利用数轴解决集合运算问题
1.3集合的基本运算教案-高一数学人教A版(2019)必修第一册
第一章集合与常用逻辑用语1.3集合的基本运算【素养目标】1.能从教材实例中抽象出两个集合并集和交集、全集和补集的含义.(数学抽象)2.准确翻译和使用补集符号和Venn图.(数学抽象)3.掌握有关的术语和符号,并会用它们正确进行集合的并集、交集与补集运算.(数学运算) 4.能用Venn图表示两个集合的并集和交集.(直观想象)5.能根据集合间的运算结果判断两个集合之间的关系.(逻辑推理)6.能根据两个集合的运算结果求参数的取值范围.(逻辑推理)7.会用Venn图、数轴解决集合综合运算问题.(直观想象)【学法解读】1.在本节学习中,学生应依据老师创设合适的问题情境,加深对“并集”“交集”“补集”“全集”等概念含义的认识,特别是对概念中“或”“且”的理解,尽量以义务教育阶段所学过的数学内容或现实生活中的实际情境为载体创设相关问题,帮助理解.2.要注意结合实例,运用数轴、V enn图等表示集合进行运算,从而更直观、清晰地解决有关集合的运算问题.1.3.1 并集与交集必备知识·探新知基础知识(3)A⊆B (4)B⊆A(5)A=B说明:由上述五个图形可知,无论集合A,B是何种关系,A∪B恒有意义,图中阴影部分表示并集.:并集概念中的“或”与生活用语中的“或”的含义是否相同?提示:并集概念中的“或”与生活用语中的“或”的含义是不同的.生活用语中的“或”是“或此”“或彼”只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x∈A或x∈B”包含三种情形:①x∈A,但x∉B;②x∈B,但x∉A;③x∈A且x∈B.知识点二交集(1)A与B相交(有公共元素,相互不包含)(2)A与B相离(没有公共元素,A∩B=∅)(3)A⊆B,则A∩B=A(4)B⊆A,则A∩B=B(5)A=B,A∩B=B=A:集合运算中的“且”与生活用语中的“且”相同吗?提示:集合运算中的“且”与生活用语中的“且”的含义相同,均表示“同时”的含义,即“x∈A,且x∈B”表示元素x属于集合A,同时属于集合B.知识点三并集与交集的性质(1)___A∩A=A___,A∩∅=∅.(2)____A∪A=A____,A∪∅=A.思考3:(1)对于任意两个集合A,B,A∩B与A有什么关系?A∪B与A有什么关系?(2)设A,B是两个集合,若已知A∩B=A,A∪B=B,则它们之间有何关系?集合A与B 呢?提示:(1)(A∩B)⊆A,A⊆(A∪B).(2)A∩B=A⇔A∪B=B⇔A⊆B.基础自测1.(2019·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=(A) A.{-1,0,1}B.{0,1}C.{-1,1} D.{0,1,2}[解析]∵B={x|x2≤1}={x|-1≤x≤1},∴A∩B={-1,0,1,2}∩{x|-1≤x≤1}={-1,0,1},故选A.2.(2019·江苏宿迁市高一期末测试)设集合M={0,1,2},N={2,4},则M∪N=(D) A.{0,1,2} B.{2}C.{2,4} D.{0,1,2,4}[解析]M∪N={0,1,2}∪{2,4}={0,1,2,4}.3.已知集合M={x|-5<x<3},N={x|-4<x<5},则M∩N=(A)A.{x|-4<x<3}B.{x|-5<x<-4}C.{x|3<x<5} D.{x|-5<x<5}[解析]M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B=____{1,6}________.[解析]A∩B={-1,0,1,6}∩{x|x>0,x∈R}={1,6}.5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=___3__.[解析]因为A∩B={2,3},所以3∈B.所以m=3.关键能力·攻重难题型探究题型一并集运算例1(1)设集合A={1,2,3},B={2,3,4,5},求A∪B;(2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.[分析]第(1)题由定义直接求解,第(2)题借助数轴求很方便.[解析](1)A∪B={1,2,3}∪{2,3,4,5}={1,2,3,4,5}.(2)画出数轴如图所示:∴A∪B={x|-3<x≤5}∪{x|2<x≤6}={x|-3<x≤6}.[归纳提升]并集运算应注意的问题(1)对于描述法给出的集合,应先看集合的代表元素是什么,弄清是数集,还是点集……,然后将集合化简,再按定义求解.(2)求两个集合的并集时要注意利用集合元素的互异性这一属性,重复的元素只能算一个.(3)对于元素个数无限的集合进行并集运算时,可借助数轴,利用数轴分析法求解,但要注意端点的值能否取到.【对点练习】❶ (1)已知集合A ={0,2,4},B ={0,1,2,3,5},则A ∪B =__{0,1,2,3,4,5}__. (2)若集合A ={x|x>-1},B ={x|-2<x<2},则A ∪B =__{x|x>-2}___. [解析] (1)A ∪B ={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}. (2)画出数轴如图所示,故A ∪B ={x|x>-2}.题型二 交集运算例2 (1)设集合M ={-1,0,1},N ={x|x2=x}则M∩N =( B ) A .{-1,0,1} B .{0,1} C .{1}D .{0}(2)若集合A ={x|-2≤x≤3},B ={x|x<-1或x>4},则集合A∩B 等于( D ) A .{x|x≤3或x>4} B .{x|-1<x≤3} C .{x|3≤x<4}D .{x|-2≤x<-1}(3)已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},则A∩B =___{(1,2)}__. [分析] (1)先求出集合N 中的元素再求M 、N 的交集.(2)借助数轴求A ∩B .(3)集合A和B 的元素是有序实数对(x ,y ),A 、B 的交集即为方程组⎩⎪⎨⎪⎧4x +y =63x +2y =7的解集.[解析] (1)N ={x|x2=x}={0,1},∴M∩N ={0,1},故选B .(2)将集合A 、B 表示在数轴上,由数轴可得A∩B ={x|-2≤x<-1},故选D .(3)A ∩B ={(x ,y )|4x +y =6}∩{(x ,y )|3x +2y =7}=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 4x +y =63x +2y =7={(1,2)}. [归纳提升] 求集合A∩B 的方法与步骤 (1)步骤①首先要搞清集合A 、B 的代表元素是什么.②把所求交集的集合用集合符号表示出来,写成“A∩B”的形式.③把化简后的集合A、B的所有公共元素都写出来即可(若无公共元素则所求交集为∅).(2)方法①若A、B的代表元素是方程的根,则应先解方程,求出方程的根后,再求两集合的交集;若集合的代表元素是有序数对,则A∩B是指两个方程组成的方程组的解集,解集是点集.②若A、B是无限数集,可以利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实心点表示,不含有端点的值用空心点表示.【对点练习】❷(1)(2020·天津和平区高一期中测试)设集合A={1,2,3,4},B={y|y=2x -1,x∈A},则A∩B等于(A)A.{1,3}B.{2,4}C.{2,4,5,7} D.{1,2,3,4,5,7}(2)(2020·广州荔湾区高一期末测试)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B ={1},则集合B=(D)A.{-3,1} B.{0,1}C.{1,5} D.{1,3}[解析](1)∵A={1,2,3,4},B={y|y=2x-1,x∈A},∴B={1,3,5,7},∴A∩B={1,3},故选A.(2)∵A∩B={1},∴1∈B,∴1是方程x2-4x+m=0的根,∴1-4+m=0,∴m=3.∴B={x|x2-4x+3=0}={x|(x-1)(x-3)=0}={1,3}.题型三集合的交集、并集性质的应用例3(1)设集合M={x|-2<x<5},N={x|2-t<x<2t+1,t∈R},若M∪N=M,则实数t的取值范围为___________.(2)设A={x|x2-2x=0},B={x|x2-2ax+a2-a=0}.①若A∩B=B,求a的取值范围;②若A∪B=B,求a的取值.[分析](1)把M∪N=M转化为N⊆M,利用数轴表示出两个集合,建立端点间的不等关系式求解.(2)先化简集合A,B,再由已知条件得A∩B=B和A∪B=B,转化为集合A、B的包含关系,分类讨论求a的值或取值范围.[解析] (1)由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∅时,由数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.缩上可知,实数t 的取值范围是{t |t ≤2}. (2)由x 2-2x =0,得x =0或x =2.∴A ={0,2}. ①∵A ∩B =B ,∴B ⊆A ,B =∅,{0},{2},{0,2}. 当B =∅时,Δ=4a 2-4(a 2-a )=4a <0,∴a <0;当B ={0}时,⎩⎪⎨⎪⎧a 2-a =0,Δ=4a =0,∴a =0;当B ={2}时,⎩⎪⎨⎪⎧4-4a +a 2-a =0,Δ=4a =0,无解;当B ={0,2}时,⎩⎪⎨⎪⎧2a =2,Δ=4a >0,a 2-a =0,得a =1.综上所述,得a 的取值范围是{a |a =1或a ≤0}. ②∵A ∪B =B ,∴A ⊆B .∵A ={0,2},而B 中方程至多有两个根, ∴A =B ,由①知a =1.[归纳提升] 利用交、并集运算求参数的思路(1)涉及A ∩B =B 或A ∪B =A 的问题,可利用集合的运算性质,转化为相关集合之间的关系求解,要注意空集的特殊性.(2)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则可用观察法得到不同集合中元素之间的关系,要注意集合中元素的互异性;与不等式有关的集合,则可利用数轴得到不同集合之间的关系.【对点练习】❸ 已知集合M ={x|2x -4=0},集合N ={x|x2-3x +m =0}, (1)当m =2时,求M∩N ,M ∪N ; (2)当M∩N =M 时,求实数m 的值. [解析] (1)由题意得M ={2}.当m =2时,N ={x|x2-3x +2=0}={1,2}, ∴M∩N ={2},M ∪N ={1,2}.(2)∵M∩N =M ,∴M ⊆N ,∵M ={2},∴2∈N ,∴2是关于x 的方程x2-3x +m =0的解,即4-6+m =0,解得m =2.课堂检测·固双基1.设集合A ={x ∈N *|-1≤x ≤2},B ={2,3},则A ∪B =( B ) A .{-1,0,1,2,3} B .{1,2,3} C .{-1,2}D .{-1,3}[解析] 集合A ={1,2},B ={2,3},则A ∪B ={1,2,3}. 2.已知集合A ={x |-3<x <3},B ={x |x <1},则A ∩B =( C ) A .{x |x <1} B .{x |x <3} C .{x |-3<x <1}D .{x |-3<x <3}[解析] A ∩B ={x |-3<x <3}∩{x |x <1}={x |-3<x <1}.故选C .3.设集合A ={2,4,6},B ={1,3,6},则如图中阴影部分表示的集合是( C )A .{2,4,6}B .{1,3,6}C .{1,2,3,4,6}D .{6}[解析] 图中阴影表示A ∪B ,又因为A ={2,4,6},B ={1,3,6},所以A ∪B ={1,2,3,4,6},故选C .4.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是__a ≤1__. [解析] 利用数轴画图解题.要使A ∪B =R ,则a ≤1.5.已知集合A ={x |m -2<x <m +1},B ={x |1<x <5}. (1)若m =1,求A ∪B ;(2)若A ∩B =A ,求实数m 的取值范围. [解析] (1)由m =1,得A ={x |-1<x <2}, ∴A ∪B ={x |-1<x <5}.(2)∵A ∩B =A ,∴A ⊆B .显然A ≠∅.故有⎩⎪⎨⎪⎧m -2≥1,m +1≤5,解得3≤m ≤4.∴实数m 的取值范围为[3,4].素养作业·提技能A 组·素养自测一、选择题1.已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( B ) A .∅ B .{2} C .{0}D .{-2}[解析] 因为B ={-1,2},所以A ∩B ={2}.2.已知集合M ={x |-3<x ≤5},N ={x |x <-5,或x >4},则M ∪N =( A ) A .{x |x <-5,或x >-3} B .{x |-5<x <4} C .{x |-3<x <4}D .{x |x <-3,或x >5}[解析] 在数轴上分别表示集合M 和N ,如图所示,则M ∪N ={x |x <-5,或x >-3}.3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N 等于( D ) A .x =3,y =-1 B .(3,-1) C .{3,-1}D .{(3,-1)}[解析] ∵M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}.4.若A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( A )A .{2}B .{3}C .{-3,2}D .{-2,3}[解析] A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},由题意可知,阴影部分为A ∩B ,A ∩B ={2}.5.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( D ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}[解析] A ∩B ={1,2},(A ∩B )∪C ={1,2,3,4},故选D .6.(2019·武汉市高一调研)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( D )A .{a |-1<a ≤2}B .{a |a >2}C .{a |a ≥-1}D .{a |a >-1}[解析] 因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1. 二、填空题7.已知集合A ={2,3},B ={2,6,8},C ={6,8},则(C ∪A )∩B =__{2,6,8}__. [解析] ∵A ∪C ={2,3}∪{6,8}={2,3,6,8}, ∴(C ∪A )∩B ={2,3,6,8}∩{2,6,8}={2,6,8}.8.若集合A ={x |3ax -1=0},B ={x |x 2-5x +4=0},且A ∪B =B ,则a 的值是__0,13,112__. [解析] 由题意知,B ={1,4},A ∪B =B ,∴A ⊆B .当a =0时,A =∅,符合题意;当a ≠0时,A =⎩⎨⎧⎭⎬⎫13a ,∴13a =1或13a =4, ∴a =13或a =112.综上,a =0,13,112.9.已知集合A ={x |x <1,或x >5},B ={x |a ≤x ≤b },且A ∪B =R ,A ∩B ={x |5<x ≤6},则2a -b =__-4__.[解析] 如图所示,可知a =1,b =6,2a -b =-4.三、解答题10.已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .[解析] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}.解不等式3>2m -1,得m <2,则B ={m |m <2}. 用数轴表示集合A 和B ,如图所示.则A∩B={x|-2<x<2},A∪B={x|x<3}.11.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a 的值.[解析]∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴a-3=-3或2a-1=-3.