3.4 乘法公式1

合集下载

乘法知识点公式总结

乘法知识点公式总结

乘法知识点公式总结一、乘法知识点总结1. 乘法的基本概念乘法是数学中的基本运算法则之一,它是将两个数相乘得到积的过程。

在乘法运算中,我们把要相乘的两个数分别称为乘数和被乘数,它们的乘积称为积。

例如,3 × 4 = 12,其中3和4分别是乘数和被乘数,12是它们的积。

2. 乘法的性质(1)交换律:a × b = b × a乘法的交换律是指乘数和被乘数的位置可以交换,积不变。

例如,3 × 4 = 4 × 3 = 12。

(2)结合律:(a × b) × c = a × (b × c)乘法的结合律是指乘数之间可以结合起来,先乘两个数再乘第三个数的积等于先乘第二个数再乘这个积。

(3)分配律:a × (b + c) = a × b + a × c乘法对加法的分配律是指一个数乘一个括号中的两个数,等于这个数分别乘这两数后再加和。

(4)单位元:任何数乘以1等于它本身。

a × 1 = a, 1 × a = a。

3. 乘法的运算法则(1)乘法的口诀乘法的口诀是指用来记忆乘法表的方法,例如1乘到9的乘法口诀表为:```1 × 1 = 1 1 ×2 = 2 1 ×3 = 3 ... 1 × 9 = 92 × 1 = 2 2 × 2 = 4 2 ×3 = 6 ... 2 × 9 = 18...9 × 1 = 9 9 × 2 = 18 9 × 3 = 27 ... 9 × 9 = 81```通过口诀表,可以帮助孩子们快速记忆乘法表。

(2)乘法的计算方法乘法的计算方法有竖式、横式等多种,不同的计算方法适用于不同的题目,掌握多种计算方法可以帮助孩子更加灵活地运用乘法知识。

乘法口诀表(打印版)

乘法口诀表(打印版)

一九得九 二九十八 三九二十七 四九三十六 五九四十五 六九五十四 七九六十三 八九七十二 九九八十一
1×1=1
乘法口诀表
1×2=2 2×2=4
1×3=3 2×3=6 3×3=9
1×4=4 2×4=8 3×4=12 4×4=16
1×5=5 2×5=10 3×5=15 4×5=20 5×5=25
1×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=36
1×7=7 2×7=14 3×7=21 4×7=28 5×7=35 6×7=42 7×7=49
1×8=8 2×8=16 3×8=24 4×8=32 5×8=40 6×8=48 7×8=56 8×8=64
1×9=9 2×9=18 3×9=27 4×9=36 5×9=45 6×9=54 7×9=63 8×9=72 9×9=81
1×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=36 一六得六 二六十二 三六十八 四六二十四 五六三十 六六三十六
1×7=7 一七得七
1×8=8 一八得八
2×7=14 二七十四
2×8=16 二八十六
3×7=21 三七二十一
3×8=24 三八二十四
4×7=28 5×7=35 6×7=42 7×7=49 四七二十八 五七三十五 六七四十二 七七四十九
ห้องสมุดไป่ตู้
一一得一
乘法口诀表
一二得二 二二得四
一三得三 二三得六 三三得九
一四得四 二四得八 三四十二 四四十六
一五得五 二五一十 三五十五 四五二十 五五二十五
一六得六 二六十二 三六十八 四六二十四 五六三十 六六三十六
一七得七 二七十四 三七二十一 四七二十八 五七三十五 六七四十二 七七四十九

完整乘法表

完整乘法表

完整乘法表在数学中,乘法是一种基本的运算方式,用于计算两个数的积。

完整乘法表展示了从1到10的数字之间进行乘法运算的结果。

本文将通过整洁的格式和清晰的语言,介绍完整乘法表中的每个数字和相应的计算结果。

1乘法表:1 × 1 = 11 ×2 = 21 × 3 = 31 × 4 = 41 × 5 = 51 × 6 = 61 × 7 = 71 × 8 = 81 × 9 = 91 × 10 = 10在1乘法表中,我们可以看到1乘以任何数字的结果都等于该数字本身。

这是因为任何数乘以1都等于它本身。

2乘法表:2 × 1 = 22 ×3 = 62 × 4 = 82 × 5 = 102 × 6 = 122 × 7 = 142 × 8 = 162 × 9 = 182 × 10 = 20在2乘法表中,我们可以观察到一些有趣的模式。

例如,2乘以1等于2,2乘以2等于4,2乘以3等于6,依次类推。

我们可以看到,每次乘法的结果都比前一个数增加2个单位。

3乘法表:3 × 1 = 33 × 2 = 63 × 3 = 93 ×4 = 123 × 5 = 153 × 6 = 183 × 7 = 213 × 8 = 243 × 10 = 30在3乘法表中,我们可以观察到另一种有趣的模式。

