NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to gold

合集下载

上海敏芯信息科技有限公司--代谢组学介绍-整合版

上海敏芯信息科技有限公司--代谢组学介绍-整合版

尿液样品制备
1ml/例,原则上可以多取一点。 尿液直接分装到离心管中,每管1ml,添加一滴(约10ul)质量体积为1/100(w/v)的 叠氮化钠,-80度冻存寄送。
代谢组学检测分析实例一

代谢组学检测分析实例一
1、样品数量 、
SLE(系统性红斑狼疮):64 RA(风湿性关节炎):30 正常对照:35

6、组间差异化合物筛选 、
通过OPLS-DA分析各代谢物相应的相关系数,对有统计意义的代谢物进行进一步归 纳。在相关系数图中,将每一个变量的loading值与其标准偏差的平方根值相乘后进行数 据的回溯转换。然后与相应的相关系数临界值表进行比对,得到引起组间差异的代谢物。
Metabolites S-R β-Glucose: 3.24(ddb), 3.40(t), 3.46(m), 3.49(t), 3.90(dd), 4.65(d) α-Glucose: 3.42(t), 3.54(dd), 3.71(t), 3.73(m), 3.84(m), 5.23(d) Unknown: 3.71(m) Valine: 0.99(d), 1.04(d) … -0.531 -0.507 0.428 0.473 … Ra S-N -0.521 0.825 … R-N 0.576 0.570 -0.709 0.636 …
Company
LOGO
代谢组学技术简介 及其在医学中的应用
销售经理:邓军亮
公司主营项目

软件
数据库
服务
生物信息学
培训
公司业务范围

表达谱芯片、MiRNA芯片、SNP芯片、甲基化芯片、 lncRNA芯片、组织芯片、细胞因子抗体芯片
代谢组学检测分析实例一

《核磁共振波谱法》

《核磁共振波谱法》
核磁共振波谱法
Nuclear Magnetic Resonance Spectroscopy, NMR
精选ppt
发展历史 1924年:Pauli 预言了NMR 的基本理论,即,有些 核同时具有自旋和磁量子数,这些核在磁场中会发 生分裂; 1946年:Harvard 大学的Purcel和Stanford大学的 Bloch各自首次发现并证实NMR现象,并于1952年 分享了Nobel奖; 1953年:Varian开始商用仪器开发,并于同年制作 了第一台高分辨NMR仪; 1956年:Knight发现元素所处的化学环境对NMR 信号有影响,而这一影响与物质分子结构有关。 1970年:Fourier(pulsed)-NMR 开始市场化(早期 多使用的是连续波NMR 仪器)。
小磁场。NMR信号在H0处出 精现选p。pt
由此可见,裂分峰的数目有如下规律: 峰的数目 = n + 1 n:为相邻H核的数目
精选ppt
2. 偶合常数
每组吸收峰内各峰之间的距离,称为偶合常数,
以Jab表示。下标ab表示相互偶合的磁不等性H核的种类。
Jab
Jab
偶合常数的单位用Hz表
示。偶合常数的大小与
either odd mass, odd atomic number, or
both has a quantized spin angular
momentum (P) and a magnetic moment
() .
P h I(I1)
2
精选ppt
P
3.2 Nuclear Magnetic Moments
精选ppt
• The most common nuclei that possess spin

基于核磁共振技术的定量代谢组学研究

基于核磁共振技术的定量代谢组学研究

基于核磁共振技术的定量代谢组学研究江春迎, 王映红*(中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050)摘要: 核磁共振技术 (NMR) 既可用于混合体系的定性分析, 又可以用于其定量分析。

在过去的几十年里,随着分析技术以及各种实验技术的迅速发展, 基于核磁共振的定量分析方法已广泛应用于生物样本的分析。

核磁共振定量分析技术应用于代谢组学, 并成为定量代谢组学 (quantitative metabolomics) 研究中的重要手段。

本文将论述这种新分析方法相比于传统方法的优势及不足之处, 同时论述其研究过程中需考虑的重要因素以及其在代谢组学研究中的应用。

关键词: 核磁共振; 代谢; 代谢组学中图分类号: R917 文献标识码:A 文章编号: 0513-4870 (2014) 07-0949-07Quantitative metabolomics based on NMRJIANG Chun-ying, WANG Ying-hong*(State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China)Abstract: Nuclear magnetic resonance (NMR) spectroscopy can be used to both identify and quantify chemicals from complex mixtures. Over the last several decades, significant technical and experimental advances have made quantitative nuclear magnetic resonance (qNMR) a valuable analytical tool for quantitative measurements of a wide variety of samples. This particular approach is now being exploited to characterizethe metabolomes of many different biological samples and is called quantitative metabolomics or targeted metabolic profiling. In this review, some of the strengths, limitations of NMR-based quantitative metabolomicswill be discussed as well as the practical considerations necessary for acquisition with an emphasis on their use for bioanalysis. Recent examples of the application of this particular approach to metabolomics studies will be also presented.Key words: qNMR; metabolism; metabolomics代谢 (metabolism) 是生命活动中所有生物化学反应的总称, 代谢活动是生命活动的本质特征和物质基础。

非靶向代谢组学方法英语

非靶向代谢组学方法英语

非靶向代谢组学方法英语Non-targeted Metabolomics Methods in EnglishIntroductionNon-targeted metabolomics is an innovative approach in the field of metabolomics that aims to identify and quantify as many metabolites as possible in a given biological sample without any prior knowledge or bias towards specific metabolites. This method provides comprehensive insights into the global biochemical changes occurring in a biological system, such as a cell, tissue, or organism. In recent years, non-targeted metabolomics has gained immense popularity due to its ability to unravel intricate metabolic pathways and discover novel biomarkers for various diseases.Sample Collection and PreparationThe first step in non-targeted metabolomics is the collection and preparation of the biological sample. The choice of sample depends on the research question and can range from blood, urine, tissues, or even fecal samples. It is crucial to handle the samples with extreme care to avoid any degradation or contamination of metabolites. Sample preparation involves various techniques such as extraction, filtration, and derivatization, to enhance the stability and visibility of metabolites during subsequent analysis.Mass Spectrometry-Based AnalysisMass spectrometry (MS) is the key analytical technique used in non-targeted metabolomics. It detects and quantifies metabolites based on their mass-to-charge ratio (m/z) and abundance. Liquid chromatography-massspectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) are commonly used platforms for metabolite analysis. LC-MS is suitable for hydrophilic compounds, while GC-MS is preferred for volatile and thermally stable metabolites.Data Acquisition and PreprocessingOnce the samples are analyzed using MS, the raw data obtained needs to be processed and converted into a format suitable for downstream analysis. This step involves data acquisition, which includes peak picking, alignment, and normalization. Peak picking identifies and quantifies metabolite peaks in the acquired spectra, while alignment corrects any potential retention time variations. Normalization ensures that all samples are comparably represented, eliminating any technical biases.Statistical Analysis and IdentificationStatistical analysis is a crucial step in non-targeted metabolomics, as it helps in identifying significant metabolites and detecting patterns within the dataset. Multivariate statistical techniques, such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), are commonly used to visualize and interpret the data. Additionally, metabolite identification is performed by matching the acquired mass spectra with metabolite databases, such as the Human Metabolome Database (HMDB) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), using tools like MassBank, MetFrag, or Metlin.Metabolic Pathway AnalysisOne of the key strengths of non-targeted metabolomics is its ability to unravel complex metabolic pathways. Pathway analysis tools, such as MetaboAnalyst, MetaboMiner, and Ingenuity Pathway Analysis (IPA), are used to identify significantly altered pathways and discover potential biomarkers. These analyses provide crucial insights into the underlying biochemical mechanisms and aid in understanding the disease pathogenesis or physiological responses.Challenges and Future PerspectivesDespite its numerous advantages, non-targeted metabolomics faces several challenges. Metabolite identification remains a major bottleneck due to the limited coverage of metabolite databases and the lack of standardization in data reporting. Additionally, the high complexity and dynamic range of metabolomes make it difficult to detect low-abundance metabolites accurately. Nevertheless, advancements in analytical techniques, bioinformatics, and collaborative efforts are steadily overcoming these challenges and driving the field forward.In conclusion, non-targeted metabolomics plays a vital role in understanding the complex metabolic dynamics within biological systems. Through the use of advanced mass spectrometry techniques, data analysis tools, and metabolite identification strategies, this approach has the potential to uncover novel biomarkers and therapeutic targets for various diseases. With continued advancements, non-targeted metabolomics is poised to revolutionize personalized medicine and contribute significantly to the field of biomedical research.。

isotope_labeling_metabolomics

isotope_labeling_metabolomics
Metabolomics is a rapidly growing field of
postgenomic biology focusing on system-wide studies of metabolite levels and transformations in biological samples. Recent advances in modern high-throughput bioanalytical platforms, in combination with rapidly improving computational capabilities for data analysis and interpretation, and the free availability of numerous organism-specific metabolite databases, make it possible to annotate and quantify hundreds of metabolites in a single experiment. The resulting metabolite profiles provide a highly informative snapshot of an organism’s physiology and are widely used both in fundamental biology and in clinical research. A major benefit of metabolomics is the un­ biased approach and the resulting ability to generate and test hypotheses based on the behavior of the whole biological system [1]. While it is not possible to detect every metabolite in a system, untargeted studies involve large-scale detection of a wide range of structurally diverse metabolite features and offer semiquantitative information about metabolite abundance. These untargeted studies can generate hypotheses about novel or important metabolites and pathways, but generally require follow-up targeted studies to confirm metabolite identities and accurately measure metabolite concentrations [2]. A major limitation of many metabolomics studies is the lack of dynamic information to allow interpretation of data in the context of metabolic fluxes [3, 4]. While metabolomics may