①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3}.综上可知a=-1.B组·素养提升一、选择题1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(D)A.{x|2≤x≤3} B.{x|x≤2或x≥3}C.{x|x≥3} D.{x|0<x≤2或x≥3}[解析]∵S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},且T={x|x>0},∴S∩T={x|0<x≤2或x≥3}.故选D.2.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于(D)A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}[解析]因为A∩B={2},所以2∈A,2∈B,所以a+1=2,所以a=1,b=2,即A={1,2},B={2,5},所以A∪B={1,2,5},故选D.3.(多选题)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B可能为(AD) A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}[解析]集合A={2,3,4},A∪B={1,2,3,4,5},则B中必有元素1和5,且有元素2,3,4中的0个,1个,2个或3个都可以,AD符合.B、C错误,故选AD.4.(多选题)已知集合A ={2,4,x 2},B ={2,x },A ∪B =A ,则x 的值可以为( ABC )A .4B .0C .1D .2 [解析] ∵A ∪B =A ,∴B ⊆A .∴x ∈A ,∴x =4或x 2=x ,由x 2=x 解得x =0或1,当x =0时,A ={2,4,0},B ={2,0},满足题意.当x =1时,A ={2,4,1},B ={2,1},满足题意.当x =4时,A ={2,4,16},B ={2,4},满足题意.故选ABC .二、填空题5.已知集合A ={x |0≤x ≤a ,a >0},B ={0,1,2,3},若A ∩B 有3个真子集,则a 的取值范围是__1≤a <2__.[解析] ∵A ∩B 有3个真子集,∴A ∩B 中有2个元素,又∵A ={x |0≤x ≤a ,a >0}, ∴1≤a <2.6.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∩N =N ,则实数t 的取值范围为__t ≤2__.[解析] 当2t +1≤2-t 即t ≤13时,N =∅.满足M ∩N =N ; 当2t +1>2-t 即t >13时,若M ∩N =N 应满足⎩⎪⎨⎪⎧2-t ≥-22t +1≤5,解得t ≤2.∴13<t ≤2.综上可知,实数t 的取值范围是t ≤2.7.(2019·枣庄市第八中学考试)设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则使A ⊆(A ∩B )成立的a 的取值集合为__{a |a ≤9}__.[解析] 由A ⊆(A ∩B ),得A ⊆B ,则(1)当A =∅时,2a +1>3a -5,解得a <6.(2)当A ≠∅时,⎩⎪⎨⎪⎧ 2a +1≤3a -5,2a +1≥3,3a -5≤22,解得6≤a ≤9.综合(1)(2)可知,使A ⊆(A ∩B )成立的a 的取值集合为{a |a ≤9}.三、解答题8.已知集合M ={x |2x +6=0},集合N ={x |x 2-3x +m =0}.(1)当m =-4时,求M ∩N ,M ∪N ;(2)当M ∩N =M 时,求实数m 的值.[解析](1)M={-3}.当m=-4时,N={x|x2-3x-4=0}={-1,4},则M∩N={-3}∩{-1,4}=∅,M∪N={-3}∪{-1,4}={-3,-1,4}.(2)∵M∩N=M,∴M⊆N.由于M={-3},则-3∈N,∴-3是关于x的方程x2-3x+m=0的解,∴(-3)2-3×(-3)+m=0,解得m=-18.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?[解析]设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.。
集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)-备战24年高考数学(原卷版)
专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。
其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。
方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。
易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.例已知集合{}A x x π=<,(){},2B x y y =>,则集合A B = ()A .∅B .()2,πC .(),2-∞D .(),π-∞变式1:已知集合()(){}{}21402A x x x B y y x =--<==-,,则A B = ()A .∅B .{}14x x <<C .{}12x x <≤D .{}24x x ≤<变式2:已知集合{}22(,)1,,A x y x y x y =+=∈R ∣,{1,,}B x x y x y =+=∈R ∣,则()A .{0,1}AB = B .{(0,1),(1,0)}A B ⋂=C .A B=D .A B ⋂=∅变式3:已知集合(){}2|log 10A x x =-<,{||2|2}B x x =-<,则A B = ()A .{|12}x x <<B .{|14}x x <<C .{|04}x x <<D .{|4}x x <1.集合(){},32A x y y x ==-,(){},4B x y y x ==+,则A B = ()A .{}3,7B .(){}3,7C .{}7,3D .{}3,7x y ==2.已知集合{}220|A x x x =-<,集合(){}22log 2|B y y x ==-,则A B = ()A .(]0,1B .(,1)-∞C .(,2)-∞D .()0,23.设全集U =R ,集合{|3,10}P y y x x ==-<<,|02x Q x x ⎧⎫=≥⎨⎬+⎩⎭,则U P Q ⋂ð等于()A .()2,0-B .[)2,0-C .()3,2--D .(]3,2--4.已知集合{}N 14A x x =∈-≤<,(){}2lg 23B x y x x ==-++,则A B = ()A .{}1,2B .{}0,1,2C .[)1,3-D .()1,3-5.已知集合{|12},{|ln }M x x N x y x =-≤≤==,则M N ⋂=()A .{|12}x x -≤≤B .{|12}x x -<≤C .{|02}x x <≤D .{|1x x <-或2}x ≥1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A满足A⊆B或A⊂B,则对集合A分两种情中的含参问题况讨论:(1)当A=∅时,若集合A是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。
集合的基本运算例题讲解
1集合的基本运算例题讲解题型一 并集运算一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作B A ,读作“A 并B ”.即{}B x A x x B A ∈∈=或, .求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.例1. 已知集合{}31≤≤∈=x N x A ,{}5,4,3,2=B ,则=B A 【 】 (A ){}2 (B ){}3,2(C ){}5,4,3,2 (D ){}5,4,3,2,1 分析:将一个用描述法表示的集合转化为用列举法表示时,一定要弄清代表元素的含义或特征.求两个集合的并集运算时,可以按照并集的定义进行,也可以用Venn 图求解或借助于数轴求解.解:∵{}{}3,2,131=≤≤∈=x N x A∴=B A {}{}{}5,4,3,2,15,4,3,23,2,1= . 选择【 D 】.例2. 已知集合{}1≥=x x A ,{}0322<--=x x x B ,则=B A ____________. 分析:先解一元二次不等式0322<--x x ,求出集合B ,然后把集合A 、B 在数轴上画出来,它们对应图形所覆盖的全部范围即为B A . 解:∵{}{}310322<<-=<--=x x x x x B ∴=B A {}{}{}1311->=<<-≥x x x x x x .例3. 已知集合{}m A ,3,1=,{}m B ,1=,若A B A = ,则m 等于【 】 (A )0或3 (B )0或3 (C )1或3 (D )1或3分析:{}m B ,1=,由集合元素的互异性,得1≠m ,排除C 、D 选项. 因为A B A = ,根据并集的性质,所以A B ⊆,这样就将两个集合的并集运算转化为了这两个集合之间的关系,从而可以确定参数的值或取值范围. 解:∵A B A = ,∴3=m 或m m =当m m =时,解之得:0=m (1=m 不符合题意,舍去) 综上,3=m 或0=m .例 4. 已知集合{}012≤-=x x P ,{}a M =,若P M P = ,则实数a 的取值范围是__________.分析:∵P M P = ,∴P M ⊆. 解:{}{}11012≤≤-=≤-=x x x x P ∵P M P = ,∴P M ⊆,∴P a ∈ ∴实数a 的取值范围是{}11≤≤-a a .例5. 已知集合{}x A ,3,2,1=,{}2,3x B =,且{}x B A ,3,2,1= ,求x 的值. 分析:由题意可知:A B A = ,所以A B ⊆,从而A x ∈2,且32≠x . 解:分为三种情况:①当12=x 时,解之得:1-=x (1=x 不符合题意,舍去); ②当22=x 时,解之得:2±=x ; ③当x x =2时,解之得:0=x . 综上所述,x 的值为0或2±或1-.注意:在求参数的值时,参数的值要满足集合元素的互异性.例6. 已知集合{}32>-=x x A ,{}a x x x B ->-=332,求B A . 分析:对于含参集合参与的集合运算,要注意分类讨论.解:{}{}532>=>-=x x x x A ,{}{}3332-<=->-=a x x a x x x B . 当3-a ≤5,即a ≤8时,{}53>-<=x a x x B A 或 ; 当53>-a 时,即8>a 时,=B A R .a例7.(易错题)已知集合{}1,1-=A ,{}1==mx x B ,且A B A = ,求由m 的取值构成的集合.分析:因为A B A = ,所以A B ⊆.由于集合B 是一个含参集合,所以要对集合B 分∅=B 和∅≠B 两种情况进行讨论. 解:∵A B A = ,∴A B ⊆. 当0=m 时,∅=B ,满足A B ⊆;当0≠m 时,{}11-=⎭⎬⎫⎩⎨⎧==m x x B 或{}1=B :①若{}1-=B ,则11-=m,解之得:1-=m ; ②若{}1=B ,则11=m,解之得:1=m . 综上所述,m 的取值构成的集合为{}1,0,1-.例8. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若M N M = ,则实数t 的取值范围是__________.分析:先将并集运算的结果M N M = 转化为两个集合M , N 之间的关系M N ⊆,从而列出关于参数t 的不等式(组)求解.注意含参集合的分类讨论. 解:∵M N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2. 综上所述,实数t 的取值范围是{}2≤t t .警示:在解决本题时,任意忽略∅=N 的情况,另外要注意端点值能否取到.例9. 已知集合{}2,1-=A ,{}01>+=mx x B ,若B B A = ,求实数m 的取值范围. 分析:注意本题与例7的区别. 解:∵B B A = ,∴B A ⊆. 分为三种情况:①当0=m 时,01>恒成立,∴{}=>+=01mx x B R ,满足B A ⊆;②当0>m 时,{}⎭⎬⎫⎩⎨⎧->=>+=m x x mx x B 101,有11-<-m ,解之得:1<m∴10<<m ;③当0<m 时,{}⎭⎬⎫⎩⎨⎧-<=>+=m x x mx x B 101,有21>-m ,解之得:21->m∴021<<-m . 综上所述,实数m 的取值范围是⎭⎬⎫⎩⎨⎧<<-121m m .题型二 交集运算一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与集合B 的交集,记作B A ,读作“A 交B ”.{}B x A x x B A ∈∈=且, .求交集的方法(1)求两个有限集的交集 按照交集的定义进行计算,但要特别注意一定要找出两个集合中的所有公共元素.(或可借助于Venn 图)(2)求两个无限集的交集 借助于数轴进行计算.两个集合的解集等于这两个集合在数轴上对应的图形所覆盖的公共范围.例10. 设集合{}01>+∈=x Z x A ,集合{}02≤-=x x B ,则=B A 【 】 (A ){}21<<-x x (B ){}21≤<-x x (C ){}2,1- (D ){}2,1,0分析:在进行集合的运算之前,要先弄清楚各个集合的本质.本题中集合A 的代表元素x 为整数,所以集合A 为1->x 范围内的整数集.解:∵{}{}101->∈=>+∈=x Z x x Z x A ,{}{}202≤=≤-=x x x x B ∴=B A {}{}2,1,021=≤<-∈x Z x . 选择【 D 】.例11. 设集合{}21<≤-=x x A ,{}a x x B <=,若∅≠B A ,则实数a 的取值范围是__________.分析:∅≠B A 说明集合A 、B 有公共元素,在数轴上集合A 、B 所对应的图形覆盖的区域有公共部分. 解:{}1->a a .1例12. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若N N M = ,求实数t 的取值范围.分析:若N N M = ,则由交集的性质知M N ⊆,在得到这两个集合之间的关系后借助于数轴就可以列出不等式(组)进行求解了. 解:∵N N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,满足M N ⊆,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2.综上所述,实数t 的取值范围是{}2≤t t .★例13.(易错题)设集合{}R x x y y A ∈+==,12,{}R x x y y B ∈+==,1,则B A 等于【 】(A ){}1≥y y (B ){}2,1 (C )()(){}2,1,1,0 (D )∅错解:解方程组⎩⎨⎧+=+=112x y x y 得:⎩⎨⎧==10y x 或⎩⎨⎧==21y x ,故选【 C 】.错因分析:这里好多学生认为是求抛物线12+=x y 和直线1+=x y 的交点坐标所构成的集合,根源在于没有搞清楚集合A , B 的本质,没有弄清楚集合的代表元素的特征.分析:本题中的两个集合都是由函数值构成的,它们的代表元素是函数值y .B A 表示函数12+=x y 和函数1+=x y 的函数值的交集. 解:∵{}{}1,12≥=∈+==y y R x x y y A ,{}=∈+==R x x y y B ,1R . ∴{} 1≥=y y B A R {}1≥=y y . 选择【 A 】.变式: 设集合(){}1,2+==x y y x A ,(){}1,+==x y y x B ,则B A 等于【 】 (A ){}1≥y y (B ){}2,1 (C )()(){}2,1,1,0 (D )∅例14. 已知集合(){}1,22=+=y x y x A ,集合(){}x y y x B ==,,则B A 中元素的个数为【 】(A )3 (B )2 (C )1 (D )0解:解方程组⎩⎨⎧==+xy y x 122得:⎪⎪⎩⎪⎪⎨⎧==2222y x 或⎪⎪⎩⎪⎪⎨⎧-=-=2222y x ∴B A ⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=22,22,22,22,共有2个元素.