Nonlinear Vector Network Analysis Solutions

合集下载

一种非线性系统参数辨识的耦合算法研究

一种非线性系统参数辨识的耦合算法研究

一种非线性系统参数辨识的耦合算法研究付华;乔德浩;池继辉【摘要】针对工程复杂性、时变性、非线性的特点,提出了基于混沌免疫粒子群算法(CIPSO)与El-man神经网络的耦合算法(CIPSD-ENN),用于非线性动态模型参数辨识.CIPSO优化算法将人工免疫系统中的克隆选择和混沌优化机制引入粒子群算法,在粒子群种群进化过程中.该算法对粒子进行克隆选择,提高其收敛速度,对克隆后的粒子混沌变异以增强种群局部搜索能力,最后,CIPSO与动态反馈型Elman神经网络融合,对其权值、阈值寻优,建立了基于CIPSO和ENN的耦合算法系统辨识模型.实验结果表明,算法具有收敛速度快、收敛精度高、鲁棒性强的特点,与单纯Elman网络辨识相比,模型收敛速度提高了10倍,拟合精度提高了2个数量级.%Aiming at the complexity, time varying and nonlinearity of the projects, a CIPSO-ENN coupling algorithm for identifying the parameters of nonlinear dynamic models is proposed, where the clonal selection of artificial immune system and chaotic mutation mechanism are embedded into standard particle swarm optimization.In the evolution of the particle swarm optimization population, this algorithm accelerates convergence of particle clonal selection and enhances the particle swarm local search capability after cloned particle chaotic mutation.Then CIPSO algorithm is merged with dynamic feedback Elman neural network to construct system identification model based on the CIPSO-ENN.The experiment results show that the identification model convergence rate is increased by 10 times and fitting accuracy is increased by 2 orders of magnitude compared with the pure Elman network identification method.【期刊名称】《西安交通大学学报》【年(卷),期】2011(045)002【总页数】5页(P49-53)【关键词】混沌算法;克隆选择;Elman神经网络;耦合算法;非线性动态系统【作者】付华;乔德浩;池继辉【作者单位】辽宁工程技术大学电气与控制工程学院,125105,辽宁,葫芦岛;辽宁工程技术大学电气与控制工程学院,125105,辽宁,葫芦岛;辽宁工程技术大学电气与控制工程学院,125105,辽宁,葫芦岛【正文语种】中文【中图分类】TP183动态反馈型Elman神经网络(ENN)具有很强的非线性动态映射能力,是一种极具潜力的非线性系统辨识工具,能为非线性参数的辨识提供一种行之有效的方法[1].为了提高Elman网络模型的辨识性能,避免出现参数辨识过程中收敛速度慢和易收敛于局部极小点导致辨识误差过大的问题,本文将擅长全局搜索的混沌免疫粒子群算法(CIPSO)与Elman神经网络进行有机结合,提出基于CIPSO的Elman神经网络的耦合算法(简称CIPSO-ENN),采用数学方式建立CIPSO-ENN非线性参数辨识模型.通过CIPSO搜寻ENN最合适的一组权值和阈值,使辨识的目标函数值最小,实现辨识模型的输出接近输出的目标期望值,达到非线性参数辨识的目的.SPSO算法是将群体中的每个个体视为多维搜索空间中一个没有质量和体积的粒子,这些粒子在搜索空间以一定的速度飞行,并根据粒子本身的飞行经验以及同伴的飞行经验,对自己的飞行速度进行动态调整,即每个粒子通过统计迭代过程中自身的最优值和群体的最优值不断地修正自己的前进方向和速度,从而形成群体巡游的正反馈机制[2-5].设在一个D维搜索空间中,存在一个由N个粒子组成的群体,群体中第t次迭代时粒子i的位置表示为Xi=(xi1,xi2,…,xiD),相应的飞行速度表示为Vi=(vi1,vi2,…,viD),i=1,2,…,N.将 Xi带入目标函数可得到其适应值.记第i个粒子搜索到的最优位置为Pi=(pi1,pi2,…,piD),整个粒子群搜索到的最优位置为Pg=(pg1,pg2,…,pgD),粒子状态更新操作为式中:i=1,2,…,N;d=1,2,…,D;r1、r2为[0,1]之间的随机数;c1、c2为加速度因子;w为惯性因子.为加快收敛速度,同时保持粒子群的多样性,本文引入混沌算法和人工免疫系统中的克隆选择机制.将目标函数和约束条件视为抗原,粒子群视为抗体,将亲和度高的抗体按与其亲和度成正比进行克隆[6],与亲和度成反比进行混沌变异;将亲和度低的抗体按一定比例重新初始化,以保证多样性.基于混沌克隆选择的PSO算法的基本思路是:抗体在初始化后,首先利用式(1)、式(2)指导其“飞行”的方向,为加快收敛速度,选择亲和度高的抗体进行克隆操作,使抗体更多的聚集在“好”位置的附近;再对克隆后的抗体进行混沌变异,使抗体往“好”位置附近的各个方向进行搜索;最后抛弃亲和度最差的抗体,将它们重新初始化,以保证种群的多样性.本文针对克隆扩增和超突变现象设计混沌克隆算子,设当前群体按式(1)、式(2)对所有粒子(抗体)的速度和位置进行更新后得到新的种群PK={X1,X2,…,Xn}.根据抗体抗原亲和度排序,亲和度最高的M个抗体组成精英克隆种群SK,剩下的(N-M)个抗体组成种群LK,精英种群规模M是一个变量,设抗体亲和度函数为f(X),则SK表示为精英种群SK中的M 个抗体X1,X2,…,XM的亲和度为f1,f2,…,fM,根据种群规模N 和抗体亲和度,Xj克隆为qj个相同的点Xj1,Xj2,…,Xjqj由式(4)可知,抗体 Xi的亲和度越高,抗体克隆的数目越多.则由dj组成种群D′K,由子代种群D′K和初始种群SK合并,选择竞赛规模Q,通过锦标联赛的方式[8],形成新一代精英种群SK+1.混沌克隆算子通过空间的扩展与压缩,有效地提高局部寻优能力.对于种群LK,模拟生物克隆选择中B细胞自然消亡的过程,在LK中选择d个亲和度最低的抗体,运用消亡算子Γ(*)予以抛弃,将其重新初始化,得到LK+1,可保持种群的多样性式中:L、U分别表示抗体X的取值范围的下、上界.对种群进行更新、克隆、变异等操作后,得到新一代种群如此循环进行下一次种群更新操作,直到达到期望结果.为了验证CIPSO算法的寻优性能,采用多峰、非凸的peaks函数作为优化问题的测试对象,分别用CIPSO算法与SPSO算法对其求解优化peaks的minf(x,y).函数表达式为粒子群规模为20,加速因子c1=c2=2,最大迭代次数为50,惯性权值w随迭代次数从0.9到0.4线性减小,竞赛规模Q=10.经过50次迭代实验结果如图1所示由图1可以看出,本文提出的CIPSO算法比标准PSO算法的全局寻优能力以及收敛精度、收敛速度都有明显改进.静态前馈神经网络对时变、动态系统进行辨识,其实质是将动态时间建模问题变为一个静态空间建模问题,这必然存在许多问题[9].在系统辨识过程中,为提高辨识的准确性,常以网络的结构膨胀为代价,导致系统学习速度下降.具有动态特性和递归作用的Elman神经网络则具有内部反馈、存储和利用过去时刻输入、输出信息的特点,除了能解决静态系统的建模问题外,还能实现动态系统的映射并更加直接地反映系统的动态特性,比前向神经网络系统具有更强的计算能力和网络稳定性[10].如图2所示,Elman神经网络一般分为4层:输入层、隐含层、结构层和输入层.对于非线性系统,Elman神经网络的隐含层单元个数就是状态变量的个数,即系统的阶次.Elman神经网络只需一个输入单元和一个输出单元.如果有n个结构单元,则隐含层的输入有n+l个,与静态网络所要求的神经元个数相比大为减少.Elman神经网络自身具有动态环节,无需使用过多的系统状态输入,从而减少了输入层的单元个数.此外,Elman神经网络的动态特性仅由内部的连接提供,无需使用状态作为输入或训练信号,这也是Elman神经网络相对于静态前馈网络的优越之处,非常适合于动态系统辨识[11].但是,在执行过程中,Elman神经网络算法网络参数每次调整的幅度为一个与网络误差函数或其对权值的导数成正比的项乘以固定的学习率η,在误差曲面平坦处误差下降很慢,在曲面曲率大处,误差函数最小点附近会发生过调整现象,从而引起震荡.大量的数值仿真研究表明,由于Elman神经网络结构的复杂性,不同权值和阈值对同一样本的收敛速度不同[12],从而使Elman神经网络算法存在学习速度慢、精度低和鲁棒性差等缺陷,无法满足工程应用的需要.CIPSO的搜索能够遍及整个解空间,容易得到全局最优解,且不要求目标函数连续、可微,甚至不要求目标函数有显函数的形式,只要求问题可计算.因此,将擅长全局搜索的CIPSO与 Elman神经网络进行有机结合,形成CIPSO-ENN算法,能有效提高Elman神经网络辨识性能.在CIPSO训练Elman神经网络时,首先定义粒子群位置向量X是以Elman网络全体节点之间的连接权值和节点的阈值组成粒子的位置参数式中:W1为神经网络输入层与隐含层间的连接权值;W2为结构层与隐含层间的连接权值;W3为隐含层与输出层间的连接权值;θ1为隐含层阈值;θ2为输出层阈值.若Elman网络输入节点数是V1,结构层节点数是V2,隐含层节点是V3,输出节点数是V4,则CIPSO搜索空间维数为采用CIPSO搜寻Elman网络最合适的一组权值和阈值,是通过参数的调整和优化,从而使得Elman网络的输出最接近输出的目标期望值,使网络输出和理想输出的误差平方和指标(适应值)达到最小,实现非线性动态系统的辨识.定义适应度函数为式中:N为训练样本数;O为输出神经元数;ydji为输出样本值;yji为实际值.(1)确定种群规模Na,适应阈值ε,最大迭代次数 Gmax,学习因子 c1、c2.(2)随机初始化种群,确定每个粒子(抗体)的初始位置和速度.(3)根据粒子(抗体)Xi和训练样本,按式(14)计算每个粒子(抗体)的亲和度,并更新Pi 和Pg.(4)若达到结束条件,算法终止.(5)按式(1)、式(2)对所有粒子(抗体)的速度和位置进行更新,并限制其不超过边界.(6)对于当前种群Pk,根据抗体抗原亲和度排序,选出亲和度最高的M个粒子(抗体)组成精英克隆种群SK,剩下的(N-M)个粒子(抗体)组成种群LK.(7)对种群SK中的粒子(抗体)进行克隆、混沌变异和选择操作,得到新一代精英种群SK+1.(8)在种群LK中取得d个亲和度最低的粒子(抗体),运用消亡算子予以抛弃,将其重新初始化得到新种群LK+1.分别采用CIPSO-ENN耦合算法、Elman网络算法对非线性函数 f1(x)进行计算,并比较其拟合程度与收敛性能.f1(x)表达式为在数值实验中,两种算法均随机选取100个样本作为网络的训练输入,其输出作为相对应的测试输出,以此构成网络的训练样本集.网络的输入节点数V1=1,隐含层节点数V2=20,结构层节点数V3=20,输出层节点数V4=1,网络的隐含层神经元的激发函数选用sigrnofd函数,输出层神经元的激发函数采用Pureline函数.粒子群规模为20,加速因子c1=c2=2,最大迭代次数Iter max=600,惯性权值w随迭代次数从0.9到0.4线性减小,竞赛规模Q=10.由图3、图4可以看出,CIPSO-ENN耦合算法得到的拟合曲线几乎与原函数完全重合,比Elman网络算法具有更好的逼近效果.CIPSO-ENN辨识模型最大拟合误差为2.385×e-6,Elman辨识模型最大拟合误差为1.267×e-2.为了使结果更加直观,对最大拟合误差取自然对数,结果见图5.由图5可以看出,CIPSO-ENN算法收敛速度明显快于Elman算法,而且在迭代次数相同的情况下,具有相对更高的精度和收敛效果.显然,本文提出的算法具有很高的搜索效率和很强的鲁棒性,能够实现任意非线性函数的逼近以及对非线性多参数的实时辨识.本文将克隆选择和混沌算法与粒子群优化算法结合,提出了一种混沌免疫粒子群优化算法.该算法具有收敛速度快、收敛精度高、鲁棒性强的特点,将其与具有动态反馈型Elman神经网络算法相结合,对Elman网络的权值与阈值进行训练.实验表明,本文提出的CIPSO-ENN耦合算法对动态非线性模型的辨识比传统Elman算法具有明显的优越性.【相关文献】[1] GERNASKY M,BENUSKOVA L.Simple recurrent network trained by RTRL and extended Kalmann filter algorithm[J].Neural Network World,2003,13(3):223-234.[2] 陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56.CHEN Guimin,JIA Jianyuan,HAN Qi.Study on the strategy of decreasing inertial weight in particle swarm optimization algorithm[J].Journal of Xi′an JiaotongUniversity,2006,40(1):53-56.[3] 潘峰,陈杰,甘明刚,等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377.PAN Feng,CHEN Jie,GAN Minggang,et al.Model analysis of particle swarmoptimizer[J].Acta Automatica Sinica,2006,32(3):368-377.[4] HOLAND J.Emergence:from chaos to order[M].Redwood City,California:Addison Wesley,1998.[5] 杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.YANG Wei,LI Qiqiang.Survey on particle swarm optimization algorithm [J].EngineeringScience,2004,6(5):87-94.[6] 陈曦,蒋加伏.免疫粒子群优化算法求解旅行商问题[J].计算机与数字工程,2006,34(6):10-29. CHEN Xi,JIANG Jiafu.Particle swarm optimization algorithms with immunity for traveling salesman problems[J].Computer and Digital Engineering,2006,34(6):10-29.[7] 尤勇,王孙安,盛万兴.新型混沌优化方法的研究及应用[J].西安交通大学学报,2003,37(1):69-72. YOU Yong,WAN G Sun′an,SHENG Wanxing.New chaos optimization algorithm with application[J].Journal of Xi′an Jiaotong University,2003,37(1):69-72.[8] SCHWEFEL H P.Evolution and optimum seeking[M].New York,USA:Wiley,1995.[9] 王峰,邢科义,徐小平.系统辨识的粒子群优化方法[J].西安交通大学学报,2009,43(2):116-119. WANG Feng,XING Keyi,XU Xiaoping.A system identification method using particle swarm optimization[J].Journal of Xi′an Jiaotong University,2009,43(2):116-119.[10]葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识[J].吉林大学学报:工学版,2005,35(5):511-519.GE Hongwei,LIANG Yanchun.Evolutionary Elman neural network model and identification for non-linear systems[J].Journal of Jilin University:Engineering and Technology Edition,2005,35(5):511-519.[11]李秀英,韩志刚.非线性系统辨识方法的新进展[J].自动化技术与应用,2004,23(10):5-7.LI Xiuying,HAN Zhigang.Advances in nonlinear system identification[J].Techniques of Automation&Application,2004,23(10):5-7.[12]时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络[J].软件学报,2003,14(6):1110-1119.SHI Xiaohu,LIANG Yanchun,XU Xu.An improved Elman model and recurrent back-propagation control neural networks[J].Journal of Software,2003,14(6):1110-1119.。