MEWS评分在急诊留观患者护理决策中的作用分析

MEWS评分在急诊留观患者护理决策中的作用分析

MEWS评分在急诊留观患者护理决策中的作用分析一、MEWS评分的概念简化急诊患者危重度评估(Modified Early Warning Score,MEWS)是一种通过观察生命体征来评估患者病情变化的评分系统。

MEWS评分包括呼吸频率、心率、收缩压、体温和意识状态五个指标,通过对这些指标进行评分,并将评分结果相加,来评估患者的病情变化程度。

当评分结果高于一定阈值时,就需要及时采取相应的护理措施,以避免患者病情的进一步恶化。

MEWS评分系统简单易行、操作方便,因此在临床中得到了广泛的使用。

二、MEWS评分在急诊留观患者护理决策中的作用1. 及时发现患者病情变化在急诊留观患者的护理过程中,患者病情的变化可能随时发生,而且有些变化可能相当微弱,容易被忽略。

通过对患者进行定期的MEWS评分,可以及时监测患者的生命体征指标,并将评分结果及时记录在案。

一旦发现患者的MEWS评分升高,就可以及时采取护理措施,以防止患者病情的进一步恶化。

MEWS评分在急诊留观患者护理决策中可以起到及时发现患者病情变化的作用。

2. 提高护理质量MEWS评分可以帮助医护人员及时发现患者的病情变化,有利于提高护理质量。

通过对患者进行定期的MEWS评分,可以及时发现患者的病情变化,及时采取相应的护理措施,有利于减少医疗事故的发生,提高医疗质量和护理效果。

3. 促进医护人员间的交流在急诊留观患者的护理决策中,医护人员之间的交流配合是至关重要的。

通过对患者进行定期的MEWS评分,可以使医护人员更好地了解患者的病情变化情况,并及时进行交流,共同制定护理方案,有利于提高医护人员之间的沟通和配合,促进医护团队的协作效率。

三、MEWS评分在急诊留观患者护理决策中的局限性1. 评分标准不够客观MEWS评分系统主要通过对患者的生命体征指标进行评分,存在一定的主观性。

不同的医护人员可能会对患者的生命体征指标进行评判时存在主观性,因此可能会对评分结果产生一定的误差。

药代谢组学研究中生物样品前处理方法

药代谢组学研究中生物样品前处理方法

万方数据万方数据万方数据万方数据中药代谢组学研究中生物样品前处理方法作者:邹忠杰, 梁生旺, 袁经权, 龚梦鹃作者单位:邹忠杰,梁生旺,龚梦鹃(广东药学院,中药学院,广东,广州,510006), 袁经权(中国医学科学院,药用植物研究所广西分所,广西,南宁,530023)刊名:广东药学院学报英文刊名:JOURNAL OF GUANGDONG PHARMACEUTICAL COLLEGE年,卷(期):2010,26(4)被引用次数:0次1.王广基,查伟斌,郝海平,等.代谢组学技术在中医药关键科学问题研究中的应用前景分析[J].中国天然药物,2008,6(2):89-97.2.邹忠杰,袁经权,龚梦鹃,等.代谢组学技术在中药研究中的应用.广东药学院学报,2009,25(4):424-428.O Yongming,JIANG Jianguo,YAN Lu.Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine[J].Br JPharmacol,2009,157(7):1 128-1 141.4.KIM H K,CHOI Y H,VERPOORTE R.NMR-based metabolomic analysis of plants[J].Nat Protoc,2010,5(3):536-549.5.BECKONERT O,COEN M,KEUN H C,et al.High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues[J].Nat Protoc,2010,5(6):1019-1032.6.LINDON J C,NICHOLSON J K.Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics[J].Annu Rev Anal Chem,2008,1:45-69.7.LISEC J,SCHAUER N,KOPKA J,et al.Gas chroma-tography mass spectrometry-based metabolite profilingin plants[J].Nat Protoc,2006,1(1):387-396.8.XIAO Chaoni,HAO Fuhua,QIN Xiaorong,et al.An optimized buffer system for NMR-based urinary metabonomics with effective pH control,chemical shift consistency and dilutionminimization[J].Analyst,2009,134(5):916-925.9.BRUCE S J,TAVAZZI I,PARISOD V,et al.Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass mpectrometry[J].Anal Chem,2009,81(9):3 285-3 296.10.BECKONERT O,KEUN H C,EBBELS T M,et al.Metabolic profiling,metabolomic and metabonomic procedures for NMR spectroscopy of urine,plasma,serum and tissue extracts[J].Nat Protoc,2007,2(11):2692-2703. URIDSEN M,HANSEN S H,JAROSZEWSKI J W,et al.Human urine as test material in 1H-NMR-based metabonomics:recommendations for sample preparation and storage[J].Anal Chem,2007,79(3):1181-1186. 12.MAHER A D,ZIRAH S F M,HOLMES E,et al.Experimental and analytical variation in human urine in 1H-NMR spectroscopy-based metabolic phenotyping studies[J].Anal Chem,2007,79(14):5204-5211.13.TEAHAN O,GAMBLE S,HOLMES E,et al.Impact of analytical bias in metabonomic studies of human blood serum and plasma[J].Anal Chem,2006,78(13):4307-4318.14.WEI Lai,LIAO Peiqiu,WU Huifeng,et al.Metabolic profiling studies on the toxicological effects of realgar in rats by 1H-NMR spectroscopy[J].Toxicol Appl Pharmacol,2009,234(3):314-325.15.WAYBRIGHT T J,VAN Q N,MUSCHIK G M,et al.LC-MS in metabonomics:Optimization of experimental conditions for the analysis of metabolites in human urine[J].J Liq Chromatogr RelatTechnol,2006,29(17-20):2475-2497.16.ZHAO Xinjie,ZHANG Yi,MENG Xianli,et al.Effect of a traditional Chinese medicine preparation Xindi soft capsule on rat model of acute blood stasis:a urinary metabonomics study based on liquid chromatography-mass spectrometry[J].J Chromatogr B,2008,873(2):151-158.17.GIRI S,KRAUSZ K W,IDLE J R,et al.The metabolomics of (+/-)-arecoline 1-oxide in the mouse and its formation by human flavin-containing monooxygenases[J].Biochem Pharmacol,2007,73(4):561-573.18.WONG M C Y,LEEA W T K,WONG J S Y,et al.An approach towards method development for untargeted urinary metabolite profiling in metabonomic research using UPLC/QToF MS[J].J ChromatogrB,2008,871(2):341-348.19.XIE Baogang,GONG Tao,GAO Rong,et al.Development of rat urinary HPLC-UV profiling for metabonomic study on Liuwei Dihuang Pills[J].J Pharm Biomed Anal,2009,49(2):492-497.20.QIU Y,SU M,LIU Y,et al.Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling[J].Anal Chim Acta,2007,583(2):277-283.21.DAI Yuntao,LI Zhenyu,XUE Liming,et al.Metabolomics study on the anti-depression effect of xiaoyaosan on rat model of chronic unpredictable mild stress[J].J Ethnopharmacol,2010,128(2):482-489.22.WANG Xiaoyan,ZHAO Tie,QIU Yunping,et al.Metabonomics approach to understanding acute and chronic stress in rat models[J].J Proteome Res,2009,8(5):2511-2518.23.BRINDLE J T,ANTTI H,HOLMES E,et al.Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics[J].Nat Med,2002,8(12):1439-1444.24.DING Lina,HAO Fuhua,SHI Zhimin,et al.Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies[J].J Proteome Res,2009,8(6):2882-2891.25.MICHOPOULOS F,LAI L,GIKA H,et al.UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction[J].J Proteome Res,2009,8(4):2114-2121.26.黄欣,龚益飞,虞科,等.基于气相气谱-质谱的代谢组学方法研究四氯化碳致小鼠急性肝损伤[J].分析化学,2007,35(12):1736-1740.1.会议论文刘昌孝.贾伟代谢组学与中药现代研究2006代谢组学是后基因时代的一门新兴的独立学科.该学科的应用跨越生物技术和医药技术,具有广泛的发展前景.它与药物的药效、毒性筛选、评价研究以及安全性评价、作用机制研究和合理用药密切相关.用反应整体思想的代谢组学研究中药,对中药毒性进行科学的、综合的评价,以现代标准认识中药毒性,对于确保中药的合理、安全、有效,建立现代中药的评价体系,指导临床拟订合理的用药方案、剂量和时间均有理论意义和实用价值.提出基于代谢组学的中药现代研究的四方面的设想:一是完善基础技术平台,在样品制备分析技术的能力、速度、灵敏的综合要求,数据分析中的数据描写与处理、模式识别、建模仿真、数据库和专家系统等方面,结合化学计量学和数据描写与处理、模式识别、建模仿真、数据和专家系统等方面,结合化学计量学和生物信息学建立代谢组学研究的技术平台;二是开展中药方剂配伍的科学性研究,从代谢组学的整体观念与中药作用的整体观念的一致性的认识来看,它适用于中药复杂体系的研究,适用于解决中药难以认识的整体效应和认识药物作用的物质基础问题;三是研究中药安全性,为在今后对中药利用复方进行"减毒增效"的机制研究打下基础;四是开展中药种质资源研究,应用代谢组学技术能为中药资源的可持续发展提供科学依据,确保中药资源的数量和质量、中药材规范化.2.学位论文易伦朝代谢组学用于中药质量控制及2型糖尿病诊断与药效跟踪研究2007代谢组学作为后基因时代一种新兴的技术和理念,在药物的药效和毒性评价、药物作用机理研究、疾病诊断、转基因食品的开发、中药现代化等方面展现了广阔的前景。