选择【 B 】. 方法二:由后面的学习可以知道,方程122=+y x 是单位圆的方程(以原点为圆心,以1为半径的圆).集合A 是由圆122=+y x 上的所有点构成的,集合B 是由直线x y =上的所有点构成的,所以B A 就是由单位圆与直线的交点构成的,如图所示,交点有两个,故B A 中元素的个数为2.例15.(2018沈阳重点高中)设集合{}52≤≤-=x x A ,{}121-≤≤+=m x m x B . (1)若{}52≤≤-∈=x Z x A ,求A 的非空真子集的个数; (2)若B B A = ,求实数m 的取值范围. 分析:(1)子集、真子集个数的确定 若集合A 含有n 个元素,则集合A : (1)含有n 2个子集; (2)含有12-n 个非空子集; (3)含有12-n 个真子集; (4)含有22-n 个非空真子集.(2)若B B A = ,则A B ⊆,注意分类讨论. 解:(1){}{}5,4,3,2,1,0,1,2-52-=≤≤-∈=x Z x A∵集合A 中含有8个元素∴集合A 的非空真子集的个数为2542-28=; (2)∵B B A = ,∴A B ⊆. 分为两种情况:①当∅=B 时,满足A B ⊆,有121->+m m ,解之得:2<m ; ②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解之得:2≤m ≤3. 综上所述,实数m 的取值范围是{}3≤m m .例16. 设{}042=+=x x x A ,(){}011222=-+++=a x a x x B ,其中∈x R ,如果B B A = ,求实数a 的取值范围. 解:{}{}4,0042-==+=x x x A ∵B B A = ,∴A B ⊆ 分为两种情况:①当∅=B 时,满足B B A =∴()[]()0141222<--+=∆a a ,解之得:1-<a ;②当∅≠B 时,{}0=B 或{}4-=B 或{}4,0-=B .若{}0=B 或{}4-=B ,则有()[]()0141222=--+=∆a a ,解之得:1-=a经检验,此时{}0=B ;若{}4,0-=B ,则由根与系数的关系定理可得:()⎩⎨⎧=--=+-014122a a ,解之得:1=a . 综上所述,实数a 的取值范围是{}11-≤=a a a 或.例17. 设集合{}3+≤≤=a x a x A ,{}51>-<=x x x B 或,若∅=B A ,求实数a 的取值范围.分析:对于任意实数a ,都有3+<a a ,所以本题中集合A 不会是空集. 解:∵3+<a a ,∴∅≠A . ∵∅=B A∴⎩⎨⎧≤+-≥531a a ,解之得:1-≤a ≤2. ∴实数a 的取值范围是{}21≤≤-a a .★★例18.(综合性强)已知集合()(){}011222>++++-=a a y a a y y A ,集合⎭⎬⎫⎩⎨⎧≤≤+-==30,25212x x x y y B ,若∅=B A :(1)求实数a 的取值范围;(2)当ax x ≥+12恒成立时,求a 的最小值.分析:(1)求集合A 时要解含参一元二次不等式,可借助于因式分解:()()()()()()()()()[]11111122222222+--=-+--=++-+-=++++-a y a y a y a a y y a a ay a y y a a y a a y对于集合B ,代表元素是y ,所以集合B 是函数值的集合,通过配方得:()2121252122+-=+-=x x x y ∵0≤x ≤3,∴2≤y ≤4,∴{}42≤≤=y y B ;(2)这是与二次函数有关的恒成立问题,使用数形结合方法.解:(1)()(){}()()[]{}010112222>+--=>++++-=a y a y y a a y a a y y A∵04321122>+⎪⎭⎫ ⎝⎛-=-+a a a (这里作差比较12+a 与a 的大小)∴a a >+12∴{}12+><=a y a y y A 或.{}4230,25212≤≤=⎭⎬⎫⎩⎨⎧≤≤+-==y y x x x y y B∵∅=B A∴⎩⎨⎧≥+≤4122a a ,解之得:a ≤3-或3≤a ≤2. ∴实数a 的取值范围是{}233≤≤-≤a a a 或; (2)∵ax x ≥+12恒成立,即12+-ax x ≥0恒成立. ∴()42--=∆a ≤0,解之得:2-≤a ≤2.∴a 的最小值为2-.(雅慧,通过这道题你勇敢地挑战一下自己)题型三 补集运算全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集 对于一个集合A ,由全集U 中不属于A 的所有元素组成的集合称为集合A相对于全集U 的补集,简称集合A 的补集,记作C U A ,即C U A {}A x U x x ∉∈=且,.补集的性质①(C U A )U A = ; ②(C U A )∅=A ; ③ C U (C U A )A =; ④ C U U ∅=; ⑤ C U U =∅.例19. 已知全集{}60<<=x x U ,集合{}a x x A <<=1,若C U A U ≠,则实数a 的取值范围是__________.分析: C U A U ≠说明∅≠A ,且U A ⊆. 解:∵C U A U ≠,∴∅≠A ,且U A ⊆. ∴实数a 的取值范围是{}61≤<a a .例20. 已知全集{}5,4,3,2,1=U ,集合{}042=++=px x x A ,求C U A . 分析:集合A 是由方程042=++px x 的解构成的,而方程042=++px x 可能无解、有两个不相等的实数根或有两个相等的实数根,需要分类讨论. 解:由题意可知:U A ⊆.分为两种情况:①当∅=A 时,方程无实数根,∴0162<-=∆p ,解之得:44<<-p ∴C U A =C U ∅{}5,4,3,2,1==U ;②当∅≠A 时,则有162-=∆p ≥0,解之得:p ≤4-或p ≥4. 设方程042=++px x 的两个实数根分别为21,x x 由根与系数的关系定理可得:421=x x :若4,121==x x ,则5-=p ,符合题意,此时{}4,1=A ,C U A {}5,3,2=; 若221==x x ,则4-=p ,符合题意,此时{}2=A ,C U A {}5,4,3,1=. 综上所述,当44<<-p 时,C U A ={}5,4,3,2,1;当5-=p 时,C U A {}5,3,2=;当4-=p 时,C U A {}5,4,3,1=.例21. 已知{}31≤<-=x x A ,{}m x m x B 31+<≤=. (1)当1=m 时,求B A ;(2)若⊆B C R A ,求实数m 的取值范围.分析:(1)求两个连续型实数集合的并集时,借助于数轴进行求解能将抽象的问题直观化,但要特别注意端点的实心和空心以及端点值的取舍;(2)求连续型实数集合的补集也是借助于数轴进行.解:(1)当1=m 时,{}{}4131<≤=+<≤=x x m x m x B ∴{}{}{}414131<<-=<≤≤<-=x x x x x x B A ; (2)∵{}31≤<-=x x A ,∴C R A {}31>-≤=x x x 或 ∵⊆B C R A ,∴分为两种情况:①当∅=B 时,有m ≥m 31+,解之得:m ≤21-; ②当∅≠B 时,则有:⎩⎨⎧-≤++<13131m m m 或⎩⎨⎧>+<331m mm解之得:无解或3>m .综上,实数m 的取值范围是⎭⎬⎫⎩⎨⎧>-≤321m m m 或.★例22. 设全集(){}R y R x y x I ∈∈=,,,()⎭⎬⎫⎩⎨⎧=--=123,x y y x A ,(){}1,+==x y y x B ,求C I A B .解:()(){}2,1,123,≠+==⎭⎬⎫⎩⎨⎧=--=x x y y x x y y x A ∴集合A 是由直线1+=x y 上除点()3,2外的所有点构成的集合 ∴C I A =(){}3,2 ∵(){}1,+==x y y x B∴集合B 是由直线1+=x y 上所有的点构成的集合 ∴C I A =B (){}3,2. 附:函数123=--x y ,即1+=x y ()2≠x 的图象如图所示.例23. 设全集{}32,3,22-+=a a U ,{}2,12-=a A ,C U A {}5=,求实数a 的值. 分析:∵C U A U ⊆,∴U ∈5,∴5322=-+a a .还要注意U A ⊆. 解:∵{}32,3,22-+=a a U ,C U A {}5= ∴5322=-+a a整理得:0822=-+a a ,解之得:4,221-==a a .U4321B A 852917643B AU当2=a 时,{}3,2=A ,满足题意; 当4-=a 时,{}9,2=A ,不满足题意. 综上,实数a 的值为2.例24. 设全集{}*,10N x x x U ∈<=,U B U A ⊆⊆,,( C U B ){}9,1=A ,{}3=B A , ( C U A ) ( C U B ){}7,6,4=,求集合A , B . 分析:本题条件较多,考查集合的综合运算.重要结论如图所示,集合A , B 将全集U 分成了四部分,这四部分用集合表示如下: (1)①表示B A ; (2)②表示 A (C U B ); (3)③表示 B (C U A ); (4)④表示(C U A ) (C U B ).德·摩根定律(1)C U ()=B A (C U A ) (C U B ); (2)C U ()=B A (C U A ) (C U B ).解法一:{}{}9,8,7,6,5,4,3,2,1*,10=∈<=N x x x U ∵( C U A ) ( C U B ){}7,6,4=,∴C U ()=B A {}7,6,4∴{}9,8,5,3,2,1=B A ∵( C U B ){}9,1=A ∴=B {}8,5,3,2∵{}3=B A ,∴{}9,3,1=A . 解法二:由题意作出Venn 图如图所示:由图可知:{}9,3,1=A ,{}8,5,3,2=B .例25. 已知全集=U R ,集合{}0,,32≠∈-==x R x x y y A 且,集合⎭⎬⎫⎩⎨⎧-+-==x x y x B 522,集合{}a x a x C <<-=5.(1)求集合 A ( C U B );(2)若()B A C ⊆,求实数a 的取值范围.分析:先来确定集合A , B 的本质:集合A 是函数()032≠-=x x y 的函数值构成的集合,即函数()032≠-=x x y 的值域;集合B 是使函数xx y -+-=522有意义的自变量的值构成的集合.解:{}{}{}330,,32<=<=≠∈-==x x y y x R x x y y A 且.{}52522<≤=⎭⎬⎫⎩⎨⎧-+-==x x x x y x B .∴C U B {}52≥<=x x x 或 ∴ A ( C U B ){}53≥<=x x x 或; (2)由(1)可知:{}32<≤=x x B A ∵()B A C ⊆,∴分为两种情况:①当∅=C 时,满足()B A C ⊆,有a -5≥a ,解之得:a ≤25; ②当∅≠C 时,则有:⎪⎩⎪⎨⎧≤≥-<-3255a a aa ,解之得:a <25 ≤3.综上所述,实数a 的取值范围是{}3≤a a .例26. 若{}0232=+-=x x x A ,{}012=-+-=a ax x x B ,{}022=+-=mx x x C ,且C C A A B A == ,,求a 的值和m 的取值范围.分析:设置本题的目的是帮助雅慧复习由集合间的基本关系确定参数的值或取值范围.本题要先将三个集合之间的运算及其结果转化为集合之间的关系:因为C C A A B A == ,,∴A C A B ⊆⊆,.本来由A B ⊆需要对集合B 分两种情况进行讨论,但考虑到集合B 中的方程结构比较复杂,所以先判断一下方程012=-+-a ax x 的根的情况: ∵()()()22224414-=+-=---=∆a a a a a ≥0∴方程012=-+-a ax x 总有两个实数根.也因此,在处理关系A B ⊆时,一定有∅≠B ,不再对集合B 进行分类讨论. 解:{}{}2,10232==+-=x x x A{}()()[]{}011012=---==-+-=a x x x a ax x x B ∴集合B 中必含有元素1,∴∅≠B . ∵A B A = ,∴A B ⊆.①当11=-a ,即2=a 时,{}1=B ,符合题意;②当21=-a ,即3=a 时,{}2,1=B ,符合题意. 综上,a 的值为2或3.∵C C A = ,∴A C ⊆,分为两种情况:①当∅=C 时,满足A C ⊆,有()082<--=∆m ,解之得:2222<<-m ;②当∅≠C 时,则{}1=C 或{}2=C 或{}2,1=C :若{}1=C 或{}2=C ,则()082=--=∆m ,解之得:22±=m .经检验,当22±=m 时,{}2=C 或{}2-=C ,不符合题意,舍去;若{}2,1=C ,则由根与系数的关系定理可得:⎭⎬⎫⎩⎨⎧⨯=+=21221m ,解之得:3=m ,符合题意.综上所述,m 的取值范围是2222<<-m 或3=m .题型四 补集思想的应用(正难则反)对于某些问题,如果从正面求解比较困难,则可考虑先求解问题的反面,采用“正难则反”的解题策略.具体地说,就是将研究对象的全体实为全集,求出使问题反面成立的集合A ,则A 的补集即为所求.补集思想的原理或依据是:C U (C U A )A =.例27. 已知集合{}R x m mx x x A ∈=++-=,06242,{}0<=x x B ,若∅≠B A ,求实数m 的取值范围.分析:集合A 是方程06242=++-m mx x 的实数根构成的集合,∅≠B A 意味着方程有负根,则方程的根有以下三种情况:①两负根;②一负根,一零根;③一负根,一正根.分别求解相当麻烦.如果考虑∅≠B A 的反面∅=B A ,先求方程无实数根或两根均非负时m 的取值范围,然后再用补集思想求解∅≠B A 时m 的取值范围解:若∅=B A ,则分为两种情况:①当∅=A 时,()()062442<+--=∆m m ,解之得:231<<-m ; ②当∅≠A 时,方程06242=++-m mx x 的两个实数根均为非负数,则有:()()⎪⎩⎪⎨⎧≥+≥≥+--=∆06204062442m m m m ,解之得:m ≥23. 综上所述,当1->m 时,∅=B A .∴当∅≠B A 时,实数m 的取值范围是{}1-≤m m .结论:一元二次方程()002≠=++a c bx ax 有两个非负实数根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥=⋅≥-=+≥∆0002121ac x x a b x x .例28. 已知集合{}a y a y y A <+>=或12,{}42≤≤=y y B ,若∅≠B A ,求实数a 的取值范围.解:当∅=B A 时,则有:⎩⎨⎧≥+≤4122a a ,解之得:a ≤3-或3≤a ≤2. ∴当∅=B A 时,实数a 的取值范围是{}233≤≤-≤a a a 或. ∴当∅≠B A 时,实数a 的取值范围是{}332<<->a a a 或.例29. 若集合{}0232=++=x ax x A 中至多有1个元素,则实数a 的取值范围是__________.分析:题目要求“至多有1个元素”,若采取分类讨论的方法,求解比较麻烦,可考虑用补集思想解决问题.本题中集合A 至多有1个元素的反面是集合A 有两个元素,即方程0232=++x ax 有两个不相等的实数根.解:当集合A 中有两个元素时,方程0232=++x ax 有两个不相等的实数根,则有:⎩⎨⎧>-=∆≠0890a a ,解之得:89<a 且0≠a ∴集合A 中有两个元素时实数a 的取值范围是⎭⎬⎫⎩⎨⎧≠<089a a a 且.∴集合A 中至多有1个元素时实数a 的取值范围是⎭⎬⎫⎩⎨⎧=≥089a a a 或.总结:求集合运算中参数的思路(1)将集合中的运算关系转化为两个集合之间的关系;(2)将集合之间的关系转化为方程(组)或不等式(组)是否有解、或解集为怎样的范围; (3)解方程(组)或不等式(组)来确定参数的值或取值范围. 题型五 集合中元素的个数若集合A 为有限集,则用card(A )表示集合A 中元素的个数. 如果集合A 中含有m 个元素,那么有card(A )m =. (1)一般地,对于任意两个有限集合A , B ,有 card ()=B A card(A )+card(B )-card ()B A . (2)一般地,对于任意三个有限集合A , B , C ,有card ()=C B A card(A )+card(B )-card ()B A -card ()C A -card ()C B + card ()C B A .。
补集与集合的综合运算
(1)若(∁RA)∪B≠R,求a的取值范围;
(2)若A∩B≠A,求a的取值范围.
