x x x x >++>成立.【点睛】利用导数研究不等式恒成立问题,可对不等式进行转化,然后利用构造函数法,结合导数求得所构造函数的单调性、极值、最值等,从而求得参数的取值范围.。
2024-2025学年山东省菏泽市高三上学期期中数学试题及答案
菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ( )A. {}0,1 B. {}1 C. {}1,1- D. ∅2. 已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为( )A. []1,2 B. []4,6 C. []5,9 D. []3,73. 已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+( )A. 12-B.12C. 0D. 14. “函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分又不必要条件5. 过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为( )A. 1B.3log 22C.ln33D.2log 36.6. 函数()11ln sin 21x f x x x+=--的零点个数为( )A. 1B. 0C. 3D. 27. 自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是( )A. ①和④B. ③和④C. ③和②D. ①和②8. 已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -( )A. 有最大值为1e -,最小值为1 B. 有最大值为0,最小值为1e-C. 有最大值为0,无最小值D. 无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 已知0c b a <<<,则( )A. ac bc <B. 333b c a +< C.a c ab c b+>+D.<10. 已知函数()21,2,5,2xx f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则( )A. 1a ≤- B. []1,4c ∈ C. ()20,5ad ∈ D. 222a b +=.11. 把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则( )A. π6f ⎛⎫=⎪⎝⎭B. ()f x 的图象关于直线π3x =对称C. S 呈周期变化D. 6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12. 命题:“所有能被4整除的正整数能被2整除”的否定是______.13. 已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14. 已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15. 记ABC V 内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为(1)求C ;(2)求ABC V 的周长.16. 已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎥⎣⎦,求()()23-=+f x y f x 的最大值.17. 记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;的(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18. 已知函数()()2e xf x x a =-.(1)求()f x 单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19. 已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 否有最小值,如果有,请求出来;如果没有,请说明理由.的是菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】【14题答案】四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a - (2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
常州数学高三期中考试卷
常州数学高三期中考试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题只有一个选项是正确的,请将正确选项的字母代号涂黑。
)1. 函数y=f(x)是奇函数,则下列说法正确的是:A. f(-x)=-f(x)B. f(-x)=f(x)C. f(0)=0D. f(x)=x2. 已知等差数列{a_n}的首项为1,公差为2,则其第10项为:A. 19B. 20C. 21D. 223. 若直线y=kx+b与曲线y=x^2+1相切,且切点在第一象限,则k的取值范围为:A. (-∞, -1]B. (-1, 0)C. (0, 1)D. [1, +∞)4. 已知复数z满足z^2+z+1=0,则|z|的值为:A. 1B. √2C. √3D. 25. 函数f(x)=x^3-3x在区间(-∞, 1)上是:A. 增函数B. 减函数C. 先增后减D. 先减后增6. 已知向量a=(2, -3),b=(1, 2),则向量a与向量b的夹角为:A. π/4B. π/3C. π/2D. 5π/67. 已知集合A={x|x^2-5x+6=0},B={x|x^2-4x+3=0},则A∩B为:A. {1, 2}B. {1, 3}C. {2, 3}D. {1}8. 已知圆C的方程为(x-2)^2+(y-3)^2=25,圆心为(2, 3),半径为5,则圆C的切线方程为:A. x+y-5=0B. x-y+1=0C. x+y-1=0D. x-y-5=09. 已知函数f(x)=x^2-6x+8,x∈[2, 5],则f(x)的最大值为:A. 3B. 8C. 9D. 1010. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,a>0,b>0,且双曲线C的一条渐近线方程为y=x,则b与a的关系为:A. b=aB. b=2aC. b=√2aD. b=a√2二、填空题(本大题共5小题,每小题4分,共20分。
请将答案直接写在横线上。
)11. 已知等比数列{a_n}的首项为2,公比为3,则其第5项为_____________。
2024届黑龙江哈尔滨九中高三上学期期中数学试题及答案
哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2 B. ()1,2- C. (],4∞- D. (]1,4-2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2iB. 2i- C. 2- D. 23. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 294. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为( )A 27B. 0C. 716-D. 916-8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设的.某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35B. 42C. 49D. 56二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列D. {}n a 的前n 项和115344n n S +=⨯-10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为3511. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax xx f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根在C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.14. 已知ABC的面积S =,3A π∠=,则AB AC ⋅=________;15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.的的哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2B. ()1,2- C. (],4∞- D. (]1,4-【答案】D 【解析】【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2i B. 2i- C. 2- D. 2【答案】D 【解析】【分析】先求出复数z ,得到z 的共轭复数,即可得到答案.【详解】因为复数z 满足i 2i z =+,所以2i12i iz +==-,所以z 的共轭复数12i z =+.其虚部为:2.故选:D3. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 29【答案】D 【解析】【分析】求出基本量,即可求解.【详解】解:2642=10a a a +=,所以45a =,又59a =,所以544d a a =-=,所以510592029a d a +=+==,故选:D 4. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】26k πθπ=+,Z k ∈时,1sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,526k πθπ=+,Z k ∈时,551sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,所以“26k πθπ=+,Z k ∈”是“1sin 2θ=”的充分而不必要条件,故选:A .5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln 2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-【答案】C 【解析】【分析】选项A ,由sin ||sin |2|33πππ-≠-+可判断;选项B ,代入2x =,可判断;选项C ,结合定义域和()()f x f x -=-,可判断;选项D ,由1ab=-得0a b +=且0b ≠,可判断【详解】由于5sin |||2|sin()333ππππ-=-+==,所以函数sin ||y x =的周期不是2π,故选项A 是假命题;当2x =时22x x =,故选项B 是假命题;函数2()ln2x f x x+=-的定义域(2,2)-关于原点对称,且满足()()f x f x -=-,故函数()f x 是奇函数,即选项C 是真命题;由1a b =-得0a b +=且0b ≠,所以“0a b +=”的必要不充分条件是“1ab=-”,故选项D 是假命题故选:C6. 设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 【答案】C 【解析】【分析】根据等差中项的定义,利用对数的运算得到21a b +=,然后利用这一结论,将目标化为齐次式,利用基本不等式即可求最小值.【详解】解:0,a b >>Q 是lg 4a 与lg 2b 的等差中项,2lg4lg2,lg 2lg 2b a a b +∴=+∴=,即222a b +=,即21a b +=,则212122(2)559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22a b b a=,即13a b ==时取等号.故选C .【点睛】本题主要考查利用基本不等式求最值中的其次化方法,涉及等差中项概念和对数运算,难度中等.当已知a b k αβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0m nm n a b+>,为常数)的最小值时常用()1m n m n a b a b k a b αβ⎛⎫+=++ ⎪⎝⎭方法,展开后对变量部分利用基本不等式,从而求得最小值;已知k abαβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0ma nb m n +>,为常数)的最小值时也可以用同样的方法.7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC⋅的最小值为( )A. 27 B. 0C. 716-D. 916-【答案】D 【解析】【分析】根据图形特点,建立直角坐标系,由题设数量关系得出A ,B ,C 的坐标,再设出点M 的坐标,将所求问题转化为函数的最小值即可.