(通用版)高三数学二轮复习第1部分专题1突破点2解三角形教师用书理
高考数学二轮总复习第1篇核心专题提升多维突破专题1三角函数与解三角形第2讲三角恒等变换与解三角形课件
π 4 π 4
=
-3-1 1-3
=
2
,
则
tan
β = tan(α + β - α) =
1t+antaαn+αβ+-βttaannαα=1+3-3×2 2=17.故选 D.
3. (2023·怀仁市校级四模)已知 α 为锐角,且 sin α+sinα+π3+
sinα+23π= 3,则 tan α=_____3___.
2cos 40°+cos 80°+sin 80°tan θ=0,
所以
tan
θ=-2cos
40°+cos sin 80°
80°=-2cos120°s-in8800°°+cos
80°
=-2cos
120°cos
80°+sin 120°sin sin 80°
80°+cos
80°=-
3sin 80° sin 80°
2 α+3tan
≤ α2
2
1 tan
α·3tan
α
= 33,当且仅当tan1 α=3tan α,即 tan α= 33时,等号成立,tan β 取得最
大值 33.故选 B.
核心考点2 正弦定理、余弦定理的应用
核 心 知 识·精 归 纳
1.正弦定理:在△ABC 中,sina A=sinb B=sinc C=2R(R 为△ABC 的外 接圆半径).
第一篇
核心专题提升•多维突破
专题一 三角函数与解三角形
第2讲 三角恒等变换与解三角形
分析考情·明方向 真题研究·悟高考 考点突破·提能力
分析考情·明方向
高频考点
高考预测
三角函数的化简与求值(倍角公式、
两角和与差公式进行恒等变换,角 继续以选择、填空题形式考查三角
高中数学二轮复习三角函数与解三角形教案含答案(全国通用)
专题三 三角函数与解三角形必考点一 三角恒等变换与求值[高考预测]——运筹帷幄1.三角函数定义、诱导公式与和差倍半角公式结合进行三角恒等变换、求三角函数值.2.结合简单的三角函数图象,求三角函数值或角度.[速解必备]——决胜千里1.诱导公式都可写为sin ⎝ ⎛⎭⎪⎫k π2+α或cos ⎝ ⎛⎭⎪⎫k π2+α的形式. 根据k 的奇偶性:“奇变偶不变(函数名),符号看象限”.2.公式的变形与应用(1)两角和与差的正切公式的变形tan α+tan β=tan(α+β)(1-tan αtan β);tan α-tan β=tan(α-β)(1+tan αtan β).(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2.(3)降幂公式sin 2α=1-cos 2α2;cos 2α=1+cos 2α2. (4)其他常用变形sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α; 1±sin α=⎝ ⎛⎭⎪⎫sin α2±cos α22; tan α2=sin α1+cos α=1-cos αsin α. 3.角的拆分与组合(1)已知角表示未知角例如,2α=(α+β)+(α-β),2β=(α+β)-(α-β),α=(α+β)-β=(α-β)+β,α=⎝ ⎛⎭⎪⎫π4+α-π4=⎝ ⎛⎭⎪⎫α-π3+π3.(2)互余与互补关系例如,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2.(3)非特殊角转化为特殊角例如,15°=45°-30°,75°=45°+30°.[速解方略]——不拘一格类型一 三角函数概念,同角关系及诱导公式[例1] (1)(2016·高考全国乙卷)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:基本法:将θ-π4转化为⎝ ⎛⎭⎪⎫θ+π4-π2.由题意知sin ⎝ ⎛⎭⎪⎫θ+π4=35,θ是第四象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4>0,所以cos ⎝ ⎛⎭⎪⎫θ+π4=1-sin 2⎝ ⎛⎭⎪⎫θ+π4=45.tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-cos ⎝ ⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-4535=-43.答案:-43速解法:由题意知θ+π4为第一象限角,设θ+π4=α,∴θ=α-π4,∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫α-π2=-tan ⎝ ⎛⎭⎪⎫π2-α.如图,不妨设在Rt △ACB 中,∠A =α,由sin α=35可得,BC =3,AB =5,AC =4,∴∠B =π2-α,∴tan B =43,∴tan B =-43.答案:-43错误!(2)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0解析:基本法:由tan α>0得α是第一或第三象限角,若α是第三象限角,则A ,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫122-1=-12<0,D 错.故选C. 速解法:∵tan α=sin αcos α>0,即sin αcos α>0,∴sin 2α=2sin αcos α>0,故选C.答案:C方略点评:(1)基本法根据α的可能象限判断符号.,速解法是根据tan α及sin 2α的公式特征判断符号,更简单.(2)知弦求弦.利用诱导公式及平方关系sin 2α+cos 2α=1求解.(3)知弦求切.常通过平方关系、对称式sin α+cos α,sin α-cos α,sin αcos α建立联系,注意tan α=sin αcos α的灵活应用.(4)知切求弦.通常先利用商数关系转化为sin α=tan α·cos α的形式,然后利用平方关系求解.1.(2016·河北唐山模拟)已知2sin 2α=1+cos 2α,则tan 2α=( )A .-43 B.43C .-43或0 D.43或0解析:基本法:∵⎩⎨⎧ 2sin 2α=1+cos 2αsin 22α+cos 22α=1, ∴⎩⎨⎧ sin 2α=0cos 2α=-1或⎩⎪⎨⎪⎧ sin 2α=45,cos 2α=35.∴tan 2α=0或tan 2α=43.答案:D2.已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.解析:基本法:由sin α+2cos α=0得tan α=-2.∴2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=2×(-2)-1(-2)2+1=-55=-1. 答案:-1类型二 三角函数的求值与化简[例2] (1)sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32C .-12 D.12解析:基本法:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.速解法:从题目形式上看应是sin(α+β)公式的展开式.又∵20°+10°=30°,故猜想为sin 30°=12.答案:D方略点评:基本法是构造sin (α+β)的形式,再逆用公式.速解法是根据三角函数的特征猜想,大胆猜想也是一种方法.(2)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2 B .3α+β=π2C .2α-β=π2D .2α+β=π2解析:基本法:由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcosα,所以sin(α-β)=cos α,又cos α=sin ⎝ ⎛⎭⎪⎫π2-α,所以sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,又因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因为α-β=π2-α,所以2α-β=π2,故选C.速解法一:∵tan α2=1-cos αsin α,由tan α=1+sin βcos β知,α、β应为2倍角关系,A 、B 项中有3α,不合题意,C 项中有2α-β=π2.把β=2α-π2代入1+sin βcos β=1+sin ⎝ ⎛⎭⎪⎫2α-π2cos ⎝ ⎛⎭⎪⎫2α-π2 =1-cos 2αsin 2α=tan α,题设成立.故选C.速解法二:1+sin βcos β=1-cos ⎝ ⎛⎭⎪⎫π2+βsin ⎝ ⎛⎭⎪⎫π2+β=tan ⎝ ⎛⎭⎪⎫π4+β2 ∴tan α=tan ⎝ ⎛⎭⎪⎫π4+β2 又∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,∴β2∈⎝ ⎛⎭⎪⎫0,π4, ∴π4+β2∈⎝ ⎛⎭⎪⎫π4,π2,∴α=π4+β2,。
高考数学二轮总复习第1篇核心专题提升多维突破专题1三角函数与解三角形第1讲三角函数的图象与性质课件
2. (2022·全国甲卷)将函数 f(x)=sinωx+π3(ω>0)的图象向左平移π2个 单位长度后得到曲线 C,若 C 关于 y 轴对称,则 ω 的最小值是( C )
A.16
B.14
C.13
D.12
【解析】 由题意知:曲线 C 为 y=sinωx+π2+π3=sinωx+ω2π+π3, 又 C 关于 y 轴对称,则ω2π+π3=π2+kπ,k∈Z,解得 ω=13+2k,k∈Z, 又 ω>0,故当 k=0 时,ω 的最小值为13.故选 C.
则
2ssininπ2π--αα+-cocsos32ππ++αα=
2sin cos
α+cos α α+sin α
=21t+antαan+α1=
2×1+--22+ 1=3.故
选 C.
2. (2022·襄城区校级模拟)已知函数f(x)=asin(πx+α)+bcos(πx+β),
且f(3)=3,则f(2 020)的值为( D )
3. (2023·大兴区模拟)若 α 为任意角,则满足 cosα+k·π4=cos α 的一
个 k 值为( D )
A.2
B.4
C.6
D.8
【解析】 ∵cosα+k·π4=cos α,∴k·π4=2nπ,n∈Z,∴k=8n;n
∈Z;故选 D.
角度2:同角三角函数基本关系
4. (2023·南宁模拟)已知 sin2α=cos α-1,则 sinα+32π=( B )
A.-1
B.1
C.3
D.-3
【解析】 ∵函数f(x)=asin(πx+α)+bcos(πx+β),∴f(3)=asin(3π
+α)+bcos(3π+β)=-(asin α+bcos β)=3,∴asin α+bcos β=-3.∴f(2
高三理科数学(通用版)二轮复习教师用书 第1部分 专题1 突破点1 三角函数问题 Word版含解析
专题一三角函数与平面向量
建知识网络明内在联系
高考点拨]三角函数与平面向量是高考的高频考点,常以“两小一大”的形式呈现,两
小题主要考查三角函数的图象和性质与平面向量内容,一大题常考查解三角形内容,有时平面向量还与圆锥曲线、线性规划等知识相交汇.本专题按照“三角函数问题”“解三角形”“平面向量”三条主线分门别类进行备考.
突破点三角函数问题
()函数=(ω+φ)
周期确定ω,利用图象的某一已知点坐标确定φ.
()三角函数图象的两种常见变换
()=(ω+φ)φ=π+
(∈)时为偶函数;对称轴方程可由ω+φ=π+
(∈)求得,对称中心的横坐标可由ω+φ=π,(∈)解得.
()=(ω+φ),当φ=π+
(∈)时为奇函数;当φ=π(∈)时为偶函数;对称轴方程可由ω+φ=π(∈)求得,对称中心的横坐标可由ω+φ=π+(∈)解得.
=(ω+φ),当φ=π(∈)时为奇函数;对称中心的横坐标可由ω+φ=(∈)解得,无对称轴.
()
()项的分拆与角的配凑:如α+α=(α+α)+α,α=(α-β)+β等.
()降次与升次:正用二倍角公式升次,逆用二倍角公式降次.
()弦、切互化:一般是切化弦.
()=++φ)+其中φ=
的形式,这样通过引入辅助角φ可将此类函数的最值问题转化为=
(+φ)+的最值问题,然后利用三角函数的图象和性质求解.
()=++型函数的最值:可利用降幂公式=),=),=),将=++转化整理为=++,这样就可将其转化为()的类型来求最值.
回访三角函数的图象问题
.(·全国甲卷)若将函数=的图象向左平移
个单位长度,则平移后图象的对称轴为( )
.=-(∈) .=+(∈)。
创新设计全国通用高考数学二轮复习教师用书专题一至专题三文
第1讲函数图象与性质及函数与方程高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.真题感悟1.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( )A.y=11-xB.y=cos xC.y=ln(x+1)D.y=2-x解析y=11-x与y=ln(x+1)在区间(-1,1)上为增函数;y =cos x 在区间(-1,1)上不是单调函数;y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上单调递减. 答案 D2.(2016·全国Ⅰ卷)函数y =2x 2-e |x |在[-2,2]上的图象大致为( )解析 令f (x )=2x 2-e |x |(-2≤x ≤2),则f (x )是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B ;当x >0时,令g (x )=2x 2-e x ,则g ′(x )=4x -e x,而当x ∈⎝ ⎛⎭⎪⎫0,14时,g ′(x )<14×4-e 0=0,因此g (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.答案 D3.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2xD.y =1x解析 函数y =10lg x的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.答案 D4.(2016·四川卷)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________. 解析 ∵f (x )周期为2,且为奇函数,已知(0,1)内f (x )=4x,则可大致画出(-1,1)内图象如图,∴f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2) =-f ⎝ ⎛⎭⎪⎫52+f (2) =-f ⎝ ⎛⎭⎪⎫12+f (0)=-2+0=-2. 答案 -2考 点 整 合1.函数的性质 (1)单调性①用来比较大小,求函数最值,解不等式和证明方程根的唯一性.②常见判定方法:(ⅰ)定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;(ⅱ)图象法;(ⅲ)复合函数的单调性遵循“同增异减”的原则;(ⅳ)导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性.(3)周期性:常见结论有:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x=a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、最值、零点时,要注意结合其图象研究.3.指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注函数图象中两种情况的公共性质.4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.热点一 函数性质的应用[微题型1] 单一考查函数的奇偶性、单调性、对称性【例1-1】 (1)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数(2)(2015·全国Ⅰ卷)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. (3)(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为________.解析 (1)易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=0,∴a =1. (3)f (x )=xx -1=1+1x -1,所以f (x )在[2,+∞)上单调递减,则f (x )最大值为f (2)=22-1=2.答案 (1)A (2)1 (3)2探究提高 牢记函数的奇偶性、单调性的定义以及求函数定义域的基本条件,这是解决函数性质问题的关键点.[微题型2] 综合考查函数的奇偶性、单调性、周期性【例1-2】 (1)(2016·天津二模)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.c <a <b C.a <c <bD.c <b <a(2)(2016·广州4月模拟)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 解析 (1)由函数f (x )=2|x -m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 23|>0, ∴b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0),故选B.(2)∵f (1+x )=f (1-x ),∴f (x )的对称轴为x =1,∴a =1,f (x )=2|x -1|,∴f (x )的增区间为[1,+∞),∵[m ,+∞)⊆[1,+∞),∴m ≥1.∴m 的最小值为1. 答案 (1)B (2)1探究提高 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.【训练1】 (1)(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x ),当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A.-2B.-1C.0D.2(2)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则实数a 的取值范围是________.解析 (1)当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1)=-[(-1)3-1]=2,故选D.(2)由题意知a >0,又log 12a =-log 2a .∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ).∵f (log 2a )+f (log 12a )≤2f (1),∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1). 又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,即-1≤log 2a ≤1,∴a ∈⎣⎢⎡⎦⎥⎤12,2. 答案 (1)D (2)⎣⎢⎡⎦⎥⎤12,2 热点二 函数图象与性质的融合问题 [微题型1] 函数图象的识别 【例2-1】 (1)函数y =x ln|x ||x |的图象可能是( )(2)函数f (x )=⎝ ⎛⎭⎪⎫1x-x sin x 的大致图象为( )解析 (1)法一 函数y =x ln|x ||x |的图象过点(e ,1),排除C ,D ;函数y =x ln|x ||x |的图象过点(-e ,-1),排除A ,选B. 法二 由已知,设f (x )=x ln|x ||x |,定义域为{x |x ≠0}.则f (-x )=-f (x ),故函数f (x )为奇函数,排除A ,C ;当x >0时,f (x )=ln x 在(0,+∞)上为增函数,排除D ,故选B. (2)由y 1=1x-x 为奇函数,y 2=sin x 为奇函数,可得函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 为偶函数,因此排除C 、D.又当x =π2时,y 1<0,y 2>0,f ⎝ ⎛⎭⎪⎫π2<0,因此选B.答案 (1)B (2)B探究提高 根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断类试题的基本方法. [微题型2] 函数图象的应用【例2-2】 (1)(2016·全国Ⅱ卷)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A.0B.mC.2mD.4m(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A.c >a >bB.c >b >aC.a >c >bD.b >a >c解析 (1)由题f (x )=f (2-x )关于x =1对称,函数y =|x 2-2x -3|的图象也关于x =1对称,两函数的交点成对出现,因此根据图象的特征可得∑i =1mx i =m ,故选B.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .选D. 答案 (1)B (2)D探究提高 (1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在运用函数图象时要避免只看表象不联系其本质,透过函数的图象要看到它所反映的函数的性质,并以此为依据进行分析、推断,才是正确的做法. 【训练2】 (1)函数y =x 33x-1的图象大致是( )(2)(2015·全国Ⅰ卷)设函数y =f (x )的图象与y =2x +a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( ) A.-1B.1C.2D.4解析 (1)由3x-1≠0得x ≠0, ∴函数y =x 33x-1的定义域为{x |x ≠0},可排除A ; 当x =-1时,y =(-1)313-1=32>0,可排除B ;当x =2时,y =1,当x =4时,y =45,但从D 中函数图象可以看出函数在(0,+∞)上是单调递增函数,两者矛盾,可排除D.故选C.(2)设f (x )上任意一点为(x ,y )关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入y =2x +a,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2.答案 (1)C (2)C热点三 函数的零点与方程根的问题 [微题型1] 函数零点的判断【例3-1】 (1)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A.0B.1C.2D.3(2)函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析 (1)法一 函数f (x )=2x +x 3-2在区间(0,1)内的零点个数即函数y 1=2x-2与y 2=-x 3的图象在区间(0,1)内的交点个数.作图(图略),可知在(0,+∞)内最多有一个交点,故排除C ,D 项;当x =0时,y 1=-1<y 2=0,当x =1时,y 1=0>y 2=-1,因此在区间(0,1)内一定会有一个交点,所以A 项错误.选B.法二 因为f (0)=1+0-2=-1,f (1)=2+13-2=1,所以f (0)·f (1)<0.又函数f (x )在(0,1)内单调递增,所以f (x )在(0,1)内的零点个数是1.(2)当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有两个零点;当x ≤0时,由f (x )=0得x =-14,综上,f (x )有三个零点.答案 (1)B (2)3探究提高 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. [微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)(2016·山东卷)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,+∞)解析 (1)如图,当x ≤m 时,f (x )=|x |. 当x >m 时,f (x )=x 2-2mx +4m , 在(m ,+∞)为增函数.若存在实数b ,使方程f (x )=b 有三个不同的根, 则m 2-2m ·m +4m <|m |.又m >0,∴m 2-3m >0,解得m >3.(2)由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点. 如图:∴y =kx -1在直线y =x -1与y =12x -1之间,∴12<k <1,故选B. 答案 (1)(3,+∞) (2)B探究提高 利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 【训练3】 (1)已知二次函数f (x )=x 2-bx +a 的部分图象如图所示,则函数g (x )=e x+f ′(x )的零点所在的区间是( ) A.(-1,0) B.(0,1) C.(1,2)D.(2,3)(2)(2016·海淀二模)设函数f (x )=⎩⎪⎨⎪⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.①若a =1,则f (x )的最小值为________;②若f (x )恰有2个零点,则实数a 的取值范围是________.解析 (1)由函数f (x )的图象可知,0<f (0)=a <1,f (1)=1-b +a =0,所以1<b <2.又f ′(x )=2x -b ,所以g (x )=e x +2x -b ,所以g ′(x )=e x +2>0,即g (x )在R 上单调递增,又g (0)=1-b <0,g (1)=e +2-b >0,根据函数的零点存在性定理可知,函数g (x )的零点所在的区间是(0,1),故选B.(2)①当a =1时,f (x )=⎩⎪⎨⎪⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x-1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1,∴f (x )min =-1.