分析:本题考查集合交集、并集的运算及补集思想的应用,求解
时可先将不相等问题转化为相等问题,求出a的集合后取其补集.
课堂篇
探究学习
探究一
探究二
探究三
思想方法
于 A 的所有元素组成的集合,称为 A 在 U 中的补集,记
作∁UA,读作“A 在 U 中的补集”.
∁UA={x|x∈U,且 x∉A}
图形语言
补集的
性质
A∪∁UA=U,A∩∁UA=⌀;∁U(∁UA)=A
课前篇
自主预习
一
二
3.做一做
(1)若U={x|x>0},A={x|x>3},则∁UA=
答案:{x|0<x≤3}
集的定义写出.
解:(1)∵A={x|-3<x<3},B={x|x<1}.
在数轴上分别表示出集合A,B,如图所示.
∴∁UA={x|x≤-3或x≥3},∁UB={x|x≥1}.
(2)∵A∩B={x|-3<x<1},如图阴影部分所示.
∴∁U(A∩B)={x|x≥1或x≤-3}.
课堂篇
探究学习
探究一
探究二
sample essays, such as contract agreements,
documentary evidence, planning plans, summary reports,
party and youth organization materials, reading notes,
集合的概念与运算例题及答案
集合的概念与运算例题及答案1 集合的概念与运算(一)目标:1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点:1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数,∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗 }1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈,⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
高中数学讲义利用数轴解决集合运算问题
D.
, 1 U 2,3
3、(重庆八中半月考, 1)设全集为 R ,集合 A x x 2 , B
(
)
A. 2,2
B. 2,1
C. 1,2
x 1 0 ,则 A I B x1 D. 2,
4、已知函 数 f x
x 的定义域为 M , g x
2 x2
ln x 1 的 定 义 域 为 N , 则
M U CRN ( )
小炼有话说: 1、熟悉充分必要条件与集合的联系: p 是 q 的充分不必要条件
p 对应集合 P
是 q 对应集合 Q 的真子集
2、处理含参问题时,秉承“先常数再参数”的顺序分析,往往可利用所得条件对参数范围加
以限制,减少分类讨论的情况。例如在本题中,若先处理
B ,则解不等式面临着分类讨论的
问题。但先处理 A 之后,结合数轴会发现只有图中一种情况符合,减掉了无谓的讨论。
1 ;当 A
时,根据 a 的取值分
解: x x 1 a 0
x
0
x
0
2 x 1a
x a1
设解集为 A
拼搏的你,背影很美!
努力的你,未来可期 !
当A 当A
时,则 a 1
时:
若 a 1 0 a 1 时, A 0,a 1 2,2
a1 2 1 a1
a1
若 a 1 0 a 1 时, A a 1,0
2,2
a1 2 3a 1
m 1 x n m 1 x n 0 ,由题意中含 3 个
整
数解可得:解集应该为封闭区间,所以
x 的系数均大
于
m1 0
零,即
m1 0
m 1,另一方面,解集区间内有
3 个整数,从端点作为突破口分析,两
掌握集合知识需要注意的几个问题
掌握集合知识需要注意的几个问题珠海市第三中学 饶正宽摘要:集合知识是整个高中数学的开篇内容,能否学好集合,对学生进入高中后的学习会有深远的影响。
集合是分类思想的极好载体,其本质就是分类。
集合不光为其他分支提供了的工具,也提供了重要的思想方法。
因此在高中阶段掌握好集合就显得非常重要了。
本文从掌握集合知识需要注意的五个方面入手,一一介绍在集合知识部分的难点和易错点等,从而加深学生对集合部分内容的掌握。
关键词:集合 问题 考点集合知识是整个高中数学的第一部分内容,集合语言是现代数学的基本语言,在高中数学课程中,它是学习掌握和使用数学语言的基础。
对后面内容的学习有深刻的影响。
整块内容新符号、新概念多,和其他章节的知识交汇多,因此,要掌握好这一章内容,应该注意一下几点:一. 注意集合的表示方法。
在高中阶段,我们所接触的集合的表示方法主要有列举法、描述法和图示法,而这些方法在表示集合时都有特定的要求,在解题时,一定要注意根据实际情况选择不同的表示方法。
比如,在用描述法表示集合时,要分清代表元素的含义。
例1.用列举法表示集合A={}________,2,12=∈≤-=Z x x x y y ;B={}________,2,1),(2=∈≤-=Z x x x y y x ;_______=⋂B A 。
解析:很显然,满足条件的x 有-2,-1,0,1,2五个,而第一个集合代表元素为y ,因此,它表示函数12-=x y 的值域,是数集;第二个集合代表元素为()y x ,,它表示函数12-=x y 图像上的点,是点集。
从而,将x 的值分别代入表达式中,第一空应填{}3,0,1-;第二空应填()()(){}3,2,0,1,1,0),0,1(),3,2(---;第三空应填φ。
二. 注意空集概念的理解。
空集是不含任何元素的集合,它属于有限集,它是任何集合的子集,是任何非空集合的真子集。
由于空集的特殊性,要特别注意{}{}0,0,,φφ之间的区别。
集合的基本运算(第二课时)教案
1.1.3 集合的基本运算(第二课时) 一、 教材分析:集合的补集在全集的概念后介绍的。
在数学研究中,明确在什么范围内讨论问题非常重要,这就是学习全集概念的意义。
二、学习目标:①理解全集的概念,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力;②通过观察和类比,借助Venn 图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.三、教学重点:会用Venn 图、数轴进行集合的运算. 四、教学难点:理解给定集合中一个子集的补集的含义,并会求给定子集的补集. 五、课时安排:1课时六、教学过程(一)、自主导学(预习)1、设计问题,创设情境提示学生思考:在不同范围研究同一个问题,可能得到不同的结果,并举例子: 问题1:①分别在整数范围和实数范围内解方程(x-2)·(32-x )=0,其结果会相同吗? ②若集合A={x|0<x<2,x ∈Z },B={x|0<x<2,x ∈R },则集合A ,B 相等吗?2、自主探索,尝试解决问题2:①用列举法表示下列集合:A={x ∈Z|(x-2)(x+32)(5-x )=0}; B={x ∈Q|(x-2)(x+32)(5-x )=0}; C={x ∈R|(x-2)(x+32)(5-x )=0}.答:①A={2},B={2,-32},C={2,-32,5}. ②问题①中三个集合相等吗?为什么?答:不相等,因为三个集合中的元素不相同.③由此看,解方程时要注意什么?解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.3、信息交流,揭示规律(给出全集的定义并作解释)1.全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.问题3:已知全集U={1,2,3},A={1},写出由全集中不属于集合A 的所有元素组成的集合B. B={2,3}2.补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A.符号语言:∁U A={x|x ∈U ,且x ∉A }.Venn 图:阴影部分表示补集.(二)、合作学习【例1】设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A ,∁U B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8};∁U B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:∁U (A ∩B )=(∁U A )∪(∁U B );∁U (A ∪B )=∁U (A )∩∁U (B ).【例2】设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形}.求A ∩B ,∁U (A ∪B ).解:根据三角形的分类可知A ∩B=⌀,A ∪B={x|x 是锐角三角形或钝角三角形},∁U (A ∪B )={x|x 是直角三角形}.【例3】已知全集U=R ,A={x|-2≤x ≤4},B={x|-3≤x ≤3},求:(1)∁U A ,∁U B ;(2)(∁U A )∪(∁U B ),∁U (A ∩B ),由此你发现了什么结论?(3)(∁U A )∩(∁U B ),∁U (A ∪B ),由此你发现了什么结论?(三)、当堂检测1.已知集合A={x|3≤x<8},求A C ⋃.解A C ⋃:={x|x<3或x ≥8}.2.设S={x|x 是至少有一组对边平行的四边形},A={x|x 是平行四边形},B={x|x 是菱形},C={x|x 是矩形},求B ∩C ,∁A B ,∁S A.解:B ∩C={x|正方形},∁A B={x|x 是邻边不相等的平行四边形},∁S A={x|x 是梯形}.3、已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围. 解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.4、已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}AB =,则(){6,7,9}UC A B =. 由{5,8}A B =,则(){1,2,3,4,6,7,9}U C A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,则()(){6,7,9}U U C A C B =, ()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C A B =, ()()()U U U C A C B C AB =. (四)、课堂小结 请同学们回想一下,本节课我们学了哪些内容?(1)知识点:①全集与补集的概念及其关系。
2020年成人高考-数学复习资料(高起专)
9.二次函数表达形式有三种:一般式: ;顶点式: ;零点式: ,要会根据已知条件的特点,灵活地选用二次函数的表达形式。
课本中的p17例5(4)例6、例7,例10例11;习题p23 8、9、10、11
10.一元一次不等式的解法关键是化为 ,再把 的系数化为1,注意乘以或者除以一个负数不等号的方向要改变;一元一次不等式组最后取个不等式的交集,即数轴上的公共部分。做p42 4、5、6大题
11.绝对值不等式只要求会做: 和 或者 ,一定会去绝对值符号。做p43 7
12.一元二次不等式是重点,阅读课文33至34的图表及39至42页的例题。做43页8、9、10、11、12
设 , 是方程 的两实根,且 ,则其解集如
对于方程 有实数解的问题。首先要讨论最高次项系数 是否为0,其次若 ,则一定有 。
13.数列的同项公式与前n项的和的关系
(数列 的前n项的和为 ).
等差数列的通项公式 ;
其前n项和公式为 .
等比数列的通项公式 ;
其前n项的和公式为 或 .
14.等差数列的性质:
(1)当 时,则有 ,特别地,当 时,则有
(2)若 、是等差数列,
,…也成等差数列
(3)在等差数列 中,当项数为偶数 时, ;项数为奇数 时,
(3)函数奇偶性的性质:
①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
②如果奇函数有反函数,那么其反函数一定还是奇函数.
③若 为偶函数,则 .