【详解】解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,如图所示 ,由题意可知,()0,4A ,()3,0C ,3,22D ⎛⎫⎪⎝⎭,设(),0M t ,其中[]3,3t ∈- ,则3,22MD t ⎛⎫=- ⎪⎝⎭,()3,0MC t =- ,故()22399993222416MD MC t t t t t ⎛⎫⎛⎫⋅=-⨯-=+=--⎪ ⎪⎝⎭⎝⎭ ,所以当94t = 时,MD MC ⋅ 有最小值916-.故选:D.8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35 B. 42C. 49D. 56【答案】B【解析】【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染,则每轮新增感染人数为0nR ,经过n 轮传染,总共感染人数:1200000111n nR R R R R +-++++=- ,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n ,由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得50分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列 D. {}n a 的前n 项和115344n n S +=⨯-【答案】AB 【解析】【分析】推导出1113()22n n a a ++=+,11322a +=,从而数列1{}2n a +为首项为32,公比为3的等比数列,由此利用等比数列的性质能求出结果.【详解】解: 数列{}n a 满足:11a =,1310n n a a +--=,*n ∈N ,131n n a a +∴=+,1113(22n n a a +∴+=+,11322a +=,为∴数列1{}2n a +为首项为32,公比为3的等比数列,故A 正确;113133222n n n a -+=⨯=⨯,∴11322n n a =⨯-,故B 正确;数列{}n a 是递增数列,故C 错误;数列1{}2n a +的前n 项和为:13(13)3132(31)313444n n n n S +-'==-=⨯--,{}n a ∴的前n 项和1111332424n n n S S n n +'=-=⨯--,故D 错误.故选:AB .10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++= ,则AOC 与AOB 的面积之比为35【答案】BD 【解析】C 为钝角,从而否定A ;利用向量的和、差的模的平方的关系求得26a b -= ,进而判定B ;注意到a 与a b λ+ 同向的情况,可以否定C ;延长AO 交BC 于D ,∵,AO OD共线,利用平面向量的线性运算和三点共线的条件得到58BD BC = ,进而35CD DB =,然后得到35ODC ADC OBD ABD S S S S == ,利用分比定理得到35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,从而判定D.【详解】0a b ⋅> 即0BC CA ⋅> ,∴0CB CA ⋅< ,∴C 为钝角,故A 错误;2222222810a b a b a b -++=+=+= ,2224a b +== ,21046a b -=-=,a b -=B 正确;(1,2)a b λλλ+=++r r,当0λ=时,a 与a b λ+ 同向,夹角不是锐角,故C 错误;∵2350OA OB OC ++=,∴3522AO OB OC =+ ,延长AO 交BC 于D ,如图所示.∵,AO OD共线,∴存在实数k ,3522k k OD k AO OB OC ==+ ,∵,,D B C 共线,∴35122k k +=,∴14k =,∴3588OD OB OC =+ ,∴555888BD OD OB OB OC BC =-=-+= ,∴35CD DB =.∴35ODC ADC OBD ABD S S S S == ,∴35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,故D 正确.故选:BD.11. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x在π3⎡-⎢⎣上单调,则30,2ω⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】将0x =代入()f x 求出函数值,根据ϕ的范围即可判断选项A ;根据偶函数的性质即可判断选项B ;根据()f x 在[],a b 上单调,则2Tb a ≥-即可判断选项C ;根据整体思想以及正弦函数的性质即可判断选项D.【详解】对于选项A ,若()0f =,则2cos ϕ=cos ϕ=,∵[]0,πϕ∈,∴π6ϕ=,则A错误;对于选项B ,若函数()y f x =为偶函数,则0ϕ=或πϕ=,即2cos 1ϕ=,则B 正确;对于选项C :若()f x 在[],a b 上单调,则π2T b a ω-≤=,但不一定小于π2ω,则C错误;在对于选项D :若2ϕπ=,则()2sin f x x ω=-,当ππ,34x ⎡⎤∈-⎢⎥⎣⎦时,ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦,∵()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,∴ππ32ππ42ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩ ,解得30,2ω⎛⎤∈ ⎥⎝⎦,则D 正确.故选:BD .12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax x x f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线【答案】ABC 【解析】【分析】A 选项,根据()0f x ≥,得到1a ≥,画出函数图象,可得单调区间;B 选项,结合函数图象得到方程()f m =的根的个数;C 选项,分[0,6π)x ∈和[]6π,7πx ∈两种情况,得到00tan x x =或0001cos sin x x x -=;D 选项,设()f x 上一点()111,sin M x ax x -,分M 为切点和不是切点,结合函数图象可得过()f x 图象上任何一点,最多可作函数()f x 的8条切线.【详解】A 选项,因为函数()0f x ≥,[6π,7π]x ∈时,由于1cos 0x -≥恒成立,故3π(1cos )y a x =-要想恒正,则要满足0a ≥,[0,6π]x ∈时,sin 0y ax x =-≥恒成立,cos y a x '=-,当1a ≥时,cos 0y a x '=-≥在[)0,6π恒成立,故sin y ax x =-在[)0,6π单调递增,又当0x =时,0y =,故sin 0y ax x =-≥在[)0,6π上恒成立,满足要求,当01a <<时,令cos 0y a x '=-=,故存0π0,2x ⎛⎫∈ ⎪⎝⎭,使得0cos a x =,当()00,x x ∈时,0'<y ,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,0y '>,故sin y ax x =-在()00,x x ∈上单调递减,又当0x =时,0y =,故()00,x x ∈时,sin 0y ax x =-<,不合题意,舍去,综上:1a ≥,当6πx →时,sin 6πy ax x a =-→,(6)3π[1cos(6π)]0f a π=-=,且(7π)3π[1cos(7π)]6πf a a =-=,画出函数图象如下,故()f x 的单调递增区间为(0,6π),(6π,7π),A 错误;B 选项,可以看出方程()f x m =最多有两个实数解,不可能有三个实数根,B 错误;C 选项,当[)0,6πx ∈时,()cos f x a x '=-,则()00cos f x a x '=-,则函数()f x 在0x x =处的切线方程为()()()0000sin cos y ax x a x x x --=--,将()0,0代入切线方程得()()0000sin cos ax x x a x --=--,解得00tan x x =,当[]6π,7πx ∈时,()3πsin f x a x '=,则()003πsin f x a x '=,则函数()f x 在0x x =处的切线方程为()()0003π1cos 3πsin y a x a x x x --=-⎡⎤⎣⎦,将()0,0代入切线方程得,0001cos sin x x x -=,其中06πx =满足上式,不满足00tan x x =,故C 错误;D 选项,当[)0,6πx ∈时,设()f x 上一点()111,sin M x ax x -,()cos f x a x '=-,当切点为()111,sin M x ax x -,则()11cos f x a x '=-,在故切线方程为()()()1111sin cos y ax x a x x x --=--,此时有一条切线,当切点不为()111,sin M x ax x -时,设切点为()222,sin N x ax x -,则()22cos f x a x '=-,此时有()2211221sin sin cos ax x ax x a x x x ---=--,即12212sin sin cos x x x x x -=-,其中1212sin sin x x t x x -=-表示直线MN 的斜率,画出cos ,[0,6π)y x x =∈与y t =的图象,最多有6个交点,故可作6条切线,[]6π,7πx ∈时,当切点不为()111,sin M x ax x -时,设切点为()()22,3π1cos N x a x -,则()3πsin f x a x '=,()223πsin f x a x '=,()7π3πsin 7π0f a '==,()6π3πsin 6π0f a '==,13π13π3πsin 3π22f a a ⎛⎫⎪==⎭'⎝,结合图象可得,存在一个点()()22,3π1cos N x a x -,使得过点()()22,3π1cos N x a x -的切线过[)0,6πx ∈上时函数的一点,故可得一条切线,当M 点在[]6π,7πx ∈时的函数图象上时,由图象可知,不可能作8条切线,综上,过()f x 图象上任何一点,最多可作函数f(x)的8条切线,D 正确.故选:ABC【点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2) 已知斜率k 求切点()()11,A x f x ,即解方程()1f x k '=;(3) 已知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,A x f x ,利用()()()10010f x f x k f x x x -=='-求解.Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.【答案】12n -【解析】【分析】当1n =时求得1a ;当2n ≥时,利用1n n n a S S -=-可知数列{}n a 为等比数列,利用等比数列通项公式可求得结果.【详解】当1n =时,1121a a =-,解得:11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,12n n a a -∴=,则数列{}n a 是以1为首项,2为公比的等比数列,11122n n n a --∴=⨯=.故答案为:12n -.14. 已知ABC 的面积S =,3A π∠=,则AB AC ⋅=________;【答案】2【解析】【分析】由三角形的面积可解得4bc =,再通过数量积的定义即可求得答案【详解】由题可知1sin 2S bc A =3A π∠= ,所以解得4bc =由数量积的定义可得1cos 422AB AC bc A ⋅==⨯= 【点睛】本题考查三角形的面积公式以及数量积的定义,属于简单题.15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.【答案】19-【解析】【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案.【详解】2sin 63πα⎛⎫+= ⎪⎝⎭ ,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭,1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.