每次乘法的结果都是前一个数的3倍。

例如,3乘以1等于3,3乘以2等于6,3乘以3等于9,以此类推。

4乘法表:4 × 1 = 44 × 2 = 84 × 3 = 124 × 4 = 164 ×5 = 204 × 6 = 244 × 7 = 284 × 8 = 324 × 9 = 364 × 10 = 40在4乘法表中,我们可以观察到每次乘法的结果都比前一个数增加4个单位。

浙教版七年级数学下册 3.4 乘法公式(提高)知识讲解

浙教版七年级数学下册 3.4 乘法公式(提高)知识讲解

乘法公式(提高讲义)【重点梳理】重点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.重点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 重点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.重点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+重点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.重点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 重点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±m ;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用例1、计算(2+1)(221+)( 421+)(821+)(1621+)(3221+)+1.【思路点拨】本题直接计算比较复杂,但观察可以发现2+1与2-1,221+与221-,421+与421-等能够构成平方差,只需在前面添上因式(2-1),即可利用平方差公式逐步计算. 【答案与解析】解:原式=(2-1)(2+1)( 221+)(421+)(821+)(1621+)(3221+) +1 =(221-)( 221+)( 421+)(821+)(1621+)(3221+)+1 =642-1+1=642.【总结升华】对于式子较为复杂的数的计算求值问题,不妨先仔细观察,看是否有规律,然后去解决,会事半功倍,提高解题能力. 举一反三:【变式1】(2019秋﹒平山县期末)用简便方法计算: (1)1002-200×99+992 (2)2018×2020-20192【分析】(1)将原式转化为1002-2×100×(100-1)+(100-1)2,再利用完全平方公式进行计算, (2)2018×2020转化为(2019-1)(2019+1),再利用平方差公式计算即可. 【解答】解:(1)1002-200×99+992 =1002-2×100×(100-1)+(100-1)2 =[100-(100-1)]2=12 =1;(2)2018×2020-20192=(2019-1)(2019+1)-20192=20192-1-20192 =-1.【点评】考查平方差公式、完全平方公式的应用,掌握公式特征是关键.【变式2】(2019•内江)(1)填空: (a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= . (2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2. 【答案】解:(1)(a ﹣b )(a+b )=a 2﹣b 2;(a ﹣b )(a 2+ab+b 2)=a 3+a 2b+ab 2﹣a 2b ﹣ab 2﹣b 3=a 3﹣b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4+a 3b+a 2b 2+ab 3﹣a 3b ﹣a 2b 2﹣ab 3﹣b 4=a 4﹣b 4;故答案为:a 2﹣b 2,a 3﹣b 3,a 4﹣b 4; (2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n ﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.例2、(2019秋﹒甘井子区期末)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.【考点】平方差公式的几何背景.乘法公式的几何验证方法∴①+②的面积=a 2-b 2;①+②的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.(2)①+②的面积=(a-b)b=ab-b 2, ③+④的面积=(a-b)a=a 2-ab, ∴①+②+③+④=a 2-b 2;①+②+③+④的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键. 举一反三:【变式】(2019秋﹒南昌期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分面积S 1可表示为a 2-b 2a 2-b 2,在图3中的阴影部分的面积S 2可表示为a 2-b 2a 2-b 2,由这两个阴影部分的面积得到的一个等式是BB . A .(a+b)2=a 2+2ab+b 2B .a 2-b 2=(a+b)(a-b) C .(a-b)2=a 2-2ab+b 2(2)根据你得到的等式解决下面的问题: ①计算:67.52-32.52; ②解方程:(x+2)2-(x-2)2=24.【考点】平方差公式的几何背景.【专题】整式;一次方程(组)及应用;运算能力. 【分析】(1)由正方形的面积,可得S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2;所以a 2-b 2=(a+b)(a-b);(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500;②展开整理,得8x=24,解得x=3,所以方程的解是x=3.【解答】解:(1)由正方形的面积,可得 S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2; ∴a 2-b 2=(a+b)(a-b); 故答案为a 2-b 2,a 2-b 2,选B ;(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500; ②(x+2)2-(x-2)2=24, 展开整理,得8x=24, 解得x=3, ∴方程的解是x=3.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.类型二、完全平方公式的应用例3、运用乘法公式计算:(1)2(23)a b +-;(2)(23)(23)a b c a b c +--+.【思路点拨】(1)是一个三项式的平方,不能直接运用完全平方公式,可以用加法结合律将23a b +-化成(23)a b +-,看成a 与(23)b -和的平方再应用公式;(2)是两个三项式相乘,其中a 与a 完全相同,2b ,3c -与2b -,3c 分别互为相反数,与平方差公式特征一致,可适当添加括号,使完全相同部分作为“一项”,互为相反数的部分括在一起作为“另一项”. 【答案与解析】解:(1)原式222[(23)]2(23)(23)a b a a b b =+-=+-+-22464129a ab a b b =+-+-+ 22446129a b ab a b =++--+.(2)原式22222[(23)][(23)](23)4129a b c a b c a b c a b bc c =+---=--=-+-. 【总结升华】配成公式中的“a ”“b ”的形式再进行计算. 举一反三:【变式】运用乘法公式计算:(1)()()a b c a b c -++-; (2)()()2112x y y x -+-+; (3)()2x y z -+; (4)()()231123a b a b +---. 【答案】解:(1) ()()a b c a b c -++-=[a -(b -c )][ a +(b -c )]=()()222222a b c a b bc c--=--+=2222a b bc c -+-.(2) ()()2112x y y x -+-+ =[2x +(y -1)][2x -(y -1)]=()()()222221421x y x y y --=--+=22421x y y -+-.(3)()()()()22222x y z x y z x y x y z z -+=-+=-+-+⎡⎤⎣⎦=222222x xy y xz yz z -++-+.(4) ()()231123a b a b +---=()2231a b -+-=-22[(23)2(23)1]a b a b +-++=-()22(2)2233461a a b b a b ⎡⎤+⋅⋅+--+⎣⎦=224129461a ab b a b ---++-例4、已知△ABC 的三边长a 、b 、c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【思路点拨】通过对式子变化,化为平方和等于零的形式,从而求出三边长的关系. 【答案与解析】解:∵ 2220a b c ab bc ac ++---=,∴ 2222222220a b c ab bc ac ++---=,即222222(2)(2)(2)0a ab b b bc c a ac c -++-++-+=. 即222()()()0a b b c a c -+-+-=. ∴ 0a b -=,0b c -=,0a c -=,即a b c ==,∴ △ABC 为等边三角形.【总结升华】式子2220a b c ab bc ac ++---=体现了三角形三边长关系,从形式上看与完全平方式相仿,但差着2ab 中的2倍,故想到等式两边同时扩大2倍,从而得到结论. 举一反三:【变式】多项式222225x xy y y -+++的最小值是____________. 【答案】4;提示:()()2222222514x xy y y x y y -+++=-+++,所以最小值为4.。