②由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x-a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.答案 (1)B (2)①-1 ②⎣⎢⎡⎭⎪⎫12,1∪[2,+∞)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f(x)=1x ln x的定义域时,只考虑x>0,忽视ln x≠0的限制.2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)=0.3.奇函数在两个对称的区间上有相同的单调性,偶函数在两个对称的区间上有相反的单调性.4.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.5.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、选择题1.(2016·沈阳模拟)下列函数中,既是奇函数,又在区间(-1,1)上单调递减的函数是( ) A.f (x )=sin x B.f (x )=2cos x +1 C.f (x )=2x-1D.f (x )=ln 1-x1+x解析 由函数f (x )为奇函数排除B 、C ,又f (x )=sin x 在(-1,1)上单调递增,排除A ,故选D. 答案 D2.(2015·全国Ⅱ卷)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C. 答案 C3.(2016·浙江卷)函数y =sin x 2的图象是( )解析 ∵y =sin x 2为偶函数,其图象关于y 轴对称,排除A 、C.又当x 2=π2,即x =±π2时,y max =1,排除B ,故选D. 答案 D4.设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 解析 由f (x )=ln(1+|x |)-11+x 2,知f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x >0时,f (x )=ln(1+x )-11+x 2,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,平方得3x 2-4x +1<0,解得13<x <1,故选A.答案 A5.(2015·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt△POB 中,|PB |=|OB |tan∠POB =tan x ,在Rt△PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tanx ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由以上得f ⎝ ⎛⎭⎪⎫π4=4+tan2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.答案 B 二、填空题6.(2016·成都二诊)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 解析 由题意f (x )的图象如图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 答案 (1,2]7.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.解析 根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14. 所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14. 答案 -148.已知函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________. 解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1,作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎢⎡⎭⎪⎫14,13.答案 ⎣⎢⎡⎭⎪⎫14,13 三、解答题9.已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点.当m ≠0时,函数f (x )=mx 2-2x +1的图象是抛物线,且与y 轴的交点为(0,1),由f (x )有且仅有一个正实数的零点,则得:①⎩⎪⎨⎪⎧x =1m >0,Δ=0或②x =1m<0,解①,得m =1:解②,得m <0.综上所述,m 的取值范围是(-∞,0]∪{1}. 10.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x=0,得x =1.当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1,无极大值. (2)k (x )=f (x )-h (x )=x -2ln x -a (x >0),所以k ′(x )=1-2x,令k ′(x )>0,得x >2,所以k (x )在[1,2)上单调递减,在(2,3]上单调递增,所以当x =2时,函数k (x )取得最小值,k (2)=2-2ln 2-a , 因为函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点. 即有k (x )在[1,2)和(2,3]内各有一个零点,所以⎩⎪⎨⎪⎧k (1)≥0,k (2)<0,k (3)≥0,即有⎩⎪⎨⎪⎧1-a ≥0,2-2ln 2-a <0,3-2ln 3-a ≥0,解得2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3]. 11.已知函数f (x )=ex -m-x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围;(2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. 解 (1)f ′(x )=ex -m-1,令f ′(x )=0,得x =m .故当x ∈(-∞,m )时,e x -m<1,f ′(x )<0,f (x )单调递减;当x ∈(m ,+∞)时,ex -m>1,f ′(x )>0,f (x )单调递增.∴当x =m 时,f (m )为极小值,也是最小值.令f(m)=1-m≥0,得m≤1,即若对任意x∈R有f(x)≥0成立,则m的取值范围是(-∞,1].(2)由(1)知f(x)在[0,2m]上至多有两个零点,当m>1时,f(m)=1-m<0.∵f(0)=e-m>0,f(0)f(m)<0,∴f(x)在(0,m)上有一个零点.∵f(2m)=e m-2m,令g(m)=e m-2m,∵当m>1时,g′(m)=e m-2>0,∴g(m)在(1,+∞)上单调递增,∴g(m)>g(1)=e-2>0,即f(2m)>0.∴f(m)·f(2m)<0,∴f(x)在(m,2m)上有一个零点.∴故f(x)在[0,2m]上有两个零点.第2讲不等式问题高考定位 1.利用不等式性质比较大小,不等式的求解,利用基本不等式求最值及线性规划问题是高考的热点,主要以选择题、填空题为主;2.但在解答题中,特别是在解析几何中求最值、范围问题或在解决导数问题时常利用不等式进行求解,难度较大.真题感悟1.(2016·全国Ⅰ卷)若a>b>0,0<c<1,则( )A.log a c<log b cB.log c a<log c bC.a c<b cD.c a>c b解析取a=4,b=2,c=12,逐一验证可得B正确.答案 B2.(2015·湖南卷)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 由1a +2b =ab ,知a >0,b >0,由于1a +2b ≥22ab,当且仅当b =2a 时取等号.∴ab≥22ab,∴ab ≥2 2.故选C.答案 C3.(2015·陕西卷)设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.q =r >p C.p =r <qD.p =r >q解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数, 故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln(ab )12=f (ab )=p . 故p =r <q .选C. 答案 C4.(2016·全国Ⅱ卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到最小值为-5. 答案 -5考 点 整 合1.简单分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);(2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.2.(1)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论. (2)四个常用结论①ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0.②ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.③a >f (x )恒成立⇔a >f (x )max . ④a <f (x )恒成立⇔a <f (x )min . 3.利用基本不等式求最值已知x ,y ∈R +,则(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24⎝⎛⎭⎪⎫xy ≤⎝ ⎛⎭⎪⎫x +y 22=S 24;(2)若xy =P (积为定值),则当x =y 时,和x +y 取得最小值2P (x +y ≥2xy =2P ).4.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值. 5.不等式的证明不等式的证明要注意和不等式的性质结合起来,常用的方法有:比较法、作差法、作商法(要注意讨论分母)、分析法、综合法、反证法,还要结合放缩和换元的技巧.热点一 利用基本不等式求最值 [微题型1] 基本不等式的简单应用【例1-1】 (1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x+2y的最小值是( )A.53B.83C.8D.24(2)已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.解析 (1)∵a ∥b ,∴3(y -1)+2x =0, 即2x +3y =3.∵x >0,y >0, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ·13(2x +3y ) =13⎝⎛⎭⎪⎫6+6+9y x +4x y ≥13(12+2×6)=8.当且仅当3y =2x 时取等号.(2)设正项等比数列{a n }的公比为q ,则q >0, ∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,∴q 2-q -2=0,解得q =2或q =-1(舍去). ∴a m ·a n =a 1·2m -1·a 1·2n -1=4a 1,平方得2m +n -2=16=24,∴m +n =6,∴1m +4n =16⎝ ⎛⎭⎪⎫1m +4n (m +n )=16⎝⎛⎭⎪⎫5+n m +4m n ≥16(5+4)=32, 当且仅当n m=4mn,即n =2m ,亦即m =2,n =4时取等号. 答案 (1)C (2)32探究提高 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. [微题型2] 带有约束条件的基本不等式问题【例1-2】 (1)已知两个正数x ,y 满足x +4y +5=xy ,则xy 取最小值时,x ,y 的值分别为( ) A.5,5B.10,52C.10,5D.10,10(2)(2016·郑州模拟)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析 (1)∵x >0,y >0,∴x +4y +5=xy ≥24xy +5, 即xy -4xy -5≥0,可求xy ≥25. 当且仅当x =4y 时取等号,即x =10,y =52.(2)∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,即(2x +y )2-32·2xy =1,∴(2x +y )2-32·⎝ ⎛⎭⎪⎫2x +y 22≤1,解之得(2x +y )2≤85,即2x +y ≤2105.等号当且仅当2x =y >0,即x =1010,y =105时成立. 答案 (1)B (2)2105探究提高 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,或对约束条件中的一部分利用基本不等式,构造不等式进行求解.【训练1】 (1)(2016·广州模拟)若正实数x ,y 满足x +y +1=xy ,则x +2y 的最小值是( ) A.3B.5C.7D.8(2)(2015·山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y+(2y )⊗x 的最小值为________. 解析 (1)由x +y +1=xy ,得y =x +1x -1,又y >0,x >0,∴x >1. ∴x +2y =x +2×x +1x -1=x +2×⎝ ⎛⎭⎪⎫1+2x -1=x +2+4x -1=3+(x -1)+4x -1≥3+4=7, 当且仅当x =3时取“=”.(2)由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 答案 (1)C (2) 2热点二 含参不等式恒成立问题 [微题型1] 分离参数法解决恒成立问题【例2-1】 (1)关于x 的不等式x +4x-1-a 2+2a >0对x ∈(0,+∞)恒成立,则实数a 的取值范围为________.(2)已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.解析 (1)设f (x )=x +4x ,因为x >0,所以f (x )=x +4x≥2x ·4x=4,当且仅当x =2时取等号.又关于x 的不等式x +4x-1-a 2+2a >0对x ∈(0,+∞)恒成立,所以a 2-2a +1<4,解得-1<a <3,所以实数a 的取值范围为(-1,3).(2)要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),由于x >0,y >0,即a ≤(x +y )+1x +y恒成立. 由x +y +3=xy ,得x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22,即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y =t +1t .设f (t )=t +1t ,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,376.答案 (1)(-1,3) (2)⎝⎛⎦⎥⎤-∞,376 探究提高 一是转化法,即通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对∀x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min );二是求最值法,即求函数g (x )在区间D 上的最大值(或最小值)问题. [微题型2] 函数法解决恒成立问题【例2-2】 (1)已知f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,f (x )≥a 恒成立,则a 的取值范围为________.(2)已知二次函数f (x )=ax 2+x +1对x ∈[0,2]恒有f (x )>0.则实数a 的取值范围为________.解析 (1)法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a ,①当a ∈(-∞,-1)时,结合图象知,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-2≤a ≤1.∴-1≤a ≤1. 综上所述,所求a 的取值范围为[-3,1].法二 设g (x )=f (x )-a ,则g (x )=x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0,解得-3≤a ≤1.(2)法一 函数法.若a >0,则对称轴x =-12a<0,故f (x )在[0,2]上为增函数,且f (0)=1, 因此在x ∈[0,2]上恒有f (x )>0成立. 若a <0,则应有f (2)>0,即4a +3>0, ∴a >-34.∴-34<a <0.综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-34,0∪(0,+∞).法二 分离参数法.当x =0时,f (x )=1>0成立.当x ≠0时,ax 2+x +1>0变为a >-1x 2-1x,令g (x )=-1x 2-1x ⎝ ⎛⎭⎪⎫1x ≥12.∴当1x ≥12时,g (x )∈⎝ ⎛⎦⎥⎤-∞,-34. ∵a >-1x 2-1x ,∴a >-34.又∵a ≠0,∴a 的取值范围是⎝ ⎛⎭⎪⎫-34,0∪(0,+∞).答案 (1)[-3,1] (2)⎝ ⎛⎭⎪⎫-34,0∪(0,+∞) 探究提高 参数不易分离的恒成立问题,特别是与二次函数有关的恒成立问题的求解,常用的方法是借助函数图象根的分布,转化为求函数在区间上的最值或值域问题.【训练2】 若不等式x 2-ax +1≥0对于一切a ∈[-2,2]恒成立,则x 的取值范围是________. 解析 因为a ∈[-2,2],可把原式看作关于a 的一次函数, 即g (a )=-xa +x 2+1≥0,由题意可知⎩⎪⎨⎪⎧g (-2)=x 2+2x +1≥0,g (2)=x 2-2x +1≥0,解之得x ∈R . 答案 R热点三 简单的线性规划问题[微题型1] 已知线性约束条件,求目标函数最值【例3-1】 (2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.解析 可行域为一个三角形ABC 及其内部,其中A (1,0),B (-1,-1),C (1,3),直线z =2x +3y -5过点B 时取最小值-10. 答案 -10探究提高 线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.[微题型2] 线性规划中的含参问题【例3-2】 (1)(2016·成都诊断)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0.若z =2x -y 的最大值为2,则实数m 等于( ) A.-2B.-1C.1D.2(2)(2015·山东卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =( ) A.3 B.2 C.-2D.-3解析 (1)由图形知A ⎝ ⎛⎭⎪⎫-23,23,B ⎝ ⎛⎭⎪⎫22m -1,2m 2m -1,O (0,0).只有在B点处取最大值2,∴2=42m -1-2m2m -1.∴m =1.(2)不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1). 由z =ax +y ,得y =-ax +z .∴当a =-2或-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D ;当a =2或3时,z =ax +y 在A (2,0)处取得最大值,∴2a =4,∴a =2,排除A ,故选B.答案 (1)C (2)B探究提高 对于线性规划中的参数问题,需注意:(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.【训练3】 (1)(2016·江苏卷)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥02x +y -2≥0,3x -y -3≤0则x 2+y 2的取值范围是________.(2)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,y ≤-x +2,x ≥a ,且目标函数z =2x +y 的最小值为1,则实数a 的值是( )A.34B.12C.13D.14解析 (1)已知不等式组所表示的平面区域如图中阴影部分所示,则(x ,y )为阴影部分内的动点,x 2+y 2表示原点到可行域内的点的距离的平方.解方程组⎩⎪⎨⎪⎧3x -y -3=0,x -2y +4=0,得A (2,3).由图可知(x 2+y 2)min =⎝ ⎛⎭⎪⎫|-2|22+122=45,(x 2+y 2)max =|OA |2=22+32=13.(2)依题意,不等式组所表示的可行域如图所示(阴影部分),观察图象可知,当目标函数z =2x +y 过点B (a ,a )时,z min =2a +a =3a ;因为目标函数z =2x +y 的最小值为1,所以3a =1,解得a =13,故选C.答案 (1)⎣⎢⎡⎦⎥⎤45,13 (2)C1.多次使用基本不等式的注意事项当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.4.解答不等式与导数、数列的综合问题时,不等式作为一种工具常起到关键的作用,往往涉及到不等式的证明方法(如比较法、分析法、综合法、放缩法、换元法等).在求解过程中,要以数学思想方法为思维依据,并结合导数、数列的相关知识解题,在复习中通过解此类问题,体会每道题中所蕴含的思想方法及规律,逐步提高自己的逻辑推理能力.一、选择题1.(2016·全国Ⅲ卷)已知a =243,b =323,c =2513,则( ) A.b <a <c B.a <b <c C.b <c <aD.c <a <b解析 a =243=316,b =323=39,c =2513=325,所以b <a <c . 答案 A2.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0D.(b -1)(b -a )>0解析 由a ,b >0且a ≠1,b ≠1,及log a b >1=log a a 可得: 当a >1时,b >a >1,当0<a <1时,0<b <a <1, 代入验证只有D 满足题意. 答案 D3.(2016·太原模拟)若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值是( )A.3B.4C.7D.12解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n ∈R +,且m 3+n4=1,所以m 3·n4≤(m 3+n42)2⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14,即mn ≤3,所以mn 的最大值为3.答案 A4.已知当x <0时,2x 2-mx +1>0恒成立,则m 的取值范围为( ) A.[22,+∞) B.(-∞,22] C.(-22,+∞)D.(-∞,-22)解析 由2x 2-mx +1>0,得mx <2x 2+1, 因为x <0,所以m >2x 2+1x =2x +1x.而2x +1x =-⎣⎢⎡⎦⎥⎤(-2x )+1(-x )≤-2(-2x )×1(-x )=-2 2.当且仅当-2x =-1x ,即x =-22时取等号,所以m >-2 2. 答案 C5.(2016·唐山模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( ) A.[0,1] B.[-1,0] C.[-1,1]D.[-1,0]解析 f (-a )+f (a )≤2f (1)⇔⎩⎪⎨⎪⎧a ≥0,(-a )2-2×(-a )+a 2+2a ≤2×3或 ⎩⎪⎨⎪⎧a <0,(-a )2+2×(-a )+a 2-2a ≤2×3 即⎩⎪⎨⎪⎧a ≥0,a 2+2a -3≤0或⎩⎪⎨⎪⎧a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0.故-1≤a ≤1. 答案 C 二、填空题6.设目标函数z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k .若z 的最大值为12,则z 的最小值为________.解析 作出不等式组所表示的可行域如图所示,平移直线x +y =0,显然当直线过点A (k ,k )时,目标函数z =x +y 取得最大值,且最大值为k +k =12,则k =6,直线过点B 时目标函数z =x +y 取得最小值,点B 为直线x +2y =0与y =6的交点,即B (-12,6),所以z min =-12+6=-6. 答案 -67.(2016·合肥二模)当a >0且a ≠1时,函数f (x )=log a (x -1)+1的图象恒过点A ,若点A 在直线mx -y +n =0上,则4m +2n的最小值为________.解析 函数f (x )的图象恒过点A (2,1),∴2m -1+n =0,即2m +n =1, ∴4m+2n≥24m·2n=222m +n=22,当且仅当2m =n =12时等号成立.答案 2 28.(2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N*目标函数z =2 100x +900y .作出可行域为图中阴影部分(包括边界)内的参数点,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元). 答案 216 000 三、解答题9.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m。
新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件
的值
2
sin α
1
D.