【答案】21223n +-【解析】【分析】设n A 中有n c 项为0,其中1和1-的项数相同都为n b ,由已知条件可得()111222n n n b c n ---+=≥①,()112n n n b b c n --=+≥②,进而可得()1122n n n b b n --+=≥③,再结合12n n n b b ++=④可得()11122n n n b b n -+--=≥,分别研究n 为奇数与n 为偶数时{}n b 的通项公式,运用累加法及并项求和即可求得结果.【详解】因为()11,1A =-,依题意得,()21,0,0,1A =-,()31,0,1,1,1,1,0,1A =---,显然,1A 中有2项,其中1项为1-,1项为1,2A 中有4项,其中1项为1-,1项为1,2项为0,3A 中有8项,其中3项1-,3项为1,2项为0,由此可得n A 中共有2n 项,其中1和1-的项数相同,设n A 中有n c 项为0,所以22nn n b c +=,11b =,从而()111222n n n b c n ---+=≥①,因为()f A 表示把A 中每个1-都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,为则()112n n n b b c n --=+≥②,①+②得,()1122n n n b b n --+=≥③,所以12nn n b b ++=④,④-③得,()11122n n n b b n -+--=≥,所以当n 为奇数且3n ≥时,()()()324122411222122211143n n n n n n n n n b b b b b b b b ------+=-+-+⋅⋅⋅+-+=++⋅⋅⋅++=+=-,经检验1n =时符合,所以213n n b +=(n为奇数),当n 为偶数时,则n 1-为奇数,又因为()1122n n n b b n --+=≥,所以111121212233n n n n n n b b ----+-=-=-=,所以2+1,321,3n n n n b n ⎧⎪⎪=⎨-⎪⎪⎩为奇数为偶数,当n 为奇数时,+112121233n n n n n b b ++-+=+=,所以{}n b 的前2n 项和为21211352112345621222422()()()()2+2+2++2143n n n n n b b b b b b b b -+---⨯-++++++++===- .故答案为:21223n +-.【点睛】本题的解题关键是根据题目中集合的变换规则找到递推式,求出通项公式,再利用数列的特征采取分组求和解出.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值【答案】(I )6π(II )max 3()2f x =【解析】【详解】(1)由2a =x )2+(sin x )2=4sin 2x ,2b =(cos x )2+(sin x )2=1,及a b =r r,得4sin 2x =1.又x ∈0,2π⎡⎤⎢⎥⎣⎦,从而sin x =12,所以x =6π.(2) ()·=f x a b =x ·cos x +sin 2xsin 2x -12cos 2x +12=sin 26x π⎛⎫- ⎪⎝⎭+12,当x ∈0,2π⎡⎤⎢⎥⎣⎦时,-6π≤2x -6π∴当2x -6π=2π时,即x =3π时,sin 26x π⎛⎫-⎪⎝⎭取最大值1.所以f (x )的最大值为32.18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取PC 的中点M ,根据题意证得//AE MF 且AE MF =,得到四边形AEMF 为平行四边形,从而得到//AE ME ,结合线面平行的判定定理,即可得证;(2)以D 为坐标原点,建立空间直角坐标系,求得向量1,1)2PB =- 和平面PAD 的一个法向量n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取PC 的中点M ,连接,MF EM ,在PCD 中,因为,M F 分别为,PC PD 的中点,可得//MF CD 且12MF CD =,又因为E 为AB 的中点,所以//AE CD 且12AE CD =,所以//AE MF 且AE MF =,所以四边形AEMF 为平行四边形,所以//AE ME ,因为ME ⊂平面PCE ,AF ⊄平面PCE ,所以//AF 平面PCE .【小问2详解】解:因为底面ABCD 是菱形,且60DAB ∠= ,连接BD ,可得ABD △为等边三角形,又因为E 为AB 的中点,所以DE AB ⊥,则DE DC ⊥,又由PD ⊥平面ABCD ,以D 为坐标原点,以,,DE DC DP 所在的直线分别为,x y 和z 轴建立空间直角坐标系,如图所示,因为底面ABCD 是菱形,且60DAB ∠= ,1PD AD ==,可得11(0,0,0),,0),,0),(0,0,1)22D A B P -,则11,1),,0),(0,0,1)22PB DA DP =-=-=,设平面PAD 的法向量为(,,)n x y z =,则1020n DA x y nDP z ⎧⋅=-=⎪⎨⎪⋅==⎩ ,取x =,可得3,0y z ==,所以n =,设直线PB 与平面PAD 所成的角为θ,则sin cos ,n PB n PB n PB θ⋅==== ,所以直线PB 与平面PAD19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =- (2)1133n n n T -+=-【解析】的【分析】(1)利用累加法求出na n,进而得n a ;(2)求得1213n n n b --=,利用错位相减法可求出答案.【小问1详解】因为()1111111n n a a n n n n n n +-==-+++,所以11221111221n n n n n a a a a a a a a n n n n n ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 1111111121212n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+=- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以21n a n =-.【小问2详解】因为312n n S -=,所以当1n =时,1111a S b ==,得11b =;当2n ≥时,1113131322n n n n n n n a S S b -----=-=-=,所以1213n n n b --=(1n =时也成立).因为012135333n T =++++ 所以12311352133333n nn T -=++++ ,所以1012111121222212133121333333313n n n nnn n T --⎛⎫- ⎪--⎝⎭=++++-=+⨯-- 112122112333n n nn n --+=+--=-,故1133n n n T -+=-.20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.【答案】(1)2π3B = (2)[)8,12【解析】【分析】(1)选①时:利用面积和数量积公式代入化简即可;选②时:利用正弦定理代入,结合余弦定理得到;选③时:正弦定理进行边角转换,结合角度的范围即可确定角B .(2)结合(1)的角度,和边的大小,用余弦定理进行代换,结合基本不等式即可得到最终范围.【小问1详解】2ABC BC S ⋅=可得:1cos 2sin sin 2B ac B ac B =⋅=,故有sin tan cos BB B ==又∵()0,πB ∈,∴2π3B =;选②,∵()()()sin sin sin sin sin sin sin B A B A C C A +-=+,由正余弦定理得222c ac b a +=-,∴2221cos 22a cb B ac +-==-,又()0,πB ∈,∴2π3B =;选③,∵()2cos cos c a B b C +=-,由正弦定理可得()sin 2sin cos sin cos C A B B C +=-,∴()2sin cos sin cos sin cos sin sin A B B C C B C B A =--=-+=-,∵()0,πA ∈,∴sin 0A ≠,∴1cos 2B =-,又()0,πB ∈,∴2π3B =.【小问2详解】由余弦定理得2222cos 12c a b ac B ac +=+=-∵0ac >,∴2212a c +<.又有222222122c a c a ac c a +=++≤++,当且仅当2a c ==时取等号,可得228c a +≥.即22a c +的取值范围是[)8,12.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 的通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .【答案】(1)25n a n =或2n a n =(N n +∈) (2)当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+【解析】【分析】(1)设出公差d ,根据已知条件列出相应的等式即可求解.(2)由题意可以先求出{}n b 的通项公式,再对n 进行讨论即可求解.【小问1详解】设等差数列{}n a 的公差为d ,∵2112a a a d ==+,∴1a d =,∵1a ,32a -,4a 成等比,∴()21432a a a =-,即()()2111322a a d a d +=+-,得()22432d d =-,解得25d =或2d =,∴当125d a ==时,25n a n =;当12d a ==时,2na n =;∴25n a n =或2n a n =(N n +∈).【小问2详解】因为等差数列{}n a 的公差为整数,由(1)得2n a n =,所以()()2212n n n S nn +==+,则()()112n S n n +=++,∴()()()()()()()12121111111111nn n n n n n b n n n n n n n ⎡⎤++-+⎛⎫=-=--=-++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦.①当n 为偶数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++--+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++----+++-+ 1111n =-++1n n =-+.②当n 为奇数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++-+++-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++-+++----+ 1111111n n n =-+---+231n n +=-+.所以当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+.22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.【答案】(1)递增区间为10,3⎛⎫ ⎪⎝⎭,递减区间为1,3⎛⎫+∞ ⎪⎝⎭(2)1,2⎛⎤-∞- ⎥⎝⎦(3)证明见解析【解析】【分析】(1)求定义域,求导,由导函数的正负求出单调区间;(2)转化为1ln 0x m x x ⎛⎫+-< ⎪⎝⎭在()1,x ∈+∞上恒成立,令()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,分0m ≥和0m <两种情况,求导,结合导函数特征,再分类讨论,求出m 的取值范围;(3)在(2)基础上得到12ln x x x<-,赋值得到211212ln 1n n n n n n n n n +++<-=++,利用累加法得到结论.【小问1详解】当3m =-时,()ln 3,0f x x x x =->,则()1133x f x x x-'=-=,令()0f x ¢>,得103x <<;令()0f x '<,得13x >,所以()f x 的单调递增区间为10,3⎛⎫ ⎪⎝⎭,单调递减区间为1,3⎛⎫+∞ ⎪⎝⎭.【小问2详解】由()m f x x <,得1ln 0x m x x ⎛⎫+-< ⎪⎝⎭,设()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,当()1,x ∈+∞时,1ln 0,0x x x>->,所以当0m ≥时,()0g x >,不符合题意.当0m <时,()2111g x m x x ⎛⎫=++ ⎝'⎪⎭22mx x m x ++=,设()()2,1,h x mx x m x =++∈+∞,其图象为开口向下的抛物线,对称轴为12x m=-0>,当112m ->,即102m -<<时,因为()1210h m =+>,所以当11,2x m ⎛⎫∈-⎪⎝⎭时,()0h x >,即()0g x '>,此时()g x 单调递增,所以()()10g x g >=,不符合题意.当1012m <-≤,即12m ≤-时,()h x 在()1,+∞上单调递减,所以()()1210h x h m <=+≤,所以()0g x '<,所以()g x 在()1,+∞上单调递减,所以()()10g x g <=,符合题意.综上所述,m 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.【小问3详解】由(2)可得当1x >时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,即12ln x x x<-,令*1,n x n n+=∈N ,则211212ln 1n n n n n n n n n +++<-=++,所以22223351212ln ,2ln ,,2ln 111222n n n n n++<<⋅⋅⋅<+++,以上各式相加得22223135212lnln ln 121122n n n n n++⎛⎫++⋅⋅⋅+<++⋅⋅⋅+ ⎪+++⎝⎭,即22223135212ln 121122n n n n n ++⎛⎫⨯⨯⋅⋅⋅⨯<++⋅⋅⋅+⎪+++⎝⎭,所以()22235212ln 11122n n n n++<++⋅⋅⋅++++.【点睛】导函数证明数列相关不等式,常根据已知函数不等式,用关于正整数的不等式代替函数不等式中的自变量,通过多次求和(常常用到裂项相消法求和)达到证明的目的,此类问题一般至少有两问,已知的不等式常由第一问根据特征式的特征而得到.。