④奇函数 定义域中含有0,则必有 .故 是 为奇函数的既不充分也不必要条件。
8.函数的单调性:一般用来比较大小,而且主要用来比较指数函数、对数函数的大小,此外,反比例函数、一次函数、二次函数的单调性也比较重要,要熟记他们的图像的分布和走势。熟记课本第11页至13页的图和相关结论。
集合间的基本运算教案
集合间的基本运算教案一、教学目标知识与技能:1. 理解集合间的基本运算,包括并集、交集、补集的概念及性质。
2. 掌握并集、交集、补集的运算方法,能够正确计算给定集合的并集、交集和补集。
过程与方法:1. 通过具体实例,引导学生探究集合间的基本运算规律。
2. 利用维恩图和数轴等工具,直观展示集合间的基本运算结果。
情感态度与价值观:1. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。
2. 激发学生对数学的兴趣,培养学生的团队合作精神。
二、教学重点与难点重点:1. 集合间的基本运算概念及性质。
2. 并集、交集、补集的运算方法。
难点:1. 理解集合间基本运算的内在联系。
2. 熟练运用集合间基本运算解决实际问题。
三、教学过程环节一:导入新课1. 教师通过引入生活实例,如学校举办运动会,引导学生思考如何利用集合的概念和运算来解决问题。
环节二:自主学习1. 学生自主学习并集、交集、补集的概念及性质。
2. 教师通过提问、解答疑问,检查学生的学习效果。
环节三:合作探究1. 学生分组讨论,探究并集、交集、补集的运算方法。
环节四:巩固练习1. 教师给出典型题目,学生独立完成。
2. 教师讲解答案,分析解题思路和方法。
环节五:拓展延伸1. 教师提出开放性问题,引导学生运用集合间的基本运算解决实际问题。
四、课后作业1. 完成练习册的相关题目。
五、教学反思教师在课后对课堂教学进行反思,分析学生的学习情况,针对学生的薄弱环节调整教学策略,为下一节课的教学做好准备。
关注学生的学习兴趣和需求,不断优化教学方法,提高教学质量。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及与合作探究环节的互动表现,了解学生的学习态度和合作精神。
2. 作业评价:通过学生完成的练习册题目和实际问题解题报告,评估学生对集合间基本运算的理解和应用能力。
3. 单元测试评价:在单元结束后,进行测试,全面检测学生对集合间基本运算的掌握情况。
高中数学讲义:利用数轴解决集合运算问题
利⽤数轴解决集合运算问题数形结合是解决高中数学问题的常用手段,其优点在于通过图形能够直观的观察到某些结果,与代数的精确性结合,能够快速解决一些较麻烦的问题。
在集合的运算中,涉及到单变量的取值范围,数轴就是一个非常好用的工具,本文将以一些题目为例,来介绍如何使用数轴快速的进行集合的交并运算。
一、基础知识:1、集合运算在数轴中的体现::A B I 在数轴上表示为,A B 表示区域的公共部分:A B U 在数轴上表示为,A B 表示区域的总和:U C A 在数轴上表示为U 中除去A 剩下的部分(要注意边界值能否取到)2、问题处理时的方法与技巧:(1)涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系(2)在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域。
(3)涉及到多个集合交并运算时,数轴也是得力的工具,从图上可清楚的看出公共部分和集合包含区域。
交集即为公共部分,而并集为覆盖的所有区域(4)在解决含参数问题时,作图可先从常系数的集合(或表达式)入手,然后根据条件放置参数即可3、作图时要注意的问题:(1)在数轴上作图时,若边界点不能取到,则用空心点表示;若边界点能够取到,则用实心点进行表示,这些细节要在数轴上体现出来以便于观察(2)处理含参数的问题时,要检验参数与边界点重合时是否符合题意。
二、例题精析:例1:(2009 安徽)集合{}21213,03x A x x B x x +ìü=-<=<íý-îþ,则A B I =_______思路:先解出,A B 的解集,()()11,2,,3,2A B æö=-=-¥-+¥ç÷èøU ,作出数轴,则A B I 即为它们的公共部分。
专题01 含参数与新定义的集合问题 (解析版)
专题01 含参数与新定义的集合问题【技巧总结】一.解决与集合有关的创新题的对策:(1)分析含义,合理转化,准确提取信息是解决此类问题的前提.剥去新定义、新法则的外表,利用我们所学集合的性质将陌生的集合转化为我们所熟悉的集合,陌生的运算转化为我们熟悉的运算,是解决这类问题的突破口,也是解决此类问题的关键.(2)根据新定义(新运算、新法则)的要求,“照章办事”,逐条分析、验证和运算,其中要注意应用集合的有关性质.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错淏选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.二.解决与集合有关的参数问题的对策(1)如果是离散型集合,要逐个分析集合的元素所满足的条件,或者画韦恩图分析.(2)如果是连续型集合,要数形结合,注意端点能否取到.(3)在解集合的含参问题时,一定要注意空集和元素的互异性.(4)由集合间关系求解参数的步骤:①弄清两个集合之间的关系,谁是谁的子集;②看集合中是否含有参数,若A B,且A中含参数应考虑参数使该集合为空集的情形;③将集合间的包含关系转化为不等式(组)或方程(组),求出相关的参数的取值范围或值.(5)经常采用数形结合的思想,借助数轴巧妙解答.【题型归纳目录】题型一:根据元素与集合的关系求参数 题型二:根据集合中元素的个数求参数 题型三:根据集合的包含关系求参数 题型四:根据两个集合相等求参数 题型五:根据集合的交、并、补求参数 题型六:集合的创新定义 【典型例题】题型一:根据元素与集合的关系求参数 例1.(2022·全国·高一课时练习)已知集合{}212,4,2A a a a =+-,3A -∈,则=a ( ) A .1- B .3-或1 C .3 D .3-【答案】D【解析】∵3A -∈,∴234a a -=+或32a -=-.若234aa -=+,解得1a =-或3a =-.当1a =-时,2423a a a +=-=-,不满足集合中元素的互异性,故舍去;当3a =-时,集合{}12,3,5A =--,满足题意,故3a =-成立.若32a -=-,解得1a =-,由上述讨论可知,不满足题意,故舍去. 综上所述,3a =-. 故选:D .例2.(2022·全国·高一专题练习)已知A 是由0,m ,m 2﹣3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可【答案】B【解析】∵2∈A ,∴m =2 或 m 2﹣3m +2=2.当m =2时,m 2﹣3m +2=4﹣6+2=0,不合题意,舍去; 当m 2﹣3m +2=2时,m =0或m =3,但m =0不合题意,舍去. 综上可知,m =3. 故选:B .例3.(2022·全国·高一课时练习)设全集{}1,2,3,4,5A =,{}240B x x x m =-+=,若1AB ∉,则B 等于( ) A .{}1,3- B .{}1,0C .{}1,3D .{}1,5【答案】C【解析】因为1AB ∉,所以1B ∈,所以140m -+=,解得3m =,所以{}{}24301,3B xx x =-+==∣,故选:C.例4.(多选题)(2022·江苏·扬中市第二高级中学高一开学考试)已知Z a ∈,{(,)|3}A x y ax y =-≤且,(2,1)A ∈,(1,4)A -∉,则a 取值可能为( )A .1-B .0C .1D .2【答案】BCD【解析】选项A :当1a =-时,213--≤,143--≤,故(2,1),(1,4)A A ∈-∈,A 错误; 选项B :当0a =时,13-≤,(4)3-->,故(2,1),(1,4)A A ∈-∉,B 正确; 选项C :当1a =时,213-≤,1(4)3-->,故(2,1),(1,4)A A ∈-∉,C 正确; 选项D :当2a =时,2213⨯-≤,21(4)3⨯-->,故(2,1),(1,4)A A ∈-∉,D 正确.故答案为:BCD.题型二:根据集合中元素的个数求参数 例5.(2022·江苏·高一单元测试)已知集合{}2410A x mx x =++=有两个子集,则m 的值是__________. 【答案】0或4【解析】当0m =时,1{}4A =-,满足题意 当0m ≠时,由题意得1640m ∆=-=,4m = 综上,0m =或4m = 故答案为:0或4例6.(2022·江苏·高一)已知{1}A x x m =∈-<Z∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( ) A .45m < B .45m <C .34m <D .34m <【答案】D【解析】由题意可知{}1,0,1,2,3A =-,可得34m <. 故选:D例7.(2022·全国·高一课时练习)已知R a ∈,集合{}2R 320A x ax x =∈-+=.(1)若A 是空集,求实数a 的取值范围; (2)若集合A 中只有一个元素,求集合A ;(3)若集合A 中至少有一个元素,求实数a 的取值范围. 【解析】(1)若A 是空集,则关于x 的方程2320ax x -+=无解,此时0a ≠,且980a ∆=-<,所以98a >,即实数a 的取值范围是9,8⎛⎫+∞⎪⎝⎭. (2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭,符合题意; 当0a ≠时,关于x 的方程2320axx -+=应有两个相等的实数根,则980a ∆=-=,得98a =,此时43A ⎧⎫=⎨⎬⎩⎭,符合题意. 综上,当0a =时23A ⎧⎫=⎨⎬⎩⎭;当98a =时43A ⎧⎫=⎨⎬⎩⎭. (3)当0a =时,23A ⎧⎫=⎨⎬⎩⎭,符合题意; 当0a ≠时,要使关于x 的方程2320axx -+=有实数根,则980a ∆=-≥,得98a ≤. 综上,若集合A 中至少有一个元素,则实数a的取值范围为9,8⎛⎤-∞ ⎥⎝⎦. 例8.(2022·江苏·高一单元测试)已知集合{}2310C x ax x =-+=,(1)若C 是空集,求a 的取值范围;(2)若C 中至多有一个元素,求a 的值,并写出此时的集合C ; (3)若C 中至少有一个元素,求a 的取值范围.【解析】(1)若C 是空集,则0940a a ≠⎧⎨∆=-<⎩,解得94a >;(2)若C 中至多有一个元素当0a =时,13C ⎧⎫=⎨⎬⎩⎭,符合 当0a ≠时,若940a ∆=-<,解得94a >,此时C =∅若940a ∆=-=,得94a =,此时23C ⎧⎫=⎨⎬⎩⎭. 综合得:当0a =时,13C ⎧⎫=⎨⎬⎩⎭;当94a >,C =∅;当94a =,23C ⎧⎫=⎨⎬⎩⎭. (3)若C 中至少有一个元素当0a =时,13C ⎧⎫=⎨⎬⎩⎭,符合 当0a ≠时,若940a ∆=-≥,解得94a ≤且0a ≠综合得94a ≤. 题型三:根据集合的包含关系求参数例9.(2022·上海·高一专题练习)集合A ={x |x2=1},B ={x |ax =1},若B ⊆A ,则实数a 的值为( ) A .1 B .-1 C .±1 D .0或±1【答案】D【解析】A ={x |x2=1}={1,-1}.当a =0时,B =∅,满足B ⊆A ;当a ≠0时,B =1a ⎧⎫⎨⎬⎩⎭,因为B ⊆A ,所以1a =1或1a =-1,即a =±1.综上所述,a =0或a =±1.故选:D例10.(2022·全国·高一课时练习)已知集合{}1,4,M x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2D .2,0,1,2【答案】C【解析】因为N M ⊆,所以2x x =,解得0x =,1x =或24x=,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C.例11.(多选题)(2022·全国·高一单元测试)设{}29140A x xx =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为( )A .2B .12C .17D .0【答案】BCD【解析】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又AB B =,所以B A ⊆,当0a =时,B =∅,符合题意, 当0a ≠时,则1{}B a =,所以12a =或17a =, 解得12a =或17a =, 综上所述,0a =或12或17, 故选:BCD例12.(2022·湖南·株洲二中高一开学考试)已知集合{}{}24,3,56,3,A m B m =-=,若B A ⊆,则实数m =___________. 【答案】2-或3 【解析】B A ⊆,∴24m =或256m m -=, 解得2m =或2m =-或3m =,将m 的值代入集合A 、B 验证,知2m =不符合集合的互异性, 故2m =-或3. 故答案为:2-或3.例13.(2022·全国·高一专题练习)集合{}1,2A =-,{|20}B x ax =-=,若B A ⊆,则由实数a 组成的集合为____ 【答案】{}2,1,0-.【解析】集合{}1,2A =-,{|20}B x ax =-=,且B A ⊆,B ∴=∅或{}1B =-或{}2B =,0,1,2a ∴=-.则实数a 组成的集合为{}2,1,0-.故答案为:{}2,1,0-.例14.(2022·上海·高一专题练习)集合21242{}{}A B m B A ⊆=﹣,,,=,,,则m =___. 【答案】2±【解析】∵集合21242{}{}A B m B A -==⊆,,,,,, ∴24m=,解得2m =±.故答案为:±2.例15.(2022·全国·高一专题练习)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为___________. 【答案】2a =-或23a =或0【解析】已知集合{}{}22301,3A x xx =--==-,{}20B x ax =-=,当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a =,解得2a =-或23a =; 故答案为:2a =-或23a =或0.例16.(2022·江苏·高一单元测试)已知集合{|4A x x =≥或}5x <-,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <-或}3a ≥【解析】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<-或14a +≥,解得8a <-或3a ≥. 所以实数a 的取值范围{|8a a <-或}3a ≥. 故答案为:{|8a a <-或}3a ≥例17.(2022·全国·高一课时练习)已知m 为实数,(){}210A x x m x m =-++=,{}10B x mx =-=.(1)当A B ⊆时,求m 的取值集合; (2)当B A 时,求m 的取值集合.【解析】(1)因为()()()211x m x m x x m -++=--,所以当1m =时,{}1A =,当1m ≠时,{}1,A m =. 又A B ⊆,所以1m =,此时{}1B =,满足A B ⊆. 所以当A B ⊆时,m 的取值集合为{}1. (2)当1m =时,{}1A B ==,B A 不成立; 当0m =时,{}1,0A =,B =∅,B A 成立;当1m ≠且0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,{}1,A m =,由B A ,得1=m m,所以1m =-.综上,m 的取值集合为{}0,1-.例18.(2022·全国·高一专题练习)已知M ={x |2≤x ≤5},N ={x |a +1≤x ≤2a ﹣1}.(1)若M ⊆N ,求实数a 的取值范围; (2)若M ⊇N ,求实数a 的取值范围.【解析】(1)∵M ⊆N ,∴12215a a +≤⎧⎨-≥⎩,∴a ∈∅; (2)①若N =∅,即a +1>2a ﹣1,解得a <2时,满足M ⊇N . ②若N ≠∅,即a ≥2时,要使M ⊇N 成立,则12215a a +≥⎧⎨-≤⎩,解得1≤a ≤3,此时2≤a ≤3.