2
C. 2
答案:D
α
解析:由tan
α
2
cos2 2
α
1+cos α 1+2 cos 2 −1
1
1
=2,则
=
α
α =
α
α=
α= .故选D.
2
sin α
2
2 sin cos
sin cos
tan
2
2
2
2
2
(2)[2023·安徽宣城二模]已知 3sin α-sin
=(
)
7
9
7
4
)
1
B.
2
D.-
3
2
答案:D
解析:由已知可得,sin
1−cos2α 3
= .
2
4
所以sin2α=
3π
(2α+ )=cos
2
(2α+π)=-cos
3
2
1
2α= ,所以cos
2
又角α在第四象限内,所以sin α=- sin2 α=- .故选D.
1
2α=- ,
2
2. (1)[2023·安徽安庆二模]已知第二象限角α满足sin
2
即sin2α+2sinαcos α+cos2α= ,所以2sinαcos
3
因为0<α<π,所以cos α<0<sin α,所以sin α-cos α>0.
1
4
2 3
.
3
因为(sin α-cos α)2=sin2α-2sinαcos α+cos2α=1+ = ,所以sinα-cos α=
高考数学二轮专题复习与策略第1部分专题2数列突破点4等差数列、等比数列教师用书理
专题二 数 列建知识网络 明内在联系[高考点拨] 数列专题是高考的必考专题之一,主要考查等差、等比数列的基本量运算及数列求和的能力,该部分即可单独命题,又可与其他专题综合命题,考查方式灵活多样,结合近几年高考命题研究,为此本专题我们按照“等差、等比数列”和“数列求和”两条主线展开分析和预测.突破点4 等差数列、等比数列(对应学生用书第167页)提炼1等差数列、等比数列的运算(1)通项公式等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1.(2)求和公式 等差数列:S n =na1+an 2=na 1+nn -12d ; 等比数列:S n =a11-qn 1-q =a1-anq1-q(q ≠1).(3)性质 若m +n =p +q ,在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q .提炼2等差数列、等比数列的判定与证明数列{a n }(1)证明数列{a n }是等差数列的两种基本方法 ①利用定义,证明a n +1-a n (n ∈N *)为同一常数; ②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2). (2)证明{a n }是等比数列的两种基本方法 ①利用定义,证明an +1an (n ∈N *)为同一常数;②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).提炼3数列中项的最值的求法(1)n 方法(多利用函数的单调性)进行求解,但要注意自变量的取值必须是正整数的限制.(2)利用数列的单调性求解,利用不等式a n +1≥a n (或a n +1≤a n )求解出n 的取值范围,从而确定数列单调性的变化,进而确定相应的最值.(3)转化为关于n 的不等式组求解,若求数列{a n }的最大项,则可解不等式组⎩⎪⎨⎪⎧an≥an-1,an≥an+1;若求数列{a n }的最小项,则可解不等式组⎩⎪⎨⎪⎧an≤an-1,an≤an+1,求出n 的取值范围之后,再确定取得最值的项.回访1 等差数列基本量的运算1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97C [法一:∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a1+4d =3,a1+9d =8,∴⎩⎪⎨⎪⎧a1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C.]2.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11A [法一:∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,∴a 3=1, ∴S 5=5a1+a52=5a 3=5,故选A. 法二:∵a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3, ∴a 1+2d =1,∴S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.]回访2 等比数列基本量的运算3.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84B [∵a 1=3,a 1+a 3+a 5=21,∴3+3q 2+3q 4=21, ∴1+q 2+q 4=7,解得q 2=2或q 2=-3(舍去). ∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.故选B.]4.(2016·全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.64 [设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12=.记t =-n22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t为增函数,从而a 1a 2…a n 的最大值为26=64.](对应学生用书第167页)热点题型1 等差、等比数列的基本运算 题型分析:以等差比数列为载体,考查基本量的求解,体现方程思想的应用是近几年高考命题的一个热点,题型以客观题为主,难度较小.(1)已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16(2)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12D .-12(1)B (2)D [(1)设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,所以公比q =a2+a4a1+a3=3,首项a 1=301+q2=3,所以a n =3n ,b n =1+log 33n=1+n ,则数列{b n }是等差数列,前15项的和为15×2+162=135,故选B.(2)由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列, 所以S 2=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12,故选D.]在等差(比)数列问题中最基本的量是首项a 1和公差d (公比q ),在解题时往往根据已知条件建立关于这两个量的方程组,从而求出这两个量,那么其他问题也就会迎刃而解.这就是解决等差、等比数列问题的基本量的方法,这其中蕴含着方程思想的运用.提醒:应用等比数列前n 项和公式时,务必注意公比q 的取值范围.[变式训练1] (1)已知在数列{a n }中,a 1=1,a n +1=a n +3,S n 为{a n }的前n 项和,若S n =51,则n =__________.(2)(2016·胶州模拟)等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则数列{a n }的公比为________.(1)6 (2)13 [(1)由a 1=1,a n +1=a n +3,得a n +1-a n =3,所以数列{a n }是首项为1,公差为3的等差数列.由S n =n +nn -12×3=51,即(3n +17)(n -6)=0, 解得n =6或n =-173(舍).(2)由题意知S 1+3S 3=4S 2,即a 1+3(a 1+a 2+a 3)=4(a 1+a 2),即3a 3=a 2,所以a3a2=13,即公比q =13.] 热点题型2 等差、等比数列的基本性质题型分析:该热点常与数列中基本量的运算综合考查,熟知等差比数列的基本性质,可以大大提高解题效率.(1)(2016·南昌一模)若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )【导学号:67722020】A.32B.94 C .1D .2(2)(2015·东北三校联考)设等差数列{a n }的前n 项和为S n ,且满足S 15>0,S 16<0,则S1a1,S2a2,S3a3,…,S15a15中最大的项为( ) A.S6a6 B.S7a7 C.S8a8D.S9a9(1)D (2)C [(1)由题意得S 4=a11-q41-q =9,所以1-q41-q =9a1.由a 1·a 1q ·a 1q 2·a 1q 3=(a 21q 3)2=814得a 21q 3=92.由等比数列的性质知该数列前4项倒数的和为1a1⎝ ⎛⎭⎪⎫1-1q41-1q =q4-1a1q3q -1=1a1q3·9a1=9a21q3=2,故选D. (2)由S 15=15a1+a152=15×2a82=15a 8>0,S 16=16a1+a162=16×a8+a92<0,可得a 8>0,a 9<0,d <0,故S n 最大为S 8.又d <0,所以{a n }单调递减,因为前8项中S n 递增,所以S n 最大且a n 取最小正值时Sn an 有最大值,即S8a8最大,故选C.]1.若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },⎩⎨⎧⎭⎬⎫Sn n 仍为等差数列,其中m ,k 为常数.2.若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },⎩⎨⎧⎭⎬⎫1an 仍为等比数列.3.公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a3-a2a2-a1=a2-a1qa2-a1=q .4.(1)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.(2)等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d .5.若A 2n -1,B 2n -1分别为等差数列{a n },{b n }的前2n -1项的和,则an bn =A2n -1B2n -1.[变式训练2] (1)(2016·沈阳模拟)已知各项不为0的等差数列{a n }满足2a 2-a 27+2a 12=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 11等于( )A .16B .8C .4D .2(2)在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=( )A .1B .2C .3D .2或4(1)A (2)C [(1)∵{a n }是等差数列,∴a 2+a 12=2a 7, ∴2a 2-a 27+2a 12=4a 7-a 27=0. 又a 7≠0,∴a 7=4.又{b n }是等比数列,∴b 3b 11=b 27=a 27=16.(2)∵{a n }为等比数列,∴a 5+a 7是a 1+a 3与a 9+a 11的等比中项,∴(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=a5+a72a1+a3=428=2.同理a 9+a 11是a 5+a 7与a 13+a 15的等比中项,∴(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=a9+a112a5+a7=224=1.∴a 9+a 11+a 13+a 15=2+1=3.] 热点题型3 等差、等比数列的证明题型分析:该热点常以数列的递推关系为载体,考查学生的推理论证能力.(2016·全国丙卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.[解] (1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.1分由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .2分由a 1≠0,λ≠0得a n ≠0,所以an +1an =λλ-1.3分因此{a n }是首项为11-λ,公比为λλ-1的等比数列,4分于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.6分(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .8分由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.10分 解得λ=-1.12分判断或证明数列是否为等差或等比数列,一般是依据等差数列、等比数列的定义,或利用等差中项、等比中项进行判断.提醒:利用a 2n =a n +1·a n -1(n ≥2)来证明数列{a n }为等比数列时,要注意数列中的各项均不为0.[变式训练3] (2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[解] (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1,2分由于a n +1≠0,所以a n +2-a n =λ.4分 (2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1.5分 由(1)知,a 3=λ+1.6分 令2a 2=a 1+a 3,解得λ=4.7分故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3.9分 {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.11分 所以a n =2n -1,a n +1-a n =2,因此存在λ=4,使得数列{a n }为等差数列.12分专题限时集训(四) 等差数列、等比数列[建议A 、B 组各用时:45分钟][A 组 高考达标]一、选择题1.(2016·青岛模拟)在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±2A [a 2a 3a 4=a 3=8,所以a 3=2,所以a 7=a 3q 4=8, 从而q 2=2,所以a 1=a3q2=1,故选A.]2.(2016·福州模拟)已知数列{a n }是等差数列,且a 7-2a 4=6,a 3=2,则公差d =( )A .2 2B .4C .8D .16B [法一:由题意得a 3=2,a 7-2a 4=a 3+4d -2(a 3+d )=6,解得d =4,故选B. 法二:在公差为d 的等差数列{a n }中,a m =a n +(m -n )d (m ,n ∈N *).由题意得⎩⎪⎨⎪⎧a7-2a4=a1+6d -2a1+3d =6,a3=a1+2d =2,解得⎩⎪⎨⎪⎧a1=-6,d =4.]3.已知等比数列{a n }的公比为q ,其前n 项和为S n ,若S 3,S 9,S 6成等差数列,则q 3等于( ) 【导学号:67722021】A .-12B .1C .-12或1D .-1或12A [若q =1,则3a 1+6a 1=2×9a 1, 得a 1=0,矛盾,故q ≠1.所以a11-q31-q +a11-q61-q=2a11-q91-q,解得q 3=-12或1(舍),故选A.]4.已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =bn +1bn =3,n ∈N *.若数列{c n }满足c n=ba n ,则c 2 016=( )A .92 015B .272 015C .92 016D .272 016D [由已知条件知{a n }是首项为3,公差为3的等差数列.数列{b n }是首项为3,公比为3的等比数列,∴a n =3n ,b n =3n.又c n =ba n =33n,∴c 2 016=33×2 016=272 016,故选D.]5.设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若Sn Tn =n 2n +1(n ∈N *),则a5b6=( )A.513B.919C.1123D.923D [根据等差数列的前n 项和公式及Sn Tn =n 2n +1(n ∈N *),可设S n =kn 2,T n =kn (2n +1),又当n ≥2时,a n =S n -S n -1=k (2n -1),b n =T n -T n -1=k (4n -1),所以a5b6=923,故选D.]二、填空题6.(2016·长沙模拟)设等差数列{a n }的前n 项和为S n ,若S 3=2a 3,S 5=15,则a 2 016=__________.2 016 [在等差数列{a n }中,由S 3=2a 3知,3a 2=2a 3,而S 5=15,则a 3=3,于是a 2=2,从而其公差为1,首项为1,因此a n =n ,故a 2 016=2 016.]7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________.20 [由等差数列的性质可得a 3=35,a 4=33,故d =-2,a n =35+(n -3)×(-2)=41-2n ,易知数列前20项大于0,从第21项起为负项,故使得S n 达到最大值的n 是20.]8. 设等比数列{a n }中,S n 是前n 项和,若27a 3-a 6=0,则S6S3=__________.28 [由题意可知,公比q 3=a6a3=27,∴S6S3=1-q61-q3=1+q 3=1+27=28.] 三、解答题9.设数列{a n }的前n 项和为S n ,满足(1-q )S n +qa n =1,且q (q -1)≠0. (1)求{a n }的通项公式;(2)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列. [解] (1)当n =1时,由(1-q )S 1+qa 1=1,得a 1=1.1分当n ≥2时,由(1-q )S n +qa n =1,得(1-q )S n -1+qa n -1=1,两式相减得a n =qa n -1.5分 又q (q -1)≠0,所以{a n }是以1为首项,q 为公比的等比数列,故a n =q n -1.6分(2)证明:由(1)可知S n =1-anq1-q ,7分又S 3+S 6=2S 9,得1-a3q 1-q +1-a6q 1-q=21-a9q1-q,9分化简得a 3+a 6=2a 9,两边同除以q 得a 2+a 5=2a 8.11分 故a 2,a 8,a 5成等差数列.12分10.(2016·广州五校联考)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. [解] (1)由题知⎩⎪⎨⎪⎧2a1+7d =4,5a1+5×42d =-5,解得⎩⎪⎨⎪⎧a1=-5,d =2,故a n =2n -7(n ∈N *).5分(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0.6分 易知S n =n 2-6n ,S 3=-9,S 5=-5,所以T 5=-(a 1+a 2+a 3)+a 4+a 5=-S 3+(S 5-S 3)=S 5-2S 3=13.8分 当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T n =⎩⎪⎨⎪⎧6n -n2,n≤3,n2-6n +18,n≥4.12分[B 组 名校冲刺]一、选择题1.(2016·河北五个一联盟)已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的斜率是( )【导学号:67722022】A .4B .3C .2D .1A [设等差数列{a n }的公差为d ,因为S 2=2a 1+d =10,S 5=52(a 1+a 5)=5(a 1+2d )=55,所以d =4,所以k PQ =an +2-an n +2-n =2d2=d =4,故选A.]2.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15A [根据已知得3a n =a n +1,∴数列{a n }是等比数列且其公比为3, ∴a 5+a 7+a 9=(a 2+a 4+a 6)×33=9×33=35, ∴log 13(a 5+a 7+a 9)=log 1335=-5.]3.(2016·东北三省四市联考)如图41所示的数阵中,每行、每列的三个数均成等差数列,如果数阵中所有数之和等于63,那么a 52=( )⎝ ⎛⎭⎪⎫a41 a42 a43a51 a52 a53a61 a62 a63 图41A .2B .8C .7D .4C [第一行三数成等差数列,由等差中项的性质有a 41+a 42+a 43=3a 42,同理第二行也有a 51+a 52+a 53=3a 52,第三行也有a 61+a 62+a 63=3a 62,又每列也成等差数列,所以对于第二列,有a 42+a 52+a 62=3a 52,所以a 41+a 42+a 43+a 51+a 52+a 53+a 61+a 62+a 63=3a 42+3a 52+3a 62=3×3a 52=63,所以a 52=7,故选C.]4.(2016·郑州二模)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n+1,则a 20的值是( ) A.215 B.225 C.235D.245D [由2na n =(n -1)a n -1+(n +1)a n +1得na n -(n -1)a n -1=(n +1)a n +1-na n ,又因为1×a 1=1,2×a 2-1×a 1=5,所以数列{na n }为首项为1,公差为5的等差数列,则20a 20=1+19×5,解得a 20=245,故选D.]二、填空题5.(2016·湖北七校2月联考)已知数列{a n }为等差数列,其前n 项和为S n ,若S k -2=-4(k >2),S k =0,S k +2=8,则k =__________.6 [由题意,得S k +2-S k =a k +1+a k +2=8,S k -S k -2=a k -1+a k =4(k >2),两式相减,得4d =4,即d =1.由S k =ka 1+k k -12=0,得a 1=-k -12,将a 1=-k -12代入a k -1+a k =4,得-(k -1)+(2k -3)=k -2=4,解得k =6.]6.(2016·河北第二次大联考)数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为__________. 【导学号:67722023】⎝⎛⎭⎪⎫0,63∪(1,+∞) [由题意得log k a n =2n +2,则a n =k2n +2,∴an +1an =k2n +1+2k2n +2=k 2,即数列{a n }是以k 4为首项,k 2为公比的等比数列,c n =a n lg a n =(2n +2)·k 2n +2lg k ,要使c n <c n +1对一切n ∈N *恒成立,即(n +1)lg k <(n +2)·k 2·lg k 对一切n ∈N *恒成立.当k >1时,lg k >0,n +1<(n +2)k 2对一切n ∈N *恒成立;当0<k <1时,lg k <0,n +1>(n +2)k 2对一切n ∈N *恒成立,只需k 2<⎝⎛⎭⎪⎫n +1n +2min .∵n +1n +2=1-1n +2单调递增,∴当n =1时,n +1n +2取得最小值,即⎝ ⎛⎭⎪⎫n +1n +2min =23,∴k 2<23,且0<k <1,∴0<k <63.综上,k ∈⎝ ⎛⎭⎪⎫0,63∪(1,+∞).]三、解答题7.已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . [解] (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n ,3分当n =1时,a 1=S 1=4=4×1,4分 所以数列{a n }的通项公式为a n =4n .6分(2)由点(b n ,a n )在函数y =log 2 x 的图象上得a n =log 2b n ,且a n =4n ,8分 所以b n =2a n =24n=16n,故数列{b n }是以16为首项,公比为16的等比数列,10分 所以T n =161-16n 1-16=16n +1-1615.12分8.已知等差数列{a n }的公差为2,其前n 项和为S n =pn 2+2n ,n ∈N *. (1)求p 的值及a n ;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若等比数列{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫Tn +16为等比数列.[解] (1)由已知可得a 1=S 1=p +2,S 2=4p +4,即a 1+a 2=4p +4,∴a 2=3p +2.2分 由已知得a 2-a 1=2p =2,∴p =1,∴a 1=3,∴a n =2n +1,n ∈N *.4分(2)证明:在等比数列{b n }中,b 3=a 1=3,b 4=a 2+4=9,则公比为b4b3=3.由b 3=b 1·32,得b 1=13,∴数列{b n }是以13为首项,以3为公比的等比数列,7分∴T n =131-3n 1-3=16·(3n-1),8分 即T n +16=16×3n =12×3n -1.9分又∵T 1+16=12,Tn +16Tn -1+16=3,n ≥2,n ∈N *,10分 ∴数列⎩⎨⎧⎭⎬⎫Tn +16是以12为首项,以3为公比的等比数列.12分。