2023-2024学年福建省部分达标学校高三上学期期中质量监测数学试题+答案解析
2023-2024学年福建省部分达标学校高三上学期期中质量监测数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,则()A. B. C. D.2.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知是三角形的内角,且,则的值是()A. B. C. D.4.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升到8000,则C大约增加了A. B.C. D.5.已知曲线,把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线,则下列曲线的方程正确的是()A. B. C. D.6.已知关于x的不等式的解集为,若,则的最小值是()A. B. C. D.7.函数在求导时可运用对数法:在解析式两边同时取对数得到,然后两边同时求导得,于是,用此法探求的递增区间为()A. B. C. D.8.已知函数的定义域为R,满足,当时,,记的极小值为t,若对则m的最大值为()A. B.1 C.3 D.不存在二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若复数z满足其中i为虚数单位,则下列说法正确的是()A.B.z的共轭复数在复平面内对应的点在第四象限C.z的虚部为D.10.函数的部分图象如图所示,则()A. B.C.的图象关于直线对称D.的图象关于点对称11.下列大小关系中,正确的是()A. B. C. D.12.已知函数,其中e是自然对数的底数,下列说法中正确的是()A.的一个周期为B.在区间上单调递增C.是偶函数D.在区间上有且仅有一个极值点三、填空题:本题共4小题,每小题5分,共20分。
2022-2023学年第一学期期中考试高三数学试卷及答案
2022-2023学年第一学期期中考试高三数学试卷(满分:150分;考试时间:120分钟)班级姓名座号一、单项选择题(每小题有且只有一个正确选项,把正确选项填涂在答题卡相应位置上.每小题5分,共40分)1.已知集合{(2)0}A xx x =->∣,{12}B x x =-<<∣,则(∁R A)∪B =()A .[1,2]-B .(1,2]-C .(1,)-+∞D .(,2)-∞2.在数列{}n a 中,12n n a a +=-,且21a =,则n a =()A .22n -B .2(2)n --C .12n -D .1(2)n --3.已知在矩形ABCD 中,13AE AB = ,线段,AC BD 交于点O ,则EO =()A .1126AB AD + B .1163AB AD +C .1136AB AD +D .1162AB AD+ 4.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若1sin ,2sin 3A bB ==,则=a ()A .23B .32C .6D .165.设ln 2a =,122b =,133c =,则a ,b ,c 的大小关系为()A .a b c<<B .b a c<<C .a c b <<D .c a b<<6.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭()A .B .19-C .3D .197.若0a >,0b >,且a b ab +=,则2a b +的最小值为()A .3+B .2+C .6D .3-8.函数()()1sin π1f x x x =+-,则()=y f x 的图象在()24-,内的零点之和为()A .2B .4C .6D .8二、多项选择题(每小题有多于一个的正确选顶,全答对得5分,部分答对得2分,有错误选项的得0分)9.如果平面向量(2,0)a =,(1,1)b = ,那么下列结论中正确的是()A .aB .a b ⋅=C .bb a⊥-)(D .//a b10.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若3232a a =,2312a a +=,则下列说法正确的是()A .2q =B .数列{}n S 是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列11.已知函数()()sin f x x ωϕ=+(0>ω,π2ϕ≤),()11π12f x f ⎛≥⎫ ⎪⎝⎭恒成立,且()f x 的最小正周期为π,则()A .()πsin 23f x x ⎛⎫=- ⎪⎝⎭B .()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C .将()f x 的图象向左平移5π6个单位长度后得到的函数图象关于y 轴对称D .()f x 在π0,3⎛⎫⎪⎝⎭上单调递增12.已知正实数,,a b c 满足2240a ab b c -+-=,当cab取最小值时,下列说法正确的是()A .4a b=B .26c b =C .a b c +-的最大值为34D .a b c +-的最大值为38三、填空题(每题5分,共20分,把正确答案填写在答题卡相应位置上)1355cos 1212ππ-=______14.已知向量a ,b 夹角为45︒,且1= a ,2a b += ;则b = ______.15.写出一个满足函数()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩在(),-∞+∞上单调递增的a 值_____________.16.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.四、解答题(要求写出必要的过程,第17题10分,第18~22题各12分,共70分.)17.在△ABC 中,b =,6a =.(1)若π6A =,求c 的值;(2)在下面三个条件中选择一个作为已知,求△ABC 的面积.cos B C =;②cos sin B C =;③2B C =.18.已知数列{}n a 前n 项和为n S ,满足113a =,且*131(N )n n S S n +=+∈.(1)求数列{}n a 通项公式;(2)求n S .19.已知函数()=f x a b ⋅,其中()=2cos ,a x x -,=(cos ,1)b x,x R ∈.(1)求函数=()y f x 的单调递减区间.(2)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,()=1f A -,a =(3,sin )m B与=(2,sin )n C共线,求边长b 和c 的值.20.已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.21.已知集合{}2=5+40M x x x -≤,函数()228f x x ax =-+.(1)求关于x 的不等式()28f x a ≥+的解集;(2)若命题“存在0∈x M ,使得()00f x ≤”为假命题,求实数a 的取值范围.22.设函数22()(1488)f x x m mn x m =+-++,其中1m >,n *∈N .(1)若()f x 为偶函数,求n 的值;(2)若对于每个n *∈N ,()f x 存在零点,求m 的取值范围.2022-2023学年第一学期期中考试高三数学参考答案及评分标准1.B 2.B∵122,1n n a a a +=-=,∴112a =-,12n na a +=-.{}n a 是公比为2-的等比数列,∴121(2)(2)2n n n a --=-⨯-=-.故选:B .3.D依题意得,结合图形有:()212111323262EO EB BO AB BD AB AD AB AB BD =+=+=+-=+ .故选:D4.A 由正弦定理sin sin a bA B =,整理得sin 122sin 33b A a B ==⨯=故选:A .5.Aln 2a =,而0ln 21<<,所以01a <<;又 121628b ==,131639c ==∴令16()f x x =,而函数()f x 在(0,)+∞上递增∴1b c << ∴a b c<<故选:A 6.D225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 7.A因为0a >,0b >,且a b ab +=,所以111a b+=,所以()11222333a b a b a b a b b a ⎛⎫+=++=++≥+=+ ⎪⎝⎭当且仅当2a bb a=时,取等号,所以2a b +的最小值为3+,故选:A.8.B由()()1sin π01f x x x =+=-可得()1sin π1x x =--,则函数()sin πy x =与函数11y x =--的图象在()24-,内交点的横坐标即为函数()=y f x 的零点,又函数()sin πy x =与函数11y x =--的图象都关于点()1,0对称,作出函数()sin πy x =与函数11y x =--的大致图象,由图象可知()=y f x 在()24-,内有四个零点,则零点之和为4.故选:B.9.AC由平面向量(2,0)a =,(1,1)b = 知:在A 中,2= a A 正确;在B 中,2a b ×=,故B 错误;在C 中,(1,1)a b -=-,∴()110a b b -⋅=-= ,∴()-⊥a b b r r r ,故C 正确;在D 中,∵2011≠,∴a 与b不平行,故D 错误.故选:A C .10.AC∵在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,3232a a =,2312a a +=,解得24a =,38a =,∴2q =,或者28a =,34a =,∴12q =,不符合题意,舍去,故A 正确,21422a a q ===,则()12122212n n n S +-==--,2112222n n n n S S +++-==≠-常数,∴数列{}n S 不是等比数列,故B 不正确;()8821251012S -==-,故C 正确;∵2n n a =,∴lg lg 2n a n =,2lg 2lg 2lg 2-=,∴数列{}lg n a 不是公差为2的等差数列,故D 错误,故选:AC 11.ABD ∵πT =,∴22T πω==.依题意得()min 11π11πsin 1126f x f ϕ⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,∴()11ππ2π62k k ϕ+=-∈Z ,且π2ϕ≤,∴π3ϕ=-,即()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则A 正确;令()π2π3x k k -=∈Z ,即()ππ26k x k Z =+∈,当0k =时,对称中心为π,06⎛⎫⎪⎝⎭,则B 正确;将()f x 的图象向左平移5π6个单位长度后得到的函数()4πsin 23g x x ⎛⎫=+ ⎪⎝⎭图象不关于y 轴对称,则C 错误;∵π0,3x ⎛⎫∈ ⎪⎝⎭,∴πππ2,333x ⎛⎫-∈- ⎪⎝⎭,所以()f x 在π0,3⎛⎫⎪⎝⎭上单调递增,则D 正确.