七年级数学下册第3章整式的乘除 乘法公式1第2课时教案新版浙教版

七年级数学下册第3章整式的乘除 乘法公式1第2课时教案新版浙教版

3.4乘法公式(1)教学目标:1.经历探索平方差公式的过程,会通过图形的拼接验证平方差公式,了解平方差公式的几何背景,并会运用所学的知识,进行简单的混合运算.2.通过创设问题情境,让学生在数学活动中建立平方差公式模型,通过探索规律,归纳出利用平方差公式,解决数字运算问题的方法,培养学生观察、归纳、应用能力. 3.了解平方差公式的几何背景,培养学生的数形结合意识.在探究学习中体会数学的现实意义,培养学习数学的信心. 教学重点与难点:重点:平方差公式的几何解释和广泛的应用.难点:准确地运用平方差公式进行简单运算,培养基本的运算技能. 教法及学法指导:有效的数学学习方法不能单纯地依赖模仿与记忆,我以问题为线索,让学生在动口、动手、动脑的活动中学习知识,让学生进一步理解“探索发现——归纳验证——应用拓展”这一学习与研究数学问题的方法.以探究体验的教学法为主,为学生创造一个良好的学习情境,指导学生深刻思考,细心观察,在解题时,一切从习题特点出发,根据习题特点寻找最佳解题方法,具体在运用公式计算时,要认清结构,找准a 、b . 课前准备:多媒体课件,一张正方形纸板,剪刀. 教学过程:一、速算王的绝招师:在一次智力抢答赛中,主持人提供了两道题:1.2119?⨯= 2. 10397?⨯=主持人话音刚落,就立刻有一个学生刷地站起来抢答说:“第一题等于399,第二题等于9991。

”其速度之快,简直就是脱口而出。

同学们,你知道他是如何计算的吗?(学生讨论,部分预习效果较好的同学能够体会其中的道理,仍有部分学生很困惑.)师:这其中的奥秘,其实我们已经接触过了,通过本节课的学习我们都能像速算王一样聪明,能够迅速得到结果,我们开始今天的学习吧.【教师板书课题:3.4乘法公式(1)】设计意图:通过“速算王的绝招”这一故事的情境创设,引发学生学习的兴趣,同时激发了学生的好奇心和求知欲,顺利引入新课。