第1章相空间重构

第1章相空间重构

迟重构都可以用来进行相空间重构,但就实际应用而言,由于我们通常不知道混沌时间
序列的任何先验信息,而且从数值计算的角度看,数值微分是一个对误差很敏感的计算
问题,因此混沌时间序列的相空间重构普遍采用坐标延迟的相空间重构方法[2]。坐标延
迟法的本质是通过一维时间序列{x(n)}的不同时间延迟来构造 m 维相空间矢量:
以取任意值,但实际应用最后等时间序列都是含有噪声的有限长序列,嵌入维数和时间
延迟是不能任意取值,否则会严重影响重构的相空间质量。
有关时间延迟与嵌入维的选取方法,目前主要有两种观点。一种观点认为两者是互
-2-
不相关的,先求出时间延迟后再求出选择合适的嵌入维。求时间延迟τ 比较常用的方法 有自相关法[5]、平均位移法[5]、复自相关法[6]和互信息法[7, 8]等,目的是使原时间序列经 过时间延迟后可以作为独立坐标使用。一个好的重构相空间是使重构后的吸引子和系统 真正的吸引子尽可能做到拓扑等价,目前寻找最小嵌入维的方法主要是几何不变量法[9]、 虚假最临近点法[10](FNN)和它的改进形式 Cao 方法[11]。另一种观点认为时间延迟和嵌入 维是相关的,1996 年 Kugiumtzis 提出的时间窗长度是综合考虑两者的重要参数[12]。1999 年,Kim 等人基于嵌入窗法的思想提出了 C-C 方法,该方法使用关联积分同时估计出时 延与嵌入窗[13]。C-C 方法也是实际时间序列中比较常用的方法,针对该方法的缺陷,国 内学者作了相应的改进[14, 15]。
对于连续变量 x(t) ,其自相关函数(Autocorrelation function)定义为
T
∫ C(τ ) = lim T →∞
2 −T
x(t ) x(t

非线性有限元法(1)

非线性有限元法(1)

结构的非线性现象 Physical Nonlinearity
E1 = 2E2 = 2E
结构的非线性现象
结构的非线性现象 Nonlinearity Due to Boundary Conditions
本课程的内容
1. 有限变形理论基础 2. 非线性有限元列式 3. 本构关系 4. 非线性方程组解法 5. CB壳单元(Continuum Based Shell Element) 6. 大转动问题 7. 三维杆系 8. 稳定性分析 9. 接触问题 10.应用专题
有限元法的发展史
Turner等(1960)将应用到大挠度和热应力分析 Gallagher等(1962)考虑了材料非线性 Gallagher等(1963)首次分析了屈曲问题 Zienkiewicz等(1968)应用到粘弹性问题 Archer(1965)建立了一致质量矩阵,进行了动力分析 1960s中后期开始有限元法应用到场问题和流体问题 Belystchko(1976)考虑了与大位移非线性动力分析问题
Mixed Finite Element 唐立民,陈万吉,刘迎曦(1980)基于广义变分原理的拟协调元
Quasi-conforming finite element
有限元法的发展史 有限元列式更一般的方法--加权余量法
Szabo和Lee(1969)推导了结构分析的弹性有限元方程 Zienkiewicz和Parekh(1970)推导了瞬态问题的有限元方程 Hughes(1979)应用到流体力学的Navier-Stokes方程求解
有限元法的三个特点 1)以一组几何上简单的子域表示一个几何上复杂的域 2)对每一个子域运用基本概念推导近似函数 3)利用相关的物理原理或数学方法建立联立方程组
有限元法的发展史