综上a ≤3.例19.(2022·全国·高一)已知集合{|32}A x x =-≤≤,集合{|131}B x m x m =-≤≤-. (1)当3m =时,求AB ;(2)若A B ⊆,求实数m 的取值范围 【解析】(1)当3m =时,{|28}B x x =-≤≤,{|32}{|28}{|22}A B x x x x x x ∴⋂=-≤≤⋂-≤≤=-≤≤;(2)由A B ⊆,则有:13312m m -≤-⎧⎨-≥⎩,解得:41m m ≥⎧⎨≥⎩, 即4m ≥,∴实数m 的取值范围为{|4}m m ≥.例20.(2022·福建省龙岩第一中学高一开学考试)设集合{|}R A x xx ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, .(1)若0a =,试求AB ;(2)若B A ⊆,求实数a 的取值范围. 【解析】(1)由240xx +=,解得0x =或4x =-,}{,A =-40.当0a =时,得xx -+2210=,解得12x =--x =12-{}1212B =--,;∴{}041212AB =---,,,.(2)由(1)知,}{,A =-40,B A ⊆, 于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a=222110+++-有两根为0,4-,则()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况. 当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a=222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a=222110+++-有且只有一个根为4-,则()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a=222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或.例21.(2022·江苏·高一)已知集合{}{}0,,,M x x x R N x x a x R =>∈=>∈. (1)若M N ⊆,求实数a 的取值范围; (2)若M N ⊇,求实数a 的取值范围; (3)若RRMN ,求实数a 的取值范围.【解析】(1)M N ⊆,0a ∴;(2)M N⊇,0a ∴;(3){|0RM x x =,}x R ∈,{|RN x x a=,}x R ∈,且RRMN ,0a ∴>.例22.(2022·全国·高一课时练习)已知集合2{|60}M x xx =+-=,{|20,R}N y ay a =+=∈,若满足MN N =的所有实数a 构成集合A ,则A =____,A的子集有____个.【答案】 20,1{,}3- 8 【解析】由MN N =得N M⊆,而{}3,2M =-,当0a =时,N =∅符合题意; 当0a ≠时,23y a =-=-或22y a =-=, ∴23a =或1a =-, ∴2{0,1,}3A =-, ∴A 的子集个数为328=.故答案为:20,1{,}3-;8.题型四:根据两个集合相等求参数例23.(2022·全国·高一课时练习)已知{}1,,A x y =,{}21,,2B x y =,若A B =,则x y -=( ) A .0 B .1C .14D .32【答案】C【解析】因为A B =,所以22x x y y ⎧=⎨=⎩或22x y y x =⎧⎨=⎩,解得00x y =⎧⎨=⎩或10x y =⎧⎨=⎩或1214x y ⎧=⎪⎪⎨⎪=⎪⎩, 又集合中的元素需满足互异性,所以1214x y ⎧=⎪⎪⎨⎪=⎪⎩,则111244x y -=-=. 故选:C. 例24.(2022·全国·高一课时练习)已知集合{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20222023a b +=______. 【答案】1【解析】易知0a ≠.∵{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,∴0ba =,即0b =,∴21a=,1a =±.又由集合中元素的互异性,知1a ≠, ∴1a =-, 故()2022202220232023101ab +=-+=.故答案为:1例25.(2022·全国·高一课时练习)已知{}21,,3A a =,{}22,1,1B a a=+-.若A B =,则=a ______. 【答案】2 【解析】因为A B =所以22213a a a ⎧=+⎨-=⎩解之得:2a =故答案为:2例26.(2022·浙江丽水·高一期末)已知集合2{|0}A x xax b =++=,{3}=B ,若A B =,则实数a b +=_______【答案】3【解析】因为{3}A B ==, 所以方程20xax b ++=有且只有一个实数根3x =,所以240390a b a b ⎧-=⎨++=⎩,解得6,9a b =-=.所以3a b += 故答案为:3题型五:根据集合的交、并、补求参数例27.(2022·全国·高一课时练习)设a ∈R ,b ∈R ,全集U =R ,{}A x a x b =<<, {2UA x x =≤-或}3x ≥,则a b +=______.【答案】1【解析】因为U =R ,{}A x a x b =<<,所以{UA x x a =≤或}x b ≥.又{2UA x x =≤-或}3x ≥,所以2a =-,3b =,所以1a b +=.故答案为:1.例28.(2022·全国·高一专题练习)已知集合M ={1,2,3},{}240,N x x x a a M=-+=∈,若M N ≠∅,则a 的值为( ) A .1 B .2C .3D .1或2【答案】C【解析】当1a =时,由2410x x -+=,得23=x {23,23}N =+,不满足题意;当2a =时,由2420x x -+=,得22x =即{22,22}N =,不满足题意;当3a =时,由2430x x -+=,得1x =或3x =,即{1,3}N =,满足题意.故选:C例29.(2022·全国·高一课时练习)已知集合{}260M x x x =--=,{}N x x a =<,若MN ≠∅,则实数a 的取值范围是( )A .{}2a a >-B .{}2a a ≥-C .{}3a a >D .{}3a a ≥【答案】A 【解析】因为{}{}2602,3M x xx =--==-,又{}N x x a =<,所以当2a ≤-时,M N ⋂=∅,要使MN ≠∅,则2a >-,即{}2a a >-.故选:A .例30.(2022·全国·高一)设全集{}22,4,U a =,集合{}4,2A a =+,{}UA a =,则实数a 的值为( ) A .0 B .-1 C .2 D .0或2【答案】A【解析】由集合{}4,2A a =+知,24a +≠,即2a ≠,而{}UA a =,全集{}22,4,U a =,因此,222a aa ⎧=⎨+=⎩,解得0a =,经验证0a =满足条件,所以实数a 的值为0. 故选:A例31.(2022·全国·高一课时练习)已知集合{}|23A a a x a =≤≤+,{1B x x =<-或}5x >,若()R A B B =,求实数a 的取值范围.【解析】由()RA B B ⋂=,得()R B A ⊆,从而A B =∅.①若A =∅,则23a a >+,解得3a >;②若A ≠∅,在数轴上标出集合A ,B ,如图所示,则213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩,解得122a -≤≤. 综上,实数a 的取值范围是1232a a a ⎧⎫-≤≤>⎨⎬⎩⎭∣或. 例32.(2022·全国·高一课时练习)设集合{}12A x x =-≤≤,{}21B x m x =<<,{1C x x =<-或}2x >.(1)若AB B =,求实数m 的取值范围;(2)若B C ⋂中只有一个整数,求实数m 的取值范围. 【解析】(1)因为AB B =,所以B A ⊆.①当B ≠∅时,由B A ⊆,得2121m m <⎧⎨≥-⎩,解得1122m -≤<; ②当B =∅,即12m ≥时,B A ⊆成立.综上,实数m 的取值范围是12m m ⎧⎫≥-⎨⎬⎩⎭. (2)因为B C ⋂中只有一个整数,所以B ≠∅,且322m -≤<-,解得312m -≤<-, 所以实数m的取值范围是312m m ⎧⎫-≤<-⎨⎬⎩⎭. 例33.(2022·全国·高一课时练习)设集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. (1)若B A ⊆,求实数m 的取值范围;(2)当集合A 中的x ∈Z 时,求集合A 的非空真子集的个数;(3)若B ≠∅,且不存在元素x ,使得x A ∈与x B ∈同时成立,求实数m 的取值范围.【解析】(1)当121m m +>-,即2m <时,B =∅,满足B A ⊆.当121m m +≤-,即2m ≥时,要使B A ⊆,只需12215m m +≥-⎧⎨-≤⎩,即23m ≤≤. 综上,实数m 的取值范围是{}3m m ≤.(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,共8个元素, 所以集合A 的非空真子集的个数为822254-=.(3)由B ≠∅,得121m m +≤-,即2m ≥. 又不存在元素x ,使得x A ∈与x B ∈同时成立, 所以15m +>或212m -<-,即4m >或12m <-. 所以实数m 的取值范围是{}4m m >.例34.(2022·全国·高一课时练习)已知集合{}52A x x =-<≤. (1)若{}B x x m =≥,A B B ⋃=,求实数m 的取值范围; (2)若{|2B x x m =<-或}x m >,AB =R ,求实数m 的取值范围.【解析】(1)由A B B ⋃=,知A B ⊆,所以5m ≤-,即实数m 的取值范围为{}5m m ≤-.(2)由题意,得252m m ->-⎧⎨≤⎩,解得32m -<≤,即实数m 的取值范围为{}32m m -<≤. 例35.(2022·全国·高一课时练习)已知集合{}2|8120A x x x =-+=.(1)若集合{}21,23B a a =+-,且A B =,求a 的值;(2)若集合{}2|60C x axx =-+=,且A ∩C =C ,求a 的取值范围.【解析】(1)由x 2﹣8x +12=0得x =2或x =6,∴A ={2,6}, 因为A =B ,所以221223223616a a a a +=⎧-=⎧⎨⎨-=+=⎩⎩或,解得15529a a a a =⎧=±⎧⎪⎨⎨==±⎪⎩⎩, 故a =5.(2)因为A ∩C =C ,所以C ⊆A.当C =∅时,△=1﹣24a <0,解得a 124>;当C ={2}时,1﹣24a =0且22a ﹣2+6=0,此时无解; 当C ={6}时,1﹣24a =0.且62a ﹣6+6=0,此时无解或a =0.综上,a 的取值范围为1024a a a ⎧⎫=⎨⎬⎩⎭或. 例36.(2022·全国·高一课时练习)已知集合{}45A x x =<<,{}121B x m x m =+≤≤+,{0C x x =≤或}2x ≥.(1)若A B B ⋃=,求实数m 的取值范围;(2)若BC B =,求实数m 的取值范围.【解析】(1)∵A B B ⋃=,∴A B ⊆.在数轴上标出集合A ,B ,如图1所示,则由图1可知21514m m +≥⎧⎨+≤⎩,解得23m ≤≤. ∴实数m 的取值范围为[]2,3.(2)∵BC B =,∴B C ⊆.当B =∅,即121m m +>+,即0m <时,满足B C ⊆. 当B ≠∅,即0m ≥时,在数轴上标出集合B ,C , 若B C ⊆,则有两种情况,如图2、图3所示. 由图2可知210m +≤,解得12m ≤-,又0m ≥, ∴无解;由图3可知12m +≥,解得m 1≥.综上,实数m 的取值范围是m 1≥或0m <.例37.(2022·江苏·高一单元测试)已知集合{}14A x x =<≤,{}12B x a x a =+≤≤. (1)当2a =时,求A B ;(2)若RBA =∅,求实数a 的取值范围.【解析】(1)当2a =时,{}34B x x =≤≤,A B ={}|14x x <≤.(2)A =R{|1x x ≤或4x >},当B =∅时,B A ⋂=∅R,此时12a a >+,解得1a <;当B ≠∅时,若B A ⋂=∅R ,则241121a a a a ≤⎧⎪>⎨⎪≥⎩,+,+,解得12a ≤≤.综上,实数a 的取值范围为{}2a a ≤.例38.(2022·全国·高一课时练习)若集合{}2R 30A x xmx =∈-+=,{}2R 0B x x x n =∈-+=,且{}0,1,3AB =,则m =______,n =______.【答案】 4 0【解析】若0A ∈,则30=,显然不成立,所以0A ∉; 所以0B ∈,即2000n -+=,得0n =,此时{}{}200,1B x R xx =∈-==,所以3A ∈,即23330m -+=,得4m =.故答案为:4;0题型六:集合的创新定义例39.(2022·全国·高一课时练习)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉.若{}02A x x =<<,{}0B x x =≥,则&A B =( )A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【答案】D【解析】由题意,得{}0A B x x ⋃=≥,{}02A B x x ⋂=<<, 故{&0A B x x ==或}2x ≥. 故选:D例40.(2022·全国·高一课时练习)已知集合{}2,3,4,5,6A =,(){},,,B x y x A y A x y A =∈∈-∈,则集合B 中元素的个数为______.【答案】6【解析】因为x A ∈,yA ,x y A -∈,所以4x =时,2y =;5x =时,2y =或3y =,6x =时,2y =或3或4.()()()()()(){}4,2,5,2,5,3,6,2,6,3,6,4B =,所以集合B 中元素的个数为6.故答案为:6.例41.(2022·全国·高一课时练习)戴德金分割,是指将有理数集Q 划分为两个非空子集A 与B ,且满足A B ⋃=Q ,A B =∅,A 中的每一个元素都小于B 中的每一个元素.请给出一组满足A 中无最大元素且B 中无最小元素的戴德金分割______. 【答案】{}Q πA x x =∈<,{}Q πB x x =∈≥(答案不唯一)【解析】以无理数分界写出一组即可,如{}Q πA x x =∈<,{}Q πB x x =∈≥.(答案不唯一); 故答案为:{}Q πA x x =∈<,{}Q πB x x =∈≥.(答案不唯一)例42.(2022·全国·高一课时练习)已知集合A 中的元素全为实数,且满足:若a A ∈,则11a A a+∈-. (1)若3a =-,求出A 中其他所有元素.(2)0是不是集合A 中的元素?请你取一个实数()3a A a ∈≠-,再求出A 中的元素.(3)根据(1)(2),你能得出什么结论?【解析】(1)由题意,可知3A -∈,则()()131132A +-=-∈--,11121312A ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭,1132113A +=∈-,12312A +=-∈-, 所以A 中其他所有元素为12-,13,2.(2)假设0A ∈,则10110A +=∈-,而当1A ∈时,11a a +-不存在,假设不成立,所以0不是A 中的元素.取3a =,则13213A +=-∈-,()()121123A +-=-∈--,11131213A ⎛⎫+- ⎪⎝⎭=∈⎛⎫-- ⎪⎝⎭,1123112A +=∈-, 所以当3A ∈时,A 中的元素是3,2-,13-,12.(3)猜想:A 中没有元素1-,0,1;A 中有4个元素,其中2个元素互为负倒数,另外2个元素也互为负倒数.由(2)知0,1A ∉,若1A -∈,则()()11011A +-=∈--,与0A ∉矛盾, 则有1A -∉,即1-,0,1都不在集合A 中.