二、一起来热身师:为了更好地解决本节课的内容,大家回顾一下上节课学习的平方差公式的内容,哪个同学来回答?生1:平方差公式:22()()a b a b a b +-=-.生2:两个数的和与这两个数差的积等于这两个数的平方差.生3:这个公式的结构特点是:左边是两个二项式的乘积,即两数和与这两数差的积; 右边是两数的平方差.师:大家回答的都很好.下面通过一组习题来复习一下大家的掌握情况. (多媒体出示习题) 利用平方差公式计算:(1)(23)(23)x y x y +-; (2)(2)(-2)x y y x --; (3)(5+8)(58)x x -; (4)2(3)(9)(3)x x x -++. (学生独立做题,师巡视.)【答案:(1)2249x y -;(2)224y x -;(3)22564x -;(4)481x -.】 师:在运用平方差公式时要注意什么?生:1.字母a 、b 可以是数,也可以是整式;2.注意计算过程中的符号和括号. 设计意图:通过习题训练功过上节课所学知识,为下面教学的展开做好铺垫. 三、数学是什么师:有人说,数学只是一些枯燥的公式、规定,没有什么实际意义!请问数学真的没有什么实际意义吗? 请看下面的问题:师:请表示右图中阴影部分的面积. 生:a 2-b 2.师:你能将将阴影部分通过裁剪拼成一个长方形吗?如果能这个长方形的长和宽分别是多少?你能表示出它的面积吗?(学生动手操作,教师巡视指导,指定同学演示)生:我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),上面的大长方形宽是(a -b ),长是a ;下面的小长方形长是(a -b ),宽是b .我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a -b ),我们可以将这两个边重合,这样就拼成了一个如下图所示的图形(阴影部分),它的长和宽分别为(a +b )、(a -b ).师:比较前两问的结果,你有什么发现? (学生思考交流)生:这两部分面积应该是相等的,即(a +b )(a -b )=a 2-b 2.生:通过裁剪拼凑我们验证了上节课所学的平方差公式:(a +b )、(a -b )= a 2-b 2. 生:用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证. 师:由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.设计意图:设计几何解释,目的是使学生看到数学中的公式反映了实际问题中的客观关系,是看得见摸得着的,纠正 “数学只是一些枯燥的公式、规定,没有什么实际的意义。

2,3,4的乘法口决

2,3,4的乘法口决

2,3,4的乘法口诀
引言
乘法口诀是数学中非常基础的概念,可以帮助我们快速计算两个数相乘的结果。

在这篇文档中,我们将讨论2,3,4的乘法口诀,帮助读者更好地理解和掌握乘
法的运算规律。

乘法口诀表
下面是2,3,4的乘法口诀表,可供快速参考:
2 3 4
4 6 8
6 9 12
8 12 16
10 15 20
12 18 24
14 21 28
16 24 32
18 27 36
20 30 40
2的乘法口诀
当我们将一个数与2相乘时,可以采用如下的规律:
1.将这个数乘以2,得到结果。

2.示例:2 × 4 = 8。

通过不断地将一个数乘以2,我们可以得到2的乘法口诀。

3的乘法口诀
当我们将一个数与3相乘时,可以采用如下的规律:
1.将这个数乘以3,得到结果。

2.示例:3 × 4 = 12。

通过不断地将一个数乘以3,我们可以得到3的乘法口诀。

4的乘法口诀
当我们将一个数与4相乘时,可以采用如下的规律:
1.将这个数乘以4,得到结果。

2.示例:4 × 4 = 16。

通过不断地将一个数乘以4,我们可以得到4的乘法口诀。

小结
乘法口诀是数学中非常基础和重要的概念。

通过本文我们学习了2,3,4的乘法口诀,并且提供了乘法口诀表用于参考。

掌握乘法口诀可以帮助我们更快地进行数学运算,提高计算效率。

希望本文对读者有所帮助,提升数学能力。

3.4乘法公式(1)

3.4乘法公式(1)

平方差引发的连锁反应:
(2+1)(22+1)(24+1)(28+1)+1 =(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1
=(28-1)(28+1)+1 =216-1+1 =216
(a+b)(a-b)=a2利用平方差公式计算(先确定各题的a 与b,再填空)
(1)(5+6x)(5-6x)=( 5 )2-( 6x )2=______ 25-36x2 x2-4y2 (2)(x-2y)(2y+x)=( x )2-(2y )2=_______ (3)(-m+n)(-n-m)=(-m)2-( n )2=_______ m2-n2
两式和与这两式差的积, 等于它们的平方差
1)左边为两个式的和与差的积,右边为两 个式的平方差
2)有些式子通过适当变形实质上能用公式 3)公式中的a和b可以是数,也可以是整式 即整体思想
(1) 103×97 (2) 59.8×60.2
1 8 (3)100 99 9 9
运用平方差公式计算:
2 5678×5680-5679 2 =(5679-1)(5679+1)-5679 2 =5679
-1
2 -5679
= -1
先化简,再求值: (2a b)b 2a ) (2b a )(2b a ), ( 其中a 1, b 2
王敏同学去商店买了单价是9.8元/千克的糖 果10.2千克,
售货员刚拿起计算器,王敏就说出应99.96元, 结果与售货员计算出的结果相吻合。 售货员很惊讶地说:“你好象是个神童,怎 么算得这么快?” 王敏同学说:“过奖了,我利用了在数学上 刚学过的一个公式。” 你知道王敏同学是怎么计算的吗?