NMR中常用的英文缩写和中文名称

NMR中常用的英文缩写和中文名称

NMR中常用的英文缩写和中文名称APT:Attached Proton Test 质子连接实验ASIS:Aromatic Solvent Induced Shift 芳香溶剂诱导位移BBDR:Broad Band Double Resonance 宽带双共振BIRD:Bilinear Rotation Decoupling 双线性旋转去偶(脉冲)COLOC:Correlated Spectroscopy for Long Range Coupling 远程偶合相关谱COSY:( Homonuclear chemical shift ) COrrelation SpectroscopY (同核化学位移)相关谱CP:Cross Polarization 交叉极化CP/MAS:Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA:Chemical Shift Anisotropy 化学位移各向异性CSCM:Chemical Shift Correlation Map 化学位移相关图CW:continuous wave 连续波DD:Dipole-Dipole 偶极-偶极DECSY:Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT:Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS:two Dimensional FT Spectroscopy 二维傅立叶变换谱DNMR:Dynamic NMR 动态NMRDNP:Dynamic Nuclear Polarization 动态核极化DQ(C):Double Quantum (Coherence) 双量子(相干)DQD :Digital Quadrature Detection 数字正交检测DQF:Double Quantum Filter 双量子滤波DQF-COSY:Double Quantum Filtered COSY 双量子滤波COSYDRDS:Double Resonance Difference Spectroscopy 双共振差谱EXSY:Exchange Spectroscopy 交换谱INADEQUATE:Incredible Natural Abundance Double Quantum Transfer Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱)INDOR:Internuclear Double Resonance 核间双共振INEPT:Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强INVERSE:H,X correlation via 1H detection 检测1H的H,X核相关IR:Inversion-Recovery 反(翻)转回复JRES:J-resolved spectroscopy J-分解谱LIS :Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR:Lanthanide Shift Reagent 镧系位移试剂MAS:Magic-Angle Spinning 魔角自旋MQ(C):Multiple-Quantum ( Coherence ) 多量子(相干)MQF:Multiple-Quantum Filter 多量子滤波MQMAS:Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS:Multi Quantum Spectroscopy 多量子谱NMR:Nuclear Magnetic Resonance 核磁共振NOE:Nuclear Overhauser Effect 核Overhauser效应(NOE)NOESY:Nuclear Overhauser Effect Spectroscopy 二维NOE谱NQR:Nuclear Quadrupole Resonance 核四极共振PFG:Pulsed Gradient Field 脉冲梯度场PGSE:Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT:Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD:Phase-sensitive Detection 相敏检测PW:Pulse Width 脉宽RCT:Relayed Coherence Transfer 接力相干转移RECSY:Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR:Rotational Echo Double Resonance 旋转回波双共振RELAY:Relayed Correlation Spectroscopy 接力相关谱RF:Radio Frequency 射频ROESY:Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱ROTO:ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC:Scalar Coupling 标量偶合SDDS:Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE:Spin Echo 自旋回波SECSY:Spin-Echo Correlated Spectroscopy自旋回波相关谱SEDOR:Spin Echo Double Resonance 自旋回波双共振SEFT:Spin-Echo Fourier Transform Spectroscopy (with J modulation) (J-调制)自旋回波傅立叶变换谱SELINCOR:Selective Inverse Correlation 选择性反相关SELINQUATE:Selective INADEQUA TE 选择性双量子(实验)SFORD:Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N:Signal-to-noise Ratio 信/ 燥比SQF:Single-Quantum Filter 单量子滤波SR:Saturation-Recovery 饱和恢复TCF:Time Correlation Function 时间相关涵数TOCSY:Total Correlation Spectroscopy 全(总)相关谱TORO:TOCSY-ROESY Relay TOCSY-ROESY接力TQF:Triple-Quantum Filter 三量子滤波WALTZ-16:A broadband decoupling sequence 宽带去偶序列WATERGATE:Water suppression pulse sequence 水峰压制脉冲序列WEFT:Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C):Zero-Quantum (Coherence) 零量子相干ZQF:Zero-Quantum Filter 零量子滤波T1:Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2:Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tm:mixing time 混合时间rc:rotational correlation time 旋转相关时间。

NMR-核磁共振波谱法

NMR-核磁共振波谱法

Dependence of the difference in energy br spin levels of the hydrogen atom
Nuclei in different environments (i.e. with different amounts of electron density around them) will require different amounts of energy to “flip” to higher energy different spin state
Felix Bloch
Edward Mills Purcell
The Nobel Prize in Chemistry 1991
"for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"
1965 Fourier Transform spectroscopy (Ernst)
1973 Imaging tomography (Mansfield)
1985 First protein structure (bovine pancreatic trypsin inhibitor) in solution (Wüthrich)
NMR Nobel Prize Winners

1944 Isador Rabi 1952 Felix Bloch & Edwin Purcell 1991 Richard Ernst 2002 Kurt Wüthrich 2003 Paul Lauterbur & Sir Peter Mansfield

核磁共振波谱课程教学探索

核磁共振波谱课程教学探索

山东化工SHANDONGCHEMICALINDUSTRY-158-2020年第49卷核磁共振波谱课程教学探索李晓虹(苏州大学材料与化学化工学部,江苏苏州215123)摘要:核磁共振波谱作为鉴定化合物结构、组分含量、动力学参数等信息的重要手段,在化学、医药、材料等领域科研生产中起着关键作用。

其课程教学长期以来受到理论内容难、仪器开放难等因素困扰’结合苏州大学核磁共振波谱课程的双语教学实践提出了相应的对策与改进举措,探讨通过更新改进教学方法和内容,突破传统教学模式,使学生从理论联系实践,从“会用”到“用好”核磁技术’关键词:核磁共振波谱;远程虚拟终端%网络课堂中图分类号:G642O文献标识码:B文章编号:1008-021X(2020)23-0158-02Exploration of Teaching in Nuclear Magnetic Resonance Spectroscopy CourseLi Xiaohong(Colleae of Chemist—,Chemicai Enginee/ng and Materials Science of Soochow University,Suzhou215123,China) Abstract:Nuclear magnetic resonance spectroscopy(NMR),as an Onportant method of studying compound structures, component contents and kinetic parameters,plays a key rolo in the fields of chemist—,pharmaceutical indust—and materials science.For a long time,its course teaching has been troubled by the dOficulta of theo—tical content and the lack of instmmentai peacicce.Based on ihebcocnguaoieachcngpeacicceooNMR couesecn Soochow Unceeesciy,ihcspapeedcscu s eshow iobeeak iheough iheieadciconaoieachcngmodebycmpeoecngiheieachcngmeihodsand conienis,soihaisiudeniscan combcneiheoeywcih peacicceand makegood useooNMRiechnooogy.Key wordt:NMR%VNC%online coa s es核磁共振波谱作为鉴定化合物结构的重要手段,对样品无损,分辨率高,较灵敏,可获得准确的定性定量信息。