若实数1a A ∈,则12111a a A a +=∈-,12131211111111111a a a a A a a a a +++-===-∈+---, 13143121111111111a a a a A a a a a ⎛⎫+- ⎪+-⎝⎭====-∈-+⎛⎫-- ⎪⎝⎭,1415114*********a a a a a A a a a -+++===∈---+. 结合集合中元素的互异性知,A 中最多只有4个元素1a ,2a ,3a ,4a 且131a a =-,241a a =-.显然12a a ≠,否则11111a a a +=-,即211a =-,无实数解.同理,14a a ≠,即A 中有4个元素.所以A 中没有元素1-,0,1;A 中有4个元素,其中2个元素互为负倒数,另外2个元素也互为负倒数.例43.(2022·上海·高一专题练习)已知集合A 为非空数集,定义:{}|,,S x x a b a b A ==+∈,{}|,,T x x a b a b A ==-∈.(1)若集合{}13A =,,求证:2S ∈,并直接写出集合T ; (2)若集合{}1234,,,A x x x x =,1234x x x x <<<,且T A =,求证:1423x x x x +=+.【解析】(1)根据题意,由集合}3{1A =,,计算集合{246}S =,,,{02}T =,,所以2S ∈;(2)由于1234{}A x x x x =,,,,1234x x x x <<<,且T A =, 所以T 中也只包含4个元素,即213141{0}T xx x x x x =---,,,, 剩下的元素满足2143x x x x -=-,即1423x x x x +=+例44.(2022·全国·高一单元测试)给定数集A ,若对于任意a ,b A ∈,有a b A +∈,a b A -∈,则称集合A 为闭集合.(1)判断集合{}14,2,0,2,4A =--,{}3,Z B x x k k ==∈是否为闭集合,并给出证明;(2)若集合C ,D 为闭集合,则C D ⋃是否一定为闭集合?请说明理由;(3)若集合C ,D 为闭集合,且C R ,D R ,证明:()C D ⋃ R .【解析】(1)因为14A ∈,12A ∈,1426A +=∉,所以1A 不是闭集合; 任取x ,yB ∈,设3x m =,3y n =,m ,Z n ∈,则()333x y m n m n +=+=+且Z m n +∈,所以x y B +∈,同理,x y B -∈,故B 为闭集合;(2)结论:不一定;不妨令{}2,C x x k k ==∈Z ,{}3,D x x k k ==∈Z ,则由(1)可知, D 为闭集合,同理可证C 为闭集合,因为2,3C D ∈⋃,235C D +=∉⋃,因此,C D ⋃不一定是闭集合,所以若集合C ,D 为闭集合,则C D ⋃不一定为闭集合; (3)不妨假设R C D ⋃=,则由C R ,可得存在R a ∈且a C ,故a D ∈.同理,存在R b ∈且b D ∉,故b C ∈,因为R a b C D +∈=⋃,所以a b C +∈或a b D +∈.若a b C +∈,则由C 为闭集合且b C ∈,得()a a b b C =+-∈,与a C 矛盾.若a b D +∈,则由D 为闭集合且a D ∈,得()b a b a D =+-∈,与b D ∉矛盾, 综上,R C D ⋃=不成立,故()C D ⋃ R .。
数的数线与数轴
数的数线与数轴数的数线和数轴是数学中常用的表示和理解数值大小关系的工具。
它们以直观的方式展示了数值之间的相对位置和大小关系,方便了数学运算和问题解决。
本文将介绍数的数线和数轴的概念、用法以及与数值运算的关系,以及如何在解决实际问题中应用它们。
一、数的数线数的数线是一条直线,上面标有等距离的点,每个点代表一个实数。
这些点按照一定规则对应到实数集合上,形成了一个实数直观的表示方式。
通常我们将0点放在数线的中间,正数向右延伸,负数向左延伸。
数线上的每个点都与实数进行一一对应,可以用来表示实数的大小和关系。
在数线上,每两个相邻的整数之间的距离都相等,为1。
例如,数线上2和3之间的距离是1,3和4之间的距离也是1。
同样,数线上-2和-3之间的距离也是1,-3和-4之间的距离也是1。
数线上的每个整数点都可以用来表示一个整数,而且可以顺序排列。
利用数线,我们可以进行各种数值的比较。
例如,对于两个数a和b,如果a在数线上的位置比b靠右,那么a比b大;如果a在数线上的位置比b靠左,那么a比b小。
数线还可以表示正数和负数之间的大小关系,比如-2比-1小,4比-3大。
二、数轴数轴是一个带有有向标度的数线,通常用一条直线和箭头表示。
与数的数线类似,数轴也用于表示和理解数值的大小和相对位置。
不同的是,数轴上的点用于表示有序的实数或实数区间。
数轴上的每个点都与实数进行一一对应,可以用来表示实数的大小和相对位置。
正数通常位于数轴上的箭头一侧,负数位于箭头的另一侧。
数轴上的距离与数的绝对值之间存在着对应关系,距离越远,绝对值越大。
例如,数轴上点A对应的数值比点B对应的数值要小,说明点A所表示的数比点B所表示的数要小。
数轴在数值运算中有着广泛的应用。
例如,我们可以利用数轴进行加法和减法运算的解释。
对于两个数a和b,可以将它们表示在数轴上,然后根据数轴上的相对位置来确定它们的和或差。
三、数线和数轴的应用数的数线和数轴在解决实际问题时起着重要的作用。
集合的基本运算习题课-2022年学习资料;
例3:-设集合A={x-3≤x≤2},B={x2k-1≤x≤2k+1-,且AIB=B,则实数k的取值范围是 -32k-1-2k+12-k≥-1-分析:-2k-1≥--→-1≤k≤-2k+1≤-1-1sk时
例4:-已知A={x-2≤x≤5,B={xp+1≤x≤2p-1,-AUB=A,求p的取值范围-提示:由已知 两集合间接关系AUB=A-可得集合间的直接关系为B三A。-如下的分析正确吗?-P+1-2P-15
集合的运算-〔习题果
知识探究(一)-题型1:利用数轴求集合的并集、交集、补集-例1设A={x1-1<x<8},B={x1x>4 x<-5},-求A∩B、AUB、ACB、ACUB
知识探究-一-题型1:利用数轴求集合的并集、交集、补集-例1设A={x1-1<x<8},B={x1x>4或 <-5},-求A∩B、AUB、ACB、ACUB-{x-1<x<4-{xx<-5或x>-1-{x-1<x≤4 {x-5≤x<8-小结:有关不等式解集的运算可以借助数轴来-求解
题型3:利用韦恩图求解集合的交、并、补-例6设全集U={xlx≤7,x∈N},已知-ǒAB={1,6},A ={2,3}-,AB={0,5},求集合A、B.-试用韦恩图表述下列集合:-òAIB-Al ,B-AUB
U-B-&AI B-GAnB-AIòB-AnCCB-,AUB-GAU
例6设全集U={xIx≤7,x∈N},已知-àAB={1,6},A6B={2,3}-òAB={0,5},求 合A、B.-A={2,3,4,7},B={1,4,6,7
典例:-设集合A={x2-3x+2=0,B={2+2u+x+u2-5=0-1若AIB=2,求实数a的值-2 AYB=A,求实数a的取值范围。-A=x2-3x+2=0={1,2,-题目分析:
高一数学集合的运算试题答案及解析
高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。
【考点】集合相等的概念及集合中元素的互异性。
2.设集合,A.B.C.D.【答案】B【解析】集合=,N= ;所以M N=【考点】交集的运算3.已知集合,,则.【答案】【解析】集合,集合,.【考点】集合的交集.4.已知全集,集合(1)求(2)求【答案】(1)(2)【解析】分别求出两集合A,B的解集,,再求出,分别求出,.由,得-6<x-1<6,解得-5<x<7,由,得(x-8)(2x-1)>0,解得x>8,或x<.(1);(2).【考点】集合的运算.5.已知集合,集合,若是单元素集,则=【答案】6 或-4【解析】由条件,得,可知集合表示一条直线,集合表示圆心为,半径为的圆,若是单元素,则直线与圆相切,则有,即,解得.【考点】1、集合的交集运算;2、直线与圆的位置关系.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。
(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。
试题解析:(1),所以。
(2)消去y整理可得。
因为是只有一个元素的集合,即此方程在只有一个根。
所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。
当时,两集合仍没有公共点,所以;(2)集合B中必须含有小于等于的元素,集合A中含有的元素在集合B中仍可含有所以试题解析:(1)因为,A B=,所以(2)当A B=时【考点】集合的运算8.满足A∪{-1,1}={-1,0,1}的集合A共有( )A.10个B.8个C.6个D.4个【答案】D【解析】根据题意,分析可得,集合A中必须有元素0,可能含有元素1或-1,由此列举可得全部可能的集合集合A可能为{0}、{0,1}、{0,-1}、{0,1,-1},共有4个;故选D【考点】子集与真子集.9.设集合若,则实数 .【答案】4【解析】,或或,当时,,此时不合题意,.【考点】集合的交、并、补运算10.已知集合,.(Ⅰ)若,求();(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解出集合,再根据确定集合,然后由数轴找出交集是;(Ⅱ)由可知,由子集概念求出的取值范围是.试题解析:(Ⅰ)因为当时,.所以.又因为集合,所以().(Ⅱ)因为,所以.当时,有:,此时;当时,有:,解得.综上所述,实数的取值范围是.【考点】集合的基本运算.11.已知全集为实数集R,集合,.(1)分别求,;(2)已知集合,若,求实数的取值集合.【答案】(1),;(2)的取值范围是.【解析】(1)只要求出集合,根据集合交集,并集,补集的定义就可以得出结论;(2)由于,可以在数轴上表示出两个集合,从而得出的范围.试题解析:(Ⅰ),,,.(Ⅱ)①当时,,此时;②当时,,则.综合①②,可得的取值范围是.【考点】1、集合的运算;2、子集的概念.A=12.已知集合A={y | y=2x,x∈R},则CRA.B.(-∞,0]C.(0,+∞)D.R【答案】B【解析】A={y | y=2x,x∈R},所以CA=(-∞,0].R【考点】本小题主要考查指数函数的值域和补集运算.点评:涉及到集合的运算,可以借助数轴辅助解决问题.13.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CB)等于()UA.{4,5} B.{2,4,5,7} C.{1,6} D.{3}【答案】AB={2,4,5,7},【解析】根据题意,由于全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6}那么可知,CU则A∩(CB)= {4,5},故选A.U【考点】交、并、补的定义点评:本题考查利用交、并、补的定义进行集合间的混合运算,属于基础题14.已知A={xú 2a≤x≤a+3},B={xú x<-1或x>5} 且A∩B=Ф,求实数a的取值范围.【答案】.【解析】当时,,所以,这时A∩B="Ф" (2分)当时,根据题意得,即,所以(8分)综上可得,或(9分)∴实数的取值范围是(10分)【考点】本题主要考查集合的运算,一元一次不等式组的解法。
21-22版:微专题1 利用数轴、维恩图解决集合问题(步步高)
在集合的运算中,特别是涉及到集合的交集、并集、补集时,往往 要对集合的可能情况进行分类讨论,运算较大,容易出错,而若能 巧用数轴、维恩图化解集合问题,就可避免分类讨论,使解题显得 直观、形象,从而简化解题步骤,提高解题效率.
一、利用数轴解决集合的运算问题
例1 已知全集U={x|x≤4},集合A={x|-2≤x≤3},B={x|-3≤x≤2},求 A∩B,(∁UA)∪B,A∩(∁UB),(∁UA)∪(∁UB). 解 如图,首先在数轴上表示出全集U和集合A,B.
二、利用数轴解决集合的逆运算问题
例 2 设 全 集 为 I = R , 集 合 M = {x|x≤1} , N = {x| - 1≤x≤2} , 则
{x|1<x≤2}等于
A.M∪N C.(∁IM)∪N
B.M∩N
√D.(∁IM)∩N
解析 如图所示,在数轴上标好集合M与集合N,这样结合已知条件逐 一分析后可得到答案为D.
反思 感悟
利用数轴解决集合问题,关键要能够正确画出集合在数轴的范 围表示,特别要注意区间端点是否包含.
四、利用维恩图解决集合中元素问题
例4 设全集U={不大于20的质数},M,P是U的两个子集,且满足M∩ (∁UP)={3,5},(∁UM)∩P={7,19},(∁UM)∩(∁UP)={2,17},求集合M,P.
本课结束
更多精彩内容请登录:
这样A∩B={x|-2≤x≤2},∁UA={x|x<-2或3<x≤4}, ∁UB={x|x<-3或2<x≤4},(∁UA)∪B={x|x≤2或3<x≤4}, A∩(∁UB)={x|2<x≤3},(∁UA)∪(∁UB)={x|x<-2或2<x≤4}.
实数集合与数轴的表示与运算
实数集合与数轴的表示与运算实数是数学中一个重要的概念,它包括有理数和无理数两部分。
实数集合与数轴密切相关,数轴是一条直线上的标尺,用来表示实数。
本文将介绍实数集合的定义、表示和运算,并讨论数轴在实数集合中的应用。
一、实数集合的定义实数集合是数学中的一个概念,表示一系列有理数和无理数的集合。
有理数是可以用两个整数的比表示的数,包括整数、分数和小数。
无理数是不能用两个整数的比表示的数,无理数包括无限不循环小数,例如π和根号2等。
二、实数集合的表示为了方便表示和比较实数,我们使用数轴。
数轴是一条直线,左端点表示负无穷大,右端点表示正无穷大,原点表示0。
实数集合中的每个数都对应数轴上的一个点,从而可以用数轴来表示实数。
在数轴上,我们可以通过画点、画线段和刻度等方式表示实数。
例如,要表示实数-3,可以在数轴上从原点向左移动3个单位,然后在该位置画一个点表示-3。
类似地,要表示实数2.5,可以在数轴上从原点向右移动2.5个单位,然后在该位置画一个点表示2.5。
通过这样的方式,我们可以直观地理解实数集合。
三、实数集合的运算实数集合具有多种运算,包括加法、减法、乘法和除法等。
1. 加法:实数的加法是将两个实数进行相加得到一个新的实数。
例如,对于实数2和3来说,它们的和是5。
在数轴上,我们可以通过将两个数的位置相对应,并得到它们之间的距离来表示它们的和。
2. 减法:实数的减法是将一个实数减去另一个实数得到一个新的实数。
例如,对于实数5和3来说,它们的差是2。
在数轴上,我们可以通过将两个数的位置相对应,并得到它们之间的距离来表示它们的差。
3. 乘法:实数的乘法是将两个实数进行相乘得到一个新的实数。
例如,对于实数2和3来说,它们的积是6。
在数轴上,我们可以通过将一个数的位置作为原点,然后以另一个数的绝对值为半径画一个圆,这个圆上的点所对应的数就是它们的积。
4. 除法:实数的除法是将一个实数除以另一个实数得到一个新的实数。
高二数学集合的运算试题