故选:ABD.12.BD对于A ,由2240a ab b c -+-=,则41c a b ab b a =+-1≥-=3,当且仅当2a b =时,等号成立,故A 错误,对于B ,当c ab 取最小值时,=3=2cab a b⎧⎪⎨⎪⎩,则26c b =,故B 正确;对于C 、D ,222133********a b c b b b b b b ⎛⎫+-=+-=-+=--+≤ ⎪⎝⎭,当且仅当12a =,14b =,38c =,等号成立,故()max 38a b c +-=,故C 错误,D 正确.故选:BD.1355cos 1212ππ-5152cos 12212ππ⎫=-⎪⎪⎭552sin cos sin cos 126612ππππ⎛⎫=- ⎪⎝⎭52sin 2sin 1264πππ⎛⎫=-== ⎪⎝⎭.14∵12a a b =+=,∴2(2)a b + =2244a a b b +⋅+=10,代入数据可得2||b =10,化简可得2||b +6=0,,或﹣(负数舍去)15.因为()+1221,>=+2,x x a g x x x x a ≤⎧-⎨-⎩,当>x a 时()+1=21x g x -在定义域上单调递增,当x a ≤时()()22=+2=1+1g x x x x ---,画出+1=21x y -,2=+2y x x -的图象如下所示:要使函数()g x 在(),+-∞∞上单调递增,由图可知当1a ≤时均可满足函数()g x 在(),+-∞∞上单调递增;故答案为:1(答案不唯一)16.6-1()当40a =时,4707S a ==,所以55S =-,又535S a =,所以31a =-,所以,4310a a d -==>,故4n a n =-,令0n a ≥,则4n ≤,所以n S 的最小值为46S =-.2()当45a =-,74735S a ==-,不合题意.综上所述:40a =,55S =-,70S =,n S 的最小值为6-.故答案为:6-.17.(1)由题意得2222cos a b c bc A =+-,即2223633c c c =+-,得6c =,-------4(2)选条件①,由正弦定理得sin B C =,-----5cos B C =,化简得sin 2sin 2B C =,-----6而B C >,则22πB C +=,π2B C +=,---8故π2A =,由勾股定理得222a b c =+,解得3,c b ==------912ABC S bc == -------10选条件②,cos sin B C =,而B C >,则π2B C +=,------7故π2A =,由勾股定理得222a b c =+,解得3,c b ==------912ABC S bc == ------10选条件③,由正弦定理得sin B C =,而2B C =,则sin 2sin cos B C C =,得cos C =,(0,π)C ∈,-----7故π6C =,π3B =,π2A =,由勾股定理得222a b c =+,解得3,c b ==----912ABC S bc == -----1018.(1)解:因为*131(N )n n S S n +=+∈①所以当2n ≥时,得*131(N )n n S S n -=+∈②------2则①-②得:1133n n n n S S S S +---=-----3即13n n a a +=,即113n na a +=-------4又当1n =时,2131S S =+,所以1213()1a a a +=+,其中113a =所以219a =,则2113a a =-------6故数列{}n a 是以113a =为首项,13为公比的等比数列-----7所以13nn a ⎛⎫= ⎪⎝⎭.------8(2)解:由(1)可得111111333122313n n n S ⎛⎫-⨯ ⎪⎛⎫⎝⎭==-⨯ ⎪⎝⎭-.---------1219.(1)2()==2cos f x a b x x ⋅- -------1=cos2+1x x -=2cos(2+)+13x π,-----------3由题意有()22++2Z 3k x k k ππ≤≤ππ∈,-----4解得++63k x k ππ-π≤≤π()Z k ∈------5所以单调递减区间为()+,+Z 63k k k ππ-ππ∈⎡⎤⎢⎥⎣⎦;-------6(2)()=2cos(2+)+1=13f A A π-,-------77cos(2+)=1,0<<,<2+<3333A A A ππππ-π∴ ,-------82+=,=33A A πππ∴,---------9(3,sin )m B = 与向量(2,sin )n C = 共线,33sin =2sin ,3=2,=2C B c b b c ∴∴,--------1022227=7=+2cos =,=2,=334a b c bc c c b π-∴.--------1220.(1)设数列{}n a 的公差为d ,因为4a 是2a 和8a 的等比中项,则()()()2242811137a a a a d a d a d =⋅⇒+=++且11a =-----3则1d =或0d =(舍)-----4则()()11111n a a n d n n =+-=+-⨯=,即通项公式n a n =-------6(2)因为k a 与1k a +(1k =,2,…)之间插入2k ,所以在数列{}n b 中有10项来自{}n a ,10项来自{}2n ,所以()1020212110102101212T -+=⨯+=-------------1221.(1)因为()2=2+8f x x ax -,且()2+8f x a ≥,所以222+8+8x ax a -≥即()()2+0x a x a -≥,--------2因为()()2+=0x a x a -的实数根为1x a =或2=2a x -,当=0a 时,此时120x x ==,所以不等式的解集为R ;---------3当>0a 时,此时>2a a -,所以不等式的解集为{2a x x ≤-或}x a ≥;-------4当a<0时,此时<2a a -,所以不等式的解集为{x x a ≤或2a x ≥-⎫⎬⎭;-------5综上所述,当=0a 时,不等式的解集为R ;当>0a 时,不等式的解集为{2a x x ≤-或}x a ≥;当a<0时,不等式的解集为{x x a ≤或2a x ≥-⎫⎬⎭;----------6(2)因为{}{}2=5+40=14M x x x x x ≤≤≤-,-----------7所以命题“存在[]01,4x ∈,使得2002+80x ax -≤”的否定为命题“任意[]1,4x ∈,使得22+8>0x ax -”是真命题,---------8所以可整理成[]8<2+,1,4a x x x∈,令()[]8=2+,1,4h x x x x∈,则()min <a h x ,--------9因为()8=2+h x x x ≥,当且仅当82x x =即=2x 时,取等号,----------11则<8a ,故实数a 的取值范围{}<8a a ---------1222.(1)()f x 为偶函数,14880m mn ∴-+=,-------1714n m∴=+.-----------21m > ,101m∴<<,77111444m ∴<+<,--------3即71144n <<.又*n ∈N ,2n ∴=.-----------5(2)由题意,得22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥.-----6当2n =时,32(2)0m ∆=-≥,2m ∴≤,又1m >,12m ∴<≤.-------7当2n ≠时,223m n ≤-或12m n ≥-.-------8①当223m n ≤-时,1m > ,n ∴只能取2,舍去--------9②当12m n ≥-时,1m > ,---------10∴从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g >==-.综上所述,m 的取值范围是(1,2]------------12。
北京市通州区2024届高三上学期期中质量检测数学试题(含解析)
通州区2023—2024学年第一学期高三年级期中质量检测数学试卷2023年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交国.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,则()A. B. C. D. 2. 已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知向量,,,则下列结论中正确的是()A B.C. D. 与的夹角为120°4. 已知函数,则()A. 当且仅当,时,有最小值B. 当且仅当时,有最小值2C. 当且仅当时,有最小值D. 当且仅当时,有最小值.25. 下列命题中假命题是()A. ,B. ,.的{}02A x x =≤<{}1,0,1,2B =-A B = {}1{}0,1{}0,2{}0,1,21iiz -=z ()2,0a =- ()1,2b =(c = a b ∥ 2a b ⋅= 2b c = a c()()1104f x x x x=++>12x =()f x 3212x =()f x 1x =()f x 321x =()f x x ∀∈R 102x⎛⎫> ⎪⎝⎭x ∃∈R 12x x>C , D. ,6. 已知,,,则()A. B. C.D.7. 在平面直角坐标系中,角以为始边,则“角的终边过点”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 下列函数中,在区间上单调递减的是()A. B. C. D. 9. 已知函数是奇函数,且,将的图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象对应的函数为,则()A. B. C. D. 10. 已知数列的前项和为,且,则下列四个结论中正确的个数是()①;②若,则;③若,则;④若数列是单调递增数列,则的取值范围是.A. 1B. 2C. 3D. 4第二部分(非选择题共110分).x ∀∈R ||21x >x ∃∈R tan 1x >12log 3a =1ln 2b =1213c ⎛⎫= ⎪⎝⎭b ac <<a b c <<a c b <<b c a<<xOy αOx α()1,2-tan 2α=-()0,∞+()()31f x x =-()||2x f x -=()2log f x x =-()12log f x x=()()()cos 20,πf x A x A ϕϕ=+><3π14f ⎛⎫=- ⎪⎝⎭()f x ()g x ()sin g x x =()sin g x x=-()πcos 4g x x ⎛⎫=+ ⎪⎝⎭()πcos 4g x x ⎛⎫=- ⎪⎝⎭{}n a n n S 21n n S S n ++=22n n a a +-=10a =501225S =11a =501224S ={}n a 1a 11(,44-二、填空题共5小题,每小题5分,共25分.11. 已知函数,则的定义域为____________.12. 已知数列是等比数列,,,则数列的通项公式________;数列的前9项和的值为__________.13. 已知实数a ,b 满足关于x 的不等式的解集为,且满足关于的不等式的解集为,则满足条件的一组a ,b 的值依次为______.14. 在等腰中,,,则____________;若点满足,则的值为___________.15. 已知函数,,给出下列四个结论:①函数在区间上单调递减;②函数的最大值是;③若关于的方程有且只有一个实数解,则的最小值为;④若对于任意实数a ,b ,不等式都成立,则的取值范围是.其中所有正确结论的序号是_______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16已知函数,.(1)当时,若,求的值域(2)若有两个零点,分别为,,且,求的取值范围.17. 已知函数..()()1lg 2f x x x=++()f x {}n a 22a =-34a ={}n a n a ={}n a 9S (),axb a b >∈R (),1-∞-y 230y y b ++>R ABC 2AB AC ==2BA BC ⋅=BC =P 122CP CA CB =- PA PB ⋅()23,1,1log ,1,2x x m x f x x x ⎧-++<⎪=⎨--≥⎪⎩m ∈R ()21x g x x =+()f x 1,2⎛⎫+∞ ⎪⎝⎭()g x 12x ()()0f x g x -=m 12()()f a g b ≤m 3,4⎛⎤-∞- ⎥⎝⎦()23f x x ax a =--+a ∈R 2a =[]0,3x ∈()f x ()f x 1x 2x 120x x >a ()2cos 2sin 1f x x x x =-+(1)求的值;(2)求最小正周期及单调区间;(3)比较与的大小,并说明理由.18. 