2型糖尿病患者尿液的代谢组学研究

2型糖尿病患者尿液的代谢组学研究

2型糖尿病患者尿液的代谢组学研究苏君梅;葛卫红;许广艳;张宇【摘要】目的从代谢组学角度分析并寻找2型糖尿病(T2DM)患者可能的代谢标记物.方法选取30例初诊、或有糖尿病史经药物治疗控制不理想且无并发症的T2DM患者,另选取30例性别、年龄匹配的健康者为正常对照.收集清晨空腹中段尿,以气相色谱-质谱联用(GC-MS)技术对尿液样本进行代谢图谱分析,正交偏最小二乘法判别研究尿液内源性化合物在两组间的差异.结果 T2DM组和正常对照组尿液代谢谱明显分离.与正常对照组比较,T2DM组尿液2,3,4-三羟基丁酸、肌醇、D-葡萄糖、D-葡萄糖酸及尿素含量升高(P<0.05或0.01),马尿酸含量减少(P<0.01).结论代谢组学检查提示T2DM患者尿液中代谢标志物为2,3,4-三羟基丁酸、肌醇、马尿酸、D-葡萄糖、D-葡萄糖酸及尿素,观察这些标志物含量的变化有助于T2DM 的临床诊断及发病机制研究.【期刊名称】《浙江医学》【年(卷),期】2015(037)004【总页数】5页(P278-282)【关键词】代谢组学;2型糖尿病;气相色谱-质谱联用;正交偏最小二乘法判别【作者】苏君梅;葛卫红;许广艳;张宇【作者单位】310053 杭州,浙江中医药大学药学院;310053 杭州,浙江中医药大学药学院;310053 杭州,浙江中医药大学药学院;浙江省中医院内科【正文语种】中文2型糖尿病(type 2 diabetes mellitus,T2DM)是一种以胰岛素抵抗伴胰岛素分泌缺陷或胰岛素敏感性降低而引起的、以糖代谢失常为主的内分泌代谢性疾病,表现为整体的代谢紊乱。

作为一种代谢综合征,T2DM很难用单一的评价指标和发病机制来反映其发生及变化,而代谢组学作为一种全面研究生物机体或组织细胞动态代谢的技术手段,在疾病的诊断、标志物筛查、发病机制以及药物研发等方面的应用正成为研究的前沿领域[1-2]。

近年研究报道,利用代谢组学技术对糖尿病患者组织或体液中代谢物种类及含量的变化进行分析,寻找主要的差异代谢物,对监测糖尿病的发生、发展和辅助其临床早期诊断、探索发病机制具有重要意义[3-4]。

【材料研究方法】NMR 核磁共振

【材料研究方法】NMR 核磁共振
instrumentation, specifically pulse techniques, which permit high resolution spectra to be obtained in solids as well as liquids and are providing greater
Larmor precess.
• Larmor frequency (ω0)
ω0 = 2πν 0 = γH 0
Where ω0 : angular spinning speed of nuclei ν0:Lamor frequency, H0:applied magnetic field。 γ : magnetic ratio of nuclei, is characteristics of nuclei.
NMR
Splitting of spinning energy levels
NMR
¾ In the absence of an applied magnetic field, the magnetic moment vectors are orientated randomly and the spinning nuclei all possess the same energy.
scarcely used in NMR. I=1/2:1H、19F、31P、13C posses nuclear spins, can be used in NMR.
2. Nuclear Magnetic Resonance Spin of 1H Spin quantum number I=1/2。 Magnetic field will produce according to right-hand rule while a proton spins.

基于DNA 分子导线的纳米生物传感器

基于DNA 分子导线的纳米生物传感器

当靶 分子 与 DNA 分子导线 形成 三 螺旋结构, 靶分子的嘧啶与 DNA 分子导线的嘌呤环 N7 和 N6 或 O6 形成 氢键,减弱 了 DNA 分子导线链 间的相 互作用力,改变了 DNA 分子导线的结构,就会释 放出电活性物质,阻碍电子的转移,从而引起杂交 前后响应信号的变化 ( 图4 ) 。
电偶生物传感器的理想材料。文章简要介绍了 DNA 分子导线的制备方法及导电机理,以及基于 DNA 分子导线的 基于 DNA 分子导线的纳米生物传感器在基因分析、单碱基突变检测等方面的应用。 关键词:DNA 分子导线;导电机理;纳米生物传感器;分子杂交 中图分类号:TP212 3
摘要:DNA 分子导线具有独特的导电性能和塞贝克 (Seebeck) 效应,它是构筑电化学纳米生物传感器和热
DNA 分子结合,从而形成具有“供体 - 桥 - 受体” 结构的分子导线 ( 图2 ) 。
e Acceptor Donor
e
Fig.2
Schematic diagram of DNA wires based on the structures of Donor-Bridge-Acceptor
基 于 DBA 的 DNA 分子导线,电子的 转移 受 诸多因素 的 影响 , 比 如: 碱 基 组 成 , DNA 构 型 (发 夹 、线 形 或 闭 合 环状) ,电子 偶 合 能力 (茁 ), 供 体 、 受 体 与 DNA 匹 配 问 题 , 溶 液 介 质 , 桥 等[14, 23~25]。这可通过优化基于 DBA 的 DNA 分子体 系,为 研究 DNA 分子 长距 离 传递 电子提 供可能, 从而增强 DNA 分子的远程导电能力[26]。
M-DNA 的线性复合物。复合物中的二价金属阳离 子又能 被乙二胺 四 乙酸钠 ( EDTA) 置 换出来 ,形 成 B-DNA,且这个过程是可逆的[17]。Lee 等[18]研究 发 现 M-DNA 具 有 较 强 的 导 电 能 力 , 此 外 , 文 献[19, 20]还表明,锌、镍 和钴离子能进入到 DNA 的 双螺旋中心,形成 DNA 含有金属离子的状态,从 而获得 M-DNA 分子导线。 M-DNA 的结构 ( 图 1) 基于以下实验结果[17, 21, 22]可以证实: 1) M-DNA 与 B-DNA 具有 相似的 吸收光谱 和 CD 色谱。 2) 线性或闭合环的 M-DNA 与 B-DNA 有着相 同的迁移率,说明 M-DNA 也是右手螺旋结构。 3) 所 有 序 列 ( 除 聚 d (AT) 外 ) 都 能 形 成 M-DNA,加入 EDTA 又还原为 B-DNA。 4) 次黄嘌呤、 6- 甲基 腺嘌呤 、 2,6- 二氨基 嘌 呤、7- 氮杂腺嘌呤和 7- 氮杂鸟嘌呤等碱基可通 过 Waston-Crick 配 对 , 形成 稳定 的 M-DNA。 因 此 , M-DNA 是 由 A-T 和 G-C 配 对 形 成 Watson-Crick 螺旋结构,而不是 Hoogsteen or wobble 结构。 5) 溴乙锭不能与 M-DNA 结合。 6) 每一个碱 基对结合二价金属阳离 子后都释 放一个质子,NMR 显示亚氨基质子被替换了,这 证实了金属离子 位 于双螺旋结构 中心, 并与 T 的 N3 和 G 的 N1 配位。

代谢组学

代谢组学

代谢组学研究技术与应用曾令冬 (中央民族大学生命与环境科学学院)1.代谢组学概述:随着人类基因组测序工作的完成,人们对生命过程的理解有了很大的提高,研究的热点也转移到基因的功能和几个“组学”研究中,这几个“组学”包括研究核糖核酸(RNA)转录过程的转录组学、研究某个过程中所有蛋白及其功能的蛋白组学、研究代谢产物的变化及代谢途径的代谢组学[1]。

代谢组学(metabonomics)是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支,是继基因组学、转录组学、蛋白质组学后系统生物学的另一重要研究领域,它是研究生物体系受外部刺激所产生的所有代谢产物变化的科学,所关注的是代谢循环中分子量小于1000的小分子代谢物的变化,反映的是外界刺激或遗传修饰的细胞或组织的代谢应答变化[2]。

根据研究的对象和目的的不同,Fiehn等,将代谢组学分为四个层次,即:①代谢物靶标分析:对某个或某几个特定组分的分析。

在这个层次中,需要采取一定的预处理技术,除掉干扰物,以提高检测的灵敏度。

②代谢轮廓(谱)分析:对少数所预设的一些代谢产物的定量分析。

如某一类结构、性质相关的化合物(如氨基酸、顺二醇类)、某一代谢途径的所有中间产物或多条代谢途径的标志性组分。

进行代谢轮廓(谱)分析时,可以充分利用这一类化合物的特有的化学性质,在样品的预处理和检测过程中,采用特定的技术来完成。

③代谢组学:对限定条件下的特定生物样品中所有代谢组分的定性和定量。

进行代谢组学研究时,样品的预处理和检测技术必须满足对所有的代谢组分具有高灵敏度、高选择性、高通量的要求,而且基体干扰要小。

代谢组学涉及的数据量非常大,因此需要有能对其数据进行解析的化学计量学技术。

④代谢指纹分析:不分离鉴定具体单一组分,而是对样品进行快速分类(如表型的快速鉴定)。

[2]2.代谢组学的研究技术:I气相色谱-质谱联用仪(GC-MS)采用GC-MS可以同时测定几百个化学性质不同的化合物,包括有机酸、大多数氨基酸、糖、糖醇、芳胺和脂肪酸,该分析技术被专家称为最宝贵的分析手段。