高三数学二轮复习 专题整合突破三角恒等变换与解三角形 课件理
π 1 sin3=2.
π 2π π (2)∵α∈3,2,∴2α∈ 3 ,π ,
1 3 又由(1)知 sin2α=2,∴cos2α=- 2 2 2 1 sinα cosα sin α-cos α -2cos2α ∴ tanα- tanα = cosα - sinα = sinαcosα = sin2α = 3 -2 -2× 1 =2 3. 2
即
π 1 sin2α+3=-2.
π π 4π π ∵α∈3,2,∴2α+3∈π, 3 , π ∴cos2α+3 =-
3 2,
π π π π π ∴ sin2α = sin 2α+3-3 = sin 2α+3 cos 3 - cos 2α+3
解答此类问题的关键是结合已知条件, 求出相应角的三 角函数值,然后根据角的范围确定角的具体取值.
题型 2 典例 2
求值 [2016· 安徽合肥质检]已知
π π cos6+α· cos3-α
π π 1 =-4,α∈3,2 .
[重要结论] 1.判断三角形形状的常用结论 (1)sinA=sinB 且 A+B≠π⇒ 等腰三角形
π (2)sin2A=sin2B⇒ A=B 或 A+B=2
; ⇒等腰或直角
三角形; (3)cosA=cosB⇒ A=B ⇒ 等腰 三角形; (4)cos2A=cos2B⇒ A=B ⇒ 等腰 三角形; (5)sin(A-B)=0⇒ A=B ⇒ 等腰 三角形; (6)A=60° 且 b=c⇒ 等边 三角形;
5.降幂公式
1-cos2α 2 (1)sin2α=
;
1+cos2α 2 (2)cos2α= .
高三数学二轮复习 第1部分 专题1 突破点2 解三角形教
突破点2 解三角形(1)(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.(1)(2)从角出发,全部转化为角之间的关系,然后进行恒等变形,再判断.注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.设△ABC 的内角. (1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12bc sin A =12ca sinB .(3)S =12r (a +b +c )(r 为三角形ABC 内切圆的半径).回访1 正、余弦定理的应用1.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cosC =513,a =1,则b =________.2113 在△ABC 中,∵cos A =45,cos C =513, ∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又∵a sin A =b sin B ,∴b =a sin Bsin A =1×636535=2113.]2.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.(6-2,6+2) 如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BEsin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.] 回访2 三角形的面积问题3.(2014·全国卷Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.3 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为 (a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc ,∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A ,∴∠A =60°.∵△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得),∴S △ABC =12·bc ·sin A ≤12×4×32= 3.]题型分析:应用正、余弦定理实现边角的互化.(2016·四川高考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a+cos B b =sin C c.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tanB .解] (1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin C c中,有cos A k sin A +cos B k sin B =sin Ck sin C,2分 即sin A sin B =sin A cos B +cos A sin B =sin(A +B ).4分 在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .6分(2)由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,8分所以sin A =1-cos 2A =45.9分由(1)知sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35 sin B ,11分故tan B =sin B cos B=4.12分关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.变式训练1] (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,已知a =2,c =3,cos B =14,则sin Acos C=__________.【导学号:85952013】2155由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=22+32-2×2×3×14=10,所以b =10.由余弦定理,得cos C =a 2+b 2-c 22ab =4+10-92×2×10=108.因为B 是△ABC 的内角, 所以sin B =1-cos 2B =154. 由正弦定理a sin A =b sin B ,得sin A =64,所以sin A cos C =2155.](2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a cos B +b cos(B +C )=0. ①证明:△ABC 为等腰三角形;②若2(b 2+c 2-a 2)=bc ,求cos B +cos C 的值. 解] ①证明:∵a cos B +b cos (B +C )=0, ∴由正弦定理得sin A cos B +sin B cos(π-A )=0, 即sin A cos B -sin B cos A =0,3分 ∴sin(A -B )=0,∴A -B =k π,k ∈Z .4分 ∵A ,B 是△ABC 的两内角, ∴A -B =0,即A =B ,5分 ∴△ABC 是等腰三角形.6分 ②由2(b 2+c 2-a 2)=bc ,得b 2+c 2-a 22bc =14,7分由余弦定理得cos A =14,8分cos C =cos(π-2A )=-cos 2A =1-2cos 2A =78.10分∵A =B ,∴cos B =cos A =14,11分∴cos B +cos C =14+78=98.12分题型分析:之一,本质上还是考查利用正、余弦定理解三角形,难度中等.(2015·山东高考)设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.【解题指导】 (1)fx――→恒等变换化归思想f x =Aωx +φ+k ―→求f x 的单调区间(2)f ⎝ ⎛⎭⎪⎫A 2=0――→锐角三角形求A ――→余弦定理建立b ,c 的等量关系――→基本不等式求bc 的最大值――→正弦定理求△ABC 的面积解] (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12.2分 由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z .由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z .4分所以f (x )的单调递增区间是-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).6分(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,7分由题意知A 为锐角,所以cos A =32.8分由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,10分 即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34,所以△ABC 面积的最大值为2+34.12分1.在研究三角函数的图象与性质时常先将函数的解析式利用三角恒等变换转化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B ,y =A tan(ωx +φ)+B )的形式,进而利用函数y =sin x (或y =cos x ,y =tan x )的图象与性质解决问题.2.在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a 2=b 2+c 2-2bc cosA 中,有a 2+c 2和ac 两项,二者的关系a 2+c 2=(a +c )2-2ac 经常用到,有时还可利用基本不等式求最值.变式训练2] (名师押题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a +1a=4cosC ,b =1.(1)若sin C =217,求a ,c ; (2)若△ABC 是直角三角形,求△ABC 的面积. 解] (1)∵sin C =217,∴cos 2C =1-sin 2C =47,cos C =27.1分 ∵4cos C =a +1a,∴87=a +1a ,解得a =7或a =77.3分又1a +a =4cos C =4×a 2+b 2-c 22ab =4×a 2+1-c 22a, ∴a 2+1=2(a 2+1-c 2),即2c 2=a 2+1.5分∴当a =7时,c =2;当a =17时,c =27.6分(2)由(1)可知2c 2=a 2+1.又△ABC 为直角三角形,C 不可能为直角. ①若角A 为直角,则a 2=b 2+c 2=c 2+1, ∴2c 2-1=c 2+1, ∴c =2,a =3,8分∴S =12bc =12×1×2=22.9分②若角B 为直角,则b 2=a 2+c 2,a 2+c 2=1. ∴2c 2=a 2+1=(1-c 2)+1,∴c 2=23,a 2=13,即c =63,a =33,11分∴S =12ac =12×63×33=26.12分。
高三数学二轮复习第一部分重点保分题题型专题十二三角恒等变换与解三角形教师用书理
题型专题(十二) 三角恒等变换与解三角形[师说考点]1.两角与与差正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β.(2)cos(α±β)=cos αcos β∓sin αsin β.(3)tan(α±β)=tan α±tan β1∓tan αtan β. 2.二倍角正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)tan 2α=2tan α1-tan 2α. [典例] (1)(2021·全国乙卷)θ是第四象限角,且sin(θ+π4)=35,那么tan ⎝⎛⎭⎪⎪⎫θ-π4=________. [解析] 由题意知sin ⎝⎛⎭⎪⎪⎫θ+π4=35,θ是第四象限角, 所以cos ⎝ ⎛⎭⎪⎪⎫θ+π4>0, 所以cos ⎝ ⎛⎭⎪⎪⎫θ+π4= 1-sin 2⎝ ⎛⎭⎪⎪⎫θ+π4=45. tan ⎝ ⎛⎭⎪⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎪⎫θ+π4-π2=-sin ⎣⎢⎢⎡⎦⎥⎥⎤π2-⎝ ⎛⎭⎪⎪⎫θ+π4cos ⎣⎢⎢⎡⎦⎥⎥⎤π2-⎝ ⎛⎭⎪⎪⎫θ+π4 =-cos ⎝ ⎛⎭⎪⎪⎫θ+π4sin ⎝⎛⎭⎪⎪⎫θ+π4 =-45×53=-43. [答案] -43(2)(2021·河南六市联考)cos ⎝⎛⎭⎪⎪⎫α-π6+sin α=435,那么sin ⎝⎛⎭⎪⎪⎫α+7π6值是________. [解析] 由cos ⎝ ⎛⎭⎪⎪⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435, ∴3sin ⎝ ⎛⎭⎪⎪⎫α+π6=435,sin ⎝⎛⎭⎪⎪⎫α+π6=45, ∴sin ⎝ ⎛⎭⎪⎪⎫α+7π6=-sin ⎝⎛⎭⎪⎪⎫α+π6=-45. [答案] -45[类题通法]三角恒等变换“4大策略〞(1)常值代换:特别是“1”代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项分拆与角配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次;(4)弦、切互化:一般是切化弦.[演练冲关]1.(2021·贵阳模拟)α∈⎝ ⎛⎭⎪⎪⎫π2,π,sin α=513,那么tan ⎝ ⎛⎭⎪⎪⎫α+π4=( )A .-717 B.177 C.717 D .-177解析:选C 因为α∈⎝ ⎛⎭⎪⎪⎫π2,π,所以cos α=-1213,所以tan α=-512,所以tan ⎝ ⎛⎭⎪⎪⎫α+π4=tan α+tan π41-tan αtan π4=-512+11+512=717. 2.(2021·东北四市联考)sin ⎝ ⎛⎭⎪⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎪⎫π6+α,那么cos 2α=( )A .1B .-1 C.12D .0 解析:选D ∵sin ⎝ ⎛⎭⎪⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎪⎫π6+α,∴12cos α-32sin α=32cos α-12sin α,即⎝ ⎛⎭⎪⎪⎫12-32sin α=-(12-32)cos α,∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.[师说考点]1.正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C=2R (R 为△ABC 外接圆半径). 变形:a =2R sin A ,sin A =a 2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc. 3.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B . [典例] (1)(2021·全国甲卷)△ABC 内角A ,B ,C 对边分别为a ,b ,c ,假设cos A =45,cos C =513,a =1,那么b =________. [解析] 因为A ,C 为△ABC 内角,且cos A =45,cos C =513, 所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.[答案] 2113(2)(2021·全国乙卷)△ABC 内角A ,B ,C 对边分别为a ,b,c ,2cos C (a cos B +b cos A )=c .①求C ;②假设c =7,△ABC 面积为332,求△ABC 周长.[解] ①由及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,即2cos C sin(A +B )=sin C ,故2sin C cos C =sin C . 可得cos C =12,所以C =π3.②由得12ab sin C =332.又C =π3,所以ab =6.由及余弦定理得a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 周长为5+7.[类题通法]正、余弦定理适用条件(1)“两角与一边〞或“两边与其中一边对角〞应采用正弦定理.(2)“两边与这两边夹角〞或“三角形三边〞应采用余弦定理.[注意] 应用定理要注意“三统一〞,即“统一角、统一函数、统一构造〞.[演练冲关]1.(2021·郑州模拟)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,假设b 3cos B =asin A ,那么cos B =( ) A .-12 B.12 C .-32 D.32解析:选B 由正弦定理知sin B3cos B=sin A sin A =1,即tan B =3,所以B =π3,所以cos B =cos π3=12,应选B. 2.(2021·福建质检)在△ABC 中,B =π3,AB =2,D 为AB 中点,△BCD 面积为334,那么AC 等于( ) A .2 B.7 C.10 D.19解析:选B 因为S △BCD =12BD ·BC sin B =12×1×BC sin π3=334,所以BCAC 2=4+9-2×2×3cos π3=7,所以AC =7,应选B.3.(2021·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 对边,且a sin B =-b sin ⎝⎛⎭⎪⎪⎫A +π3. (1)求A ;(2)假设△ABC 面积S =34c 2,求sin C 值. 解:(1)∵a sin B =-b sin ⎝⎛⎭⎪⎪⎫A +π3, ∴由正弦定理得sin A =-sin ⎝ ⎛⎭⎪⎪⎫A +π3, 即sin A =-12sin A -32cos A ,化简得tan A =-33, ∵A ∈(0,π),∴A =5π6. (2)∵A =5π6,∴sin A =12, 由S =34c 2=12bc sin A =14bc ,得b =3c , ∴a 2=b 2+c 2-2bc cos A =7c 2,那么a =7c ,由正弦定理得sin C =c sin A a =714. [师说考点]解三角形实际问题常考类型及解题思路(1)实际问题经抽象概括后,量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求解.[典例] (2021·河南六市联考)如图,在一条海防戒备线上点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 距离分别为20千米与50千米,某时刻,B 收到发自静止目标P 一个声波信号,8秒后A ,C 同时接收到该声波信号,声波在水中传播速度是1.5千米/秒.(1)设A 到P 距离为x 千米,用x 表示B ,C 到P 距离,并求x 值;(2)求P 到海防戒备线AC 距离.[解] (1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12.在△PAB 中,AB =20,cos ∠PAB =PA 2+AB 2-PB 22PA ·AB=x 2+202-〔x -12〕22x ·20=3x +325x, 同理,在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x. ∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠PAD =2531,得sin ∠PAD =1-cos 2∠PAD =42131, ∴PD =PA sin ∠PAD =31×42131=421. 故静止目标P 到海防戒备线AC 距离为421千米.[类题通法]解三角形中实际问题4个步骤(1)分析题意,准确理解题意,分清与所求,尤其要理解题中有关名词、术语,如坡度、仰角、俯角、方位角等;(2)根据题意画出示意图,并将条件在图形中标出;(3)将所求解问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出结果是否具有实际意义,对结果进展取舍,得出正确答案.[演练冲关]1.