大一高数知识点公式总结

大一高数知识点公式总结

大一高数知识点公式总结在大一高数学习中,掌握各种数学公式是非常重要的,它们可以帮助我们解决各种复杂问题。

下面将为您总结一些大一高数常见的知识点和相关公式。

1. 代数运算1.1 加法和减法公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2(a + b)(a - b) = a^2 - b^21.2 乘法公式:(a + b)(c + d) = ac + ad + bc + bd1.3 平方差公式:a^2 - b^2 = (a + b)(a - b)1.4 分式运算:a/b + c/d = (ad + bc)/(bd)a/b - c/d = (ad - bc)/(bd)2. 数列与级数2.1 等差数列公式:第n项公式:an = a1 + (n - 1)d前n项和公式:Sn = n/2(a1 + an)2.2 等比数列公式:第n项公式:an = a1 * r^(n-1)前n项和公式:Sn = a1 * (1 - r^n) / (1 - r)2.3 等差数列和公式:Sn = n/2(a1 + an)3. 极限与导数3.1 极限的定义:lim(x->a) f(x) = L,表示当x无限接近a时,f(x)无限接近L 3.2 常见极限:lim(x->0) sin(x)/x = 1lim(x->∞) (1 + 1/x)^x = e3.3 导数的定义:f'(x) = lim(h->0) (f(x+h) - f(x))/h3.4 常见导数公式:(常数C)' = 0(x^n)' = nx^(n-1)(e^x)' = e^x(sin(x))' = cos(x)4. 积分4.1 定积分的定义:∫[a,b] f(x)dx表示从x=a到x=b的f(x)函数的积分 4.2 常见积分公式:∫x^n dx = (1/(n+1)) x^(n+1) + C (n≠-1)∫k f(x) dx = k ∫f(x) dx∫(f(x)±g(x)) dx = ∫f(x) dx ± ∫g(x) dx5. 空间解析几何5.1 空间坐标表示:三维直角坐标系中,点P的坐标表示为P(x, y, z)5.2 点与线段距离公式:点P(x1, y1, z1)到直线Ax + By + Cz + D = 0的距离公式为:d = |Ax1 + By1 + Cz1 + D| / sqrt(A^2 + B^2 + C^2)通过掌握以上知识点和公式,我们可以更好地应对大一高数中的复杂问题。

[数学]-专项3.4 乘法公式(知识解读)(原版)

[数学]-专项3.4 乘法公式(知识解读)(原版)

专题3.4 乘法公式(知识解读)【学习目标】1. 掌握平方差公式、完全平方公式结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3.能灵活地运用运算律与乘法公式简化运算.4.能用平方差公式和完全平方公式的逆运算解决问题【知识点梳理】知识点1:平方差公式平方差公式:语言描述:两个数的和与这两个数的差的积,等于这两个数的平方差. 注意:在这里,既可以是具体数字,也可以是单项式或多项式. 知识点2:平方差公式的特征抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2 =x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 222()()a b a b a b +-=-b a ,知识点3:完全平方公式完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍注意:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:知识点4:拓展、补充公式2222222a b c ab ac bc =+++++(a+b+c ) 222112a a a±=+±(a );;;.【典例分析】【考点1:平方差公式】 【典例1】用平方差公式计算:(1)(1+x )(1﹣x ); (2)(a +3b )(a ﹣3b );(3)(3+2a )(3﹣2a ); (4)(x ﹣2y )(﹣x ﹣2y ).【变式1-1】计算:(a ﹣b )(a +b ).()2222a b a ab b +=++2222)(b ab a b a +-=-()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+2()()()x p x q x p q x pq ++=+++2233()()a b a ab b a b ±+=±33223()33a b a a b ab b ±=±+±2222()222a b c a b c ab ac bc ++=+++++【变式1-2】(2m+n)(2m﹣n).【变式1-3】(2022秋•唐河县期末)下列能用平方差公式计算的是()A.(﹣x+y)(x+y)B.(﹣x+y)(x﹣y)C.(x+2)(2+x)D.(2x+3)(3x﹣2)【典例2】用简便方法计算下列各题:(1)992;(2)1022﹣101×103.【变式2-1】计算20212﹣2020×2022的结果是()A.1B.﹣1C.0D.2×20212﹣1【变式2-2】简便计算:(1)20222﹣2020×2024;(2)1882﹣376×88+882.【考点2:平方差公式的几何背景】【典例3】(2022秋•邹城市校级期末)从边长为a的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(请选择正确的一个).A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【变式3-1】(2022秋•离石区期末)在边长为a的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2﹣ab=a(a﹣b)B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b2【变式3-2】乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).【变式3-3】如图,从边长为a的正方形纸片中剪掉一个边长为b的正方形纸片(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是.(2)应用:利用(1)中得出的等式,计算:.【考点3:完全平方公式】【典例4】(2021春•罗湖区校级期中)运用完全平方公式计算:(1)(3a+b)2 (2)(x﹣2y)2(3)(﹣x﹣y)2 (4)1992.【变式4-1】(2020春•沙坪坝区校级月考)(﹣4x﹣)2.【变式4-2】(2020春•沙坪坝区校级月考)(3a﹣b)2.【变式4-3】(2019秋•静安区校级月考)(a+b﹣c)2.【典例5】(2022秋•丰宁县校级期末)若x2+mx+81是完全平方式,则m的值是()A.±18B.±9C.9D.18【变式5-1】(2022秋•新会区校级期末)已知x2﹣ax+16可以写成一个完全平方式,则a可为()A.4B.±4C.8D.±8【变式5-2】(2022秋•沙坪坝区期末)若x2+(k+1)x+1是一个完全平方式,则k的值是()A.﹣3B.1C.﹣3或1D.±2【考点4:完全平方公式的几何背景】【典例6】(2022秋•西岗区校级期末)图1是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的正方形的边长是;(用含a、b的式子表示)(2)观察图2,用一个等式表示下列三个整式:(a+b)2、(a﹣b)2、ab 之间的等量关系;(3)根据(2)问中的等量关系,解决如下问题:若m+n=8,mn=12,求m﹣n的值.【变式6-1】(2022秋•南关区校级期末)如图1,三种纸片A、B、C分别是边长为a的正方形,边长为b的正方形和宽与长分别为a与b的长方形.(1)数学课上,老师用图1中的一张纸片A,一张纸片B和两张纸片C,拼成了如图2所示的大正方形,由此可以得到的乘法公式是;(2)若小莉想用图1中的三种纸片拼出一个面积为(2a+b)(a+b)的大长方形,需要A、B、C三种纸片分别张.【变式6-2】(2022秋•黄石港区期末)如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A.x2﹣y2=(x﹣y)(x+y)B.(x﹣y)2=x2﹣2xy+y2C.(x+y)2=x2+2xy+y2D.(x﹣y)2+4xy=(x+y)2【变式6-3】(2022春•邗江区期末)完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值;解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)填空:①若(4﹣x)x=5,则(4﹣x)2+x2=;②若(4﹣x)(5﹣x)=8,则(4﹣x)2+(5﹣x)2=.(3)如图,在长方形ABCD中,AB=25,BC=15,点E.F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为200平方单位,求图中阴影部分的面积和.【考点5:完全平方公式拓展运用】【典例7】(2022春•巨野县期末)已知x+y=﹣5,xy=﹣3.(1)求x2+y2的值;(2)求(x﹣y)2的值.【变式7-1】(2022春•平桂区期末)已知x+y=5,xy=2,求x2+y2的值.【变式7-2】(2021秋•尚志市期末)已知:x+y=3,xy=﹣1,求下列各式的值:(1)x2+y2;(2)(x﹣y)2.【变式7-3】(2021秋•汝阳县期中)已知x2+y2=29,x+y=7,求各式的值:(1)xy;(2)x﹣y.。