代谢组学无处不在—水产动物研究

代谢组学无处不在—水产动物研究

代谢组是指某一生物或细胞、组织在一特定生理时期内所有的低分子量代谢产物的集合,主要是指分子量小于1000Da 的内源性小分子,根据其不同的理化属性可将代谢组物进行分类。

氨基酸肽类能量类脂类核苷酸维生素和辅助因子目前,代谢组学已成为后基因组学的重要分支,其位于系统生物学的最顶端,可有效地捕捉机体生命活动过程中的细微变化,直接反映复杂的生化反应网络的结果,从而提供对动物生理学多个方面的见识,弥补了基因与表型间的空缺。

代谢组学研究领域已广泛渗透到疾病诊断、药物毒理学、功能基因组学、动物营养、遗传育种、生长发育、环境适应、环境毒理学等方面,水产生物研究也不例外,主要集中在水产动物营养、育种、疾病预防、养殖、环境监测等方面。

1、水环境胁迫水是水产动物的生存环境,但随着自然环境变化、工业废水和生活污水的排放等,导致水温度、PH、以及CO2浓度改变,以及水中化合物、重金属严重超标,水体污染物的增加,使水生动物生存受到了不同程度的影响,环境污染对双壳类软体动物污染尤其严重。

代谢组学通过观察代谢谱可以实时动态地检测水环境对有机体生理机能的影响。

研究内容物种组织研究方法文献水环境污染物脱氢孕酮对斑马鱼产卵和繁殖的影响斑马鱼受精卵LC-MS/MS、GC-MS/MSDydrogesterone exposure induces zebrafish ovulationbut leads to oocytes over-ripening:An integratedhistological and metabolomics study,IF=7.297代谢+转录解析双酚A对斑马鱼授精后胚胎代谢的影响斑马鱼胚胎LC-MS、RNA-SeqMetabolic disruption of zebrafish(Danio rerio)embryos by bisphenol A.An integrated metabolomicand transcriptomic approach,IF=5.7代谢组学揭示生物珊瑚软珊瑚UPLC-MS Metabolomics reveals biotic and abiotic elicitor和非生物胁迫对软珊瑚萜类物质影响effects on the soft coral Sarcophyton ehrenbergi terpenoid content ,IF=4.011海参对多种环境胁迫的代谢组反应:热和低氧海参海参呼吸树LC-MS/MSMetabolome responses of the sea cucumberApostichopus japonicus to multiple environmental stresses:Heat and hypoxia ;IF=3.7822、水产养殖目前水产养殖发展迅速,规模越来越大,养殖环境的微小改变,即能引起水产动物生化特征、代谢产物发生变化,从而影响品质以及产量。

水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学

水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学

水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学傅日强【摘要】有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在"仿真"水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关, 因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备, NMR探头和实验方法方面的显著发展, 极大地促进了有序样品的固体NMR的发展, 并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法, 并总结此领域里的最新研究进展.%Solid-state nuclear magnetic resonance (NMR) of aligned samples has been rapidly emerged as a successful and important spectroscopic approach for high-resolution structural characterization of membrane-bound proteins and peptides in their "native-like" hydrated lipid bilayers. Because the structures, dynamics, and functions of membrane-bound proteins and peptides are highly associated with heterogeneous native environments, proteins and peptides are prepared for solid-state NMR measurements in the presence of either bilayers that are mechanically aligned on glass plates or magnetically aligned bicelles. Orientation dependent anisotropic spin nuclear interactions from these aligned proteins and peptides can be obtained. These orientational restraints can be assembled into high-resolution three-dimensional structures. Driven by significant advances in sample preparation protocols as well as NMRprobes and other methodology developments in the past decade, the aligned sample NMR approach has been well developed and become an effective way for structural characterization of membrane-bound proteins and peptides. This review introduces high resolution solid-state NMR spectroscopy of aligned samples and summarizes recent methodology developments in this arena.【期刊名称】《波谱学杂志》【年(卷),期】2009(026)004【总页数】20页(P437-456)【关键词】固体核磁共振;膜蛋白;取向约束;水化磷脂【作者】傅日强【作者单位】Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida, 32310, USA【正文语种】中文【中图分类】O482.53傅日强,1966年4月出生.1986年毕业于中国科技大学,获工学学士学位,1992年毕业于中国科学院武汉物理研究所,获理学博士学位.现任美国佛罗里达州立大学国家强磁场实验室科学家,900 MHz学术委员会主任,佛罗里达州立大学化学系客座教授.主要研究方向为固体核磁共振方法及其在生物、材料学科中的应用.。

瑞巴派特片联合雷贝拉唑治疗胃溃疡及活动性胃炎的临床疗效观察

瑞巴派特片联合雷贝拉唑治疗胃溃疡及活动性胃炎的临床疗效观察

64·临床研究·医学食疗与健康 2022年1月第20卷第3期作者简介:张秀红(1980.09-),女,本科,副主任医师,研究方向为消化系统专业瑞巴派特片联合雷贝拉唑治疗胃溃疡及活动性胃炎的临床疗效观察张秀红(临洮县人民医院,甘肃 定西 730500)【摘要】目的:观察并评价瑞巴派特片联合雷贝拉唑治疗胃溃疡及活动性胃炎的临床疗效。

方法:选择100例胃溃疡及活动性胃炎患者,均为2020年7月至2021年7月临洮县人民医院收治,根据不同治疗方法分组:实施奥美拉唑治疗的为对照组,共计50例;实施瑞巴派特片联合雷贝拉唑治疗的为观察组,共计50例。

比较两组患者的治疗有效率,统计两组患者幽门螺旋杆菌清除率,对比两组患者治疗前后炎症因子变化,观察两组患者恶心呕吐、肝肾异常、排便增加、头痛晕眩等不良反应发生率。

结果:对比两组临床疗效,观察组的总有效率为94.00%,显著优于对照组的78.00%,组间差异有统计学意义(P <0.05);观察组幽门螺旋杆菌清除率为94.00%,显著优于对照组的80.00%,组间差异有统计学意义(P <0.05);治疗前两组患者的肿瘤坏死因子-α(TNF-α)、白介素-lβ(IL-1β)、血栓素B2(TXB2)水平差异无统计学意义(P >0.05),治疗后两组患者的TNF-α、IL-1β、TXB2水平出现明显的降低趋势,且相较于对照组[(1.52±0.42)ng/mL、(0.39±0.06)ng/mL、(34.28±3.28)ng/mL ],观察组[(1.16±0.34)ng/mL、(0.27±0.04)ng/mL、.(27.33±1.46)ng/mL ]明显更低(P <0.05);就两组不良反应经比较,观察组和对照组分别为6.00%和8.00%,两组之间无显著性的差异(P >0.05)。