(2021·武昌区调研)据气象部门预报,在距离某码头正西方向400 km 处热带风暴中心正以20 km/h 速度向东北方向移动,距风暴中心300 km 以内地区为危险区,那么该码头处于危险区内时间为( )A .9 hB .10 hC .11 hD .12 h解析:选B 记码头为点O ,热带风暴中心位置为点A ,t 小时后热带风暴到达B 点位置,在△OAB 中,OA =400,AB =20t ,∠OAB =45°,根据余弦定理得4002+400t 2-2×20t ×400×22≤3002,即t 2-202t +175≤0,解得102-5≤t ≤102+5,所以所求时间为102+5-102+5=10(h),应选B.2.(2021·湖北七市联考)如图,为了估测某塔高度,在同一水平面A ,B 两点处进展测量,在点A 处测得塔顶C 在西偏北20°方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°方向上,仰角为30°.假设A ,B 两点相距130 m ,那么塔高度CD =________m.解析:分析题意可知,设CD =h ,那么AD =h 3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝ ⎛⎭⎪⎪⎫-12,解得h =1039,故塔高度为1039 m.答案:1039解三角形与其他知识交汇解三角形问题一直是近几年高考重点,主要考察以斜三角形为背景求三角形根本量、面积或判断三角形形状,解三角形与平面向量、不等式求最值、三角函数性质、三角恒等变换交汇命题成为高考热点.[典例] (2021·山东高考)在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .2(tan A +tan B )=tan A cos B +tan B cos A. (1)证明:a +b =2c ;(2)求cos C 最小值.[解] (1)证明:由题意知2⎝ ⎛⎭⎪⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B , 化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B .因为A +B +C =π,所以sin A +sin B =2sin C , 由正弦定理得a +b =2c . (2)由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab=a 2+b2-⎝ ⎛⎭⎪⎪⎫a +b 222ab=38·⎝ ⎛⎭⎪⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立, 故cos C 最小值为12.[类题通法](1)此题是三角恒等变换、解三角形与根本不等式交汇问题. (2)解答此类问题一般思路是利用三角恒等变换对所给条件进展转化,再结合正余弦定理,转化到边关系,利用根本不等式求解.[演练冲关]1.在△ABC 中,,假设sin C ·+sin A ·+sin B ·=0,那么△ABC 形状为( )A .等边三角形B .钝角三角形C .直角三角形D .等腰直角三角形解析:选A 设角A ,B ,C 对边分别是a ,b ,c ,由,可知P 为BC 中点.结合题意及正弦定理可得c+a+b =0,故c (-)+a -b =(a -c ) +(c -b ) =0,而与为不共线向量,所以a -c =c -b =0,故a =b =c .应选A.2.(2021·河北五校联考)锐角△ABC 中内角A ,B ,C 对边分别为a ,b ,c ,a 2+b 2=6ab cos C ,且sin 2C =2sin A sin B .(1)求角C 值; (2)设函数f (x )=-cos ωx (ω>0),且f (x )图象上相邻两最高点间距离为π,求f (A )取值范围.解:(1)因为a 2+b 2=6ab cos C ,由余弦定理知a 2+b 2=c 2+2ab cos C ,所以cos C =c 24ab ,又sin 2C =2sin A sin B ,那么由正弦定理得c 2=2ab ,所以cos C =c 24ab =2ab 4ab =12,又因为C ∈(0,π),所以C =π3.(2)f (x )=-cos ωx =32sin ωx -32cos ωx =,由可得2πω=π,所以ω=2,那么f (A )=,因为C =π3,所以B =2π3-A ,因为0<A <π2,0<B <π2,所以π6<A <π2,所以0<2A -π3<2π3,所以f (A )取值范围是(0, 3 ].一、选择题1.(2021·武昌区调研)cos(π-α)=45,且α为第三象限角,那么tan 2α值等于( )A.34 B .-34 C.247 D .-247解析:选C 因为cos α=-45,且α为第三象限角,所以sin α=-35,tan α=34,tan 2α=2tan α1-tan 2α=321-916=247,应选C.2.(2021·全国甲卷)假设cos ⎝⎛⎭⎪⎪⎫π4-α=35,那么sin 2α=( ) A.725 B.15 C .-15 D .-725解析:选D 因为cos ⎝⎛⎭⎪⎪⎫π4-α=35, 所以sin 2α=cos ⎝ ⎛⎭⎪⎪⎫π2-2α=cos ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫π4-α =2cos 2⎝ ⎛⎭⎪⎪⎫π4-α-1=2×925-1=-725.3.(2021·河北模拟)θ∈⎝ ⎛⎭⎪⎪⎫0,π4,且sin θ-cos θ=-144,那么2cos 2θ-1cos ⎝ ⎛⎭⎪⎪⎫π4+θ等于( )A.23B.43C.34D.32解析:选D 由sin θ-cos θ=-144得sin ⎝ ⎛⎭⎪⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎪⎫0,π4,∴π4-θ∈⎝ ⎛⎭⎪⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎪⎫π4-θ=sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫π4-θsin ⎝ ⎛⎭⎪⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎪⎫π4-θ=32. 4.(2021·重庆模拟)在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且a 2+b 2-c 2=ab =3,那么△ABC 面积为( )A.34B.34C.32D.32解析:选B 依题意得cos C =a 2+b 2-c 22ab =12,C =60°,因此△ABC 面积等于12ab sin C =12×3×32=34,选B.5.(2021·山西太原模拟)在锐角△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,假设sin A =223,a =2,S △ABC =2,那么b 值为( )A. 3B.322C .2 2D .23解析:选A 在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3,①由余弦定理得a 2=b 2+c 2-2bc cos A , ∴(b +c )2=a2+2bc (1+cos A )=4+6×⎝⎛⎭⎪⎪⎫1+13=12, ∴b +c =23.②由①②得b =c =3,应选A.6.(2021·海口调研)如图,在△ABC 中,C =π3,BC =4,点D在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.假设DE =22,那么cos A 等于( )A.223B.24C.64D.63解析:选C 依题意得,BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中,BC sin ∠BDC =BD sin C ,4sin 2A=22sin A ×23=423sin A ,即42sin A cos A =423sin A ,由此解得cos A =64,选C.二、填空题7.(2021·北京高考)在△ABC 中,∠A =2π3,a =3c ,那么bc =________.解析:在△ABC 中,∠A =2π3,∴a 2=b 2+c 2-2bc cos 2π3,即a 2=b 2+c 2+bc .∵a =3c ,∴3c 2=b 2+c 2+bc ,∴b 2+bc -2c 2=0,∴(b +2c )(b -c )=0,∴b -c =0,∴b =c ,∴bc=1.答案:18.(2021·石家庄模拟)△ABC 中,AC =4,BC =27,∠BAC=60°,AD ⊥BC 于D ,那么BDCD值为________.解析:在△ABC 中,由余弦定理可得BC 2=AC 2+AB 2-2AC ·AB cos ∠BAC ,即28=16+AB 2-4AB ,解得AB =6,那么cos ∠ABC =28+36-162×27×6=27,BD =AB ·cos ∠ABC =6×27=127,CD =BC -BD =27-127=27,所以BDCD =6.答案:69.(2021·郑州模拟)△ABC 三个内角为A ,B ,C ,假设3cos A +sin A3sin A -cos A =tan ⎝ ⎛⎭⎪⎪⎫-7π12,那么tan A =________.解析:3cos A +sin A 3sin A -cos A =2sin ⎝ ⎛⎭⎪⎪⎫A +π32sin ⎝ ⎛⎭⎪⎪⎫A -π6=-sin ⎝ ⎛⎭⎪⎪⎫A +π3cos ⎝ ⎛⎭⎪⎪⎫A +π3=-tan ⎝ ⎛⎭⎪⎪⎫A +π3=tan ⎝ ⎛⎭⎪⎪⎫-A -π3=tan ⎝ ⎛⎭⎪⎪⎫-7π12,所以-A -π3=-7π12,所以A=7π12-π3=3π12=π4,所以tan A =tan π4=1. 答案:1 三、解答题10.(2021·合肥质检)在△ABC 中,三个内角A ,B ,C 所对边分别为a ,b ,c ,函数f (x )=sin(2x +B )+3cos(2x +B )为偶函数,b=f ⎝ ⎛⎭⎪⎪⎫π12.(1)求b ;(2)假设a =3,求△ABC 面积S .解:(1)f (x )=sin(2x +B )+3cos(2x +B )=2sin ,由f (x )为偶函数可知B +π3=π2+k π,k ∈Z ,所以B =π6+k π,k ∈Z .又0<B <π,故B =π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎪⎫2x +π2=2cos 2x ,b =f ⎝ ⎛⎭⎪⎪⎫π12= 3.(2)因为B =π6,b =3,a =3,由正弦定理可知sin A =a sin B b =32,所以A =π3或2π3.当A =π3时,C =π2,△ABC 面积S =332;当A =2π3时,C =π6,△ABC 面积S =334.11.(2021·山西四校联考)在△ABC 中,角A ,B ,C 所对边分别是a ,b ,c ,且cos A =13.(1)求cos2B +C2+cos 2A 值;(2)假设a =3,求△ABC 面积最大值. 解:(1)cos2B +C2+cos 2A =1+cos 〔B +C 〕2+2cos 2A -1=12-cos A 2+2cos 2A -1=12-12×13+2×⎝ ⎛⎭⎪⎪⎫132-1=-49. (2)由余弦定理可得,(3)2=b 2+c 2-2bc ·cos A =b 2+c 2-23bc ≥2bc -23bc =43bc ,∴bc ≤94,当且仅当b =c =32时,bc 有最大值94,又cos A =13,A ∈(0,π),∴sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎪⎫132=223,∴(S △ABC )max =12bc sin A =12×94×223=324.12.在锐角△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,2a cosB =2c -b .(1)假设cos(A +C )=-5314,求cos C 值;(2)假设b =5,=-5,求△ABC 面积;(3)假设O 是△ABC 外接圆圆心,且cos B sin C ·+cos Csin B ·=m,求m 值.解:(1)由2a cos B =2c -b ,得2sin A cos B =2sin C -sin B ,化简得cos A =12,那么A =60°.由cos(A +C )=-cos B =-5314,知cos B =5314,所以sin B =1114.所以cos C =cos(120°-B )=-12cos B +32sin B =3314.=12bc -b 2=-5, 又b =5,解得c =8,所以△ABC 面积为12bc sin A =10 3.(3)由cos B sin C ·+cos C sin B ·=m, 可得cos B sin C··+cos C sin B··=m2,(*)因为O 是△ABC 外接圆圆心, 又||=a2sin A,所以(*)可化为cos B sin C ·c 2+cos C sin B ·b 2=12m ·a2sin 2A,所以m =2(cos B sin C +sin B cos C )=2sin(B +C )=2sin A =3.。
高考数学二轮复习 第1部分 重点强化专题 专题1 三角函数 第2讲 解三角形问题教学案 理
第2讲 解三角形问题题型1 利用正、余弦定理解三角形(对应学生用书第5页)■核心知识储备………………………………………………………………………· 1.正弦定理及其变形在△ABC 中,a sin A =b sin B =csin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sinA ,sin A =a2R,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理及其变形在△ABC 中,a 2=b 2+c 2-2bc cos A ;变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.3.三角形面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .■典题试解寻法………………………………………………………………………·【典题1】 (考查解三角形应用举例)如图21,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.图21[思路分析] 由已知条件及三角形内角和定理可得∠ACB 的值―→在△ABC 中,利用正弦定理求得BC ―→在Rt△BCD 中利用锐角三角函数的定义求得CD 的值. [解析] 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin∠ACB =CBsin∠CAB ,得600s in 45°=CB sin 30°, 有CB =3002,在Rt△BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m. [答案] 100 6【典题2】 (考查应用正余弦定理解三角形)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【导学号:07804011】[解] (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9, 即(b +c )2-3bc =9. 由bc =8,得b +c =33. 故△ABC 的周长为3+33. [类题通法]1.关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.2.在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a 2=b 2+c 2-2bc cosA 中,有a 2+c 2和ac 两项,二者的关系a 2+c 2=a +c2-2ac 经常用到.3.三角形形状判断的两种思路: 一是化角为边;二是化边为角.注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.■对点即时训练………………………………………………………………………·1.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2c cos A ,c =2b cos A ,则△ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .等边三角形D .等腰直角三角形C [∵b =2c cos A ,c =2b cos A , ∴b =4b cos 2A ,即cos A =12,或cos A =-12(舍).∴b =c ,∴△ABC 为等边三角形.]2.如图22,在△ABC 中,AB =2,cos B =13,点D 在线段BC 上.图22(1)若∠ADC =34π,求AD 的长;(2)若BD =2DC ,△ACD 的面积为432,求sin∠BADsin∠CAD的值.【导学号:07804012】[解] (1)在三角形中,∵cos B =13,∴sin B =223.在△ABD 中,AB sin∠ADB =ADsin B,又AB =2,∠ADB =π4,sin B =223,∴AD =83.(2)∵BD =2DC ,∴S △ABD =2S △ADC ,S △ABC =3S △ADC , 又S △ADC =432,∴S △ABC =4 2.∵S △ABC =12AB ·BC sin∠ABC ,∴BC =6.∵S △ABD =12AB ·AD sin∠BAD ,S △ADC =12AC ·AD sin∠CAD ,S ABD =2S △ADC ,∴sin∠BAD sin∠CAD =2·ACAB,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos∠ABC , ∴AC =42,∴sin∠BAD sin∠CAD =2·ACAB=4 2.■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 2、T 3、T 4、T 5、T 6、T 9、T 10、T 11、T 13) 题型2 与三角形有关的最值、范围问题(答题模板)(对应学生用书第6页)与三角形有关的最值、范围问题一般涉及三角形的角度(或边长、面积、周长等)的最大、最小问题.(2015·全国Ⅰ卷T 16、2014·全国Ⅰ卷T 16、2013·全国Ⅱ卷T 17) ■典题试解寻法………………………………………………………………………·【典题】 (本小题满分12分)(2013·全国Ⅱ卷)△ABC 的内角A ,B ,C ①的对边分别为a ,b ,c ,已知a =b cos C +c sin B .②(1)求B ;(2)若b =2,③求△ABC 面积的最大值.④【导学号:07804013】[审题指导][规范解答] (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B . ① 又A =π-B +C ,⑤故sin A =sin(B +C )=sin B cos C +cos B sin C . ②由①②和C ∈(0,π)得sin B =cos B . 5分 又B ∈(0,π),所以B =π4.6分 (2)△ABC 的面积S =12ac sin B =24ac .7分 由已知及余弦定理得4=a 2+c 2-2ac cos π4.8分 又a 2+c 2≥2ac ,⑥故ac ≤42-2,当且仅当a =c 时,等号成立.10分因此△ABC 面积的最大值为2+1. 12分[阅卷者说]1.求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.注意题目中的隐含条件,如A +B +C =π,0<A 、B 、C <π,b -c <a <b +c ,三角形中大边对大角等.2.在利用含有a 2+b 2,a +b2,ab 的关系等式求最值时常借助均值不等式.■对点即时训练………………………………………………………………………(2017·石家庄一模)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin Csin A -sin B =a +ba -c. (1)求角B 的大小;(2)点D 满足BD →=2BC →,且AD =3,求2a +c 的最大值.[解] (1)sin C sin A -sin B =a +b a -c ,由正弦定理可得c a -b =a +ba -c ,∴c (a -c )=(a -b )(a +b ), 即a 2+c 2-b 2=ac . 又a 2+c 2-b 2=2ac cos B , ∴cos B =12,∵B ∈(0,π),∴B =π3.(2)法一:(利用基本不等式求最值)在△ABD 中,由余弦定理得c 2+(2a )2-2×2ac ×cos π3=32,∴(2a +c )2-9=3×2ac .∵2ac ≤⎝⎛⎭⎪⎫2a +c 22,∴(2a +c )2-9≤34(2a +c )2,即(2a +c )2≤36,2a +c ≤6,当且仅当2a =c ,即a =32,c =3时,2a +c 取得最大值,最大值为6.法二:(利用三角函数的性质求最值)在△ABD 中,由正弦定理知2a sin∠BAD =csin∠ADB =3sinπ3=23,∴2a =23sin∠BAD ,c =23sin∠ADB , ∴2a +c =23sin∠BAD +23sin∠ADB =23[sin∠BAD +sin∠ADB ]=23⎣⎢⎡⎦⎥⎤sin∠BAD +sin ⎝ ⎛⎭⎪⎫2π3-∠BAD =6⎝⎛⎭⎪⎫32sin∠BAD +12cos∠BAD=6sin ⎝⎛⎭⎪⎫∠BAD +π6. ∵∠BAD ∈⎝⎛⎭⎪⎫0,2π3,∴∠BAD +π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴当∠BAD +π6=π2,即∠BAD =π3时,2a +c 取得最大值,最大值为6.■题型强化集训………………………………………………………………………·(见专题限时集训T 7、T 8、T 12、T 14)三年真题| 验收复习效果 (对应学生用书第7页)1.(2016·全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( ) A .31010B .1010C .-1010D .-31010C [法一:设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a 22bc=59a 2+29a 2-a 22×53a ×23a =-1010.故选C. 法二:同方法一得c =23a . 由正弦定理得sin C =23sin A, 又B =π4,∴sin C =sin ⎝ ⎛⎭⎪⎫3π4-A =23sin A ,即22cos A +22sin A =23sin A ,∴tan A =-3,∴A 为钝角. 又∵1+tan 2A =1cos 2A ,∴cos 2A =110,∴cos A =-1010.故选C.] 2.(2016·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C =513,a =1,则b =________. 2113 [因为A ,C 为△ABC 的内角,且cos A =45,cos C =513, 所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又a =1,所以由正弦定理得b =a sin B sin A =sin B sin A =6365×53=2113.] 3.(2015·全国Ⅰ卷)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.(6-2,6+2) [如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE . 在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中, ∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BEsin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.]4.(2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinA +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【导学号:07804014】[解] (1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0, 解得c=-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 面积与△ACD 面积的比值为 12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为 3.。