浙教版数学七年级下册3.4《乘法公式》ppt课件

浙教版数学七年级下册3.4《乘法公式》ppt课件
29.5m,30m,27m。现将这4块苗圃的边长都增加1.5m, 求各 苗圃的面积分别增加多少m2?
解:设原正方形苗圃的边长为a (m),边长增加1.5m后,新正方 形的边长为(a+1.5) m。 (a+1.5)2-a2=a2+3a+2.25-a2=3a+2.25 当a=30.1时,3a+2.25=3×30.1+2.25=92.55 当a=29.5时,3a+2.25=3×29.5+2.25=90.75 当a=30 时,3a+2.25=3×30 +2.25=92.25 当a=27 时,3a+2.25=3×27 +2.25=83.25 答:4块茶花苗圃的面积分别增加了92.55m2,90.75m2,92.25m2, 83.25m2。

观察上述1、2两题的计算结果,你发现有什 么规律?你能用你的发现来猜测第3题的结果吗?
你能用一个图形的面积直观地表示(a+b)2的
(a+b)2= a2 +结2a果b 吗+b?2 的图形理解
完全平方和公式:
b ab

(a+b)²
a a² ab
a
b
(a b)2 a2+2ab +b2
完全平方公式:
小明写出了如下的算式:(a−b)2 [a+(−b)]2 他是怎么想的? 你能继续=做下去吗?
(a−b)2= [a+(−b)]2 = a2 +2a(-b)+ (−b)2
= a2 –2ab+ b2
(a-b)2= a2 - 2ab+b2的图形理解
完全平方差公式:
b ab b²