结论:瑞巴派特片联合雷贝拉唑治疗胃溃疡及活动性胃炎的临床疗效显著,能够提高患者的治疗有效率,降低炎性反应因子水平,提高幽门螺旋杆菌清除率,且用药安全,临床可进行推广和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aquatic Toxicology 146 (2014) 82–92Contents lists available at ScienceDirectAquaticToxicologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a q u a t oxNMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus )Minghui Li a ,Junsong Wang b ,∗∗,Zhaoguang Lu a ,Dandan Wei a ,Minghua Yang a ,Lingyi Kong a ,∗aState Key Laboratory of Natural Medicines,Department of Natural Medicinal Chemistry,China Pharmaceutical University,24Tong Jia Xiang,Nanjing 210009,PR China bCenter for Molecular Metabolism,School of Environmental &Biological Engineering,Nanjing University of Science &Technology,200Xiao Ling Wei Street,Nanjing 210094,PR Chinaa r t i c l ei n f oArticle history:Received 30August 2013Received in revised form 22October 2013Accepted 24October 2013Keywords:Lambda-cyhalothrin Metabolomics 1H NMR spectroscopyGoldfish (Carassius auratus )a b s t r a c tIn this study,a 1H nuclear magnetic resonance (NMR)based metabolomics approach was applied to inves-tigate the toxicity of lambda-cyhalothrin (LCT)in goldfish (Carassius auratus ).LCT showed tissue-specific damage to gill,heart,liver and kidney tissues of goldfish.NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA)and two-dimensional statisti-cal total correlation spectroscopy (2D-STOCSY)was developed to discern metabolite changes occurring after one week LCT exposure in brain,heart and kidney tissues of goldfish.LCT exposure influenced levels of many metabolites (e.g.,leucine,isoleucine and valine in brain and kidney;lactate in brain,heart and kidney;alanine in brain and kidney;choline in brain,heart and kidney;taurine in brain,heart and kidney;N-acetylaspartate in brain;myo -inositol in brain;phosphocreatine in brain and heart;2-oxoglutarate in brain;cis -aconitate in brain,and etc.),and broke the balance of neurotransmitters and osmoregulators,evoked oxidative stress,disturbed metabolisms of energy and amino acids.The implica-tion of glutamate–glutamine–gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time.Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms,and the discovery of biomarkers for pesticide pollution in aquatic environment.© 2013 Elsevier B.V. All rights reserved.1.IntroductionEnvironmental pollution caused by pesticides is a big problem in many developing countries,e.g.China and other agricultural countries all over the world (Zhang et al.,2011),where pesti-cides are excessively used to gain agricultural productivity.Most pesticides ultimately find their way into rivers,lakes and ponds (Arjmandi et al.,2010),showing detrimental effects on non-target organisms in natural habitats nearby agricultural fields.Pesticide residue in water environment is known to have ill effects on the growth,survival and reproduction of aquatic animals,causing seri-ous aquaculture loss.Even worse,through bioaccumulation,those at the top of the food chain,e.g.humans,are especially threatened by intake of contaminated aquatic creatures.∗Corresponding author.Tel.:+862583271405;fax:+862583271405.∗∗Corresponding author.Tel.:+862583271402.E-mail addresses:wang.junsong@ (J.Wang),cpu lykong@ ,lykong@ (L.Kong).Fishes,rich in proteins,lipids and other nutritions,are impor-tant for global food supply.Besides,they also play an essential role in ecological balance and energy flow in aquatic ecosystems.Fishes are particularly sensitive to water contamination,thus are suitable to act as bioindicators of environmental pollutants,monitoring the quality of aquatic systems (Adams and Greeley,2000).Exposure of fish to pesticides produced biochemical disturbances in fish (Gül et al.,2004).Pesticides could significantly damage physiological functions and disturb biochemical processes in fishes (Banaee et al.,2011).There have increasing reports on the death of fish in vari-ous streams,lakes and ponds around the world due to pesticides runoff associated with intense agricultural or industrial practices.Recently,many studies have been conducted to determine the mechanisms for the toxicity of pesticides in fishes,with the ulti-mate aim to monitor,control and possibly intervene in the effects of xenobiotics exposure on aquatic ecosystem.Pyrethroids are a class of insecticides derived of pyrethrins,naturally occurring insecticidal components in flowers of chrysan-themums (Chrysanthemum cinerariaefolium ).LCT (Fig.1)is one of the pyrethroid insecticides widely used worldwide in agricultural pest control due to its strong activity against a broad spectrum of0166-445X/$–see front matter © 2013 Elsevier B.V. All rights reserved./10.1016/j.aquatox.2013.10.024Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.M.Li et al./Aquatic Toxicology146 (2014) 82–9283Fig.1.The chemical structure of two isomers of lambda-cyhalothrin. pests(Mathirajan et al.,2000).Though in relatively lower toxicity to mammals than other insecticides,they can also do severe harm to aquatic organisms and humans(Haya,1989).The major toxicity of LCT is due to its interaction with membrane bound ion channels in neurons and disruption of nerve function by prolonging the open phase of the sodium channel gates,thus leading to hyperactivity of the nervous system,and eventually resulting in paralysis and/or death.Despite of wealthy information on the toxicity of LCT available, its toxic effects on the whole body,especially its disturbance on the metabolism of animals are still scarce.Following genomics, transcriptomics and proteomics,metabolomics is an imporatant ‘omic’science in systems biology,which holistically determines the global metabolites and thus detects metabolic events of a bio-logical system in response to disease,genetic and environmental perturbations.Metabolomics is widely applied in toxicity screening (Shockcor and Holmes,2002),disease diagnosis(Gowda et al., 2008),mechanistic study(Song et al.,2013;Tian et al.,2013),ther-apy and physiological monitoring(Lindon et al.,2004;Spratlin et al., 2009)as well as environmental sciences(Robertson et al.,2011). Metabolomics technologies offered new possibilities in the clar-ification of the modes of action of chemicals(Aliferis and Jabaji, 2011),and in the discovery of new biomarkers(Miracle and Ankley, 2005).Despite the promise of metabolomics,its application to evalu-ate the toxic effects of LCT has not been reported previously.The aim of the present study is to investigate under laboratory condi-tions the global metabolic response and specific changes in brain, heart,kidney and liver tissues of goldfish after sub-lethal exposure to LCT.2.Materials and methods2.1.ChemicalsLCT is a synthetic pyrethroid insecticide(C23H19C l F3NO3): CAS chemical name␣-cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethyl cyclopropanecarboxylate,CAS registry number91465-08-6.A commercial formulation of micro-elusive LCT,named“Tiffe®”(Taifeng agrochemicals,Hangzhou, China)was used in the experiments.All other chemical products used in this study were purchased from Sigma Chemical Co.(St. Louis,MO,USA).2.2.Experimental animalsGoldfish(Carassius auratus∼12cm long,∼30g each)were pur-chased from a local market.The goldfish were fed with commercial fish food once a day and acclimated for one week in polycarbo-nate tanks(60L)filled with activated charcoal-filtered tap water of Nanjing city,China,refreshed every24h.2.3.Dosefinding experimentsExperimental concentrations of LCT were determined consid-ering the sensitivity of goldfish to the insecticide as observed in previous studies(Haya,1989;Köprücüand Aydın,2004).In a preliminary experiment tofind an appropriate exposure concen-tration,goldfish were exposed to a series of concentrations of LCT at7.5,1.5,0.3,0.06and0.012␮g/L for96h and the mortality was recorded.Goldfish exposed to0.012␮g/L LCT were all survived, while higher concentrations of LCT produced mortality over50% in3days.Therefore,0.012␮g/L was selected as thefinal exposure concentration of LCT.2.4.Exposure experimentAfter the acclimation period,goldfish were randomly sepa-rated into two groups of ten goldfish each,in the tankfilled with water containing0.012␮g/L LCT(LCT group)or not(control group). Seven days after chemical exposure,goldfish were sacrificed in accordance with the Animal Ethics Committee of China Pharmaceu-tical University and the Chinese council on animal care guidelines. Organs of liver,brain,heart and kidney were removed from the goldfish body,immediately immersed in liquid nitrogen and then stored at−80◦C until use for metabolomics analyses.2.5.Haematoxylin and eosin(H&E)stainingAn aliquot of organs were quickly removed,rinsed with cold phosphate buffered saline(PBS)and then immersed in10%neutral-buffered formaldehyde for24h,embedded in paraffin,and sliced into5␮m thickness.The sliced sections were stained with H&E, and examined under light microscopy.2.6.Sample preparation for1H NMR analysisMetabolites were extracted based on the reported protocol(Beckonert et al.,2007).Briefly,each sample was weighted,homogenized with an icy cold solvent (methanol/H2O/chloroform=4/2.85/4,v/v),and centrifuged at 1000×g,4◦C.Subsequently,the upper aqueous layer(containing polar metabolites)of each sample was transferred into fresh Eppendorf tubes and was then frozen and lyophilized until dryness on a vacuum concentrator.The dried samples were stored at−80◦C until use for NMR analysis.The dried samples were dissolved in 600␮L99.8%D2O phosphate buffer(0.2M,pH7.0)containing 0.05%(w/v)sodium3-(trimethylsilyl)propionate-2,2,3,3-d4(TSP). After vortexing and centrifugation to remove any debris,the supernatant was then transferred to a5mm