Simcenter 3D软件产品介绍说明书

Simcenter 3D软件产品介绍说明书

Complex industrial problems require solutions that span a multitude of physical phenomena, which often can only be solved using simulation techniques that cross several engineering disciplines. This has significant consequences for the computer-aided engineering (CAE) engineer. In the simplest case, he or she may expect the solution to be based on a weakly-coupled scenario in which two or more solvers are chained. The first one provides results to be used as data by the next one, with some iterations to be performed manually until convergence is reached. But unfortunately, many physical problems are more complex! In that case, a complex algorithmic basis and fully integrated and coupled resolution schemes are required to achieve convergence (the moment at which all equations related to the different physics are satisfied).Simcenter™ 3D software offers products for multiphys-ics simulation and covers both weak and strong cou-pling. The capabilities concern thermal flow, thermome-chanical, fluid structure, vibro-acoustics,aero-vibro-acoustics, aero-acoustics, electromagneticSolution benefits• Enables users to take advantage of industry-standard solvers for a full range of applications • Makes multiphysics analysis safer, more effective and reliable • Enables product developers to comprehend the complicated behavior that affects their designs • Promotes efficiency and innovation in the product development process • Provides better products that fulfill functional requirements and provide customers with a safe and durable solutionSiemens Digital Industries SoftwareSimcenter 3D formultiphysics simulationLeveraging the use of industry-standard solvers for a full range of applicationsthermal and electromagnetic-vibro-acoustic. Fully coupled issues deal with thermomechanical, fluid-ther-mal and electromagnetic-thermal problems.One integrated platform for multiphysics Simcenter 3D combines all CAE solutions in one inte-grated platform and enables you to take advantage of industry-standard solvers for a full range of applica-tions. This integration enables you to implement a streamlined multi-physical development process mak-ing multiphysics analysis safer, more effective and reliable.This enables product developers to comprehend the complicated behavior that affects their designs. Understanding how a design will perform once in a tangible form, as well as knowledge of the strengths and weaknesses of different design variants, promotes innovation in the product development process. This results in better products that fulfill functional require-ments and provide target customers with a safe and durable solution.Enabling multiphysics analysisRealistic simulation must consider the real-world inter-actions between physics domains. Simcenter 3D brings together world-class solvers in one platform, making multiphysics analysis safer, more effective and reliable. Results from one analysis can be readily cascaded to the next.Various physics domains can be securely coupled with-out complex external data links. You can easily include motion-based loads in structures and conduct multi-body dynamic simulation with flexible bodies and controls, vibro-acoustic analysis, thermomechanical analysis, thermal and flow analysis and others that are strongly or weakly coupled. You can let simulation drive the design by constantly optimizing multiple performance attributes simultaneously. Quickening the pace of multiphysics analysisWith the help of Simcenter 3D Engineering Desktop, multiphysics models are developed based on common tools with full associativity between CAE and computer-aided design (CAD) data. Any existing analysis data can be easily extended to address additional physics aspects by just adapting physical properties and bound-ary conditions, but keeping full associativity and re-using a maximum of data.One-way data exchange Two-way data exchange (co-simulation)Integrated coupledSolution guide |Simcenter 3D for multiphysics simulationIndustry applicationsSimcenter 3D multiphysics solutions can help designers from many industries achieve a better understanding of the complex behavior of their products in real-life conditions, thereby enabling them to produce better designs.Aerospace and defense• Airframe-Thermal/mechanical temperature and thermalstress for skin and frame-Vibro-acoustics for cabin sound pressure stemming from turbulent boundary layer loading of thefuselage-Flow/aero-acoustics for cabin noise occurring inclimate control systems-Thermal/flow for temperature prediction inventilation-Curing simulation for composite components topredict spring-back distortion• Aero-engine-Thermal/mechanical temperature and thermalstress/distortion for compressors and turbines-Thermal/flow for temperature and flow pressuresfor engine system-Flow/aero-acoustic for propeller noise-Electromagnetic/vibro-acoustics for electric motor(EM) noise in hybrid aircraft-Electromagnetic/thermal for the electric motor • Aerospace and defense-Satellite: Thermal/mechanical orbital temperatures and thermal distortion-Satellite: Vibro-acoustic virtual testing of spacecraft integrity due to high acoustic loads during launch -Launch vehicles: Thermal/mechanical temperature and thermal stress for rocket engines Automotive – ground vehicles• Body-Vibro-acoustics for cabin noise due to engine androad/tire excitation-Flow/vibro-acoustics for cabin noise due to windloading-Thermal/flow for temperature prediction and heatloss in ventilation • Powertrain/driveline-Vibro-acoustics for radiated noise from engines,transmissions and exhaust systems-Thermal/flow for temperature prediction in cooling and exhaust systems-Electromagnetic/vibro-acoustic for EM noise-Electromagnetic/thermal for the electric motorperformance analysisMarine• Propulsion systems-Vibro-acoustics for radiated noise from engines,transmissions and transmission loss of exhaustsystems-Flow/acoustics to predict acoustic radiation due to flow induced pressure loads on the propeller blades -Thermal/flow for temperature prediction in piping systems-Hull stress from wave loads-Electromagnetic/thermal analysis for electricpropulsion systemsConsumer goods• Packaging-Thermal/flow for simulating the manufacture ofplastic components-Mold cooling analysesElectronics• Electronic boxes-Thermal/flow for component temperatureprediction and system air flow in electronicsassemblies and packages-Flow/aero-acoustics noise emitted from coolingfans due to flow-induced pressure loads on fanblades• Printed circuit boards-Thermal/mechanical for stress and distortionUsing Simcenter 3D enables you to map results from one solution to a boundary condition in a second solu-tion. Meshes can be dissimilar and the mapping opera-tion can be performed using different options.Benefits• Make multiphysics analysis more effective andreliable by using a streamlined development process within an integrated environment Key features• Create fields from simulation results and use them as a boundary conditions: a table or reference field, 3D spatial at single time step or multiple time steps, scalar (for example, temperature) and vector (for example, displacement)• Map temperature results from Simcenter 3D Thermal to Simcenter Nastran® software • Use pressure and temperature results fromSimcenter 3D Flow in Simcenter Nastran analysis • Leverage displacement results from Simcenter Nastran for acoustics finite element method (FEM) and boundary element (BEM) computations • Employ pressure and temperature results from Simcenter STAR-CCM+™ software for aero-vibro-acoustics analysis • Exploit stator forces results from electromagnetics simulation for vibro-acoustics analysis • Third-party solvers can be used for mapping: ANSYS, ABAQUS, MSC Nastran, LS-DYNASimcenter 3D Advanced Thermal leverages the multi-physics environment to solve thermomechanical prob-lems in loosely (one-way) or tightly coupled (two-way) modes.This environment delivers a consistent look and feel for performing multiphysics simulations, so the user can easily build coupled solutions on the same mesh using common element types, properties and boundary conditions, as well as solver controls and options. Coupled thermal-structural analysis enables users to leverage the Simcenter Nastran multi-step nonlinear solver and a thermal solution from the Simcenter 3D Thermal solver.Benefits• Extend mechanical and thermal solution capabilities in Simcenter 3D to simulate complex phenomena with a comprehensive set of modeling tools• Reduce costly physical prototypes and product design risk with high-fidelity thermal-mechanical simulation• Gain further insight about the physics of your products• Leverage all the capabilities of the Simcenter 3D integrated environment to make quick design changes and provide rapid feedback on thermal performanceKey features• Advanced simulation options for coupled thermomechanical analysis of turbomachinery and rotating systems• Tightly-coupled thermomechanical analysis with Simcenter Nastran for axisymmetric, 2D and 3D representations• Combines Simcenter Nastran multi-step nonlinear solution with industry-standard Simcenter Thermal solversSimcenter 3D Advanced Flow software is a powerful and comprehensive solution for computational fluid dynamics (CFD) problems. Combined with Simcenter 3D Thermal and Simcenter 3D Advanced Thermal, Simcenter 3D Advanced Flow solves a wide range of multiphysics scenarios involving strong coupling of fluid flow and heat transfer.Benefits• Gain insight through coupled thermo-fluid multiphysics analysis• Achieve faster results by using a consistent environment that allows you to quickly move from design to resultsKey features• Consider complex phenomena related to conjugate heat transfer• Speed solution time with parallel flow calculations • Couple 1D to 3D flow submodels to simulate complex systemsThe Simcenter Nastran software Advanced Acoustics module extends the capabilities of Simcenter Nastran for simulating exterior noise propagation from a vibrat-ing surface using embedded automatically matched layer (AML) technology. Simcenter Nastran is part of the Simcenter portfolio of simulation tools, and is used to solve structural, dynamics and acoustics simulation problems. The Simcenter Nastran Advanced Acoustics module enables fully coupled vibro-acoustic analysis of both interior and exterior acoustic problems.Benefits• Easily perform both weakly and fully coupled vibro-acoustic simulations • Simulate acoustic problems faster and moreefficiently with the next-generation finite element method adaptive order (FEMAO) solver Key features• Simulate acoustic performance for interior, exterior or mixed interior-exterior problems • Correctly apply anechoic (perfectly absorbing, without reflection) boundary conditions• Correctly represent loads from predecessorsimulations: mechanical multibody simulation, flow-induced pressure loads on a structure and electromagnetic forces in electric machines • Include porous (rigid and limp frames) trim materials in both acoustic and vibro-acoustic analysis • Request results of isolated grid or microphone points at any location • Define infinite planes to simulate acoustic radiation from vibrating structures close to reflecting ground and wall surfacesElectromagneticsStructural dynamicsAcousticsThis product supports creating aero-acoustic sources close to noise-emitting turbulent flows and allows you to compute their acoustic response in the environment (exterior or interior); for example, for noise from heat-ing ventilation and air conditioning (HVAC) or environ-mental control system (ECS) ducts, train boogies and pantographs, cooling fans and ship and aircraft propel-lers. The product also allows you to define wind loads acting on structural panels, leading to vibro-acoustic response; for instance, in a car or aircraft cabin.Module benefits• Derive lean, surface pressure-based aero-acoustic sources for steady or rotating surfaces• Scalable and user-friendly load preparation for aero-vibro-acoustic wind-noise simulations• Import binary files with load data directly into Simcenter Nastran for response computationsKey features• Conservative mapping of pressure results from CFD to the acoustic or structural mesh• Equivalent aero-acoustic surface dipole sources • Equivalent aero-acoustic fan source for both tonal and broadband noise• Wind loads, using either semi-empirical turbulent boundary layer (TBL) models or mapped pressure loads from CFD resultsSimcenter MAGNET™ Thermal software can be used to accurately simulate temperature distribution due to heat rise or cooling in the electromechanical device. Simcenter 3D seamlessly couples with the Simcenter MAGNET solver to provide further analysis: You can use power loss data from Simcenter MAGNET as a heat source and determine the impact of temperature changes on the overall design and performance. Each solver module is tailored to different design prob-lems and is available separately for both 2D and 3D designs.Module benefits• Achieve higher fidelity predictions by taking temperature effects into account in electromagnetic simulations• Leverage highly efficient coupling scenariosKey features• Simulates the temperature distributions caused by specified heat sources in the presence of thermally conductive materials• Couples with Simcenter MAGNET solver for heating effects due to eddy current and hysteresis losses in the magnetic systemSolution guide |Simcenter 3D for multiphysics simulationSiemens Digital Industries Software/softwareAmericas +1 314 264 8499Europe +44 (0) 1276 413200Asia-Pacific +852 2230 3333© 2019 Siemens. A list of relevant Siemens trademarks can be found here.Other trademarks belong to their respective owners.77927-C4 11/19 H。

非线性非齐次Bloch方程与混合态的几何量子相位

非线性非齐次Bloch方程与混合态的几何量子相位
Key words: Mixed state; Bloch equation; Fluorescent oscillation;Uuclear spin polarization;Conditional geometric phase.
II
目录
摘 要....................................................... I Abstract ..................................................... II 第一章 引 言 ................................................... 1 §1.1 概述 ...................................................... 1 §1.2 几何量子相位 .............................................. 2 §1.3 混合态几何量子相位 ........................................ 3 §1.4 几何量子相位的应用 ........................................ 4
The results are applied to the fluorescent oscillation and nuclear spin polarization system. We find that by adjusting the initial conditions and external controlling physical parameters, we can obtain the conditional geometric phase and further realize a controllable fault-tolerant quantum memory in terms of this conditional geometric phase in the fluorescent oscillation and nuclear spin polarization system.

