三相永磁同步电动机起动性能分析
永磁同步电动机电抗值的计算及其对性能的影响
永磁同步电动机电抗值的计算及其对性能的影响刘仲恕1吴亚麟2林明耀3(1.福建工程学院电子信息与电气工程系,福建福州350014;2.福州职业技术学院技术工程系,福建福州350108;3.东南大学电气工程学院,南京210096)摘要:对永磁同步电动机稳态电抗值的3种计算方法进行了分析和比较,确认用“负载法”计算最为精确,结合样机实测数据,讨论了电抗值对永磁电动机性能的影响,提出了电抗参数设计的最佳值。
关键词:永磁;同步电动机;电抗值中图分类号:TM351文献标识码:A文章编号:1006-0170(2007)01-0028-04FUJIAN DIAN LI YU DIANG ONG第27卷第1期2007年3月IS S N 1006-0170CN 35-1174/TM1引言永磁同步电动机与普通的感应电动机相比,不需要无功励磁电流,在同步运行状态下转子电阻损耗为零;因此,它具有功率因数高和效率高的特点,通常可用以代替力能指标较低的感应电动机,其经济效益和社会效益十分显著。
近几年来,对永磁同步电动机设计计算的研究日益受到广泛重视,其中,永磁同步电动机的直轴与交轴电枢反应电抗X a d 、X a q 值的准确计算,一直是该类电机设计的核心问题。
由永磁同步电动机稳态分析模型可知,电磁转矩的大小取决于X a d 和X a q 数值;而在动态数学模型中,动态效率以及内功率因数角ψ的选取,也与这两个电抗值有关。
因此,异步启动永磁电动机设计与仿真过程中电抗值的准确计算,是决定该种电机性能的关键。
永磁同步电动机按转子永磁体在转子上的不同位置,其结构有表面式、内置式和爪极式3种,而按永磁体磁化方向与转子旋转方向的相互关系,内置式转子结构又可分为径向式、切向式和混合式3种。
本文将以笔者设计并试制成功的混合式永磁体结构的三相异步启动永磁同步电动机XTD180M -4为例展开讨论。
2永磁同步电动机电抗值的3种计算方法根据目前发表的永磁电机电抗参数计算方法的有关文献,总的来说,可以用以下3种方法计算电枢反应电抗X a d 和X aq 。
五种拓扑结构的永磁同步电动机性能分析
利。3其他 自动装置中, () 备用电源 自投控制装置和 电压 、 无功综合控制装置
采用 集 中组屏 结 构 , 安装 于 控 制室 或 保 护 室 中 。 2 .3 全 分散 式 .2 全 分散 式 的变 电站 自动 化 是 以一 次 主 设备 如 开 关 、 变压 器 、 线 等为 母
和内置式。 在表面式永磁 同步电动机 中, 永磁体通常呈瓦片形, 并位于转 子 铁心的外表面上 , 这种电机的重要特点是直 、 交轴的主 电感相 等; 而内置式 永磁同步电动机的永磁体位于转子内部, 永磁体外表面与定子铁心 内圆之间 有铁磁物质制成的极 靴, 可以保护永磁体 。
() 4分段 永磁 体 电机 由于在 两 个 永磁 体之 间 增 加 了磁通 流 通路 经 , 磁 永 体 产生 的 磁链 减 少 , 同的 电柩 电流使 去磁 能 力加 强 , 而使 电机 的弱 磁 能 相 从 力 增 加 , 以 比传 统 内 置式 永磁 电机 具有 较 宽 的 恒功 率 运行 范 围 ; 所
上述 三 种 变 电站 自动 化 系统 的 推 出 , 虽有 时 间 先后 , 并 不存 在 前 后 但 替 代的 情 况 , 电站 结 构形式 的选 择应 根据 各 种系 统特 点和 变 电站 的实 际情 变
况, 予以选配 。 以R 如 TU为基础的变电站 自动化系统可用于 已建变 电站的 自动化改造 , 而分散 式变电站 自动化系统 , 更适用于新建变 电站。 由于微 处理 器 和 通 信技 术 的迅 猛 发 展 , 电站 自动 化 系统 的 技 术水 平 变 有 了很 大 的提 高 , 构体 系 不断 完善 , 结 全分 散 式 自动 化 系统 的 出现 为变 电站