NMR tube for1H NMR analysis.2.7.1H NMR spectroscopyAll1H NMR spectra were recorded at298K on a Bruker AV 500MHzflow-injection spectrometer.D2O was used forfield fre-quency locking and TSP was used as a chemical shift reference(1H,ı0.00).A transverse relaxation-edited Call-Purcell-Meiboom-Gill (CPMG)sequence(90( –180– )n-acquisition)with a total spin-echo delay(2n )of10ms was used to suppress the signals of84M.Li et al./Aquatic Toxicology146 (2014) 82–92proteins.1H NMR spectra were measured with128scans into32K data points over a spectral width of7500Hz.The spectra were Fourier transformed after multiplied the FIDs by an exponential weighting function corresponding to a line-broadening of0.5Hz.2.8.Pre-processing of NMR dataThe spectra for all samples were manually corrected for phase and baseline,and referenced to TSP(1H,ı0.00),using Bruker Topspin3.0software(Bruker GmbH,Karlsruhe,Germany).The 1H NMR spectra were automatically exported to ASCIIfiles using MestReNova(Version8.0.1,Mestrelab Research SL),which were then imported into“R”(/),and aligned with an in-house developed R-script.The one-dimensional(1D) spectra were converted to an appropriate format for statistical anal-ysis by automatically segmenting each spectrum into0.003ppm integrated spectral regions(buckets)between0.2and10ppm. Regions between4.5and5.0ppm,containing the residual water resonance,were excluded.All spectra were mean-centered and the integral values of each spectrum were probability quotient normal-ized to account for different dilutions of samples.2.9.Peaks assignmentsResonances were assigned by quering publicly accessible metabolomics databases such as Human Metabolome Database (HMDB,http://www.hmdb.ca),Madison-Qingdao Metabolomics Consortium Database(MMCD,/) and Kyoto Encyclopedia of Genes and Genomes(KEGG, http://www.kegg.jp),aided by Chenomx NMR suite7.5(Chenomx Inc.,Edmonton,Canada),andfinally confirmed by two-dimensional NMR techniques TOCSY(total correlation spectroscopy),HSQC (heteronuclear single quantum correlation).The assignments and integrations of peaks were aided by two-dimensional STOCSY (Cloarec et al.,2005;Maher et al.,2008),performed by a suite of in-house developed scripts running in“R”.2.10.Statistical analysisMultivariate statistical data analysis,including unsupervised principal component analysis(PCA)and supervised OPLS-DA meth-ods were performed by a suite of in-house developed scripts running in“R”software(/).OPLS-DA iden-tified most significant variations between the treatment groups. To assess the statistical significance of selected predictive quality parameters of the established OPLS-DA model,permutation testing and two-fold cross-validation(2CV)was carried out.Permutation testing is based on the comparison of the predictive capabilities of an OPLS-DA model using real class assignments to a number of models calculated after random permutation of the class labels. The validity of the models against overfitting was assessed by the parameters R2Y,and the predictive ability was described by Q2Y.Negative or very low Q2Y values indicate that the differ-ences between groups are not statistically significant.To ensure that discrimination in the OPLS-DA model was not the result of data overfitting,a validation of the model was performed using permutation testing(1000times).The observed statistic P val-ues via permutation testing which were less than0.05confirmed the significance of the OPLS-DA model at a95%confidence level. The OPLS-DA model parameters for brain,heart,kidney and liver are presented in the supporting information(Table S1,Fig.S1).A parametric Student’s t-test or a nonparametric Mann–Whitney test(dependent on the conformity to normal distribution)was performed on the signal integrals to evaluate the difference of metabolites between groups.Firstly,the integration areas of the detected metabolites with marked differentiating ability werefirst tested for the normality of the distribution.If the distribution followed the normality assumption,a parametric Student’s t-test was applied;otherwise,a nonparametric Mann–Whitney test was performed to detect statistically significant metabolites that were increased or decreased between groups,the associated P values were summarized in Table1.3.Results3.1.Effects of LCT on behavior and histopathologySelected tissues including gill,brain,heart,liver and kidney were histopathologically investigated(Fig.2).H&E stained tis-sue sections revealed tissue specific pathological changes in LCT treated goldfish.Fish gills,directly exposed to the environment, are especially vulnerable:shortening and lamellar fusion of sec-ondary lamellae,epithelial necrosis,desquamation were noticed after one week exposure to LCT(Fig.2F).For heart after seven days exposure,cardiac pericardium can be seen as inflammatory cell infiltrations(Fig.2H).Photomicrographs of the liver revealed that histopathological changes were not evident for treated group: slight inflammatory cell infiltrations in LCT group were observed (Fig.2I).One week of LCT exposure significantly damaged the renal histological structure(Fig.2J),including dilation of glomeru-lar capillary,vacuolar variations in endothelial cellular size,and interstitial inflammatory cell infiltrations.Behavior is the most reliable indicator of potential toxic effects on central nervous system.Goldfish exposed to LCT at0.06␮g/L or higher dosage showed behavioral abnormalities as evidenced by spastic movements(sudden and uncontrolled body movements), hyperactivity,erratic swimming,convulsion,partial/complete loss of equilibrium,jaw spasms and gulping respiration.3.2.STOCSY2D-STOCSY was used to identify correlations between spectral resonances of interest to assist metabolite identification.Different resonances from a same molecule are highly correlated(correlation coefficient r=1theoretically).Furthermore,molecules in the same biochemical pathway may also exhibit a secondary high correlation coefficient because of their similar or even codependent responses to a stimulus.This would be meaningful for our study to confirm the ambiguous peaks due to overlap and to analyze the disturbed metabolic pathways under LCT insult.2D-STOCSY is very useful to decipher the structures of metabolites from biological samples, taking glutamate and glutamine(Fig.3B)and taurine(Fig.3C)as examples.Glutamate and glutamine are the most important amino acids regarding neurological function.As the major toxicity of LCT is its neurotoxicity,their detection and monitoring in this study is cru-cial.Both glutamate and glutamine have two methenes and one methine,presenting multiplets between2.0and2.5ppm,and at 3.8ppm in the1H NMR spectrum.Due to partial overlapping,glu-tamate is still difficult to be resolved from glutamine.In the2D STOCSY map,distinct correlations from the peak at2.05ppm to peaks at2.36and3.75ppm were observed,and hence,they were assigned to glutamate.The peak at2.14ppm also has STOCSY cor-relations with peaks at2.46and3.77ppm,and therefore,they were assigned to glutamine.3.3.Multivariate statistical analyses of1H NMR spectra3.3.1.Aqueous liver extractsA principal component analysis(PCA)was performedfirstly to examine intrinsic pattern in the data set and to gain an overview of variation among the groups;however,PCA could not sufficientlyM.Li et al./Aquatic Toxicology146 (2014) 82–9285Fig.2.Histopathological examination of control and LCT treated gill,brain,heart,liver and kidney tissues by H&E staining.(A–E)Control goldfish with normal gill,brain, heart,liver and kidney(×400).(F)Gill of LCT group showing epithelial necrosis,desquamation,lamellar fusion,and shortening of secondary lamellae(×400).(G)Brain of LCT group showing no significant change(×400).(H)Heart of LCT group showing inflammatory cell infiltrations of cardiac pericardium(×400).(I)Liver of LCT group showing interstitial inflammatory cell infiltrations(×400).(J)Kidney of LCT group showing dilation of glomerular capillary,vacuolar variations in endothelial cellular size, and interstitial inflammatory cell infiltrations(×400).86M.Li et al./Aquatic Toxicology146 (2014) 82–92Table1Metabolites identified from the brain,heart and kidney tissue extracts,and their variations of LCT group versus control group.No.Metabolites Assignments Chemical shifts aı1H(ppm)Brain Heart KidneyChange b P c Change P Change P 1LeucineıCH3,ıCH3, CH,˛CH0.95(d),0.96(d),1.70(m),3.73(t)↓***––↓*** 2IsoleucineıCH3, CH3,˛CH0.94(t),1.00(d),3.66(d)↓**––↓** 3Valine CH3, CH30.97(d),1.04(d)↓***––↓*** 4MethylsuccinateˇCH3 1.09(d),//––5Lactate CH3,CH 1.32(d),4.10(q)↑*↓*↓–6AlanineˇCH3,˛CH 1.47(d),3.77(q)↑*––↓–7LysineıCH2, 1.72(m),↓–/↓*** 8GABA˛CH2,ˇCH2, CH2 2.30(t),1.89(m),3.01(t)↑–// 9Acetate CH3 1.91(s)––//10Acetamide CH3 1.98(s)––↓–↓–11NAA CH3,CH2,CH2,CH 2.02(s),2.49(dd),2.70(dd),4.38(m)↓–//12GlutamateˇCH2,ˇCH2, CH2,˛CH 2.05(m),2.12(m),2.36(m),3.75(m)↑**↑–↑**13GlutamineˇCH2, CH2,˛CH 2.14(m),2.45(m),3.76(t)↓*↑–––142-Oxoglutarate CH2,ˇCH2 2.40(t),3.01(t)↓*//15Succinate CH2 2.41(s)––/––16Methylamine CH3 2.58(s)––/↑**17Dimethylamine CH3 2.72(s)––/––18Creatine CH2,CH3 3.01(s),3.91(s)↑**––↓**19Phosphocreatine CH2,CH3 3.03(s),3.93(s)↓–↓–––20Malonate CH2 3.13(s)↓*/↑***21Choline CH3 3.18(s)↓–↓–↑**22Phosphocholine CH3 3.21(s)↓***↓–↓–23Taurine NH2–CH2,SO3–CH2 3.26(t),3.43(t)↑*↓–↑*24TMAO CH3 3.26(s)↑–/–↑–25myo-Inositol CH 3.27(t),3.53(dd),3.62(t),4.05(t)↑–//26Glucose 3.65–3.92(m)/↓/↑/27Maltose 5.40(m),5.23(d),3.96(t),3.56–3.92(m)/↓/↑/28cis-Aconitate CH 5.90(s)↓**/––29Inosine O–CH–N,N–CH N,N–CH N 6.10(d),8.23(s),8.34(s)↓–––↑***30Histidine N–CH C,N–CH N7.10(s),7.89(s)––//31Tyrosine CH,CH 6.90(d),7.20(d)↓*/↓***32Phenylalanine CH,CH,CH7.33(d),7.37(m),7.43(m)//↓***33AXP CH 6.15(d)↑*–*↓*34Nicotinurate CH,CH8.93(s),8.71(d)––//35Adenosine CH,CH8.25(s),8.34(s)//↑***36AMP N CH–N,N CH–N8.23(s),8.56(s)↑–/↓***a Multiplicity:s singlet,d doublet,t triplet,dd doublet of doublets,q quartets,m multiplets.b Metabolites with“↑/↓”means increased/decreased of LCT group versus control group,“/”means not detected or data not shown.c*represents P<0.05,**represents P<0.01and***represents P<0.001,“–”means no significant differences.P-values were calculated based on a parametric Student’s t-test or a nonparametric Mann–Whitney test(dependent on the conformity to normal distribution).Fig.3.Two-dimensional STOCSY analysis of brain extraction regions from1.8ppm to4.0ppm used to identify peaks of glutamate(blue)and glutamine(green),and heart extraction regions from3.1ppm to3.6ppm used to identify peaks of taurine(black).The degree of correlation across the spectrum has been color coded and projected on the spectrum.