Critical curves of the non-Newtonian polytropic filtration equations coupled with nonlinear

Critical curves of the non-Newtonian polytropic filtration equations coupled with nonlinear
) 3201–3208 /locate/na
Critical curves of the non-Newtonian polytropic filtration equations coupled with nonlinear boundary conditions
pi k k Then a series of standard computations give that det A = i =1 (m i + 1) − i =1 ( pi −1 qi ). We shall see that det A = 0 is the critical global existence curve. Next, let (α1 , α2 , . . . , αk )T be the solution of the following linear algebraic system:
3202
Z. Cui / Nonlinear Analysis 68 (2008) 3201–3208
where qi > 0, k ≥ 1 and u k +1 := u 1 . We consider the initial data, u i (x , 0) = u i 0 (x ) (i = 1, 2, . . . , k ), x > 0, (1.3)
(1.1)
where m i ≥ 1, pi ≥ 2. The particular feature of Eq. (1.1) is their power- and gradient-dependent diffusivity. Such equations (and their N -dimensional version) arise in some physical models such as population dynamics, chemical reactions, heat transfer, and so on. In particular, Eq. (1.1) may be used to describe the nonstationary flow in a porous medium of fluids with a power dependence of the tangential stress on the velocity of displacement under polytropic conditions. In this case, the expressions in Eq. (1.1) are called the non-Newtonian polytropic filtration equations, which have been intensively studied (see [5,10,12,15] and references therein). These equations are complemented with nonlinear coupled boundary conditions −

预应力大变形模态分析到_PSTRES_和_SSTIF_的辨异

预应力大变形模态分析到_PSTRES_和_SSTIF_的辨异

一,前言:在ANSYS中有两个命令可以将预应力效应激活并考虑在求解方程计算中,但是他们是有区别,最近在论坛上出现很多的帖子讨论预应力大变形模态分析,但是好象大家对以上两个命令出现一定程度的混淆,本文结合例子对以上两个命令及相关问题做以阐释。

不妥之处,欢迎高手批评指正二,例子简单介绍:借用网友的例子进行说明,下面简单介绍以下我们分析的问题。

实际的问题是两根拉索,通过圆钢管联系在一起成以下平面形状,拉索中通过施加应变yingbian=3.51e-3考虑索中的预应力。

本文将对以下结构进行静力求解和模态求解。

三,静力求解结果分析:本文采用以下四种不同的求解方式进行求解,并对结果进行分析:SOLUTION 1 小变形求解,不激活以上两个命令,使用以下命令流:Nlgeom,offSstif,offPstres,offSolvSOLUTION 2-1 小变形求解,激活Pstres命令,使用以下命令流:Nlgeom,offPstres,onsolvSOLUTION 2-2 大变形求解,激活Pstres命令,使用以下命令流:Nlgeom,onPstres,onsolvSOLUTION 2-2 大变形求解,激活SSTIF,on命令,使用以下命令流:Nlgeom,onSstif,onsolv经过求解分别得到以下计算结果:以UX变形为例结论:通过以上结果可见,PSTRES,ON 是不适合用于大变形分析,因为该命令不会激活△U的附加刚度矩阵。

四,命令辨析:为从根本上阐明以上问题,我们先从两个命令的说明上进行对比,区分其中的不同之处。

4-1PSTRES 命令PSTRES, KeySpecifies whether *1pstress effects are calculated or included.注1,Pstres主要为激活预应力效应,注意和SSTIF使用目的的区别NotesSpecifies whether or not prestress effects are to be calculated or included. Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in SOLUTION, this command is valid only*2within the first load step.注2,Pstres只在第一个荷载步中有效,注意命令的生存时间If the prestress effects are to be calculated in a nonlinear static or transient analysis (for a prestressed modal analysis of a large-deflection solution), you can issue a SSTIF,ON command (*3rather than a PSTRES,ON command) in the static analysis.注3:如果在静力分析和瞬态分析(用于预应力大变形模态分析)中计算预应力效应,则应该指定ssitf命令而不是pstres命令4-2 SSTIF 命令SSTIF, KeyActivates*1 stress stiffness effects in a nonlinear analysis.注1,Ssfif主要为非线性分析中激活应力刚度效应,注意和SSTIF使用目的的区别NotesActivates stress stiffness effects in a nonlinear analysis (ANTYPE,STA TIC orTRANS). (*2The PSTRES command also controls the generation of the stress stiffness matrix and therefore should not be used in conjunction with SSTIF.)注2,Pstres命令同样控制应力刚度矩阵,因此不能和sstif连用。

ansys稳态热力学分析的基本过程及注意要点

ansys稳态热力学分析的基本过程及注意要点

ansys稳态热力学分析的基本过程及注意要点1. ansys热力学分析的基本过程及注意要点1.1,对于稳态分析,一般只需要定义导热系数,它可以是恒定的,也可以是随温度变化的。

1.2,在分析过程中,不一定选择国际单位制,但是在建立几何模型及输入材料热性参数时,单位必须统一。

2. ansys中提供6种热载荷:温度(temperature),热流率(heat flow),对流(convection),热流密度(heat flux),生热率(heat generate),辐射率(radiation)。

2.1 温度载荷2.1.1 在单个或者多个节点上施加温度载荷main menu/solution/define loads/apply/thermal/temperature/on nodes2.1.2 在所有节点上施加均匀温度载荷main menu/solution/define loads/apply/thermal/temperature/uniform tempmain menu/solution/define loads/setting /uniform tempmain menu/solution/loading options/uniform temp2.1.3 在关键点上施加温度载荷main menu/solution/define loads/apply/thermal/ temperature/on keypoints 2.1.4 在线段上施加温度载荷main menu/solution/define loads/apply/thermal/temperature/on lines2.1.5 在面上施加温度载荷main menu /solution/define loads/apply /thermal/ temperature/ on areas 2.2 热流率载荷2.2.1 在节点上施加热流率载荷main menu/solution/define loads/apply/thermal/heat flow/on nodes2.2.2 在关键点上施加热流率载荷2.3 对流载荷(convection)2.3.1在节点上施加对流载荷main menu/solution/define loads /apply/thermal/ convection/ on nodes2.3.2 在单元上施加均匀对流载荷mani menu/solution/ define loads/ apply /thermal/ convection /on elements/ uniform2.3.3 在单元上施加非均匀对流载荷mani menu/solution/ define loads/ apply /thermal/ convection /on elements/ tapered2.3.4 在线段上施加对流载荷main menu/solution/ define loads/ apply/ thermal/ convection/on lines2.3.5 在面上施加对流载荷main menu/ solution/ define loads/ apply /thermal/ convection/on areas2.4 热流密度载荷(heat flux)2.4.1 在节点上施加热流密度载荷main menu/ solution/ define loads/apply/ thermal/ heat flux/ on nodes2.4.2 在单元上施加热流密度载荷main menu/ solution/deine loads/apply thermal/heat flux / on elements2.4.3 在线段上施加热流密度载荷main menu/ solution /define loads/ apply / thermal/ heat flux/ on lines2.4.4 在面上施加热流密度载荷main menu/solution/ define loads /apply/ thermal/ heat flux/ on areas2.5 生热率载荷(heat generate)2.5.1 在节点上施加生热密度载荷main menu/solution/define loads /apply/ thermal/ heat generate/ on nodes 2.5.2 在所有节点施加均匀生热流密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/ uniform heat generate2.5.3 在线段上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on lines 2.5.4 在面上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on areas 2.5.5 在体上施加生热密度载荷main menu / solution/ define loads /apply /thermal/ heat generate/on volumes 2.6 辐射率载荷(radiation)2.6.1 在节点上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on Nodes2.6.2 在单元上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on elements 2.6.3 在线段上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/ on lines2.6.4 在面上施加辐射率载荷main menu/ solution /define loads/ apply /thermal /radiation/on areas3 稳态求解选项设置在对一个稳态热分析问题时,需要设置time/frequence选项、非线性选项以及输出控制等载荷步选项3.1 time-time step该选项用于设置载荷步的时间main menu/solution/loads step opts/ time&frequence/time -time step3.2 time and substeps该选项用于确定每载荷步中子步的数量或者时间步大小main menu/ solution/ load step options/ time & frequence/ time and substeps 3.3 convergence criteria该选项可根据温度、热流率等指标设置热分析的收敛标准,检验热分析的收敛性。

耦合非线性薛定谔方程的怪波解分析

耦合非线性薛定谔方程的怪波解分析

分类号:密级:U D C:编号:河北工业大学硕士学位论文耦合非线性薛定谔方程的怪波解分析论文作者:牛瑞学生类别:全日制学科门类:理学硕士学科专业:物理学指导教师:李再东职称:教授资助基金项目:国家自然科学基金(61774001),河北省研究生示范课程建设项目 和河北省高等学校科学技术研究项目(ZD2015133)。

Dissertation Submitted toHebei University of TechnologyforThe Master Degree ofScienceANALYSIS OF ROGUE WA VE SOLUTIONS FOR COUPLED NONLINEARSCHRÖDINGER EQUATIONSbyNiu RuiSupervisor: Prof. Li Zai-DongDecember 2018This work was supported by the Natural Science Foundation of China, No. 61774001, the Construction Project of Graduate Demonstration Course in Hebei Province, and the Key Projects of Scientific and the Technological Research in Hebei Province, No. ZD2015133.原创性声明本人郑重声明:所呈交的学位论文,是本人在导师指导下,进行研究工作所取得的成果。

除文中已经注明引用的内容外,本学位论文不包含任何他人或集体已经发表的作品内容,也不包含本人为获得其他学位而使用过的材料。

对本论文所涉及的研究工作做出贡献的其他个人或集体,均已在文中以明确方式标明。

本学位论文原创性声明的法律责任由本人承担。

学位论文作者签名:日期:关于学位论文版权使用授权的说明本人完全了解河北工业大学关于收集、保存、使用学位论文的以下规定:学校有权采用影印、缩印、扫描、数字化或其它手段保存论文;学校有权提供本学位论文全文或者部分内容的阅览服务;学校有权将学位论文的全部或部分内容编入有关数据库进行检索、交流;学校有权向国家有关部门或者机构送交论文的复印件和电子版。

hyperworks非线性分析理论详解

hyperworks非线性分析理论详解

Incremental Loading
For a large class of problems satisfying certain stability and smoothness conditions, the Newton's iterative method is proven to converge, provided that the initial guess is sufficiently close to the true force-displacement path L(u). Hence, to improve convergence for strongly nonlinear problems, the total loading P is often applied in smaller increments, as shown in the figure below. At each of the intermediate loads, P1, P2, etc., the standard Newton iterations are performed.
Where,
In the above formulas, Kn represents a "slope" matrix, defined as a tangent to the L(u) curve at a point un , and Rn is the nonlinear residual. Repeating this procedure iteratively, under certain convergence conditions, leads to systematic reduction of residual Rn and hence, convergence.