对 空载 反 电动势 进 行 谐 波分 析 , 结果 表 明 , 面 式谐 波 含 量最 低 , 表 分 段 内置 式 和w型 内置 式的 电压 谐波 畸变 率 都 比传统 内置 式 的低 , 即谐 波含 量 少 ,而 v 内置式 的谐 波含 量 相 对 较大 。 型
永磁同步电动机的分析与设计
永磁同步电动机的分析与设计永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种采用永磁材料作为励磁源的同步电机。
相较于传统的感应电机,永磁同步电机具有高效率、高功率因数、高转矩密度和高速控制响应等特点,因此在许多应用领域中得到广泛应用。
本文将介绍永磁同步电机的分析与设计内容。
首先,分析永磁同步电机的基本原理。
永磁同步电机由永磁铁和电磁绕组组成。
当绕组通电后,产生的磁场与永磁铁的磁场相互作用,使电机转子产生旋转力矩。
通过分析电机的磁动特性和电动力学特性,可以得到电机的数学模型和控制方程,为电机设计和控制提供理论依据。
其次,设计永磁同步电机的结构参数。
永磁同步电机的结构参数包括定子绕组的匝数、线圈的截面积和磁链密度等。
这些参数的选择将直接影响电机的性能,如转矩、效率和功率因数等。
通过优化设计,可以使电机在给定的体积和功率范围内获得最佳性能。
然后,进行永磁同步电机的电磁设计。
电磁设计包括计算电机的电磁参数,如磁链、磁势和磁密等。
在设计过程中,需要考虑电机的工作条件和负载要求,选择合适的磁路结构和电磁铁材料,以提高电机的效率和转矩密度。
接下来,进行永磁同步电机的电气设计。
电气设计包括计算电机的电气参数,如电压、电流和功率等。
通过分析电机的电气性能,可以确定电机的绕组参数和功率电路的参数,以满足电机的输出要求和电力系统的特性。
最后,进行永磁同步电机的控制设计。
控制设计是永磁同步电机应用中至关重要的一环。
通过采用合适的控制策略和控制器,可以实现电机的速度、位置和转矩精确控制,提高电机的动态响应和工作效率。
总之,永磁同步电机的分析与设计是实现高效电机控制的关键步骤。
通过对电机的原理分析、结构参数设计、电磁设计、电气设计和控制设计等方面的研究,可以实现电机的优化设计和性能优化,推动永磁同步电机技术在各个领域的应用发展。
无刷励磁三相同步电动机能效限定值及能效等级_概述及解释说明
无刷励磁三相同步电动机能效限定值及能效等级概述及解释说明1. 引言1.1 概述无刷励磁三相同步电动机作为一种高效节能的电动机,通过引领新一代电动机发展方向,具有广泛应用前景。
能效限定值及能效等级是评估无刷励磁三相同步电动机性能的重要指标,对于推动电动机领域的技术创新和节能减排具有至关重要的意义。
1.2 文章结构本文主要围绕无刷励磁三相同步电动机的能效限定值及能效等级进行概述和解释说明,并探讨了确定这些数值的方法和指标选取原则。
随后介绍了无刷励磁三相同步电动机能效等级评定流程及标准解读,并分析了实例结果。
最后,我们给出结论与展望,评估实施本文所提出方法带来的潜在影响与效果,并对未来无刷励磁三相同步电动机能效提升进行展望。
1.3 目的本文旨在全面阐述无刷励磁三相同步电动机能效限定值及其对应的能效等级理论知识,并解释了确定这些数值的方法和指标选取原则。
通过评定流程和实例分析,我们将为读者提供对该领域的深入理解和思考。
同时,本文也旨在探讨未来无刷励磁三相同步电动机能效提升的方向,并指出当前研究工作存在的不足点及改进方向。
通过阅读本文,读者将获得关于无刷励磁三相同步电动机能效限定值及能效等级相关概念的全面了解,并为今后相关研究和实践提供指导和借鉴。