已知的内角A ,B ,C 所对的边分别为a ,b ,c ,其中,,再从下面给出的条件①,条件②、条件③这三个条件中选择一个作为已知,使存在且唯一.(1)求的值;(2)求的面积.条件①:;条件②:③:.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.19. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值;(3)若对于任意,不等式恒成立,求实数的取值范围.20. 已知函数,,.(1)求的值;(2)求在区间上的最大值;(3)当时,求证:对任意,恒有成立.21. 已知数列的各项均为正数,且满足(,且).(1)若;(i )请写出一个满足条件的数列的前四项;的5π4f ⎛⎫⎪⎝⎭()f x π5f ⎛⎫- ⎪⎝⎭7π8f ⎛⎫⎪⎝⎭ABC 2a =π3B =ABC c ABC cos =A b =b =()2e 2xf x x =-()y f x =()()0,0f ()f x x ∈R ()()2e 1f x x m >-+m ()e 2x f x x -=()1ln g x a x x =-a ∈R ()1f '()g x []1,21a =()0,x ∈+∞()()cos xf xg x x>-{}n a 112n n n a a a -++≥*n ∈N 2n ≥12a a >{}n a(ii )求证:存在,使得成立;(2)设数列的前项和为,求证:.()t t ∈R ()*1n a a nt n ->∈N {}n a n n S ()()2212n n n S n n a n n a ++--≥通州区2023—2024学年第一学期高三年级期中质量检测数学试卷2023年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交国.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,则()A. B. C. D. 【答案】B 【解析】【分析】根据题意,由交集的运算,即可得到结果.【详解】因为集合,,则.故选:B 2. 已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C 【解析】【分析】根据复数除法运算化简即可求解.【详解】,故对应的点为,在第三象限,故选:C3. 已知向量,,,则下列结论中正确的是()A. B. {}02A x x =≤<{}1,0,1,2B =-A B = {}1{}0,1{}0,2{}0,1,2{}02A x x =≤<{}1,0,1,2B =-{}0,1A B = 1iiz -=z ()()()1i i 1i 1i i i i z ---===---()1,1--()2,0a =- ()1,2b=(c = a b ∥ 2a b ⋅=C. D. 与的夹角为120°【答案】D 【解析】【分析】利用向量平行,向量数量积,向量模,向量夹角的坐标表示验证各选项正误即可得答案.【详解】A 选项,因,则与平行,故A 错误;B 选项,因,故B 错误;C 选项,,又,则,故C 错误;D 选项,,又,则,即与的夹角为120°,故D 正确.故选:D.4. 已知函数,则()A. 当且仅当,时,有最小值B. 当且仅当时,有最小值2C. 当且仅当时,有最小值D. 当且仅当时,有最小值.2【答案】B 【解析】【分析】根据题意,由基本不等式,代入计算,即可得到结果.【详解】因为,则,当且仅当时,即时,等号成立,所以当且仅当时,有最小值2.故选:B5. 下列命题中的假命题是()2b c = a c ()2210-⨯≠⨯a b202a b ⋅=-+=-b ==2c == 2b c ≠ 21cos ,222a c a c a c⋅-===-⨯ [],0,180a c ∈︒︒ ,120a c =︒ a c()()1104f x x x x=++>12x =()f x 3212x =()f x 1x =()f x 321x =()f x 0x >()11124f x x x =++≥+=14x x =12x =12x =()f xA. ,B. ,C. ,D. ,【答案】C 【解析】【分析】对于A ,根据指数的值域为可判断;对于B ,取可判断;对于C ,取可判断;对于D ,取可判断.【详解】对于A ,因为指数函数的值域为,所以,,A 对;对于B ,当时,,B 对;对于C ,当时,,C 错;对于D ,当时,,D 对.故选:C.6. 已知,,,则()A. B. C.D.【答案】B 【解析】【分析】利用对数函数的单调性可得,,又,从而可得.【详解】因为,所以,即,因为,所以,即,而,所以.故选:B.x ∀∈R 102x⎛⎫> ⎪⎝⎭x ∃∈R 12x x>x ∀∈R ||21x >x ∃∈R tan 1x >()0,∞+14x =0x =π3x =()0,∞+x ∀∈R 102x⎛⎫> ⎪⎝⎭14x =1122111424x ⎛⎫==> ⎪⎝⎭0x =||0212x ==π3x =πtan tan 13x ==>12log 3a =1ln 2b =1213c ⎛⎫= ⎪⎝⎭b ac <<a b c <<a c b <<b c a<<21a -<<-10b -<<12103c ⎛⎫=> ⎪⎝⎭121123422--⎛⎫⎛⎫=<<= ⎪ ⎪⎝⎭⎝⎭2111122211log log 3log 22--⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭21a -<<-11e 12-<<11lne ln ln12-<<10b -<<12103c ⎛⎫=> ⎪⎝⎭a b c <<7. 在平面直角坐标系中,角以为始边,则“角的终边过点”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的定义即可判断.【详解】当角的终边过点时,根据三角函数的定义,可得,充分性成立;当时,为第二象限角或第四象限角,若为第四象限角,则角的终边不过点,必要性不成立.所以“角的终边过点”是“”的充分不必要条件.故选:A.8. 下列函数中,在区间上单调递减的是()A. B. C. D. 【答案】C 【解析】【分析】求导可判断A ,根据指数函数以及对数函数的单调性即可判定BC ,根据函数图象即可判定D.【详解】对于A, ,所以在上单调递增,故A 错误,对于B ,由于,所以在上单调递增,B 错误,对于C ,,故在上单调递减,C 正确,对于D ,的图象如下所示:故在单调递减,在单调xOy αOx α()1,2-tan 2α=-α()1,2-tan 2α=-tan 2α=-ααα()1,2-α()1,2-tan 2α=-()0,∞+()()31f x x =-()||2x f x -=()2log f x x =-()12log f x x=()()2310f x x '=-≥()()31f x x =-()0,∞+()220,xx x f x -=>=()||2x f x -=()0,∞+()220,log log x f x x x >=-=-()2log f x x =-()0,∞+()12log f x x =()12log f x x =()0,1()1,+∞递增,故D 错误,故选:C9. 已知函数是奇函数,且,将的图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象对应的函数为,则()A. B. C. D. 【答案】A 【解析】【分析】根据三角函数的性质及图象变换计算即可.【详解】由题意可知,,所以或,由因为,所以,即,故.故选:A .()()()cos 20,πf x A x A ϕϕ=+><3π14f ⎛⎫=- ⎪⎝⎭()f x ()g x ()sin g x x =()sin g x x=-()πcos 4g x x ⎛⎫=+ ⎪⎝⎭()πcos 4g x x ⎛⎫=- ⎪⎝⎭()ππZ 2k k ϕ=+∈π<ϕπ2ϕ=π2ϕ=-3π3π1cos 142f A ϕ⎛⎫⎛⎫=-=+=- ⎪ ⎪⎝⎭⎝⎭3π0cos 02A ϕ⎛⎫>⇒+< ⎪⎝⎭π,12A ϕ=-=()πcos 2sin 22f x x x ⎛⎫=-= ⎪⎝⎭()sin g x x =10. 已知数列的前项和为,且,则下列四个结论中正确的个数是()①;②若,则;③若,则;④若数列是单调递增数列,则的取值范围是.A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由,可得,两式相减得到,进而可得,可判断①,根据的值可判断是否为等差,再根据等差数列得前项和公式即可求解②③;根据条件得,,再根据数列单调递增,则必有,且,求解即可得出的取值范围.【详解】因为,当,,两式相减得,所以,两式相减得,故①错误,当时,令,则,,得,所以,令,则,,得,所以,则,所以,故奇数项是以为首项,2为公差的等差数列,偶数项是以为首项,2为公差的等差数列,则,所以②正确;当时,令,则,,得,所以,{}n a n n S 21n n S S n ++=22n n a a +-=10a =501225S =11a =501224S ={}n a 1a 11(,44-21n n S S n +=-+21(1)n n S S n -=-+-121(2)n n a a n n ++=-≥22(2)n n a a n +-=≥1a {}n a n 21221n a n a =--21122+=+n a n a {}n a 22212n n n a a a ++>>21a a >1a 21n n S S n +=-+2n ≥21(1)n n S S n -=-+-121(2)n n a a n n ++=-≥122(1)121+++=+-=+n n a a n n 22(2)n n a a n +-=≥10a =1n =211S S =-+1211a a a +=-+2121a a =-+21a =2n =324S S =-+112324a a a a a ++=--+312122422=--+=+a a a a 32a =312a a -=22n n a a +-={}n a 10a =21a =50123495013492450()()S a a a a a a a a a a a =+++++=+++++++ 25242524(2502)(2512)122522⨯⨯=⨯+⨯+⨯+⨯=11a =1n =211S S =-+1211a a a +=-+2121a a =-+21a =-令,则,,得,故偶数项是以为首项,2为公差的等差数列,奇数项从第二项开始以为首项,2为公差的等差数列,则,所以③正确;由于,,,则,又数列单调递增,则必有,且,所以,且,解得,所以的取值范围是,所以④正确.故选:C .第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 已知函数,则的定义域为____________.【答案】【解析】【分析】依题意可得,,求解即可.【详解】依题意可得,,解得且,所以的定义域为.故答案为:.12. 已知数列是等比数列,,,则数列的通项公式________;数列2n =324S S =-+112324a a a a a ++=--+3122244a a a =--+={}n a 21a =-34a =50123495013492450()()S a a a a a a a a a a a =+++++=+++++++ ()242325241(2442)2512122422⨯⨯⎡⎤=+⨯+⨯+⨯-+⨯=⎢⎥⎣⎦22(2)n n a a n +-=≥2121a a =-+3122=+a a 2222222442211()()()2(1)21221n n n n n a a a a a a a a n a n a ---=-+-++-+=--+=-- 2121212123533311()()()2(1)222222n n n n n a a a a a a a a n a n a n a ++---=-+-++-+=-+=-++=+ {}n a 22212n n n a a a ++>>21a a >111222122221n a n a n a +-->+>--1112->a a 11144a -<<1a 11(,44-()()1lg 2f x x x=++()f x ()()2,00,-⋃+∞020x x ≠⎧⎨+>⎩20x x ≠⎧⎨+>⎩2x >-0x ≠()f x ()()2,00,-⋃+∞()()2,00,-⋃+∞{}n a 22a =-34a ={}n a n a =的前9项和的值为__________.【答案】 ①. ②. 171【解析】【分析】根据等比数列基本量的计算即可求解,,进而根据公式即可求解.【详解】由,可得,,所以,,故答案为:,17113. 已知实数a ,b 满足关于x 的不等式的解集为,且满足关于的不等式的解集为,则满足条件的一组a ,b 的值依次为______.【答案】故答案为:(答案不唯一,只要满足就行)【解析】【分析】利用一元一次不等式的解集和二次不等式恒成立列不等式即可求解.