fundamentals of vector network analysis -回复

fundamentals of vector network analysis -回复

fundamentals of vector network analysis -回复Fundamentals of Vector Network AnalysisIntroduction:Vector Network Analysis (VNA) is a powerful technique used in the field of electrical engineering for measuring and characterizing high-frequency electrical networks. It provides a comprehensive understanding of the behavior of networks, allowing engineers to design and optimize complex systems in various industries like telecommunications, aerospace, and electronics. In this article, we will delve into the fundamentals of Vector Network Analysis, explaining the underlying principles, measurement techniques, and applications.1. What is Vector Network Analysis?Vector Network Analysis is a method used to measure and analyze the electrical properties of complex networks at high frequencies. It involves the use of a specialized instrument called a Vector Network Analyzer. A VNA measures the amplitude and phase of electronic signals at the input and output ports of the device under test (DUT). These measurements are then used to determine the characteristics of the network, such as transmission and reflectioncoefficients, impedance, and scattering parameters.2. Basic Measurement Principles:Vector Network Analysis relies on the principle of superposition, where the measured signals can be treated as a sum of individual frequency components. The VNA generates a continuous wave signal at specific frequencies and measures the response of the DUT. By varying the frequency, the VNA can capture the behavior of the network across a wide range.3. Measurement Techniques:To perform vector network analysis, the VNA sends a stimulus signal to the DUT and measures the response at its input and output ports. There are two main measurement techniques used in VNA:a) Transmission Measurement: In this technique, the VNA measures the signal transmitted through the DUT. By comparing the transmitted signal with the reference signal, the VNA determines the transmission coefficient, providing information about the network's gain or loss.b) Reflection Measurement: This technique involves the measurement of the signal reflected at the input or output ports of the DUT. By comparing the reflected signal with the incident signal, the VNA calculates the reflection coefficient, which indicates the impedance match or mismatch between the network and the VNA.4. Calibration:Calibration is a critical step in VNA to remove the systematic errors introduced by the measurement setup. It involves the use of calibration standards and reference standards to establish accurate measurement references. Common calibration techniques include the Short-Open-Load-Thru (SOLT) and the Reflect-Match-Reflect (RMR) methods.5. Network Parameters:Vector Network Analysis provides several key parameters that help characterize the behavior of networks. These parameters include:a) S-parameters: S-parameters describe the scattering behavior of networks. They consist of two parts, magnitude, and phase, representing the amplitude and phase shift of signals.S-parameters provide information about signal reflections,transmission, and isolation between ports.b) Impedance: Impedance is a critical parameter that reflects how a network responds to the flow of AC current. It is expressed in terms of real (resistance) and imaginary (reactance) components.c) Transmission and Reflection Coefficients: These coefficients represent the amount of signal transmitted or reflected at the ports of the DUT. They determine the efficiency and impedance match of the network.d) Group Delay: Group delay indicates the time delay of the signal passing through the network. It is crucial in applications where phase coherence and timing are essential, such as in communications systems.6. Applications:Vector Network Analysis finds applications in various fields such as:a) Antenna Design and Testing: VNA helps characterize the performance of antennas by measuring the impedance match and radiation patterns.b) RF/Microwave Component Characterization: VNA is used to measure the performance of components like filters, amplifiers, and mixers, ensuring their proper functioning and efficiency.c) Material Characterization: By analyzing the reflection and transmission of electromagnetic waves through materials, VNA can determine the dielectric properties and material behavior, enabling applications in fields like material science and quality control.d) Circuit Design: VNA plays a significant role in designing and optimizing circuits by measuring their impedance and transmission characteristics. It aids in identifying issues like signal reflections and matching problems.Conclusion:Vector Network Analysis is a fundamental technique inhigh-frequency electrical engineering. With its ability to measure and analyze complex networks accurately, it enables engineers to design, troubleshoot, and optimize systems for various industries. By understanding the principles, measurement techniques,calibration, and network parameters, engineers can harness the power of VNA to ensure efficient, reliable, and well-designed networks.。

ansys非线性瞬态结构分析重要命令

ansys非线性瞬态结构分析重要命令
Nonlinear Isotropic Hardening Material Model非线性各向同性硬化模型
非线性各向同性硬化模型(TB,NLISO)选项基于Voce硬化规律或power硬化规律。该模型的优势在于材料行为由函数确定,而函数由TBDATA命令定义的四个材料常数确定。你可以通过拟合材料拉伸应力-应变曲线来得到这四个常数。不同于MISO,不需要担心如何恰当选定应力-应变点来输入。但是该选项只是适用于如下图所示的拉伸曲线。该选项适合大应变分析。可以综合Chaboche, creep, viscoplastic, and Hill anisotropy等选项来反正复杂材料行为。
Swelling Material Model
User-Defined Material Model
2 Plasticity塑性
大多数工程材料在达到所谓的弹性比例极限前都表现出线性的应力-应变关系。超出该极限,应力-应变关系变为非线性,但也不会变成完全没有弹性。塑性以不可恢复的变形为特点,当应力超过屈服极限材料即表现塑性。一般弹性极限与屈服极限差别很小,ANSYS中一般将这两点当成一点。塑性是一个不可恢复、与路径相关的现象。换句话说,载荷施加顺序及塑性响应顺序都影响最终结果。如果分析中会产生塑性形变,最好以较小的载荷步和时间步求解,以便模型会更遵循载荷-响应曲线。
双线性随动硬化模型(TB,BKIN)假设总应力范围等于屈服强度的两倍,以便包括包辛格效应。建议该选项使用于遵循von Mises屈服准则的一般小形变情况。不建议做大变形应用。BKIN选项可以综合蠕变和希尔各向异性选项来仿真更复杂的材料行为。
Multilinear Kinematic Hardening Material Model多线性随动硬化模型

基于小波核聚类的非高斯过程故障检测方法

基于小波核聚类的非高斯过程故障检测方法

基于小波核聚类的非高斯过程故障检测方法王坤;杜文莉;钱锋【摘要】Detective variables of industrial processes show nonlinear and non-Gaussian behavior. This paper proposes the kernel principal component analysis (WKPCA) based on wavelet kernel clustering to handle the nonlinearity of the process, and introduces support vector data description (SVDD) to model the process. The first step is to construct the kernel function by using Morlet wavelet because of its advantages of multi-resolution analysis and good fitness, which could enhance nonlinear mapping and anti-noise capability of the kernel function. Then this method uses cluster analysis in the feature space, and chooses the data which represent the characteristic center in every cluster, which could decrease calculation load of the kernel function. Finally the method uses the monitor statistics offered by SVDD to describe the non-Gaussian information. Application to the Tennessee-Eastman benchmark process showed effectiveness and accuracy of detecting fault and exception generated by the system.%针对工业过程检测变量具有的非线性和非高斯性等特点,提出了一种基于小波核聚类的核主元分析(WKPCA)方法来处理过程数据的非线性特性,同时引用支持向量数据描述(SVDD)对过程进行建模.本算法先根据Morlet 小波具有多分辨分析和能以更高的精度逼近任意函数的特点,将其构建为小波核函数,可以增强KPCA的非线性核映射和抗噪能力,然后在映射后的特征空间中进行均值聚类分析,选择每个聚类中展现特征中心的数据,大大减少了核函数的计算量;最后通过SVDD提出监控指标来描述过程的非高斯特性.将上述方法用在一个标准仿真平台Tennessee-Eastman上,结果表明,该方法能及时有效地检测出系统产生的故障和异常情况.【期刊名称】《化工学报》【年(卷),期】2011(062)002【总页数】6页(P427-432)【关键词】均值聚类;小波核;故障检测【作者】王坤;杜文莉;钱锋【作者单位】华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海,200237;华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海,200237;华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海,200237【正文语种】中文【中图分类】TP277近年来,过程监控己成为过程自动化和过程控制领域的重要研究方向,并成为系统可靠性、安全性的关键技术之一。

被EI收录的中国期刊

被EI收录的中国期刊

美国Compendex数据库2010年计划收录全世界期刊约 3 168 种,其中,中国期刊 244 种(个别期刊已经拒收,或改名)。经过我部 查询,有26种(黄底),我部首次称,请您给我 部发个电子邮件告知zhucheng@,在此表示感谢。
ofscientificandtechnicalinformationofchina高校化学工程学报gaoxiaohuaxuegongchengxuebaojournalofchemicalengineeringofchineseuniversitiesacademicjournal10039015zhejianguniversity高压物理学报gaoyawulixuebaochinesejournalofhighpressurephysicsacademicjournal10005773chinesejournalofhighpressurephysics工程力学gongchenglixueengineeringmechanicsacademicjournal10004750tsinghuauniversity工程热物理学报kungchengjewulihsuehpaojournalofengineeringthermophysicsacademicjournal0253231xsciencepress工业工程学刊journalofthechineseinstituteofindustrialengineersacademicjournal10170669chineseinstituteofindustrialengineers功能材料gongnengcailiaojournaloffunctionalmaterialsacademicjournal10019731journaloffunctionalmaterials固体火箭技术gutihuojianjishujournalofsolidrockettechnologyacademicjournal10062793journalofsolidrockettechnology固体力学学报gutilixuexuebaoactamechanicasolidasinicaacademicjournal02547805huazhonguniversityofscienceandtechnology固体力学学报英文版actamechanicasolidasinicaacademicjournal0894916618602134huazhonguniversityofscienceandtechnology光电子激光guangdianzijiguangjournalofo