3.4乘法公式

3.4乘法公式

乘法公式的变形、拓展及使用 (等式变形)
情形一:逆向使用公式
1,平方差公式的逆向使用:见任务单任务三: 一大题2小题,2大题,任务二:一大题3小题
2,完全平方公式的逆向使用:见任务单任务二: 一大题1,2小题,任务三:一大题4小题
乘法公式的变形、拓展及使用 (等式变形)
情形二(重点难点):完全平方公式的各种变形等式
下列题目用什么方法计算?
1,(3a-3)(-3-3a) 2,(3a-3)(-3+3a) 3,(3a-3)(3-3a) 4,(3a-3)(-3+4a)
常见乘法公式
一,必须掌握的 1,平方差公式(a+b)(a-b)=a2-b2 2,完全平方公式(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
二,其他公式 3,立方和公式(a+b)(a2-ab+b2)=a3+b3 4,立方差公式(a-b)(a2+ab+b2)=a3-b3 5,和的三次方(a+b)3=a3+3a2b+3ab2+b3 6,差的三次方(a-b)3=a3-3a2b+3ab2-b3 7,三项的完全平方公式
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac 这些公式都可以用多项式乘法法则推导出来。
等式变形的实质是:整体思想及移项
具体问题看任务单任务二:2,3,4题及课后作业第3题
总结
对完全平方公式的各种等式变形,以及两个 公式之间存在的联系使得以下四个部分:

(a+b)
(a-b)
(a2+b2)

3.4乘法公式

3.4乘法公式

2、(y—7)2
3、(—2x—3y)2
1 2 4、(3— t) 3
1 1 6. m n 5 2
2
5. 7 y
2
17
选择适当的公式计算:
(1)、(2x—1)(—1+2x) (2)、(—2x—y)(2x—y) (3)、 (—a+5)(—a—5) (4)、(ab—1)(—ab+1)
3
a
1
b
2
(a+b)(a+b) = a + 2ab + b
2
2
4
3
瑞安市万松公园有一个边长为a的正方形 园地,为种植不同的花卉,将其边长增加 了b,形成4个种植花卉的区域,以种植不 同品种的花卉,请你用不同的方法计算这 个园地的面积。
4
你能用下图图形的面积直观地表示(a+b)2 的结果吗?
(a+b)(a+b) = a + ab + ba + b
圃的面积分别增加了多少m2?
解:设原正方形苗圃的边长为a(m), 边长增加1.5m后,新正方形的边长 为(a+1.5)m;由题意可得,
2
a 1.5
a a 3a 1.5 a 3a 2.25,
2 2 2 2
当a=30.1时,3a+2.25=3×30.1+2.25=92.55; 当a=29.5时,3a+2.25=3×29.5+2.25=90.75; 答:两块苗圃的面积分别增加了92.55平方米,90.75平方米。
2
运用平方差公式计算:
(1) (2x+1)(2x-1) 2 x
(2)

3.4 乘法公式(1)平方差公式

3.4 乘法公式(1)平方差公式

拓展延伸
如果一个正整数能表示为两个连续偶数的平方差, 那么我们称这个正整数为“和谐数”,如4=22﹣02, 12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是 “和谐数”. (1)当28=m2﹣n2时,m+n= ; (2)设两个连续偶数为2k+2和2k(其中k取非负整数) ,由这两个连续偶数构成的“和谐数”是4的倍数吗?为 什么?
达标测评
2.下列各式中,与(1﹣a)(﹣a﹣1)相等的是
(A )
A.a2﹣1
B.a2﹣2a+1
C.a2﹣2a﹣1 D.a2+1
达标测评
3.先化简(a+1)(a﹣1)+a(1﹣a)﹣a,再根 据化简结果,你发现该代数式的值与a的取值有 什么关系?
解:原式=a2﹣1+a﹣a2﹣a=﹣1. 该代数式与a的取值没有关系.
小结
通过本节课的内容,你有哪些收获?
1.试用语言表述平方差公式 (a+b)(a−b)=a2−b2 两数和与这两数差的积,等于它们的平方差.
2.步骤:找出相等的“项”和符号相反的“项”, 然后应用公式.
(2)( 1 b a)( 1 b a) (a 1 b)(a 1 b)
2
2
2
2

a2


1 2
b

2

a2

1 4
b2 .
例题讲解 例2 用平方差公式计算:
(1)103 97.
(2)59.8 60.2.
解:
(1)103 97 (100 3)(100 3) 1002 32
并且有一项完全相同;另
(1)(x+1)(x-1)= __x_2_-__1____; 一项互为相反数。

3.4乘法公式(1)

3.4乘法公式(1)

3
16
16
1
2
3 1 3 1 3
2 4 8 8
2
1 3 1
4 16 16
3
4 16
1 3 1
4
3 13 1 3 3 1 3 1 3
1 3 1 3 1
16
3
1 1 1 2 即, a 2 b a 2 b a 2 b . (3)系数变化, 2 2 2
2
(4)指数变化, 即, a

2
b a b a
2 2 2
2 2 (5)增项变化, 即, a bc a bc a bc . (6)增因式变化, 2 2 2 2 2 2 2 a ba b a b a b a b a b a b . 即, (7)连用公式变化,即, a ba b a 2 b 2 a 4 b 4 a8 b8 . (8)逆运用公式变化, 27 2 2 a b c d a b c d 2a 2b 2c 2d 4a b c d . 即,
33
34
1 1 1 3.解: 2 . 1 2 1 2 1 2 2 3 4 2 2 2 1 2 1 3 1 4 1 1 2 2 2 2 2 3 4 10 10 1 3 8 15 2 2 2 2 10 2 3 4
(a b)(a b) a b
2
2
阅读算式,按要求填写下面的表格
与平方差 与平方差 写成“a2-b2” 公式中a 公式中b 的形式 对应的项 对应的项
x 2
5 3x