创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题二 三角函数与平面向量教师用书 理
专题二 三角函数与平面向量教师用书 理第1讲 三角函数的图象与性质高考定位 高考对本内容的考查主要有:三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也有考查,经常与向量综合考查,构成低档题.真 题 感 悟1.(2013·江苏卷)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为________. 解析 利用函数y =A sin(ωx +φ)的周期公式求解.函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的最小正周期为T=2π2=π. 答案 π2.(2011·江苏卷)函数f (x )=A sin(ωx +φ),(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (0)=________.解析 因为由图象可知振幅A =2,T 4=7π12-π3=π4,所以周期T =π=2πω,解得ω=2,将⎝ ⎛⎭⎪⎫7π12,-2代入f (x )=2sin(2x +φ),解得一个符合的φ=π3,从而y =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (0)=62.答案623.(2014·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.解析 根据题意,将x =π3代入可得cos π3=sin ⎝ ⎛⎭⎪⎫2×π3+φ,即sin ⎝ ⎛⎭⎪⎫2π3+φ=12,∴2π3+φ=2k π+π6或23π+φ=2k π+56π(k ∈Z ).又∵φ∈[0,π),∴φ=π6.答案π64.(2015·浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析 f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解得:3π8+k π≤x ≤7π8+k π,k ∈Z ,∴单调递减区间是⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π,k ∈Z .答案 π ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z )考 点 整 合1.常用三种函数的易误性质(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的图象【例1】 (1)(2016·无锡高三期末)将函数f (x )=2sin 2x 的图象上每一点向右平移π6个单位,得函数y =g (x )的图象,则g (x )=________.(2)(2016·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))图象的一部分,则f (0)的值为________.解析 (1)将f (x )=2sin 2x 的图象向右平移π6个单位得到g (x )=2sin 2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3的图象.(2)由函数图象得A =3,2πω=2[3-(-1)]=8,解得ω=π4,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ,又因为(3,0)为函数f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ的一个下降零点,所以π4×3+φ=(2k +1)π(k ∈Z ), 解得φ=π4+2k π(k ∈Z ),又因为φ∈(0,π),所以φ=π4,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +π4,则f (0)=3sin π4=322.答案 (1)2sin ⎝⎛⎭⎪⎫2x -π3 (2)322 探究提高 (1)对于三角函数图象的平移变换问题,其平移变换规则是“左加、右减”,并且在变换过程中只变换其自变量x ,如果x 的系数不是1,则需把x 的系数提取后再确定平移的单位和方向.(2)已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练1】 (1)(2015·苏北四市模拟)函数y =A sin(ωx +φ)(ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为________.(2)(2015·苏、锡、常、镇调研)函数f (x )=A sin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π3的值为________.解析 (1)由图象知T2=6-(-2)=8,∴T =16,A =4.∴ω=2πT =2π16=π8.∴y =4sin ⎝ ⎛⎭⎪⎫π8x +φ,把点(6,0)代入得: π8×6+φ=0, 得φ=-3π4.∴y =4sin ⎝ ⎛⎭⎪⎫π8x -3π4,又∵|φ|<π2.∴y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4.(2)根据图象可知,A =2,3T 4=11π12-π6,所以周期T =π,由ω=2πT =2.又函数过点⎝⎛⎭⎪⎫π6,2,所以有sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,而0<φ<π,所以φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,因此f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫2π3+π6=1.答案 (1)y =-4sin ⎝⎛⎭⎪⎫π8x +π4 (2)1 热点二 三角函数的性质[微题型1] 三角函数的性质及其应用【例2-1】 (1)(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.(2)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. (3)(2016·苏北四市调研)将函数f (x )=sin(2x +φ)(0<φ<π)的图象上所有点向右平移π6个单位后得到的图象关于原点对称,则φ等于________. 解析 (1)由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx 得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4(k ∈Z ). ∵ω>0,∴x =k πω+π4ω(k ∈Z ).设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪⎪⎪2×⎝ ⎛⎭⎪⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝ ⎛⎭⎪⎫πω2+(22)2=12,∴ω=π2.(2)由f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,得T 2≥π2-π6,即T ≥2π3;因为f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,所以f (x )的一条对称轴为x =π2+2π32=7π12;又因为f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,所以f (x )的一个对称中心的横坐标为π2+π62=π3.所以14T =7π12-π3=π4,即T =π.(3)将函数f (x )=sin(2x +φ)的图象向右平移π6后得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=sin ⎝ ⎛⎭⎪⎫2x -π3+φ的图象,因为该函数是奇函数,且0<φ<π,所以φ=π3.答案 (1)π2 (2)π (3)π3探究提高 此类题属于三角函数性质的逆用,解题的关键是借助于三角函数的图象与性质列出含参数的不等式,再根据参数范围求解.或者,也可以取选项中的特殊值验证. [微题型2] 三角函数图象与性质的综合应用【例2-2】 (2016·苏、锡、常、镇调研)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域.解 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴53x -π6∈⎣⎢⎡⎦⎥⎤-π6,2π3,∴函数f (x )的值域为[-1-2,2-2].探究提高 求三角函数最值的两条思路:(1)将问题化为y =A sin(ωx +φ)+B 的形式,结合三角函数的性质或图象求解;(2)将问题化为关于sin x 或cos x 的二次函数的形式,借助二次函数的性质或图象求解.【训练2】 已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+sin 2x -cos 2x .(1)求函数f (x )的最小正周期及其图象的对称轴方程; (2)设函数g (x )=[f (x )]2+f (x ),求g (x )的值域. 解 (1)f (x )=12cos 2x +32sin 2x -cos 2x=sin ⎝⎛⎭⎪⎫2x -π6. 则f (x )的最小正周期为π, 由2x -π6=k π+π2(k ∈Z ),得x =k π2+π3(k ∈Z ), 所以函数图象的对称轴方程为x =k π2+π3(k ∈Z ).(2)g (x )=[f (x )]2+f (x )=sin 2⎝ ⎛⎭⎪⎫2x -π6+sin ⎝⎛⎭⎪⎫2x -π6=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6+122-14. 当sin ⎝ ⎛⎭⎪⎫2x -π6=-12时,g (x )取得最小值-14,当sin ⎝⎛⎭⎪⎫2x -π6=1时,g (x )取得最大值2, 所以g (x )的值域为⎣⎢⎡⎦⎥⎤-14,2.1.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式 (1)A =y max -y min2,B =y max +y min2.(2)由函数的周期T 求ω,ω=2πT.(3)利用“五点法”中相对应的特殊点求φ. 2.运用整体换元法求解单调区间与对称性类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.(1)令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程;(2)令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标;(3)将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. 3.函数y =A sin(ωx +φ)+B 的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.一、填空题1.(2016·山东卷改编)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是________.解析 ∵f (x )=2sin x cos x +3(cos 2x -sin 2x )=sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T=π. 答案 π2.(2016·南通月考)已知函数f (x )=2sin (2x +φ)(|φ|<π)的部分图象如图所示,则f (0)=________. 解析 由图可得sin ⎝⎛⎭⎪⎫2π3+φ=1,而|φ|<π,所以φ=-π6.故f (0)=2sin ⎝ ⎛⎭⎪⎫-π6=-1.答案 -13.(2016·北京卷改编)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则t =________,s 的最小值为________. 解析 点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上,则t =sin ⎝⎛⎭⎪⎫2×π4-π3=sin π6=12. 又由题意得y =sin ⎣⎢⎡⎦⎥⎤2(x +s )-π3=sin 2x ,故s =π6+k π,k ∈Z ,所以s 的最小值为π6.答案 12 π64.函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向右平移π6个单位后,得到的图象的解析式为_______.解析 由图象知A =1,34T =11π12-π6=3π4,T =π,∴ω=2,由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2⇒φ=π6⇒f (x )=sin ⎝⎛⎭⎪⎫2x +π6,则图象向右平移π6个单位后得到的图象的解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6=sin ⎝ ⎛⎭⎪⎫2x -π6.答案 y =sin ⎝⎛⎭⎪⎫2x -π65.(2015·苏北四市调研)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调递增区间为________.解析 因为函数f (x )的最大值为2,所以最小正周期T =2=2π2ω,解得ω=π2,所以f (x )=2sin ⎝⎛⎭⎪⎫πx -π4, 当2k π-π2≤πx -π4≤2k π+π2,k ∈Z ,即2k -14≤x ≤2k +34,k ∈Z 时,函数f (x )单调递增,所以函数f (x )在x ∈[-1,1]上的单调递增区间是⎣⎢⎡⎦⎥⎤-14,34.答案 ⎣⎢⎡⎦⎥⎤-14,34 6.(2016·南京、盐城模拟)已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫7π12=0,则ω取最小值时,φ的值为________. 解析 由7π12-π3=π4≥14×2πω,解得ω≥2,故ω的最小值为2.此时sin ⎝ ⎛⎭⎪⎫2×7π12+φ=0,即sin ⎝⎛⎭⎪⎫π6+φ=0,又0<φ<π, 所以φ=5π6.答案5π67.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.解析 由2k π+π2≤ωx +π4≤2k π+32π,k ∈Z 且ω>0,得1ω⎝ ⎛⎭⎪⎫2k π+π4≤x ≤1ω⎝ ⎛⎭⎪⎫2k π+54π,k ∈Z .取k =0,得π4ω≤x ≤5π4ω,又f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减, ∴π4ω≤π2,且π≤5π4ω,解之得12≤ω≤54. 答案 ⎣⎢⎡⎦⎥⎤12,548.(2016·泰州模拟)若将函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.解析 f (x )=sin ⎝⎛⎭⎪⎫2x +π4――→右平移φ g (x )=sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π4=sin ⎝⎛⎭⎪⎫2x +π4-2φ,关于y 轴对称,即函数g (x )为偶函数,则π4-2φ=k π+π2(k ∈Z ),∴φ=-k 2π-π8(k ∈Z ), 显然,k =-1时,φ有最小正值π2-π8=3π8.答案3π8二、解答题9.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π4. (1)求函数y =f (x )的最小正周期及单调递增区间; (2)若f ⎝⎛⎭⎪⎫x 0-π8=-65,求f (x 0)的值.解 (1)T =2π2=π,由-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ),得-38π+k π≤x ≤π8+k π(k ∈Z ),所以单调递增区间为⎣⎢⎡⎦⎥⎤-38π+k π,18π+k π,k ∈Z .(2)f ⎝ ⎛⎭⎪⎫x 0-π8=-65,即sin 2x 0=-35,∴cos 2x 0=±45,∴f (x 0)=2sin ⎝⎛⎭⎪⎫2x 0+π4=2(sin 2x 0+cos 2x 0)=25或-725. 10.(2016·苏州调研)已知函数f (x )=4sin 3x cos x -2sin x cos x -12cos 4x .(1)求函数f (x )的最小正周期及单调递增区间;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.解 f (x )=2sin x cos x ()2sin 2x -1-12cos 4x=-sin 2x cos 2x -12cos 4x=-12sin 4x -12cos 4x=-22sin ⎝⎛⎭⎪⎫4x +π4. (1)函数f (x )的最小正周期T =2π4=π2.令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z ,得k π2+π16≤x ≤k π2+5π16,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z .(2)因为0≤x ≤π4,所以π4≤4x +π4≤5π4.此时-22≤sin ⎝ ⎛⎭⎪⎫4x +π4≤1,所以-22≤-22sin ⎝⎛⎭⎪⎫4x +π4≤12,即-22≤f (x )≤12. 所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12,-22.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+33sin 2x -33cos 2x .(1)求f (x )的最小正周期及其图象的对称轴方程;(2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域. 解 (1)f (x )=12sin 2x +32cos 2x -33cos 2x=12sin 2x +36cos 2x =33sin ⎝ ⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ), (2)将函数f (x )的图象向右平移π3个单位长度,得到函数g (x )=33sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π6=-33cos 2x 的图象,即g (x )=-33cos 2x .当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3,可得cos 2x ∈⎣⎢⎡⎦⎥⎤-12,1,所以-33cos 2x ∈⎣⎢⎡⎦⎥⎤-33,36, 即函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的值域是⎣⎢⎡⎦⎥⎤-33,36.第2讲 三角恒等变换与解三角形高考定位 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C 级要求,二倍角的正弦、余弦及正切是B 级要求,应用时要适当选择公式,灵活应用.试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题;(2)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.真 题 感 悟(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)cos ⎝⎛⎭⎪⎫A -π6的值.解 (1)由cos B =45,得sin B =1-cos 2B =35.又∵C =π4,AC =6,由正弦定理,得ACsin B=ABsinπ4,即635=AB22⇒AB =5 2. (2)由(1)得:sin B =35,cos B =45,sin C =cos C =22,则sin A =sin(B +C )=sin B cos C +cos B sin C =7210,cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210, 则cos ⎝⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=72-620.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.2.