2. 无刷励磁三相同步电动机能效限定值及能效等级解释说明2.1 无刷励磁三相同步电动机定义与原理无刷励磁三相同步电动机是一种通过异步转子绕组和永磁体,实现励磁子系统和主要场定子系统的分离,并利用控制算法将控制信号转换为定子电流来驱动转子旋转的电机。
其工作原理基于电流反馈和传感器技术,可以实现高效的能量传输。
2.2 能效限定值的概念与意义能效限定值是指对于无刷励磁三相同步电动机在特定条件下所允许的最低能源消耗水平。
设立能效限定值有助于评估和比较不同厂家生产的无刷励磁三相同步电动机的能源利用效率,促进技术进步和提高整体行业水平。
2.3 能效等级标准及分类根据有关国际标准和规范,无刷励磁三相同步电动机被分为多个不同的能效等级。
TYCKK400-4280kW高压自起动永磁式三相同步电动机试制总结报告
TYCKK 400-4 280kW高压自起动永磁式三相同步电动机试制总结报告摘要:能源短缺是当今世界关注的重要问题,事关全球环境与人类生存的改善。
高效节能是世界各国追求的目标,节能技术被公认为绿色技术,其研究及相关产品的开发将成为新世纪工业发展的主题。
目前,各国都在积极开展节能技术的研究与应用。
电力是当今世界最为重要的二次能源,而在电力系统中异步电动机是目前应用最为广泛的电机。
异步电动机具有结构简单、工作可靠、寿命长和保养维修方便等优点,但是它也同时存在机械特性差、效率低、起动转矩小、调速性能差、运行在轻载时功率因数低、增加线路和电网损耗等缺点。
据有关报导,我国消耗在异步电动机上的电力占整个电力的65%以上。
因此,开发和推广节能、高效、高效能的永磁同步电机势在必行。
关键词:高压永磁;自起动;同步电动机;额定功率;额定频率;额定电压;功率因数;额定电流1前言相对于异步电机,永磁同步电机具有体积小、重量轻、功率密度高等优点。
永磁同步电机的转子上带有永磁磁钢,不需要外部提供励磁,可以显著提高功率因数。
永磁同步电机在稳态运行时转子没有基波铜耗,效率比同规格的异步电机要高2 %~8 %,同时,永磁同步电机在25 %~120 %额定功率范围内都具有较高的效率和功率因数。
总之,永磁同步电机在长时间运行或在多数为轻载运行工况的场合使用节能效果可达15 %~20 %,相比异步电机具有明显的节能优势。
在各种类型的永磁电机中,高压自起动永磁同步电机不需要专门的控制系统,可以像普通高压异步电机一样直接接在工频电网上运行,因此受到市场的青睐。
我国作为一个稀土资源储量占世界总量80%的稀土大国,发展高效节能的稀土永磁同步电机具有得天独厚的条件。
采用高压自起动永磁同步电机替代目前广泛使用的高压异步电机,将会产生非常可观的节能降耗效益,对于缓解我国环境污染及实现能源的可持续发展都具有重要的意义。
高压自起动永磁式三相同步电动机驱动负载类型高压自起动永磁式三相同步电动机主要针对风机、水泵类负载。
五相永磁同步电机与传统三相永磁同步电机对比分析
Co mp a r i s on Ana l y s i s Be t we e n Fi ve -Pha s e Pe r ma ne nt Ma g ne t S y nc hr o n o us Mo t o r a nd The Tr a di t i o na l Thr e e -Ph a s e Pe r ma n e n t Ma g n e t Sy n c hr o no us Mo t or T AO T a o, HU A Li a n g— h a o, MA Xi a o — y a n, L I U l i e, WANG S hu - me i
…
焦 鱼 …
4 5 - 塑旦 … … … … … … … …… … … … . .