高二数学集合的运算试题x<1},Q={x||x-1.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log22|<1},那么P-Q=()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|2≤x<3}【答案】B【解析】因为,所以【考点】新定义下的集合的运算.2.已知集合,,则().A.B.C.D.【答案】B【解析】,.【考点】集合的运算.3.设集合,集合为函数的定义域,则( )A.B.C.D.【答案】D【解析】化简集合A=,集合B=,所以=(1,2],故选D.【考点】集合的运算.4.设集合N }的真子集的个数是()A.3B.7C.8D.15【答案】B【解析】由题知A={0,1,2},其真子集个数23-1=7,故选B.考点:子集5.已知集合,函数的定义域为集合B.(1)若,求集合;(2)已知且“”是“”的必要不充分条件,求实数a的取值范围.【答案】.【解析】(1)当时,化简集合A,求出集合B;再求出后就可求出;(2)由于则所以可用a的式子表示出集合A和B,又因为“”是“”的必要不充分条件,所以,从而可列出关于a的不等式,就可求得实数a 的取值范围.试题解析: (1)若,则集合,集合所以,从而有;(2)因为,所以,从而集合,集合,又因为“”是“”的必要不充分条件,所以,从而有,得实数a的取值范围为.【考点】1.二次不等式;2.集合的运算;3.充要条件.6.已知集合,则=A.B.C.D.【答案】C【解析】化简集合得,,所以;故选C.【考点】集合的运算.7.设集合,,则()A.B.C.D.【答案】C【解析】因为,所以,故选C.【考点】集合的运算.8.设全集,关于的方程有实数根},关于的方程有实数根},.【答案】.【解析】集合M中表示的方程有实数根,需要对方程的二次项系数是否为零分类讨论,若是一元一次方程,显然有实数根,若是一元二次,则需满足,从而可得,而集合N中表示的方程一定是一元二次方程,若有实数根,则需满足,从而可得,因此.试题解析:当时,,即;当时,即,且,∴,∴,而对于,即,∴,∴.【考点】1.一元二次方程根的判别式;2.集合的运算.9.已知,则()A.B.C.D.【答案】C【解析】,又,得.【考点】集合的运算.10.已知集合,则.【答案】【解析】【考点】集合的运算.11.设集合,,,则.【答案】【解析】因为,所以,因此.【考点】集合的运算12.已知集合M={x|x<3,N={x|},则M∩N=()A.B.{x|0<x<3C.{x|1<x<3D.{x|2<x<3【答案】D【解析】解一元二次不等式得N={x|},然后根据交集定义即可.【考点】(1)集合的运算;(2)解一元二次不等式.13.已知,则中元素个数为()A.0B.1C.2D.不确定【答案】A【解析】根据题意,由于分别表示的为数集和点集,那么可知交集为空集,故答案为A.【考点】交集点评:主要是考查了集合的交集的运算,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3炼 利用数轴解决集合运算问题数形结合是解决高中数学问题的常用手段,其优点在于通过图形能够直观的观察到某些结果,与代数的精确性结合,能够快速解决一些较麻烦的问题。
在集合的运算中,涉及到单变量的取值范围,数轴就是一个非常好用的工具,本文将以一些题目为例,来介绍如何使用数轴快速的进行集合的交并运算。
一、基础知识:1、集合运算在数轴中的体现::A B 在数轴上表示为,A B 表示区域的公共部分 :AB 在数轴上表示为,A B 表示区域的总和:U C A 在数轴上表示为U 中除去A 剩下的部分(要注意边界值能否取到)2、问题处理时的方法与技巧:(1)涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系(2)在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域。
(3)涉及到多个集合交并运算时,数轴也是得力的工具,从图上可清楚的看出公共部分和集合包含区域。
交集即为公共部分,而并集为覆盖的所有区域(4)在解决含参数问题时,作图可先从常系数的集合(或表达式)入手,然后根据条件放置参数即可3、作图时要注意的问题:(1)在数轴上作图时,若边界点不能取到,则用空心点表示;若边界点能够取到,则用实心点进行表示,这些细节要在数轴上体现出来以便于观察(2)处理含参数的问题时,要检验参数与边界点重合时是否符合题意。
二、例题精析:例1:(2009 安徽)集合{}21213,03x A x x B x x +⎧⎫=-<=<⎨⎬-⎩⎭,则AB =_______思路:先解出,A B 的解集,()()11,2,,3,2A B ⎛⎫=-=-∞-+∞ ⎪⎝⎭,作出数轴,则AB 即为它们的公共部分。
11,2A B ⎛⎫=-- ⎪⎝⎭答案:11,2AB ⎛⎫=-- ⎪⎝⎭例2:设集合{}{}23,|8,S x x T x a x a S T R =->=<<+=,则a 的取值范围是____思路:可解出()(),15,S =-∞-+∞ ,而T 集合含有参数,作出数轴,先从容易作图的集合做起,即画出S 的范围,由于ST R =,而数轴上有一部分区域没有被S 包含,那说明T 集合负责补S 空缺的部分,由于参数决定其端点位置,所以画出图像,有图像观察可得只需要:185a a <-⎧⎨+>⎩ 即可,解得:31a -<<-答案:31a -<<-小炼有话说:(1)含有参数的问题时,可考虑参数所起到的作用,在本题中参数决定T 区间的端点(2)含有参数的问题作图时可先考虑做出常系数集合的图像,再按要求放置含参的集合 (3)注意考虑端点处是否可以重合,通常采取验证的方法,本题若3a =-或1a =-,则端点处既不在S 里,也不在T 里,不符题意。
例3:对于任意的x R ∈,满足()()222240a x a x -+--<恒成立的所有实数a 构成集合A ,使不等式43x x a -+-<的解集是空集的所有实数a 构成集合B ,则()R AC B =______思路:先利用已知条件求出,A B ,再利用数轴画出R AC B 的范围即可解:由()()222240a x a x -+--< ① 恒成立,可得: 当20a -=即2a =时,①变为:40-<恒成立 当2a ≠时,若要①恒成立,则()()22022421620a a a a -<⎧⎪⇒-<<⎨∆=-+-<⎪⎩(]2,2A ∴=-43x x a -+-<解集为空等价于:,43x R x x a ∀∈-+-≥()min 43a x x ≤-+-设()27,4431,3472,3x x f x x x x x x ->⎧⎪=-+-=<≤⎨⎪-≤⎩()min 1f x ∴= 1a ∴≤即(],1B =-∞ ()1,R C B ∴=+∞ (]1,2R A C B ∴=小炼有话说:本题更多考察的地方在于,A B 集合的求解。
A 集合要注意20a -=的情况,而不能默认为二次不等式,B 集合涉及解集与不等式恒成立问题之间的转化。
在集合进行交并运算时,数轴将成为一个非常直观的工具,作图时要注意端点值的开闭。
例4:已知集合{}{}0)12(,31122<+++-=≤++-=m m x m x x B x x x A ,若A B ≠∅,则实数m 的取值范围为思路:先解出,A B 的解集,A B ⋂≠∅意味着,A B 有公共部分,利用数轴可标注集合B 两端点的位置,进而求出m 的范围 解:113x x -++≤当1x >时,31132x x x -++≤⇒≤312x ∴<≤ 当11x -<≤时,11323x x -++≤⇒≤恒成立 当1x ≤-时,31132x x x ---≤⇒≥-312x ∴-<≤- 33,22A ⎡⎤∴=-⎢⎥⎣⎦22(21)0x m x m m -+++<()()()10x m x m ∴-+-< 1m x m ∴<<+ A B ≠∅312m ∴+>-且32m <53,22m ⎛⎫∴∈- ⎪⎝⎭例5:已知{{}2|5,|A x x B x x ax x a =-≥=-≤-,当“x A ∈”是“x B ∈”的充分不必要条件,则a 的取值范围是__________思路:,A B 为两个不等式的解集,因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 是B 的真子集。
考虑解出两个不等式的解集,然后利用数轴求出a 的范围即可解:()()25051013521x x x x x x ⎧-≥⎪⎪-≥-≥⇒≤≤⎨⎪-≥-⎪⎩[]1,3A ∴=()2210x ax x a x a x a -≤-⇒-++≤ ()()10x x a ∴--≤由A 是B 的真子集可得:3a > 答案:()3,a ∈+∞小炼有话说:1、熟悉充分必要条件与集合的联系:p 是q 的充分不必要条件⇔p 对应集合P 是q 对应集合Q 的真子集2、处理含参问题时,秉承“先常数再参数”的顺序分析,往往可利用所得条件对参数范围加以限制,减少分类讨论的情况。
例如在本题中,若先处理B ,则解不等式面临着分类讨论的问题。
但先处理A 之后,结合数轴会发现只有图中一种情况符合,减掉了无谓的讨论。
例6:已知函数()221,02()1,,20xx g x ax f x x x ⎧-≤≤⎪=+=⎨--≤<⎪⎩,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()12g x f x =成立,则实数a 的取值范围是__________思路:任取[]12,2x ∈-,则()1g x 取到()g x 值域中的每一个元素,依题意,存在2x 使得()()12g x f x =,意味着()g x 值域中的每一个元素都在()f x 的值域中,即()g x 的值域为()f x 的值域的子集,分别求出两个函数值域,再利用子集关系求出a 的范围解:[]20,2x ∈时,()[]20,3f x ∈ [)22,0x ∈-时,()[)24,0f x ∈-()[]24,3fx ∴∈-对于()g x ,分三种情况讨论当0a >时,()[]21,21g x a a ∈-++ 2141213a a a -+≥-⎧∴⇒≤⎨+≤⎩(]0,1a ∴∈当0a =时,()1g x =,符合题意 当0a <时,()[]21,21g x a a ∈+-+ 2141213a a a +≥-⎧∴⇒-≤⎨-+≤⎩[)1,0a ∴∈-综上所述:[]1,1a ∈- 答案:[]1,1a ∈-例7:已知集合{}{}|21,|A x x x B x a x b =><-=≤≤或,若(],2,4A B R A B ==,则ba=________ 思路:本题主要考察如何根据所给条件,在数轴上标好集合B 的范围。
从而确定出,a b 的值,如图所示:可得1,4a b =-=,所以4ba=- 答案:4-例8:设()(){}{}{}22|210,|0,|20A x x x x B x xax b A B x x =+-+>=++≤=+>,{}|13A B x x =<≤,求,a b思路:A 集合的不等式解集为()()2,11,--+∞ ,集合B 为一元二次不等式的解集,由题意可知B ≠∅,设20x ax b ++=的两根为()1212,x x x x < ,则[]12,B x x = ,在数轴上作图并分析后两个条件:{}|20A B x x =+>说明B 将A 集合覆盖数轴的漏洞堵上了,{}|13AB x x =<≤说明B 与A 的公共部分仅有(]1,3,左侧没有公共部分,从而[]12,B x x =的位置只能如此(如图),可得:121,3x x =-=,由韦达定理可得:2,3a b =-=-例9:在R 上定义运算:2xx y y⊗⊗=-,若关于x 的不等式(1)0x x a ⊗+->的解集是{|22,}x x x R -≤≤∈的子集,则实数a 的取值范围是( )A .22a -≤≤B .12a -≤≤C .31a -≤<-或11a -<≤D .31a -≤≤ 思路:首先将(1)0x x a ⊗+->变为传统不等式:()()1001xx x a x a ⊗+->⇒<-+,不等式含有参数a ,考虑根据条件对a 进行分类讨论。
设解集为A ,因为[]2,2A ⊆-,所以首先解集要分空集与非空两种情况:当A =∅时,则1a =-;当A ≠∅时,根据a 的取值分类讨论计算出解集后再根据数轴求出a 的范围即可 解:()()()1000211x xx x a x a x a ⊗+->⇒>⇒<-+--+设解集为A当A =∅时,则1a =- 当A ≠∅时:若101a a +>⇒>-时,()[]0,12,2A a =+⊆-12a ∴+≤ 1a ∴≤ 11a ∴-<≤若101a a +<⇒<-时,()[]1,02,2A a =+⊆-12a ∴+≥- 3a ∴≥- 31a ∴-≤<-综上所述:[]3,1a ∈- 答案:D例10:已知()(01)f x mx x n n m =--<<+,若关于x 的不等式()0f x <的解集中的整数恰有3个,则实数m 的取值范围是( )A. 36m <<B. 13m <<C. 01m <<D. 10m -<<解:所解不等式为mx x n <-,可以考虑两边平方后去掉绝对值,因式分解可得:()()110m x n m x n -++-<⎡⎤⎡⎤⎣⎦⎣⎦,由题意中含3个整数解可得:解集应该为封闭区间,所以x 的系数均大于零,即10110m m m ->⎧⇒>⎨+>⎩,另一方面,解集区间内有3个整数,从端点作为突破口分析,两个端点为,11n nx x m m =-=-+,因为01n m <<+,所以()0,11nx m =∈+,进而结合数轴分析可得三个整数解为{}0,1,2--,所以另一个端点的取值范围为()()3221311nm n m m -≤-<-⇒-<<--①,而01n m <<+②,所以只要①②有交集,则可找到符合条件的,n m ,结合数轴可得:()211m m -<+,求出()1,3m ∈ 答案:()1,3m ∈三、近年模拟题题目精选: 1、(2016四川高三第一次联考)已知集合{}{}|2,,|1,M x x x R N x x a a R =<∈=-≤∈,若N M ⊆,则a 的取值范围是( ) A. 01a ≤≤ B. 1a ≤ C. 1a < D. 01a << 2、(2014吉林九校二模,1)已知{}{}|12,|3M x x N x x =-<≤=≤ ,则()R C M N =( ) A.[]2,3B. (]2,3C.(][],12,3-∞- D. (](],12,3-∞-3、(重庆八中半月考,1)设全集为R ,集合{}12,01A x x B x x ⎧⎫=≤=>⎨⎬-⎩⎭,则A B =( )A. []2,2-B. [)2,1-C. (]1,2D. [)2,-+∞ 4、已知函数()f x =的定义域为M ,()()ln 1g x x =+的定义域为N ,则()R MC N =( )A. (-∞B. )⎡+∞⎣C. ()+∞D. (-∞5、(2014,浙江) 已知集合{}{}2|20,|12P x x x Q x x =-≥=<≤,则()RCP Q=( )A. [)0,1B. (]0,2C. ()1,2D. []1,2 6、(2014,山东)设集合{}[]{}|12,|2,0,2x A x x B y y x =-<==∈,则AB =( )A. []0,2B. ()1,3C. ()1,4D. [)1,3 7、设集合{}{}|237,|121A x x B x m x m =-≤=+≤≤-,若A B A =,则实数m 的取值范围是_________8、已知全集U R =,集合{}{}2|340,|28x A x x x B x =-->=>,那么集合()U C A B =( )A. ()3,4B. ()4,+∞C. (]3,4D. []3,4 9、若关于x 的不等式22)12(ax x <-的解集中整数恰好有3个,则实数a 的取值范围是_______.习题答案: 1、答案:B解析:若0a <,则N =∅符合题意,若0a =,则{}1N =符合题意,当0a >时,解得:()()2,2,1,1M N a a =-=-+,由N M ⊆可知:120112a a a -≥-⎧⇒<≤⎨+≤⎩,综上可得:1a ≤2、答案:D解析:(](),12,R C M =-∞-+∞,在数轴上标出,R C M N 的区域即可得出()R C M N3、答案:C解析:分别解出,A B 中的不等式,:22,:1A x B x -≤≤>,所以(]1,2A B =4、答案:A解析:()f x 的定义域:(220x M ->⇒=,()g x 的定义域:()101,x N +>⇒=-+∞,所以(),1R C N =-∞-,()(R MC N =-∞5、答案:C解析:解出P 中不等式:0x ≤或2x ≥,所以()0,2R C P =,则()()1,2R C P Q =6、答案:D解析:集合A 为解不等式:()122121,3x x x -<⇒-<-<⇒∈-,集合B 为函数的值域,由[]0,2x ∈可知[]1,4y ∈,所以[)1,3A B =7、答案:3m ≤解析:A 集合为[]2,5-,由AB A =可知B A ⊆;当B =∅时,可得1212m m m +>-⇒<,当B ≠∅时,结合数轴可得:12121232153m m m m m m m +≤-≥⎧⎧⎪⎪+≥-⇒≥-⎨⎨⎪⎪-≤≤⎩⎩即23m ≤≤,综上可得:m 的取值范围是3m ≤8、答案:C解析:23404x x x -->⇒>或1x <- ()(),14,A ∴=-∞-+∞[]1,4U C A =-283x x >⇒> ()3,B ∴=+∞ ()(]3,4U C A B ∴=9、答案:2549,916a ⎛⎫∈⎪⎝⎭ 解析:因为不等式等价于014)4(2<+-+-x x a ,其中014)4(2=+-+-x x a 中的04>=∆a ,且有04>-a ,故40<<a ,不等式的解集为ax a-<<+2121,212141<+<a 则一定有1,2,3为所求的整数解集。