3.4乘法公式(1)

3.4乘法公式(1)
义务教育课程标准实验教科书 浙江版《数学》七年级下册
3.4 乘法公式(1)
比一比:看谁算得更快
a 4 (1) (a 2)(a 2) _______
2
9 x (2) (3 x)(3 x) ______
2
4m n (3) (2m n)(2m n) _________
例2 用简便的方法计算:
(1) 103×97 (2) 59.8×60.2 练一练:
计算 : 2 1 (1) 102 98 (2) 50 49 3 3 2 (3) 5678 5680 5679
例3 先化简,再求值:
1 1 1 x(4 x 3) (2 x )(2 x ) 其中 x 4 2 2
2 2
1 25 x (4) (1 5 x)察、分析、比较上面各式的左右两边,你有什么发现?
平方差公式: (a b)( a b) a
公式的特征:
2
b
2
两数和与这两数差的积等于这两数的平方差.
(1)左边是两个二项式相乘,并且这两个二 项式中有一项完全相同,另一项互为相反数。
3.如果x y 9, y x 3, 计算2x 2 y 的值.
2 2
4、八年级(2)班同学参加劳动,刚开始平均分成 甲、乙两组,后来根据需要将乙组的5名同学调往甲 组,这样两组的人数之积正好为600,问:这个班共 有多少名同学?
5.若( x y) A x y , 则A等于 _____.
挑战自我
1.计算 : (1) (a 3)(a 9)(a 3)
2
(2)(2 1)(2 1)(2 1)(2 1)(2 1) 1
2 4 8 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)(x+2)(x-2)= x2-2 x2-4 (2)(-3a-2)(3a-2)= 9a2-4 4-9a2
下列多项式乘法中,能用平方差公式计算的是(
):
(1)(x+1)(1+x); (2)(a+b)(b-a); (3)(-a+b)(a-b); (4)(x2-y)(x+y2); (5)(-a-b)(a-b) (6)(c2-d2)(d2+c2).
=(2x) 2-2x+2x-1 =(2x) 2-1 =4x 2-1
2-b2 (a+b)(a-b)=a
你能用文字语言描述此公式吗?
两个数的和与这两个数的差 的积等于这两个数的平方差。
2-b2 (a+b)(a-b)=a
符号相同 符号相反
用符号相同数的平方 减符号相反的数的平 方。
从边长为a的大正方形底板上挖去一个边 长为b的小正方形(如图甲),然后将其 裁成两个矩形(如图乙),通过计算阴 影的面积可以验证公式 (a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积等于这两 个数的平方差。
平方差公式中字母 a、b可代表一个数、一个单 项式或多项式。
你能用简单方法计算下列问题吗?
(1)、1002×998 (2)、 200004×199996
《乘法公式──平方差公式》
观察下列多项式,并进行计算,你 能发现什么规律?
(x+1)(x-1)
(2x+1)(2x-1)
=x2-x+x-1 =x2-1 (ቤተ መጻሕፍቲ ባይዱ+2)(m-2) =m2-2m+2m-22 =m2-22 =m2-4
a2-b2 9a2-4b2 a10-b4 a4-b4
算一算: 5x2-2y2 (x+y )( x-y)+(2x+y )( 2x-y) -3x+49 x(x-3)-(x+7)(x-7) 填一填: a a 3 (__+__)(__-__)= -9 2 3 2
2004×1996 =(2000+4)(2000-4) = 20002 - 42 = 4000000 - 16 = 3999984
a a
a-b a-b
b a-b
a
b
b
快乐学习1:
运用平方差公式计算
( 3x+2 )( 3x-2) =(3x)2-22 =9x2-4 (b+2a)(2a-b) =(2a)2-b2 =4a2-b2

( -x+2y )(-x-2y) =(-x)2-(2y)2 =x2-4y2

下列各式计算对不对?若不对应怎样改正?
利用平方差公式计算:
(1) (5+6x)(5-6x); (2) (x-2y)(x+2y); (3) (-m+n)(-m-n).
快乐学习2:
计算

102×98 (y+2 )( y-2)-(y-1)(y+5) =(100+2)(100-2) = y2-22-(y2+5y-y-5) =1002-22 = y2-4-y2-4y+5 =9996 = -4y+1
2.利用平方差公式计算:
(1)(a+3b)(a - 3b) (2)(3+2a)(-3+2a)
(3)(-2x2-y)(-2x2+y)
(4)51×49 (5)(3x+4)(3x-4)-(2x+3)(3x-2)
试一试:
( a+b)(-b+a) (3a+2b)(3a-2b) (a5-b2)(a5+b2) (a+b)(a-b)(a2+b2)
相关文档
最新文档