【详解】因为关于x 的不等式的解集为,所以,又关于的不等式的解集为,所以,解得,所以满足条件的一组a ,b 的值依次为,(答案不唯一,只要满足就行)故答案为:(答案不唯一,只要满足就行)14. 在等腰中,,,则____________;若点满足,则的值为___________.【答案】 ①.②. 【解析】【分析】利用余弦定理、平面向量及其线性运算、平面向量数量积的定义及运算分析运算即可得解.{}n a 9S ()12n --2q =-11a =22a =-34a =2q =-11a =()1112n n n a a q --==-()()991217112S --==--()12n --(),ax b a b >∈R (),1-∞-y 230y y b ++>R 3,3a b =-=94b a =->(),ax b a b >∈R (),1-∞-0a b a <⎧⎨=-⎩y 230y y b ++>R 2340b -<94b >3,3a b =-=94b a =->3,3a b =-=94b a =->ABC 2AB AC ==2BA BC ⋅=BC =P 122CP CA CB =- PA PB ⋅224【详解】解:如上图,由题意等腰中,,则,∵,,∴,∴,即,∵由余弦定理得,∴,即,又因边长,∴.∴是等边三角形,则,,∵,∴,,∴.ABC 2AB AC ==2BA =2BA BC ⋅=,=∠ BA BC B cos 2cos 2⋅===BA BC BA BC B BC B cos 1=BC B cos 1⋅=BC B 2222cos AC AB BC AB BC B =+-⋅⋅244221=+-⨯⨯BC 24BC =0BC >2BC =ABC π3A B C ===2C C B A ==122CP CA CB =- 122=-=+ PA CA CP CA CB 132=-=- PB CB CP CB CA 2211312362224⎛⎫⎛⎫⋅=+⋅-=⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭PA PB CA CB CB CA CA CB CA CB CA CB222211116cos 62424=⋅-+=-+CA CB CA CB CA CB C CA CB 221112226224224=⨯⨯⨯-⨯+⨯=故答案为:;.15. 已知函数,,给出下列四个结论:①函数区间上单调递减;②函数的最大值是;③若关于的方程有且只有一个实数解,则的最小值为;④若对于任意实数a ,b ,不等式都成立,则的取值范围是.其中所有正确结论的序号是_______.【答案】①②③【解析】【分析】对于①,由二次函数开口向下,对称轴为,得到①正确;对于②,先得到函数的奇偶性,求导得到函数的单调性,画出的图象,数形结合得到的最大值;对于③,转化为有且只有一个交点,在同一坐标系画出与的图象,数形结合得到不等式,求出;对于④,先由得到,考虑时,两函数在处的切线相同,结合两函数图象得到满足要求,故④错误.【详解】对于①,当时,,二次函数开口向下,对称轴为,故在区间上单调递减,①正确;对于②,定义域为R ,且,故为奇函数,当时,,当时,,单调递减,当时,,单调递增,在224()23,1,1log ,1,2x x m x f x x x ⎧-++<⎪=⎨--≥⎪⎩m ∈R ()21x g x x =+()f x 1,2⎛⎫+∞ ⎪⎝⎭()g x 12x ()()0f x g x -=m 12()()f a g b ≤m 3,4⎛⎤-∞- ⎥⎝⎦12x =()21xg x x =+()g x ()(),f x g x ()f x ()g x 12m ≥()()00f g ≤0m ≤0m =0x =0m =1,2x ⎛⎫∈+∞ ⎪⎝⎭()221124f x x x m x m ⎛⎫=-++=--++ ⎪⎝⎭12x =1,2⎛⎫+∞ ⎪⎝⎭()21xg x x =+()()21x g x g x x --==-+()21xg x x =+0x >()()22211x g x x-'=+1x >()0g x '<()21xg x x =+01x <<()0g x '>()21xg x x =+且,时,时,画出的图象如下:由图象可得的最大值是,②正确;对于③,关于的方程有且只有一个实数解,即有且只有一个交点,在同一坐标系画出与的图象,要想有且只有一个交点,则,故的最小值为,③正确;对于④,由题意得,,即,当时,,,()112g =0x >()0g x >0x <()0g x <()21x g x x =+()g x 12x ()()0f x g x -=()(),f x g x ()23,1,1log ,1,2x x m x f x x x ⎧-++<⎪=⎨--≥⎪⎩()g x ()(),f x g x 12m ≥m 12()()00f g ≤0m ≤0m =()2f x x x =-+()00f =,,此时在处的切线方程为,而,故在处的切线方程为,画出两函数图象如下:此时满足对于任意实数a ,b ,不等式都成立,故的取值范围不是,D 错误.故答案为:①②③【点睛】函数零点问题:将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知函数,.(1)当时,若,求的值域(2)若有两个零点,分别为,,且,求的取值范围.【答案】(1)()21f x x '=-+()01f '=()2f x x x =-+0x =y x =()01g '=()21xg x x =+0x =y x =()()f a g b ≤m 3,4⎛⎤-∞- ⎥⎝⎦()23f x x ax a =--+a ∈R 2a =[]0,3x ∈()f x ()f x 1x 2x 120x x >a []0,4(2)【解析】【分析】(1)由题意可得在上单调递减,在上单调递增,从而可求解;(2)根据题意可得,进而可求解.【小问1详解】当时,的对称轴为,且开口向上,所以在上单调递减,在上单调递增,所以,又,所以,所以当,的值为;【小问2详解】的两个零点分别为,且,,即,解得或,故取值范围为.17. 已知函数.(1)求的值;(2)求的最小正周期及单调区间;(3)比较与的大小,并说明理由.【答案】(1(2),递增区间为,递减区间为的(,6)(2,3)-∞- ()f x [)0,1(]1,312Δ00x x >⎧⎨>⎩2a =()()22211f x x x x =-+=-1x =()f x [)0,1(]1,3()()min 10f x f ==()()01,34f f ==()max 4f x =[]0,3x ∈()f x []0,4()f x 12,x x 120x x >12Δ00x x >⎧∴⎨>⎩24(3)030a a a ⎧--+>⎨-+>⎩6a <-23a <<a (,6)(2,3)-∞- ()2cos 2sin 1f x x x x =-+5π4f ⎛⎫⎪⎝⎭()f x π5f ⎛⎫- ⎪⎝⎭7π8f ⎛⎫⎪⎝⎭πT =πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦π2ππ,π,Z 63k k k ⎡⎤++∈⎢⎥⎣⎦(3),理由见解析【解析】【分析】(1)根据二倍角的正余弦公式和两角和的正弦公式化一,从而可求解;(2)根据周期公式可求周期,令,求解可得增区间,令,求解可得减区间;(3)由周期可得,再利用单调性即可求解.小问1详解】,所以;【小问2详解】的最小正周期,令,解得;令,解得,所以的单调递增区间为,单调递减区间为.小问3详解】,理由如下:由(2)可知的最小正周期,所以,由(2)可知,在上单调递增,又,所以,即.【【π7π58f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭πππ2π22π,Z 262k x k k -+≤+≤+∈ππ3π2π22π,Z 262k x k k +≤+≤+∈7ππ88f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭()1π2cos 222cos 22sin 226f x x x x x x ⎫⎛⎫=+=+=+⎪ ⎪⎪⎝⎭⎭5π5π44ππ2sin 22cos 66f ⎫⎛⎫⨯+=⎛ = ⎝⎝⎭⎪⎭=⎪()f x 2ππ2T ==πππ2π22π,Z 262k x k k -+≤+≤+∈ππππ,Z 36k x k k -+≤≤+∈ππ3π2π22π,Z 262k x k k +≤+≤+∈π2πππ,Z 63k x k k +≤≤+∈()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦π2ππ,π,Z 63k k k ⎡⎤++∈⎢⎥⎣⎦π7π58f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭()f x 2ππ2T ==7ππ88f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭()f x ππ,36⎡⎤-⎢⎥⎣⎦ππππ3586-<-<-<ππ85f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭π7π58f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭18. 已知的内角A ,B ,C 所对的边分别为a ,b ,c ,其中,,再从下面给出的条件①,条件②、条件③这三个条件中选择一个作为已知,使存在且唯一.(1)求的值;(2)求的面积.条件①:;条件②:③:.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)(2【解析】【分析】(1)若选①,先求出,然后利用正弦定理可求;若选条件②,由余弦定理可检验是否存在;若选条件③,由余弦定理可求;(2)结合三角形面积公式即可求解.【小问1详解】若选①,又因为,所以,所以,由正弦定理得,所以;若选条件②由余弦定理得,整理得,此时方程无解,即这样的三角形不存在,所以条件②不能选;ABC 2a =π3B =ABC c ABC cos =A b =b =3c =sin C c c c cos =A 0πA <<sin A ==1sin sin()sin cos cos sin 2C AB A B A B =+=+=+=sin sin a cA C=sin 3sin a C c A ===b =22227414cos ,224c a c b B acc+-+-==24890c c -+=若选条件③,由余弦定理得,整理得,解得或(舍去),所以.小问2详解】由(1)可知,所以.19. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值;(3)若对于任意,不等式恒成立,求实数的取值范围.【答案】(1)(2)极小值为,无极大值(3)【解析】【分析】(1)求导,即可得斜率,进而可求直线方程,(2)求导,根据导数求解单调性,即可求解极值,(3)将恒成立问题参数分离,构造函数即可求导求解最值求解.【小问1详解】由得,又,所以在切线为【小问2详解】令,则,故在单调递增,当时,单调递减,【b =2222147cos ,224a c b c B ac c+-+-==2230c c --=3c =1c =-3c =3c=11sin 2322ABC S ac B ==⨯⨯=()2e 2xf x x =-()y f x =()()0,0f ()f x x ∈R ()()2e 1f x x m >-+m 1y =()01f =0m <()2e 2e ,xg x x =-()2e 2xf x x =-()22e 2x f x '=-()()00,01f f ='=()y f x =()0,11y =()22e 20xf x '=->0x >()f x ()0,∞+0x <()()0,f x f x '<所以当时,取极小值,无极大值,【小问3详解】由得,故,构造函数则,令,则,故当时,,单调递增,时,单调递减,故当取极小值也是最小值,,所以,即20. 已知函数,,.(1)求的值;(2)求在区间上的最大值;(3)当时,求证:对任意,恒有成立.【答案】(1)(2)时,,时,时,,(3)证明见解析【解析】【分析】(1)求导即可代入求解,(2)分类讨论,即可根据导数求解函数的单调性并求解最值,(3)将问题转化为,对分类讨论,构造函数,求0x =()f x ()01f =()()2e 1f x x m >-+()22e e 21xx m x ->+-2e 2e x m x ->()2e 2e ,xg x x =-2()2e 2e x g x '=-2()2e 2e>0x g x '=-1>2x 1>2x ()0g x '>()g x 12x <()()0,g x g x '<()1,2x g x =1e e 02g ⎛⎫=-= ⎪⎝⎭()min m g x <0m <()e 2x f x x -=()1ln g x a x x =-a ∈R ()1f '()g x []1,21a =()0,x ∈+∞()()cos xf xg x x>-()12f '=1a ≤-()max 1g x =-112a -<<-()max 1ln g x a aa ⎛⎫=-+ ⎪⎝⎭12a -≤()max 1ln 22g x a =-ln e cos 1x x x x <+-x ()=e cos ln 1xh x x x x +--导确定函数的单调性,即可利用单调性求解最值求证.