(A)Partial spectrum range from1.9to4.0ppm of brain extraction;(B)partial spectrum for the rangeı1.8–2.6of brain extraction,(C)partial spectrum for the rangeı3.1–3.6of heart extraction.The STOCSY enabled the assignments of these three metabolites as glutamate,glutamine and taurine,respectively.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of the article.)87Fig.4.Typical500MHz CPMG1H NMR spectra of brain,heart and kidney tissue extracts with the recognized metabolites labeled.1Leucine,2Isoleucine,3Valine,4Methyl-succinate,5Lactate,6Alanine,7Lysine,8GABA(4-Aminobutyrate),9Acetate,10Acetamide11NAA(N-Acetylaspartate),12Glutamate,13Glutamine,142-Oxoglutarate, 15Succinate,16Methylamine,17Dimethylamine,18Creatine,19Phosphocreatine,20Malonate,21Choline,22Phosphocholine,23Taurine,24TMAO(trimethylamine-N-oxide),25myo-Inositol,27Maltose,28cis-Aconitate,29Inosine,30Histidine,31Tyrosine,32Phenylalanine,33AXP(adenosine di/tri/mo-phosphate),34Nicotinurate,35 Adenosine,36AMP(adenosine monophosphate).separate the two groups(see Fig.S2in Supporting information).The supervised OPLS-DA model were performed to obtain clear separa-tion,but also failed(R2Y=0.723,Q2Y=0.286,P=0.190),suggesting no significant metabolites change in liver.3.3.2.Aqueous brain extractsRepresentative1H NMR spectra of aqueous brain extracts from control and LCT treated groups were shown in Fig.4A,respec-tively(see the detailed metabolite assignments in Table1).The 1H NMR spectra of aqueous brain extracts contained a number of metabolites including branched-chain amino acids(BCAAs,e.g. leucine,isoleucine and valine),lactate,alanine,lysine,gamma-aminobutyric acid(GABA),acetamide,N-acetylaspartate(NAA), glutamate,glutamine,phosphocreatine(PCr),malonate,choline, phosphocholine,taurine,trimethylamine-N-oxide(TMAO),myo-inositol,inosine,and etc.PCA was performedfirstly,however,no significant difference(P>0.05)was found for thefirst two principal components between the two groups.OPLS-DA were then performed to gain better group separation and to reveal differential metabolites between the two groups.In the OPLS-DA score plot(Fig.5A),the two groups were well separated (R2Y=0.960,Q2Y=0.735,P=0.020).From the OPLS-DA score plot (Fig.5A)and color-coded loading plots(Fig.5C and D),metabolites e.g.glutamate,glutamine and etc.were found markedly differ-ent in the two groups.Student’s t test or Mann–Whitney test of metabolite concentrations between both groups was used to cal-culate the P values,the associated P values were summarized in Table1.3.3.3.Aqueous heart extractsThe representative500MHz CPMG1H NMR spectra of the aque-ous heart fractions obtained from the control and LCT treated88M.Li et al./Aquatic Toxicology146 (2014) 82–92Fig.5.Scores plot,S-plot and color-coded loadings plot(with the metabolites labeled in Fig.4A)according to the OPLS-DA analysis of NMR data from brain tissue extracts of goldfish:(A)Scores plot from OPLS-DA analysis of control and LCT group(n=9,8,respectively);(B)S-plot from OPLS-DA analysis of control and LCT group;(C and D) color-coded loadings plot from OPLS-DA analysis shows the metabolite components that differ between the control and LCT groups.Blue:Lowest,no statistically significant difference between the groups;Red:highest,statistically significant.Positive peaks indicate a relatively decreased metabolite level in the LCT group,while negative peaks indicate an increased metabolite level in the LCT group.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of the article.)Fig.6.Scores plot,S-plot and color-coded loadings plot(with the metabolites labeled in Fig.4B)according to the OPLS-DA analysis of NMR data of heart tissue extracts of goldfish:(A)Scores plot from OPLS-DA analysis of control and LCT group(n=7);(B)S-plot from OPLS-DA analysis of control and LCT group;(C and D)color-coded loadings plot from OPLS-DA analysis shows the metabolite components that differ between the control and LCT groups.Blue:Lowest,no statistically significant difference between the groups;Red:highest,statistically significant.Positive peaks indicate a relatively decreased metabolite level in the LCT group,while negative peaks indicate an increased metabolite level in the LCT group.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of the article.)M.Li et al./Aquatic Toxicology146 (2014) 82–9289Fig.7.Scores plot,S-plot and color-coded loadings plot(with the metabolites labeled in Fig.4C)according to the OPLS-DA analysis of NMR data from kidney tissue extracts of goldfish:(A)Scores plot from OPLS-DA analysis of control and LCT group(n=9);(B)S-plot from OPLS-DA analysis of NMR data of control and LCT group;(C and D)color-coded loadings plot from OPLS-DA analysis shows the metabolite components that differ between the control and LCT groups.Blue:Lowest,no statistically significant difference between the groups;Red:highest,statistically significant.Positive peaks indicate a relatively decreased metabolite level in the LCT group,while negative peaks indicate an increased metabolite level in the LCT group.(For interpretation of the references to color in thisfigure legend,the reader is referred to the web version of the article.)groups were shown in Fig.4B,with metabolites assigned(Table1). The dominant metabolites in the aqueous heart fractions included BCAAs,lactate,acetamide,glutamine,glutamate,PCr and etc.PCA wasfirstly employed to examine the data.One sample was consid-ered as outlier based on PCA modeling of the binned NMR data and removed before further analyses.The subsequent OPLS-DA analysis (R2Y=0.966,Q2Y=0.786,P=0.030)gave a clear separation between the control and LCT treated groups(Fig.6A).The P values calculated by Student’s t test or Mann–Whitney test of detected metabolites were summarized in Table1.3.3.4.Aqueous kidney extractsFig.4C presented typical1H NMR CPMG spectra for kidney sam-ples from control and LCT treated groups with major metabolites labeled.Visually,the metabolites like BCAAs,lactate,PCr,creatine and taurine constituted the most intense resonances in the spectra. Firstly,PCA was employed to examine all kidney data of the two groups and it produced a good separation between both groups. Since one sample was far away from the great majority of sam-ples(outlier)based on PCA modeling of the binned NMR data and therefore,it was removed before further analysis.Subsequently, an OPLS-DA model was used to discriminate the samples accord-ing to their class membership(R2Y=0.897,Q2Y=0.523,P=0.025). The scores plot(Fig.7A)of kidney data illustrates a distinct sep-aration of the control group and the LCT treated group along the t p,1component.In the loadings plot(Fig.7C and D),some dif-ferential metabolites were found:the primary differences in LCT treated group were the decrease of BCAAs,alanine,and lactate, and the increase of glutamate,taurine and etc.,as compared with the control group.The P values calculated by Student’s t test or Mann–Whitney test of detected metabolites were summarized in Table1.4.DiscussionThe toxicity of LCT was investigatedfirstly by histopathologi-cal inspection.The goldfish gill,heart,liver and kidney exhibited tissue specific impairments by LCT,as shown in Fig.2.How-ever,no significant histological alterations were found in brain of LCT group though the primary toxicity of LCT is its neu-rotoxicity,which showed the disadvantage of traditional tissue inspection:insensitive to toxic effect.NMR profiling of LCT treated and normal goldfish,aided with multivariate statistical analy-sis,revealed metabolic disturbance in neurotransmitter balance, oxidative stress,energy metabolism,amino acid metabolism and osmolyte balance induced by LCT.4.1.Neurotransmitter disturbanceThe primary mechanism of LCT toxicity is well known:it binds to the membrane lipid phase in the immediate vicinity of the sodium channel,thus blocking the closing of the sodium gates and prolong-ing the return of the membrane potential to its resting state,leading to hyperactivity of the nervous system which can eventually result in paralysis and/or death(Lim et al.,2010).The significantly increased glutamate level in the brain of LCT group was observed,which was consistent with the result obtained using rats(Breckenridge et al.,2009).With the glutamate con-centration substantially elevated,the glutamate receptors,known as excitatory amino acid receptors,were excessively activated exhibiting behavioral abnormalities such as hyperactivity and spas-tic movements.The brain level of glutamine,another amino acid of equal neural importance as glutamate,however,was significantly decreased.The two amino acids could be interconverted in neurons and glial cells(Bak et al.,2006;Peng et al.,1993).。

相关文档
最新文档