ansys非线性瞬态结构分析重要命令

ansys非线性瞬态结构分析重要命令
3瞬态分析
3.1 瞬态分析的三种方法
瞬态分析有三种方法:full, mode-superposition ,andreduced。对于涉及非线性(plasticity, large deflections, large strain, and so on)的情况一般使用全积分方法。全积分也是最费时的方法。
自动时间步
AUTOTS,ON
DELTIM, DTIME, DTMIN, DTMAX, Carry
如果使用自动时间步,当Carry=OFF,以DTIME为起始时间步长,最小时间步不小于DTMIN,最大不大于DTMAX,当Carry=ON,以上一载荷步的最后子时间步长为起始时间步长。
另一个效果相同的命令组合:
OUTRES,Item,Freq,Cname
Item:NSOL,节点结果;ESOL,单元结果;ALL,所有。
Freq:n,每第n个子步;-n,均分成n段;NONE,一个也不存;ALL,每一子步;LAST,最后一子步;%array%按数组提供的时刻来存储。
例1:
NSUBST,6
OUTRES,ERASE设置到默认值,对于静态和瞬态分析,默认的是输出每一载荷步的最后子步的所有结果;谐态分析是每一子步。
线搜索选项
LNSRCH, Key
线搜索选项(LNSRCH)。该选项可代替自适应下降选项。如果线搜索选项是打开的,程序将自动关闭自适应选项。
非线性分析收敛标准
CNVTOL, Lab, VALUE, TOLER, NORM, MINREF
设置分析终结标准
NCNV, KSTOP, DLIM, ITLIM, ETLIM, CPLIM
Lab:
SPARSE-Sparse direct equation solver

ansys14线性摄动分析

ansys14线性摄动分析

1.线性摄动分析在很多工程应用中,感兴趣的是在前一个线性或非线性载荷状态下结构的线性行为。

线性摄动分析(Linear Perturbation)设计为求解来自该预载荷状态下的线性问题。

例如:通常感兴趣的是在前一个施加载荷下结构的模态频率。

典型地,在非线性分析中,使用Newton-Raphson迭代法(见Nonlinear structural analysis)。

从Newton-Raphson分析中得到的切向矩阵可以用在模态分析中以获得预载荷下的求解,因为没有预载荷的线性刚度矩阵将不能给出一个精确的模态求解。

在ANSYS14以上版本中,程序只支持线性摄动静态分析、线性摄动模态分析、线性摄动屈曲分析和线性摄动完全谐响应分析。

在线性摄动分析中,支持大多数的current-technology elements。

见Elements Supporting Linear Perturbation Analysis in the Element Reference。

6.1.理解线性摄动线性摄动分析可以看做是在一个基础(前一个)线性或非线性分析之上的一个迭代。

在线性摄动过程中,考虑来自基础分析所有的线性或非线性效应,并且它们被“冻结(frozen)”,这样通过线性地使用“冻结的”求解矩阵和材料属性,摄动载荷(perturbation loads)可以产生结构结果(例如变形、应力和应变)。

来自基础分析的线性或非线性效应也被传入到应力扩展阶段(stress expansion pass)。

但是,对于任何的下游分析(downstream analysis)比如线性动力学分析,只会考虑线性效应。

如果不感兴趣来自基础分析的线性或非线性效应,没有必要进行线性摄动分析。

此时一个简单的单一载荷步线性或非线性分析可以满足该要求。

进行一个线性摄动分析,两个关键点是很重要的如下:1、对于当前摄动分析,必须能够获得来自前一步求解(基础分析)的总体切向刚度矩阵。

ANSYS主要的接触问题

ANSYS主要的接触问题

• ·点-面接触单元在节点传递力(面-面接触单元 在高斯点传递力)此特性使其只能用于低阶单元 (角节点)-这是由于中间节点的单元节点上的 反力不均匀(图1-3):
• ·单元不提供偏移功能-用这些单元尚无法模拟梁 和壳的厚度效应。
图1-3
§2 接触刚度
• 点-面接触单元(conta48、49)要求给出罚刚度。可 以通过实验来确定一个合适的接触刚度,使求解收敛而且 侵入量可以接受。
• 例1.梁端部接触 • 目标:验证采用点一面接触单元模拟梁端部接触。 • 建立2D点一面接触单元,求解大变形接触分析并进行后
处理。图4-1 • 模型描述:悬臂梁施加端部位移(图4-1)。
图4-1
• 文件: node_to_surface.inp
• /PREP7
• ET,1,BEAM3 • B=0.5 • H=0.5 • R,1,B*H,B*(H**3)/12,
Component
• Component name = CONTACT
• Component is made of = nodes • 【OK】 • 命令:CM,CONTACT,node
• 由于几何体和变形的多样化,可能有多个目标面 和同一个接触面相互作用,在这种情况下必须定 义多个接触对。对每个表面,需要建立一个包含 表面节点上的组元,然后通过这些表面节点在接 触面之间形成所有可能的接触形状。应该包括比 实际需要更多的节点。
• ·普通的点-面接触功能通过多个交迭的接触单元 来实现。在缺省的情况下,一个单元的每个接触 点与每个可能的目标面连接,大表面上生成的单 元总数会很快变得非常巨大(图3-1)。
表面指定为一组节点,用点-面接触单元来模拟面一面的接触。 • ·面一面接触单元处理角点接触有困难,因为它们采用高斯点作为接

非线性网络的拓扑分析

非线性网络的拓扑分析

( 6)
如将激励 Is = 1 , 线性电导 g1 = 1 , g2 = 1 代入 , 得 ,
V n1 = V n2
g3 ( 1 - J 3 ) + ( 1 + g3 ) ( J 3 - J 4 ) = . 1 + g3 + g4 + g3 + g3 g4
( 7)
( 7) 式是非线性元件分段线性化参数 g3 , J 3 , g4 , J 4 的函数 , 将 ( 6) 或 ( 7 ) 式称为非线性电路的 “通解” . 如果
图1 非线性电阻的分段线性化
Fig. 1 Piecewise lineariztion of a nonlinear resistance
Ξ
收稿日期 : 2003202228 基金项目 : 国家自然科学基金资助项目 (69872010) ) ,男 ,教授 ,博士生导师 . 作者简介 : 李 锋 (1946 —
8
复 旦 学 报 ( 自然科学版) 第 44 卷
g1 V I = f ( V) = g2 V + J 2 g3 V + J 3
0 ≤ V ≤ V1 ,
V1 ≤ V ≤ V2 , V2 ≤ V ≤ V3 ; ( 1)
( 1) 式中 , g1 , g2 , g3 分别是直线段 a , b , c 的斜率 , J 2 , J 3 分别是直线段 b , c 的截距 . ( 1) 式可用一个通式表
将不同分段线性区域的 g , J 值代入则可获得各分段线性化区域的解 , 这样的解称之为 “特解” . 由于 J 3 分 为 3 段 , J 4 分为 3 段 , 因此不同的分段线性区域组合有 3 × 3 = 9 个 ,它们分别是 ad , ae , af , bd , be , bf , cd , ce 和 cf . 各分段线性化区域的特解如表 1 所示 .

求解非线性方程组的元胞自动机方法及其全局收敛性证明

求解非线性方程组的元胞自动机方法及其全局收敛性证明

求解非线性方程组的元胞自动机方法及其全局收敛性证明
陆秋琴 ,杨少敏,黄光球
( 西安建筑科技大学 管理学院,西安 710055) ( * 通信作者电子邮箱 luqiuqin88@ yahoo. cn)
*