正、余弦定理、三角形面积公式(1)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ;推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab;变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12acsin B =12bc sin A .热点一 三角恒等变换及应用【例1】 (1)(2015·重庆卷改编)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝⎛⎭⎪⎫α-π5=________.(2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________. (3)(2016·苏北四市模拟)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.则sin 2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.(2)∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0, ∴α+π6为锐角,∴sin ⎝⎛⎭⎪⎫α+π6=45, 则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425,又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,∴cos ⎝ ⎛⎭⎪⎫2α-π6=2425. (3)cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12.∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)3 (2)2425 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示 (1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 【训练1】 (1)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=________. (2)(2016·南京、盐城模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.(3)(2015·江苏卷)已知tan α=-2,tan(α+β)=17,则tan β的值为________.解析 (1)法一 cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2=12(1-sin 2α)=16. 法二 cos ⎝⎛⎭⎪⎫α+π4=22cos α-22sin α.所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16. (2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23.由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66. 所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66. (3)∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 (1)16 (2)-66 (3)3热点二 正、余弦定理的应用 [微题型1] 三角形基本量的求解【例2-1】 (1)(2016·全国Ⅱ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =________.(2)(2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.①证明:sin A sin B =sin C ; ②若b 2+c 2-a 2=65bc ,求tan B .(1)解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案2113(2)①证明 根据正弦定理,可设a sin A =b sin B =csin C=k (k >0),则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C . ②解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”.[微题型2] 求解三角形中的最值问题【例2-2】 (2016·苏、锡、常、镇调研)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B =c sin C =2sinπ3=43, 所以b =43sin B ,c =43sin C .所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎪⎫2π3-B =433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc+4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c =2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值. [微题型3] 求解三角形中的实际问题【例2-3】 (2016·无锡高三期末)在一个直角边长为10 m 的等腰直角三角形ABC 的草地上,铺设一个也是等腰直角三角形PQR 的花地,要求P ,Q ,R 三点分别在△ABC 的三条边上,且要使△PQR 的面积最小,现有两种设计方案:方案一:直角顶点Q 在斜边AB 上,R ,P 分别在直角边AC ,BC 上; 方案二:直角顶点Q 在直角边BC 上,R ,P 分别在直角边AC ,斜边AB 上. 请问应选用哪一种方案?并说明理由.方案一 方案二解 应选方案二,理由如下:方案一:过点Q 作QM ⊥AC 于点M ,作QN ⊥BC 于点N , 因为△PQR 为等腰直角三角形,且QP =QR , ∠MQR =∠NQP ,∠RMQ =∠PNQ =90°,所以△RMQ ≌△PNQ ,所以QM =QN ,所以Q 为AB 的中点,M ,N 分别为AC ,BC 的中点, 则QM =QN =5 m ,设∠RQM =α,则RQ =5cos α,α∈[0°,45°],所以S △PQR =12×RQ 2=252cos 2α. 所以当cos 2α=1,即α=0°时,S △PQR 取得最小值252 m 2.方案二:设CQ =x ,∠RQC =β,β∈[0°,90°), 在△RCQ 中,RQ =xcos β,在△BPQ 中,∠PQB =90°-β, 所以QP sin B =BQsin ∠BPQ,即x22cos β=10-xsin (45°+β). 化简得x cos β=10-x sin β+cos β,解得x =10cos βsin β+2cos β,所以S △PQR =12×RQ 2=50(sin β+2cos β)2,因为(sin β+2cos β)2≤5,所以S △PQR 的最小值为10 m 2. 综上,应选用方案二.探究提高 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【训练2】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π), 故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cos B .又B ,C ∈(0,π), 所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S =12ab sinC 来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、填空题1.已知α∈R ,sin α+2cos α=102,则tan 2α=________. 解析 ∵sin α+2cos α=102, ∴sin 2 α+4sin α·cos α+4cos 2α=52.用降幂公式化简得4sin 2α=-3cos 2α,∴tan2α=sin 2αcos 2α=-34.答案 -342.(2016·泰州调研)已知锐角△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,23cos 2A +cos 2A =0,a =7,c =6,则b =________. 解析 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,又角A 为锐角, 解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5.答案 53.(2016·全国Ⅲ卷改编)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =________.解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 -10104.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332. 答案3325.(2012·江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1 =2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250. 答案172506.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24, 又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得,a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8.答案 87.(2010·江苏卷)在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,b a +a b=6cos C ,则tan C tan A +tan Ctan B=________. 解析 b a +a b =6cos C ⇒6ab cos C =a 2+b 2,6ab ·a 2+b 2-c 22ab =a 2+b 2,a 2+b 2=3c 22.tan C tan A +tan C tan B =sin C cos C ·cos B sin A +sin B cos A sin A sin B =sin C cos C ·sin (A +B )sin A sin B =1cos C ·sin 2C sin A sin B , 由正弦定理得:上式=1cos C ·c2ab =4.答案 48.(2014·江苏卷)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C . 由正弦定理可得a +2b =2c ,即c =a +2b2,cos C =a 2+b 2-c 22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24,当且仅当3a 2=2b 2即ab=23时等号成立.∴cos C 的最小值为6-24. 答案6-24二、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac .由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以C =3π4-A ,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A=2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4,∵0<A <3π4,∴π4<A +π4<π,故当A +π4=π2,即A =π4时,2cos A +cos C 取得最大值为1.10.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.解 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去),因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20,又b =5,知c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21.又由正弦定理得sin B sin C =ba sin A ·c asin A =bc a 2sin 2A =2021×34=57. 11.(2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =ACsin B,得 AB =ACsin B ·sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =ACsin B,得BC =AC sin B ·sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内.第3讲 平面向量高考定位 平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求.主要考查:(1)平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,填空题难度中档;(2)平面向量的数量积,以填空题为主,难度低;(3)向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.真 题 感 悟1.(2015·江苏卷)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.答案 -32.(2011·江苏卷)已知e 1,e 2是夹角为23π的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a·b=0,则k 的值为________.解析 因为e 1,e 2是夹角为23π的两个单位向量,所以e 1·e 2=||e 1||e 2cos 〈e 1,e 2〉=cos2π3=-12,又a·b =0,所以(e 1-2e 2)·(k e 1+e 2)=0, 即k -12-2+(-2k )⎝ ⎛⎭⎪⎫-12=0, 解得k =54.答案 543.(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB→+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析 如图,DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,λ1+λ2=12. 答案 124.(2016·江苏卷)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________. 解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4. 又∵D 为BC 中点,E ,F 为AD 的两个三等分点, 则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b . AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b .CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.答案 78考 点 整 合1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP →=12(OA →+OB →). (3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.热点一 平面向量的有关运算 [微题型1] 平面向量的线性运算【例1-1】 (1)(2016·南通调研)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.解析 (1) 依题意,设BO →=λBC →,其中1<λ<43,则有AO →=AB →+BO →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →.又AO →=xAB →+(1+x )AC →,且AB →、AC →不共线,于是有x =1-λ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0.(2)法一 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝ ⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=⎝ ⎛⎭⎪⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝ ⎛⎭⎪⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0), D (3,0).由BC =3BE ,DC =λDF ,可求点E ,F 的坐标分别为E ⎝ ⎛⎭⎪⎫-233,-13,F ⎝ ⎛⎭⎪⎫3⎝⎛⎭⎪⎫1-1λ,-1λ,∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-43·⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ-1 =-2⎝ ⎛⎭⎪⎫1-1λ+43⎝ ⎛⎭⎪⎫1+1λ=1,解得λ=2.答案 (1)⎝ ⎛⎭⎪⎫-13,0 (2)2 探究提高 用平面向量基本定理解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理将条件和结论表示成基底的线性组合,再通过对比已知等式求解. [微题型2] 平面向量的坐标运算【例1-2】 (1)(2016·全国Ⅱ卷改编)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =________.(2)(2016·全国Ⅲ卷改编)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8.(2)|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32,则∠ABC =30°. 答案 (1)8 (2)30°探究提高 若向量以坐标形式呈现时,则用向量的坐标形式运算;若向量不是以坐标形式呈现,则可建系将之转化为坐标形式,再用向量的坐标运算求解更简捷. [微题型3] 平面向量数量积的运算【例1-3】 (1)(2016·连云港调研)若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________.(2)(2016·佛山二模)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.解析 (1)设a =(1,0),b =(0,1),c =(x ,y ),则x 2+y 2=1,a -c =(1-x ,-y ),b -c =(-x ,1-y ),则(a -c )·(b -c )=(1-x )(-x )+(-y )(1-y )=x 2+y 2-x -y =1-x -y ≤0, 即x +y ≥1.又a +b -c =(1-x ,1-y ),∴|a +b -c |=(1-x )2+(1-y )2=(x -1)2+(y -1)2.①法一 如图.c =(x ,y )对应点在AB ︵上,而①式的几何意义为P 点到AB ︵上点的距离,其最大值为1.法二 |a +b -c |=(x -1)2+(y -1)2=x 2+y 2-2x -2y +2=3+2(-x -y )=3-2(x +y ),∵x +y ≥1,∴|a +b -c |≤3-2=1,最大值为1.(2)法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →, ∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918. 法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32. 又BE →=λBC →,DF →=19λDC →,。
高三数学二轮复习第部分专题突破点函数与方程教师用书理