…
五 相 永 磁 同步 电机 与传 统 三 相 永磁 同步 电机 对 比分 析
陶 涛, 花 良浩 , 马小燕 , 刘 贺, 王树梅
( 扬州工业职业技术学 院 , 扬州 2 2 5 1 2 7 )
摘
要: 首先 阐述 了五相永 磁同步电机和三相永磁 同步 电机 容错控 制运行 的方法 , 并 比较 分析 了它们 的工作
性能 ; 其次 , 具体 、 详尽 阐述 了五相永磁 同步电机较传统三 相永磁 同步 电机输 出电磁转矩 特性好 的根本原 因 ; 讨论
了五相永磁 同步 电机实现低压大功率驱动运行 的机理 ; 介绍 了五相永磁 同步 电机定 子绕组通过 注入 电流三 次谐 波 以增大其 电磁转矩 , 并实现五相永磁同步 电机兼具有无刷直流 电机功率密度 高和正弦波永磁 同步电机可控性 好的
Ke y wor ds: pe r ma n e n t ma g n e t s y nc hr o n o u s mo t o r;f i v e -ph a s e;t hr e e—p ha s e;f a u l t t o l e r a nt a na ly s i s ;t o r q u e r i p p l e a — na l y s i s;c o mp a r i s o n a na l y s i s
同步电动机启动原理与励磁系统分析
同步电动机启动原理与励磁系统分析摘要:对于同步电动机而言,它的起动方法有好几种,例如:辅助电动机起动法、变频起动法和异步起动法。
而异步起动法就是同步电动机在转子上装有类似感应电动机笼型绕组的起动绕组(即阻尼绕组),电动机转子由磁极冲片叠片而成的磁极、圆筒磁轭等组成,磁极设有横、纵阻尼绕组。
当电动机接通电源后,便能产生异步转矩起动电动机到接近同步转速,然后设法将电动机牵入同步。
大多数同步电动机都是采用此方法起动的。
本文对同步电动机启动原理与励磁系统进行分析,以供参考。
关键词:同步机;启运原理;励磁分析引言压缩空气储能(Compressed-Air-Energy-Storage,CAES)是一种具有储能容量大、使用周期长、响应速度快等优点的大规模储能技术方案,同时较电池储能更加安全可靠,较抽水蓄能不那么依赖于地理环境,近年来引起国内外大型企业及研究机构的高度关注,国内也相继建成多个集成示范项目。
其中压缩空气储能环节,因为压缩机空气流量及出口压力一般都比常规压缩机要大很多,及在项目装机容量和建设规模的要求,所以一般选择大型同步电动机作为压缩机的驱动。
同时,同步电动机也以其优异的功角特性及良好的性能在动力拖动中有着广泛的应用。
1永磁同步电动机控制方法简述永磁同步电动机控制方法主要采用变频调速方法。
交流电动机的变频调速系统主要控制形式分为开环控制和闭环控制。
比较2种控制方式,因永磁同步电动机在开环控制方式下无法将电机转子位置信号和电机运行的实际速度信号作为实时反馈信号,易出现电机运行失步和突然停车等问题,从而造成永磁同步电动机退磁故障,所以开环控制的变频调速系统并不适用于永磁同步电动机。
为精确得到电机的转子位置信息和电机运行速度信息,实现永磁同步电动机的闭环控制,目前主要采用的方法是在电机的转轴上安装高精度的传感器。
其中,电梯行业常见的传感器主要为光电编码器来检测电机的转子位置信息和电机转速。
FOC控制是一种使用变频器来控制三相交流电机的技术。
变频器控制下的永磁同步电机性能分析
变频器控制下的永磁同步电机性能分析第一章:引言变频器控制下的永磁同步电机是一种新型高效率的电机,在目前的工业领域得到了广泛应用。