要:为了求得非线性方程组所有精确解 , 根据元胞自动机的特点构造了求解非线性方程组的全局收敛算法 。
s s s
( 5)
( 1)
t | N|
x ( t) , gBest( t) , lBest( t) ) ( 6 ) Δx ( t + 1 ) = F( Δx ( t ) , 式中: gBest( t) 为截止到时刻 t 为止, 元胞状态空间内已达到 gBest( t) = 的使方程组( 2 ) 成立时误差最小的方程组的解 。
Journal of Computer Applications 计算机应用,2012,32( 12) : 3283 - 3286 文章编号: 1001 - 9081 ( 2012 ) 12 - 3283 - 04
ISSN 1001-9081 CODEN JYIIDU
2012-12-01 http: / / www. joca. cn doi: 10. 3724 / SP. J. 1087. 2012. 03283
t S ti +1 = f( S1 , …, S tj , …, S t| N| ) t +1 i t 1 t 2
( 4)
显然, 任意时刻 t, 有 | S( t) | = | L d | =
∏M 。
i i =1
4 ) 每个元胞的邻居 N 可以根据实际情形定义 , 常用的邻 Moore 。 r 型邻域来表示 居可使用半径为 的 5 ) 元胞状态演化规则如下 : x s ( t + 1 ) = x s ( t ) + Δx s ( t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Technical OverviewNonlinear Vector Network Analysis SolutionsMS4640A SeriesVector Network Analyzers, MicrowaveIntroductionThe Anritsu-HFE Nonlinear Load Pull System provides maximum performance and flexibility for load pull analysisof nonlinear active devices. The combination of Vector Star’s fast measurement processing and optimum dynamic range together with the MMSNT_LP software and associated system components provides for the first time the opportunity of real time load pull tuning. Real time tuning means analysis of DUT performance and operating conditions can be monitored simultaneously thereby providing immediate feedback to the designer. Optimum PAE, maximum power out, maximum gain, and other parameters are achieved in a minimum amount of time with the highest degree of accuracy. The software can calibrate and measure single-ended or differential devices, depending on the configuration of the test sets used.The basic configuration SM6430 Vector Star Nonlinear System includes:• V ectorStar MS4642A Vector Network AnalyzerMS4642A 10 MHz to 20 GHz VNAOption 51 – external loop accessOption 007 – Receiver offset• SM6435 Nonlinear Accessories• MMSNT_LP SoftwareThe MMSNT_LP software provides measurement integration and controls the Vector Star VNA,load pull tuner, DC bias, etc. to perform fully automated harmonic load pull analysis.R TTSWB Test Set•The test set connects and routes the signals of the nonlinear system and is controlled by the MMSNT_LP software. The RTTSWB electronics controls the DUT input power, switches the measurement signalsfrom the ultra-low-loss couplers and configures the test-set for S-parameters or load pull / source pullmeasurements.• RTT0812 Ultra Low Loss CouplerA critical element of the system are the directional couplers, with less than 0.05 dB insertion loss at2GHz. This ensures maximum available reflection gammas for optimal load pull measurements. Twocouplers are inserted on either side of the DUT; in the case of on-wafer measurements, two low-losscables and probes are needed. The couplers are small enough to easily fit into any typical on-waferdevice characterization measurement system. They allow easy access to the DUT via the probes andare available in 7mm or Type-N connectors.RTTLUS Active Loop TunerIn addition to the basic load pull system, the RTTLUS Active Loop Tuner is available for ultimate load pull tuning capabilities. The unit contains the microwave electronics and controlling system for building a single active loop and is controlled by the MMSNT_LP software. The RTTLUS Active Loop Tuner can be used in conjunction with existing manual or automatic passive tuners or the load pull system can be configured using only active loop tuners. When used in conjunction with an existing passive tuner, the passive tuner is tuned to the fundamental frequency of the DUT and the active tuners are tuned to the harmonics. Thus, the user can make use of any previously owned passive tuners in the Anritsu nonlinear system and add active tuners at any time to improve device characterization in the future.Software DescriptionThe MMSNT_LP is the comprehensive software providing advanced microwave measurements for nonlinear measurements.It can perform:- One-port, two-port and multiport scattering parameters measurements- Two-port or multiport active/passive load-pull measurements- Two-port or multiport large-signal time-domain waveform measurementsMoreover, the software has an internal scripting capability based on the Visual Basic for Application (VBA) language. By running custom-defined scripts (called “Macro Documents”) the user can perform advanced measurements and control external non-standard instrumentation.MMSNT_LP General features• Multi-threaded environment provides data processing while the measurement is running.• M ultiple document interface: multi-document and multi-view application ease multiple tasks for extreme productivity.• E xtensive graphic capabilities for customizing grids, masks, titles, comments, markers and many more on the log-magnitude, phase, real/imaginary, polar and Smith Chart plots.• S tandard data trace memory and math functions available: 6 memories with data*mem, data/mem, data+mem and data-mem operations.• U ser Profiles and Set-ups provide measurement and calibration templates for easy configuration of frequently used measurements.• G eneric template file allows to save the window appearance, settings and organization in user-defined templates.• Arbitrary Port Numbering: the user can rename the VNA physical ports.• N ative mode conversion enables the visualization of differential/common-mode parameters as well as single-ended ones.• Customizable reference impedance for single-ended and differential/common-mode parameters.• T ime Domain Reflectometry (TDR) with time-domain gating is native, and enables the visualization of the step or impulse responses of the circuit under test. Multi-port time-domain gating allows elimination ofunwanted responses in the frequency domain.• Eye Diagram provides convenient analysis of circuit signal integrity.• M ultiport Fixture de-embedding removes the effects of fixtures or adapters, even in multiport environments with signal crosstalk.• Data export to most common files (Touchstone, ASCII text, etc.)• C ut-and-paste plot and data capture for seamlessly including figures and data to a word processor, spreadsheet or other similar programs.• Excel Link allows seamless integration with spreadsheets for fast data export and report generation.• P owerful Macro Language allows automating the measurements and controlling external custom instrumentation.• E xtensive Dynamic Calibration reduces calibration time and minimizes complexity by solving even the most challenging calibration setups.• E rror Reporting produces an ASCII log file to facilitate debugging and error reporting. This file contains valuable information for identifying possible instrument communication failures.• C onfiguration file: a .INI configuration file stores all the test-set information and allows easy upgrade and hardware substitution.2Calibration FeaturesThe software provides a two-port or multiport scattering parameter calibration. The multiport calibration is required, for example, in the Vector Star nonlinear system with differential load-pull option, since the test-set is configured with four ports. Additionally, a power calibration is required. With the time-domain waveform capability, an additional phase calibration is performed. The software handles the hardware calibration with an advanced multiport error model. The unique features include:• Flexible calibration standard configuration.• A utomatically optimizes the number of standard connections and guides the user to accomplish the entire multiport calibration in few steps.• S upport for partial re-calibration, i.e. the possibility of resuming an existing calibration and re-performing the measurements of selected standards without having to perform a complete calibration.• I ncludes a setup guide “wizard” that steps the user through the procedure of setting up a calibration routine and parameters, performing a calibration, making the measurements, and exporting the data.• Calibration standard measurement monitor for easy connection verification.• The ability to generate system error coefficient files.The software unrivaled calibration “mix-and-match” capability allows the user to combine different sets of two-port calibrations to fulfill the multiport calibration, and the software automatically computes the optimal calibration standard sequence depending on the hardware connectivity properties.Built-in Calibration AlgorithmsThe calibration is accomplished in two steps: the scattering parameters calibration and the power calibration. Supported two-port scattering parameters calibration algorithms:- ESOLT, Enhanced Short-Open-Load-Thru calibration- SOLT, QSOLT (Quick SOLT)- LRM, Line-Reflect-Match- LSM, Line-Short-Match- TRL, Thru-Line-Reflect (single line and multi-line)- TSD, Thru-Short-Delay- SOLR, Reciprocal line calibration (“unknown thru”)Calibration StandardsThe calibration set-up imports calibration kits and is guided by a user-friendly graphical interface. The user has the ability to define the calibration elements using advanced standard models. The software also supports user-defined calibration kits that specify the characteristics of the available calibration standards.Measurement FeaturesThe software measures all the relevant large-signal parameters and source/load termination impedances in real-time by measuring the incident and reflected power waves at the DUT ports and computing the parameters of interest. The measurements do not rely on any tuner pre-characterizations or on any on-line measurements; therefore the measurement accuracy is improved by eliminating any uncertainty associated with electrical or mechanical repeatability.Depending on the test-set hardware, typical measurements may include- Power sweeps- Bias sweeps- Load impedance tuning, at the fundamental and harmonic frequencies- Source impedance tuning, at the fundamental and harmonic frequenciesIf an external spectrum analyzer is used then:- Inter-modulation Distortion- ACPRTime-domain voltage/current waveforms are available. With a multiport test-set, the above features can be accomplished for both the common-mode and the differential-mode signals.3Measurable PerformancesThe software can perform both scattering parameter measurements and load-pull/source-pull measurements. Each measurement acquires all the incident and reflected power waves at the DUT ports, at the fundamental and specified harmonics. A specific output data window can be fully customized depending on the user’s needs.Common parameters of interest are readily available as buttons in the toolbar or menu items. Among the parameters available include:- Load and Source Reflection Coefficients (at all harmonics)- DUT Input Reflection Coefficient (at all harmonics)- Power level delivered to the loads (at all harmonics)- Available Input Power Level (at all harmonics)- Net-input Power Level (at all harmonics)- Transistor bias point (input and output voltages and currents)- Device Efficiency (i.e. power added efficiency)- AM/AM and AM/PM conversionData visualization and plottingData plotting is handled by specialized views, which can be easily customized. More than one window can be opened for each view type. There is no software limit on the number of windows provided that the computer has enough memory and processing power.- R unView Window provides a user-defined text list of parameters of interest, which is updated at each measurement.- L oad control Window monitor the source/load impedances values on a Smith Chart plot, at the fundamental and harmonic frequencies.- Sweep Window User-selectable Cartesian plot, display Pin /Poutcurves, Pin/efficiency curves, etc.- Time-Domain Window displays the voltage/current waveforms or dynamic load lines.Contours and Stability CirclesThe software can plot stability circles on the source/load Smith Charts, and also display contours (constant-value loci) of the desired performance.Input/Output Data- Import/export of multiport S-parameter data in Touchstone format or text _le.- Ability to do N-port de-embedding.- Mixed-mode (diffierential/common mode) S-parameters available for display or export.- Cut-and-paste plot and data capture for seamlessly including figures and data to a word processor,spreadsheet or other similar programs.- Standard S-parameter plot formats available: Log Magnitude, Linear Magnitude, Linear Phase, Polar, Smith Chart, Real/Imaginary.- Standard plot scaling, labeling, titles, etc.- Standard data trace memory and math functions available.- Generic template file for viewing multiport datasets in single-ended and differential format. The ability to save user defined templates.- Excel link allows one-click data export to Excel spreadsheets.4Time Domain WaveformThe time-domain waveform measurement capability allows the measurements of the DUT large-signal voltages/ currents while tuning the source/load impedances, at the fundamental and harmonic. It is therefore a valuable tool for determining and setting the working class of on-wafer devices, and for enhancing the amplifier efficiency by waveform engineering techniques.Time Domain Transform- Native time domain transform capability for scattering parameters.- Impulse and Step transforms.- Time domain gating.- M easure the time-domain voltage/current waveforms at the reference planes by measuring the voltage/current harmonic phasors and computing the time-domain signal as a Fourier series.