【小问1详解】由得,所以,【小问2详解】由得,当时,,故在区间上单调递增,所以,当时,令,则,令,则,故在上单调递减,在上单调递增,当时,,此时在区间上单调递减,所以,当时,,此时在区间上单调递增,所以,当时,,此时在区间上单调递增,在单调递减,综上可得:时,,时,时,,【小问3详解】要证,即证,即证明,当时,,而,所以()e 2x f x x-=()2e e 2x x x f x x -+'=()12f '=()1ln g x a x x=-()2211a ax g x x x x +'=+=0a ≥()0g x '>()g x []1,2()()max 12ln 22g x g a ==-0a <()0g x '<1x a >-()0g x '>10x a<<-()g x 1x a >-10x a <<-1a ≤-11a-≤()g x []1,2()()max 11g x g ==-102a -≤<12a -≥()g x []1,2()()max 12ln 22g x g a ==-112a -<<-112a <-<()g x 11,a ⎡⎤-⎢⎥⎣⎦1,2a ⎛⎤- ⎥⎝⎦()max 11ln g x g a aa a ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭1a ≤-()max 1g x =-112a -<<-()max 1ln g x a aa ⎛⎫=-+ ⎪⎝⎭12a -≤()max 1ln 22g x a =-()()cos x f x g x x >-1e cos ln x x x x x ++<ln e cos 1x x x x <+-01x <≤ln 0x x <e cos 11cos 1cos cos10x x x x +->+-=≥>,当时,记,则,记,由于,所以当单调递增,所以,故在单调递增,故,故,综上,对任意,恒有【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形;(2)构造新的函数;(3)利用导数研究的单调性或最值;(4)根据单调性及最值,得到所证不等式.21. 已知数列的各项均为正数,且满足(,且).(1)若;(i )请写出一个满足条件的数列的前四项;(ii )求证:存在,使得成立;(2)设数列的前项和为,求证:.【答案】(1)(i )(答案不唯一)(ii )见解析(2)见解析【解析】【分析】(1)根据不等式的性质证明不等式;(2)根据累加法与不等式的性质证明结论.【小问1详解】(i )∵即,ln e cos 1x x x x <+-1x >()=e cos ln 1x h x x x x +--()=e sin ln 1xh x x x '---()()()1==e sin ln 1,=e cos x xm x h x x x m x x x''-----()111,=e cos e 1e 110xx x m x x x x'>-->-->-->()1,x h x '>()()1e sin110h x h ''>=-->()h x 1x >()()1e cos110h x h >=+->ln e cos 1x x x x <+-()0,x ∈+∞()()cos xf xg x x>-()h x ()h x {}n a 112n n n a a a -++≥*n ∈N 2n ≥12a a >{}n a ()t t ∈R ()*1n a a nt n ->∈N {}n a n n S ()()2212n n n S n n a n n a ++--≥12342,1,7,15a a a a ====112n n n a a a -++≥11n n n n a a a a +--≥-又,则,∴满足条件的数列的前四项可以为:.(ii )∵(,且),∴,,,,累加得,则,则,∵,∴,不妨令,故存在,使得成立;【小问2详解】由(1)知:,同理∵即,∴,,,∴,则则,12a a >210a a -<{}n a 12342,1,7,15a a a a ====11n n n n a a a a +--≥-*n ∈N 2n ≥121n n n n a a a a -----≥1223n n n n a a a a -----≥-⋅⋅⋅4332a a a a -≥-3221a a a a -≥-()()2212n a a n a a ≥---()()121212n a a n a a a a -≥--+-()()()()12121211n a a n a a n a a a a -≥--=---210a a -<()121n a a n a a ->-()21t a a =-()t t ∈R ()*1n a a nt n ->∈N ()()1211n a a n a a -≥--112n n n a a a -++≥11n n n n a a a a +--≥-121q q q q a a a a -----≥1223q q q q a a a a -----≥-⋅⋅⋅211k k k k a a a a +++-≥-()()1q k k k a a q k a a +-≥--()()1q k k k a a q k a a +-≥--()()1q n n n a a q n a a +-≥--,,,,累加得:,故:.()()111n n n a a n a a +-≥--()()212n n n a a n a a +-≥--⋅⋅⋅()11n n n n a a a a -+-≥--0n n a a -≥()()112n nn n n n S na a a +--≥--()()2212n n n S n n a n n a ++--≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学期中考试题:检测试题
【】对于高中学生的我们,数学在生活中,考试科目里更是尤为重要,高三数学试题栏目为您提供大量试题,小编在此为您发布了文章:高三数学期中考试题:检测试题希望此文能给您带来帮助。
本文题目:高三数学期中考试题:检测试题
理科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至7页。
考试结束后,将本试卷和答题卡一并交回。
满分150分,考试用时l20分钟。
第Ⅰ卷 (选择题,共60分)
注意事项:
1.答题前,考生务必用黑色碳索笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
答在试卷上的答案无效。
本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题
(1)函数的最小正周期等于
(A) (B) (c) (D)
(2)抛物线的准线方程是
(A) (B) (c) (D)
(3)已知i是虚数单位,,那么复数在复平面内对应的点位于
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
(4)在(1+x)5+(1+x)6+(1+x)7的展开式中,x4的系数等于
(A) 22 (B) 25 (C) 52 (D) 55
(5)下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为l与的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于
(A) (B) (C) (D)
(6)函数的极大值等于
(A) (B) (C) 1 (D)
(7)在等比数列{ }中,与的等差中项等于48, =1286.如果设 { }的前n项和为,那么 =
(A) 5n-4 (B) 4n-3 (C) 3n-2 (D) 2n-l
(8)某校对高三年级学生进行体检,并将高三男生的体重(豫)数据进行整理后分成五组,绘制成下图所示的频率分布直方图.如果规定,高三男生的体重结果只分偏胖、偏瘦和正常
三个类型,超过65kg属于偏胖,低于55kg属于偏瘦,已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25、0.2、0.1、0.05,第二小组的频数为400.若该校高三男生的体重没有55kg和65kg,则该校高三年级的男生总数和体重正常的频率分别为
(A)1000,0.5
(B)800,0.5
(C)800,0.6
(D)1000,0.6
(9)已知,则向量在向量方向上的投影等于
(A) (B) (C) (D)
(10)已知、是两个互相垂直的平面,m、n是一对异面直线,下列四个结论:
①m∥ 、n ;②m 、n∥ ;③m 、n ;
④m∥ 、n∥ ,且m与的距离等于n与的距离.其中是m 的充分条件的为
(A)① (B) ② (C) ③ (D) ④
(1l)已知椭圆E的长轴的两个端点分别为A1(-5,0)、A2(5,0),点P在椭圆E上,如果的面积等于9,那么椭圆E的方程是
(A) (B)
(C) (D)
(12)运行下图所示的程序,如果输出结果为sum=1320,那么判断框中应填
(A) i 9
(B) i 10
(C) i 9
(D) i l0
绝密★启用前【考试时间:3月1日 l5:00~17:00】20**年云南省第一次高中毕业生复习统一检测
理科数学
第Ⅱ卷 (非选择题,共90分)
本卷包括必考题和选考题两部分。
第(13)题~第(21)题为必考题,每个试题考生都必须做答。
第(22)题~第(24)题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分,共20分。
把答案填在答题卡上。
(13)在一个水平放置的底面半径等于6的圆柱形量杯中装有适量的水,现放入一个半径等于r的实心球,如果球完全浸没于水中且无水溢出,水面高度恰好上升,那么r= .
(14)已知e是自然对数的底数,计算定积分,得 = .
(15)设数列{ }的前n项和为,如果,那么 = .
(16)如果直线被圆截得的弦长等于8,那么的最小值等于 .
三.解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
在△ABC中,三个内角A、B、C对的边分别为a、b、c,设平面向量
(I)求A的值;
(II)设a=4,b+c=5,求△ABC的边BC上的高h.
(18)(本小题满分12分)
盒子内装有5张卡片,上面分别写整数字l,l,2,2,2,每张卡片被取到的概率相等。
先从盒子中任取l张卡片,记下它上面的数字x,然后放回盒子内搅匀,再从盒子中任取l张卡片,记下它上面的数字y.设M= , .
(I)求随机变量M的分布列和数学期望;
(II)设函数在区间(2,4)内有且只有一个零点为事件A,求A的概率以P(A).
(19)(本小题满分l2分)
,在空间几何体SABCD中,四边形ABCD为矩形,SD AD,SD AB,且AB=2AD,SD= AD.
(I)证明:平面SDB 平面ABCD;
(II)求二面角A-SB-D的余弦值.
(20)(本小题满分12分)
已知双曲线S的中心在原点,焦点在x轴上,离心率e= ,
倾斜角等于的直线经过点P(0,1),直线上的点与双曲线S的左焦点的距离的最小值等于 .
(I)求点P与双曲线S上的点的距离的最小值;
(Ⅱ)设直线y=k(x+2)与双曲线S交于A、B两点,且 ABP是以AB为底的等腰三角形,求常数k的值.
(21)(本小题满分12分)
已知实数a是常数, .当x0时,是增函数.
(I)求a的取值范围;
(Ⅱ)设数列的前n项和为Sn,比较ln(n+1)与Sn的大小. 选考题(本小题满分10分)
请考生在第(22)、(23)、(24)三道题中任选一题作答,并用2B铅笔在答题卡上把所选的题号涂黑。
注意:所做题目必须与所涂题号一致。
如果多做,则按所做的第一题计分。
(22)(本小题满分l0分)选修4~1:几何证明选讲
,四边形ABCD是的内接四边形,BD不经过点O,AC平分,经过点C的直线分别交AB、AD的延长线于E、F,且CD2=ABDF,证明:
(I)△ABC∽△CDF;
(Ⅱ)EF是的切线.
(23)(本小题满分10分)选修44:坐标系与参数方程
在平面直角坐标系xOy中,A(1,0),B(2,0)是两个定点,曲线C的参数方程为 (t为参数).
(I)将曲线C的参数方程化为普通方程;
(II)以A(1,0)为极点,| |为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(24)(本小题满分10分)选修45:不等式选讲
已如实数a、b、c、d满足a+b+c+d=3,a2+2b2+3c2+6d2=5. 证明:
(I) ( )22 2+3 2+6 2;
(Ⅱ)| | .。