突破点17 函数与方程 (1)f (x )=0实数根.(2)几何法:对于不能用求根公式方程,可以将它与函数y =f (x )图象联系起来,并利用函数性质找出零点. (3)定理法:利用函数零点存在性定理,即如果函数y =f (x )在区间a ,b ]上图象是连续不断一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点. 函数零点个数,一般利用数形结合转化为两个函数图象交点个数问题.要注意观察是否需要将一个复杂函数转化为两个相对较为简单函数,常转化为定曲线与动直线问题. 回访1 函数零点个数判断1.(2021 ·湖北高考)函数f (x )=2sin x sin ⎝⎛⎭⎪⎪⎫x +π2-x 2零点个数为________.2 f (x )=2sin x sin ⎝ ⎛⎭⎪⎪⎫x +π2-x 2=2sin x cos x -x 2=sin 2x -x 2,由f (x )=0,得sin 2x =x 2.设y 1=sin 2x ,y 2=x 2,在同一平面直角坐标系中画出二者图象,如下图.由图象知,两个函数图象有两个交点,故函数f (x )有两个零点.]2.(2021·福建高考)函数f (x )=⎩⎪⎨⎪⎧ x 2-2,x ≤0,2x -6+ln x ,x >0零点个数是________.2 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点.当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,f (2)·f (3)<0,所以f (x )在(2,3)内有一个零点.综上,函数f (x )零点个数为2.]回访2 函数零点个数,求参数值或取值范围3.(2021 ·湖南高考)假设函数f (x )=|2x -2|-b 有两个零点,那么实数b 取值范围是__________.(0,2) 由f (x )=|2x -2|-b =0得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 图象,如下图,那么当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点.]4.(2021·天津高考)函数f (x )=⎩⎪⎨⎪⎧ |x 2+5x +4|,x ≤0,2|x -2|,x >0.假设函数y =f (x )-a |x |恰有4个零点,那么实数a 取值范围为________.1<a <2 画出函数f (x )图象如下图.函数y =f (x )-a |x |有4个零点,即函数y 1=a |x |图象与函数f (x )图象有4个交点(根据图象知需a >0).当a =2时,函数f (x )图象与函数y 1=a |x |图象有3个交点.故a <2.当y 1=a |x |(x ≤0)与y =|x 2+5x +4|相切时,在整个定义域内,f (x )图象与y 1=a |x |图象有5个交点,此时,由⎩⎪⎨⎪⎧ y =-ax ,y =-x 2-5x -4得x 2+(5-a )x +4=0.由Δ=0得(5-a )2-16=0,解得a =1,或a =9(舍去), 那么当1<a <2时,两个函数图象有4个交点.故实数a 取值范围是1<a <2.] 热点题型 1 函数零点个数判断题型分析:函数零点个数判断常与函数奇偶性、对称性、单调性相结合命题,难度中等偏难.(1)(2021·秦皇岛模拟)定义在R 上函数f (x )满足:①图象关于(1,0)点对称;②f (-1+x )=f (-1-x );③当x ∈-1,1]时,f (x )=⎩⎪⎨⎪⎧ 1-x 2,x ∈[-1,0],cos π2x ,x ∈0,1],那么函数y =f (x )-⎝ ⎛⎭⎪⎪⎫12|x |在区间-3,3]上零点个数为( )A .5B .6C .7D .8(2)(2021·郑州二模)定义在R 上奇函数y =f (x )图象关于直线x=1对称,当0<x ≤1时,f (x )=log 12x ,那么方程f (x )-1=0在(0,6)内零点之与为( ) 【导学号:85952062】A .8B .10C .12D .16(1)A (2)C (1)因为f (-1+x )=f (-1-x ),所以函数f (x )图象关于直线x =-1对称,又函数f (x )图象关于点(1,0)对称,如下图,画出f (x )以及g (x )=⎝ ⎛⎭⎪⎪⎫12|x |在-3,3]上图象,由图可知,两函数图象交点个数为5,所以函数y =f (x )-⎝ ⎛⎭⎪⎪⎫12|x |在区间-3,3]上零点个数为5,应选A.(2)因为函数f (x )为定义在R 上奇函数,所以当-1≤x <0时,f (x )=-f (-x )=-log 12(-x ),又因为函数f (x )图象关于直线x =1对称,所以函数f (x )图象对称轴为x =2k +1,k ∈Z ,在平面直角坐标系内画出函数f (x )大致图象如下图,由图易得直线y =1与函数f (x )图象在(0,6)内有四个交点,且分别关于直线x =1与x =5对称,所以方程f (x )-1=0在(0,6)内零点之与为2×1+2×5=12,应选C.]求解此类函数零点个数问题时,通常把它转化为求两个函数图象交点个数问题来解决.函数F (x )=f (x )-g (x )零点就是方程f (x )=g (x )实数根,也就是函数y =g (x )图象与函数y =f (x )图象交点横坐标.其解题关键步骤为:①分解为两个简单函数;②在同一坐标系内作出这两个函数图象;③数交点个数,即原函数零点个数.提醒:在画函数图象时,切忌随手一画,注意“草图不草〞,画图时应注意根本初等函数图象应用,以及函数性质(如单调性、奇偶性、对称性等)适时运用,可加快画图速度,从而将问题简化.变式训练1] (1)(2021·合肥二模)定义在R 上奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧ log 12x +1,x ∈[0,1,1-|x -3|,x ∈[1,+∞,那么关于x 函数F (x )=f (x )-a (0<a <1)零点个数为( )A .2B .3C .4D .5(2)函数f (x )=cos π2x ,g (x )=2-34|x -2|,x ∈-2,6],那么函数h (x )=f (x )-g (x )所有零点之与为( )A .6B .8C .10D .12(1)D (2)D (1)在同一坐标系中画出函数y =f (x )与y =a (0<a <1)图象,如下图:两图象共有5个交点,所以F (x )有5个零点.(2)函数h (x )=f (x )-g (x )零点之与可转化为f (x )=g (x )根之与,即转化为y 1=f (x )与y 2=g (x )两个函数图象交点横坐标之与.又由函数g (x )=2-34|x -2|与f (x )图象均关于x =2对称,可知函数h (x )零点之与为12.]热点题型2 函数零点个数求参数取值范围题型分析:函数零点个数求参数取值范围,主要考察学生数形结合思想与分类讨论思想,对学生画图能力有较高要求.(1)(2021·重庆模拟)函数f (x )=⎩⎪⎨⎪⎧ 1x +1-3,x ∈-1,0],x ,x ∈0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同零点,那么实数m 取值范围是( )A.⎝ ⎛⎦⎥⎥⎤-94,-2∪⎝ ⎛⎦⎥⎥⎤0,12 B.⎝ ⎛⎦⎥⎥⎤-114,-2∪⎝ ⎛⎦⎥⎥⎤0,12 C.⎝ ⎛⎦⎥⎥⎤-94,-2∪⎝ ⎛⎦⎥⎥⎤0,23 D.⎝ ⎛⎦⎥⎥⎤-114,-2∪⎝ ⎛⎦⎥⎥⎤0,23 (2)(名师押题)函数f (x )=⎩⎪⎨⎪⎧ x 2+3,x ≥0,1+4x cos 2π-πx ,x <0,g (x )=kx +1(x ∈R ),假设函数y =f (x )-g (x )在x ∈-2,3]内有4个零点,那么实数k 取值范围是( )A.⎝⎛⎭⎪⎪⎫22,113 B .(22,+∞) C.⎝ ⎛⎦⎥⎥⎤22,113 D .(23,4](1)A (2)C (1)令g (x )=0,那么f (x )=m (x +1),故函数g (x )在(-1,1]内有且仅有两个不同零点等价于函数y =f (x )图象与直线y =m (x +1)有且仅有两个不同交点.函数f (x )图象如图中实线所示.易求k AB =12,k AC =-2, 过A (-1,0)作曲线切线,不妨设切线方程为y =k (x +1),由⎩⎪⎨⎪⎧ y =k x +1,y =1x +1-3,得kx 2+(2k +3)x +2+k =0, 那么Δ=(2k +3)2-4k (2+k )=0,解得k =-94. 故实数m 取值范围为⎝ ⎛⎦⎥⎥⎤-94,-2∪⎝⎛⎦⎥⎥⎤0,12.(2)当x =0时,显然有f (x )≠g (x ),即x =0不是y =f (x )-g (x )零点.当x ≠0时,y =f (x )-g (x )在x ∈-2,3]内零点个数即方程f (x )=g (x )(-2≤x ≤3)实根个数.当0<x ≤3时,有kx +1=x 2+3,即k =x +2x; 当-2≤x <0时,有kx +1=1+4x cos πx ,即k =4cos πx . 那么y =f (x )-g (x )(-2≤x ≤3)零点个数等价于函数y =k 与y =⎩⎪⎨⎪⎧ x +2x,0<x ≤3,4cos πx ,-2≤x <0图象交点个数,作出这两个函数图象,如下图,由图知22<k ≤113,应选C.] 求解此类逆向问题关键有以下几点:一是将原函数零点个数问题转化为方程根个数问题,并进展适当化简、整理;二是构造新函数,把方程根个数问题转化为新构造两个函数图象交点个数问题;三是对新构造函数进展画图;四是观察图象,得参数取值范围.提醒:把函数零点转化为方程根,在构造两个新函数过程中,一般是构造图象易得函数,最好有一条是直线,这样在判断参数取值范围时可快速准确地得到结果.变式训练2] (1)(2021·湖北七校联考)f (x )是奇函数并且是R 上单调函数,假设函数y =f (2x 2+1)+f (λ-x )只有一个零点,那么实数λ值是( )【导学号:85952063】A.14B .18C .-78D .-38(2)(2021·汕头一模)设函数f (x )是定义在R 上周期为2函数,且对任意实数x ,恒有f (x )-f (-x )=0,当x ∈-1,0]时,f (x )=x 2,假设g (x )=f (x )-log a x 在x ∈(0,+∞)上有且仅有三个零点,那么a 取值范围为( )A .3,5]B .4,6]C .(3,5)D .(4,6)(1)C (2)C (1)令y =f (2x 2+1)+f (λ-x )=0,且f (x )是奇函数,那么f (2x 2+1)=-f (λ-x )=f (x -λ),又因为f (x )是R 上单调函数,所以2x 2+1=x -λ只有一个零点,即2x 2-x +1+λ=0只有一个零点,那么Δ=1-8(1+λ)=0,解得λ=-78,应选C. (2)因为f (x )-f (-x )=0,所以f (x )=f (-x ),所以f (x )是偶函数,根据函数周期性与奇偶性作出f (x )图象如下图:因为g (x )=f (x )-log a x 在x ∈(0,+∞)上有且仅有三个零点, 所以y =f (x )与y =log a x 图象在(0,+∞)上只有三个交点,所以⎩⎪⎨⎪⎧ log a 3<1,log a 5>1,a >1,解得3<a <5.]。
高考数学二轮复习 上篇 专题整合突破 专题一 函数与导数、不等式教师用书 理(2021年整理)
创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题一函数与导数、不等式教师用书理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题一函数与导数、不等式教师用书理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(江苏专用)2017届高考数学二轮复习上篇专题整合突破专题一函数与导数、不等式教师用书理的全部内容。
上篇专题整合突破专题一函数与导数、不等式教师用书理第1讲函数、函数与方程及函数的应用高考定位高考对本内容的考查主要有:(1)函数的概念和函数的基本性质是B级要求,是重要考点;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B 级;(3)函数与方程是B级要求,但经常与二次函数等基本函数的图象和性质综合起来考查,是重要考点;(4)函数模型及其应用是考查热点,要求是B级;试题类型可能是填空题,也可能在解答题中与函数性质、导数、不等式综合考查。
真题感悟1。
(2016·江苏卷)函数y=错误!的定义域是________.解析要使函数有意义,需且仅需3-2x-x2≥0,解得-3≤x≤1。
故函数定义域为[-3,1]。
答案[-3,1]2。
(2016·江苏卷)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=错误!其中a∈R。
若f错误!=f错误!,则f(5a)的值是________.解析由已知f错误!=f错误!=f错误!=-错误!+a,f错误!=f错误!=f错误!=错误!=错误!。
又∵f错误!=f错误!,则-12+a=错误!,a=错误!,∴f(5a)=f(3)=f(3-4)=f(-1)=-1+错误!=-错误!.答案-错误!3.(2014·江苏卷)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=错误!.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是________。
高考数学二轮总复习第1篇核心专题提升多维突破专题1三角函数与解三角形第3讲三角函数与解三角形课件
【解析】
(1)f(x)=cos4x-sin4x+sin2x-π6=12cos
2x+
3 2 sin
2x=
sin2x+π6,
∵x∈0,π2,∴2x+π6∈π6,76π,
∴当 2x+π6∈π6,π2,即 x∈0,π6时,函数 f(x)单调递增,
∴函数 f(x)的单调递增区间为0,π6.
(2)由题意得 g(x)=sin2x+2φ+π6, ∵函数 g(x)的图象关于点π3,0成中心对称, ∴2×π3+2φ+π6=kπ,k∈Z,解得 φ=-51π2+2kπ,k∈Z, ∵0<φ<π4,∴k=1,φ=1π2, ∴g(x)=sin2x+π3,
2. (2021·新高考Ⅱ卷)在△ABC中,角A、B、C所对的边长分别为a、 b、c,b=a+1,c=a+2.
(1)若2sin C=3sin A,求△ABC的面积; (2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的 值;若不存在,说明理由. 【解析】 (1)因为 2sin C=3sin A,则 2c=2(a+2)=3a,则 a=4,
在△ABC 中,由余弦定理知,cos∠ABC=a2+2ca2c-b2=a2+2ca2c-ac, 当 c=3a 时,cos∠ABC=76>1(舍);当 c=23a 时,cos∠ABC=172; 综上所述,cos∠ABC=172. 解法二:在△ABC 中B→D=13B→C+23B→A,平方得 BD2=19a2+49c2+49accos B,① 由余弦定理得b2=a2+c2-2accos B②, 联立①②得11b2=3c2+6a2,
结合 0<ω<2 可得12≤ω<2,
故 ω 的取值范围为ω12≤ω<2
.
方 法 技 巧·精 提 炼
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
突破点2 解三角形提炼1 常见解三角形的题型及解法(1)(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.提炼2三角形形状的判断(1)(2)从角出发,全部转化为角之间的关系,然后进行恒等变形,再判断.注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.提炼3三角形的常用面积公式设△ABC 的内角. (1)S =12ah a =12bh b =12ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12bc sin A =12ca sinB .(3)S =12r (a +b +c )(r 为三角形ABC 内切圆的半径).回访1 正、余弦定理的应用1.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.2113 在△ABC 中,∵cos A =45,cos C =513, ∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365. 又∵a sin A =b sin B ,∴b =asin Bsin A =1×636535=2113.]2.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.AB交AD ∥F C 作C ,过点E 相交于点CD 与BA 如图所示,延长 )2+6,2-6(于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,.2-6=22+22-2×2×2cos 30°=BF ∴,2=BC =CF 在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,,2sin 30°=BE sin 75°,2=BC ,CE =BE .2+6=6+24×212=BE ∴ .]2+6<AB <2-6∴ 回访2 三角形的面积问题3.(2014·全国卷Ⅰ)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.3,2=a ,R 2=csin C =b sin B =a sin A ∵ 又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c ,.bc =2a -2c +2b ∴,bc -2c =2b -2a ∴ 60°.=A ∴∠,A cos =12=bc 2bc =b2+c2-a22bc ∴当且”=(“bc =bc -bc ≥2bc -2c +2b =·cos 60°bc 2-2c +2b =2a =4中,ABC ∵△仅当b =c 时取得),.]3=32×4×12≤A ·sin bc ·12=ABC △S ∴热点题型1 正、余弦定理的应用题型分析:利用正、余弦定理解题是历年高考的热点,也是必考点,求解的关键是合理应用正、余弦定理实现边角的互化.(2016·四川高考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc. (1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tanB .解] (1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin C c 中,有cos A ksin A +cos B ksin B =sin C ksin C,2分 即sin A sin B =sin A cos B +cos A sin B =sin(A +B ).4分 在△ABC 中,由A +B +C =π, 有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .6分(2)由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b2+c2-a22bc =35,8分所以sin A =1-cos2A =45.9分由(1)知sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35 sin B ,11分故tan B =sin B cos B=4.12分关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.变式训练1] (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,已知a =2,c =3,cos B =14,则sin Acos C=__________.【导学号:85952013】2155由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=22+32-2×2×3×14=10,所以b =10.由余弦定理,得cos C =a2+b2-c22ab =4+10-92×2×10=108.因为B 是△ABC 的内角, 所以sin B =1-cos2 B =154. 由正弦定理a sin A =b sin B ,得sin A =64,所以sin A cos C =2155.](2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a cos B +b cos(B +C )=0. ①证明:△ABC 为等腰三角形;②若2(b 2+c 2-a 2)=bc ,求cos B +cos C 的值. 解] ①证明:∵a cos B +b cos (B +C )=0, ∴由正弦定理得sin A cos B +sin B cos(π-A )=0, 即sin A cos B -sin B cos A =0,3分 ∴sin(A -B )=0,∴A -B =k π,k ∈Z .4分 ∵A ,B 是△ABC 的两内角, ∴A -B =0,即A =B ,5分 ∴△ABC 是等腰三角形.6分 ②由2(b 2+c 2-a 2)=bc , 得b2+c2-a22bc =14,7分由余弦定理得cos A =14,8分cos C =cos(π-2A )=-cos 2A =1-2cos 2A =78.10分∵A =B ,∴cos B =cos A =14,11分∴cos B +cos C =14+78=98.12分热点题型2 三角形面积的求解问题题型分析:三角形面积的计算及与三角形面积有关的最值问题是解三角形的重要命题点之一,本质上还是考查利用正、余弦定理解三角形,难度中等.(2015·山东高考)设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.【解题指导】 (1)f x――→恒等变换化归思想fx =Asin ωx+φ+k ―→求fx 的单调区间(2)f ⎝ ⎛⎭⎪⎫A 2=0――→锐角三角形求A ――→余弦定理建立b ,c 的等量关系――→基本不等式求bc 的最大值――→正弦定理求△ABC的面积解] (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12.2分 由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z .由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z .4分所以f (x )的单调递增区间是-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+kπ,3π4+kπ(k ∈Z ).6分(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,7分由题意知A 为锐角,所以cos A =32.8分由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,10分 即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34,所以△ABC 面积的最大值为2+34.12分1.在研究三角函数的图象与性质时常先将函数的解析式利用三角恒等变换转化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B ,y =A tan(ωx +φ)+B )的形式,进而利用函数y =sin x (或y =cos x ,y =tan x )的图象与性质解决问题.2.在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a 2=b 2+c 2-2bc cos A 中,有a 2+c 2和ac 两项,二者的关系a 2+c 2=(a +c )2-2ac 经常用到,有时还可利用基本不等式求最值.变式训练2] (名师押题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a +1a =4cos C ,b =1.(1)若sin C =217,求a ,c ; (2)若△ABC 是直角三角形,求△ABC 的面积. 解] (1)∵sin C =217,∴cos 2C =1-sin 2C =47,cos C =27.1分 ∵4cos C =a +1a ,∴87=a +1a ,解得a =7或a =77.3分又1a +a =4cos C =4×a2+b2-c22ab =4×a2+1-c22a , ∴a 2+1=2(a 2+1-c 2),即2c 2=a 2+1.5分∴当a =7时,c =2;当a =17时,c =27.6分(2)由(1)可知2c 2=a 2+1.又△ABC 为直角三角形,C 不可能为直角. ①若角A 为直角,则a 2=b 2+c 2=c 2+1, ∴2c 2-1=c 2+1, ∴c =2,a =3,8分∴S =12bc =12×1×2=22.9分②若角B 为直角,则b 2=a 2+c 2,a 2+c 2=1. ∴2c 2=a 2+1=(1-c 2)+1,∴c 2=23,a 2=13,即c =63,a =33,11分∴S =12ac =12×63×33=26.12分。