- User-selectable number of harmonics.- Export data as a text file or to Excel. Cut-and-paste graphic plots to any program- Dynamic load-line plotting- R eal time measurements: get the actual values of the source/load impedances associated with the measured waveform. See the waveform distortion change while sweeping the source/load impedances. Measure the effects on the efficiency and output power.Multiport Mixed-Mode Load-PullA unique feature of the MMSNT LP software is the support of four-port test-sets devised for the large-signal characterization of balanced devices (i.e. devices with two inputs and two outputs). Examples of such devices are: - balanced amplifiers, two inputs and two outputs- differential amplifiers, two inputs and a single-ended output- differential amplifiers, a single-ended input and two outputs- balanced oscillators or transmitters, two outputsThe software has a native support for multiport scattering calibration, power calibration and time-domain phase calibration. The measurable parameters depend on the test-set hardware, and a short list is shown below.- Differential and common mode input/output powers, fundamental and harmonic frequencies- Source/load differential and common mode impedances- Differential and common mode time-domain voltage/current waveforms- Differential and common mode DUT input reflection coefficientAdditional Features- Macro Language for automated repetitive processes.- A utomation interface: control the MMSNT LP from to any ActiveX-compliant client or programming language like C/C++, HP VEE®, MATLAB®, LabVIEW® and many others.- Bias Console to perform S-parameter under different bias condition5Software Specification SummaryComputer Platform x86-compatible systemOperating System Microsoft Windows XP and Windows 2000Hardware Requirements 1 GHz processor or higher(minimum) 256 MB RAM100 MB Hard Disk free space1 GPIB interface board*1 or more RS232 ports*(USB-RS232 converters may be used)(*) External interfaces (GPIB, RS232) are not required if the software is run in “demo mode”Hardware SupportThe MMSNT LP software has an extensive instrumentation support, as shown below.Additional non supported items can easily be implemented.Network Analyzers- Anritsu: MS4640A Vector Star family (two-port and multiport), 37000X Lighting family (two-port and multiport) Spectrum Analyzers- Anritsu: MS266X, MS271X- HP/Agilent: PSA family, 856x family- Rohde & Schwarz: FSPOscilloscopes- HP/Agilent: 71500 microwave transition analyzers family, Infinium family- Tektronix: DPO family, DSA familyRF generatorsAny SCPI-compliant generator is supported, plus:- Anritsu MG3690 or MG37020 Series Sources- HP/Agilent: 834x family and 834x-compliant instruments, ESG family- Rohde & Schwarz: SMHU- Marconi: 2040RF power meters- Anritsu: ML243X, ML248X, ML249X- HP/Agilent: 436, 437, 438, E4418- Rohde & Schwarz: NRVSDC power supply- HP/Agilent: 6032, 66xx family, E3632, 4142- Tektronix: PS2521GDC multi-meterAny SCPI-compliant multi-meter, voltmeter, ammeter is supported, plus:- HP/Agilent: 3078, 34970- Keithley: 196, 2376RTTSWB Test SetUnit DescriptionThe RTTSWB Test Set, shown in Fig. 1 is the core of the HFE Real Time Tuning System (RTT),a comprehensive solution for linear and nonlinear device characterization.The unit contains proper microwave electronics and controlling system for the measured RF signals routing. The unit is hosted inside a 3U case with EMI front and rear panels.Figure 1, The RTSTSWB Test Set front panelFigure 2. RTTSWB Test Set real panel7RTTSWB Test Set Technical SpecificationsEach unit is controlled by the PC through the RS485 connector and has the schematic shown in Fig. 3InputPowerFigure 3. The RTTSWB Test Set Block DiagramThe unit is connected to the Vector Star and to the test-set directional couplers, and provides the routing matrix for the stimulus and test signals. The unit includes:- M SW1 Microwave Switch. This SP4T switch routes the stimulus signal to properly drive the DUT. Please refer to Fig. 4 and Fig. 5 for further information.- P IN-diode variable attenuator. The variable attenuator is used to vary the DUT stimulus signal power. It has more than 60 dB of dynamic range and ultra-fine amplitude control with the PC through RS485 or by the manual knob on the front panel.- M SW2 Microwave Switch. This SP4T switch routes the test signals from the test-set directional couplers to the VNA. Please refer to Fig. 4 and Fig. 5 for further information.A TTL input on the rear panel provides the trigger signal for pulsed-RF measurements. In this way the unit can be used to make pulsed S-parameter or pulsed load-pull measurements.The connection to the input power amplifier is used during the load-pull measurement as shown in Fig. 5, while during the system calibration or the S-parameter measurement the couplers must be connected to SP1 and SP2 output as shown in Fig. 4.The GS output is available for measuring the source reflection coefficients. This measurement is obtained by reverse feeding the source tuner as shown in Fig. 6.8Figure 4. Typical Configuration for Test-Set CalibrationFigure 5. Typical Configuration for Load-Pull Measurements(sourcemeasurement)Figure 6. Typical Configuration for Load-Pull Measurements and Reverse Source Measurement (Γ’s)9RTTSWB Test Set Technical SpecificationsPower Supply From 100 VAC to 230 VACUse a fuse of 1 AT40 W power consumptionFrequency Range0.5-18 GHzMaximum Input Power Level Option High Power(OPT. HP)+10 dBm (at all connectors)+40 dBm at SP2 and PS2 AUX+10 dBm at the remaining connectorsInput Power Control Range60 dB minimumDimensions250 x 140 x 300 mm (W x H x D)This product is designed to comply with the requirements of EN61010-1/IEC61010-1 “Safety requirements for electrical equipment for measurement, control and laboratory use”RTT0812 Ultra Low Loss CouplerUnit DescriptionThe RTT0812H Ultra-Low-Loss Directional Coupler is one of the key components of the HFE Real Time Tuning System (RTT), a comprehensive solution for linear and nonlinear device characterization.The unit is a directional coupler, with two coupled ports, that sample the forward and backward propagating wave along its main line. Unlike common directional coupler, the unit has unique features:• Very high power handling• Ultra-broadband• Extremely low insertion loss.Coupling PerformanceNominal Value: 26dBSpecification:26 ± (from 1.2 GHz to 12 GHz)Usable at lower frequencies with reduced coupling(29 dB at 0.8 GHz, 38 dB at 0.5 GHz)1011DirectivitySpecification:>10 dB (from 0.5 to 12 GHz)Main Line Insertion LossSpecification:<0.2 dB (from 0.5 to 12 GHz)Main Line Return LossSpecification: >20 dB (from 0.5 to 12 GHz)Specification SummaryFrequency Range0.8-12 GHz (between coupling’s 3 dB points)usable at lower frequencies with reduced couplingMaximum Input Power Level Main Line 500 W continous 2 kW peakMain Line Connectors Coupled Line ConnectorsTwo Ports with a choice of:- 7 mm connectors- Type-N female connectors- Type-N male connectorsTwo Ports with SMA female connectorsRTTLUS Active Loop TunerUnit DescriptionThe RTTLUS Loop Unit is the core of the Anritsu active load pull technology. The unit contains the microwave electronics and controlling system for building a single active loop. The unit is the base of the Anritsu/HFEReal Time Tuning System (RTT), the Anritsu/HFE comprehensive solution for Active and Passive Load-Pull measurements.RTTLUS Tuner consists of:- B roadband tunable YIG filter. Narrow passband (typically 20 MHz) provides desired frequency pass-through and avoids unwanted loop oscillations at undesired frequencies.- P IN-diode variable attenuator. More than 40 dB of range providing ultra-fine amplitude control by software or front panel knob. Use to vary loop gain.- Motorized Phase Shifter. Vary the loop electrical length using the fast precision mechanical servo system.- The unit has external loops allowing the YIG filter to be bypassed and substituted with different filters.- Software-controlled tuning by PC through the RS485 connector1213The unit is hosted inside a 3U case with EMI front and rear panels. Each unit is controlled by the PC through the RS485 connector and has the schematic reported in Fig 3. The unit contains the components for a complete active loop.Broadband tunable YIG filter. The YIG (Yttrium Iron Garnet) filter with its very small passband (20MHz) makes the loop frequency selective, thus avoiding unwanted loop oscillations at undesired frequencies, and acts as electronic phase shifter.PIN-diode variable attenuator. The variable attenuator is used to vary the loop gain. It has more than 40 dB of dynamic range and ultra-fine amplitude control by the software or by the manual knob on the front panel.Figure 9. The RTTLUS Loop Unit Block SchematicMotorized phase shifter. The Mechanical phase shifter varies the loop’s phase shift and is actuated by a precise and fast mechanical servo system.The unit has extra connectors which let the YIG shifter to be bypassed and substituted with different filters, according with the user needs. In normal operation, a coaxial cablelink is presentbetween the connectors labeled \YF OUT” and \PS IN”.INYIG Tuned FilterVariable AttenuatorPhase ShifterFigure 10. Typical Active Load-Pull Configuration with the RTTLUS Loop UnitRTTLUS Active Loop Tuner Specification SummaryFrequency Range RTTLUS_LRTTLUS_H 0.8-4.5 GHz1.8-18 GHzMaximum Input Power Level +10 dBm (at all connectors) Loop Amplitude Power Dynamic Range40 dB minimumLoad Stability Maximum Phase Random VariationsMaximum Magnitude RandomVariations ± 3º (after warm-up)± 0.05 dB (after warm-up)Warm-up Time Frequencies above 10 GHzFrequencies below 10 GHz 20 minutes 5 minutesDimensions250 x 140 x 300 mm (W x H x D)Power Supply From 100 VAC to 230 VACUse a fuse of 1 AT40 W power consumptionA separate document found on the Anritsu website () provides specifications for the MS4640A-series 20, 40, 50 and 70 GHz VNAs.1415Technical Data Sheet No. 11410-00535, Rev. A Printed in United States 2010-01©2010 Anritsu Company Reserved ® A nritsu All trademarks are registered trademarks of their respective companies. Data subject to change without notice. For the most recent specifications visit: Anritsu Corporation5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan Phone: +81-46-223-1111 Fax: +81-46-296-1264• U.S.A.Anritsu Company1155 East Collins Boulevard, Suite 100, Richardson, Texas 75081 U.S.A.Toll Free: 1-800-ANRITSU (267-4878) Phone: +1-972-644-1777 Fax: +1-972-671-1877• CanadaAnritsu Electronics Ltd.700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006• BrazilAnritsu Electrônica Ltda.Praca Amadeu Amaral, 27-1 Andar 01327-010 - Paraiso, São Paulo, Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940• MexicoAnritsu Company, S.A. de C.V.Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147• U.K.Anritsu EMEA Ltd.200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303• France Anritsu S.A.16/18 Avenue du Québec-SILIC 720 91961 COURTABOEUF CEDEX, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65• Germany Anritsu GmbHNemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49 (0) 89 442308-0 Fax: +49 (0) 89 442308-55• ItalyAnritsu S.p.A.Via Elio Vittorini, 129, 00144 Roma, Italy Phone: +39-06-509-9711 Fax: +39-06-502-2425• Sweden Anritsu ABBorgafjordsgatan 13, 164 40 Kista, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30• Finland Anritsu ABTeknobulevardi 3-5, FI-01530 Vantaa, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111• Denmark Anritsu A/SKirkebjerg Allé 90 DK-2605 Brøndby, Denmark Phone: +45-72112200 Fax: +45-72112210• SpainAnritsu EMEA Ltd.Oficina de Representación en EspañaEdificio VeganovaAvda de la Vega, n o 1 (edf 8, pl1, of 8) 28108 ALCOBENDAS - Madrid, Spain Phone: +34-914905761 Fax: +34-914905762• RussiaAnritsu EMEA Ltd.Representation Office in RussiaTverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow Phone: +7-495-363-1694 Fax: +7-495-935-8962• United Arab Emirates Anritsu EMEA Ltd. Dubai Liaison OfficeP O Box 500413 - Dubai Internet CityAl Thuraya Building, Tower 1, Suite 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460• Singapore Anritsu Pte. Ltd.60 Alexandra Terrace, #02-08, The Comtech (Lobby A) Singapore 118502Phone: +65-6282-2400 Fax: +65-6282-2533• IndiaAnritsu Pte. Ltd. India Branch Office3rd Floor, Shri Lakshminarayan Niwas,#2726, 80 ft Road, HAL 3rd Stage, Bangalore - 560 075, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301• P. R. China (Hong Kong) Anritsu Company Ltd.Units 4 & 5, 28th Floor, Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 Fax: +852-2301-3545• P. R. China (Beijing) Anritsu Company Ltd.Beijing Representative OfficeRoom 2008, Beijing Fortune Building, No. 5, Dong-San-Huan Bei Road,Chao-Yang District, Beijing 100004, P.R. China Phone: +86-10-6590-9230Fax: +86-10-6590-9235• KoreaAnritsu Corporation, Ltd.8F Hyunjuk Bldg. 832-41, Yeoksam-Dong, Kangnam-ku, Seoul, 135-080, Korea Phone: +82-2-553-6603 Fax: +82-2-553-6604• AustraliaAnritsu Pty Ltd.Unit 21/270 Ferntree Gully Road, Notting Hill Victoria, 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255• TaiwanAnritsu Company Inc.7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817。

相关文档
最新文档