它具有高效率、高功率密度、高性能、高稳定性等优点,特别是在电动汽车、工业、航空、医疗等领域中具有广泛应用。
第二章:永磁同步电机的工作原理永磁同步电机与其他电机不同,它的转子上装有永磁体,因此具有很高的磁阻,使得永磁同步电机的效率较高、输出功率较大。
永磁同步电机分为电枢交流电机和永磁式直流电机两种,这里主要介绍永磁式直流电机。
永磁同步电机由定子和转子两部分组成,和普通的同步电机一样,通过定子的电磁场来控制转子的转速和转向。
永磁同步电机还可以通过变频器实现调速功能,提高了电机的效率。
第三章:变频器控制下的永磁同步电机性能分析1.瞬态特性分析在变频器控制下的永磁同步电机启动时,根据磁场理论,电机磁场是要先建立的,因此启动瞬间电流和磁场会有一个预充过程,依据电机参数,预充过程一般在100ms左右。
在预充过程中,瞬态特性较为明显,需要针对性地进行调节,避免出现过流现象导致电机损坏。
2.稳态特性分析稳态特性是指永磁同步电机在变频器控制下达到正常工作后的性能分析。
在稳态下,永磁同步电机具有高效率、节能、定转矩、低噪音等特点,适用于航空、电动汽车、机床、石油、矿业等领域。
稳态下,永磁同步电机应用变频器调节电压和频率,以获得更好的节能效果。
3.调速性能分析变频器控制下的永磁同步电机可以通过调节变频器输入信号的频率和幅值,控制电机的速度和扭矩,实现智能调速,达到节能效果。
同时,永磁同步电机控制电路采用高精度数字信号处理器进行闭环控制,控制精度高,噪音低,抗干扰能力强,适用于如电动汽车、航空等高精度需求领域。
4.效率分析永磁同步电机具有高效率、高功率密度等特点,特别适用于如电动汽车、高速列车、风力发电等领域。
在变频器控制下,永磁同步电机能够实现精准控制,提高效率,在高速、变路况等特殊条件下也能保持高效率。
永磁同步电机性能分析
永磁同步电机性能分析摘要:在永磁同步电机的设计制作中,时刻都要关注降低电机损耗,提高电机运行的效能。
关键词:永磁同步电机;性能;分析;首先我们看电机的损耗,在已知电机参数电阻R1、X1、X ad、X aq和E0的情况下,就可以计算不同功角下永磁同步电机的性能。
1 绕组计算绕组直流电阻式中电阻率为式中α为铜材半导体电阻的温度变化系数,铜材电阻α≈0.004/。
C。
计算绕组损耗时,要考虑折算到相应的基准工作温度。
一般在75。
C。
考虑集肤效应,绕组交流电阻应为式中k1r为电枢绕组的集肤效应系数。
用圆导线双线并绕的定子电枢绕组,输入工频电流时电枢绕组铜损耗2 电枢铁损耗式中p t1d、p j1d可以根据磁密查系数和铁芯的损耗系数曲线计算得到;v t1、v j1定子齿部和铁芯共轭部的体积;k1和k2为考虑由于机械加工和磁场的分布不均匀等原因而引进的损耗系数,小型电机k1=2.5,k2=2.0。
3.杂散损耗杂散作用产生的辐射损耗主要原因是由于在电磁场的高次杂散作用谐波和电磁铁芯中的开槽谐波引起的高次杂散及该谐波在电磁铁芯中高次杂散作用产生的电磁能量辐射损耗,计算困难且不准确。
常用到的经验函数计算公式:4.机械损耗机械损耗p fw是风摩损耗。
小型永磁电机,参考感应电机的经验公式计算。
接着,我们看电磁转换。
1.给定功角θ2.已知U、E0、R1、X1、Xd、Xq直轴电流Id交轴电流I q3.计算功率因素4.确定气隙磁通5.输出功率和效率计算电磁功率和功角特性1.输入功率2.电磁功率只考虑主要损耗定子绕组的电阻r1较小,忽略其影响,电磁绕组的功率为3.电磁转矩将上式两端同除以机械转矩的夹角速度ω,得电磁转矩下面,我们研究影响电机性能的因素。
由上式可以看出:异步起动永磁牵入同步电机的功率和电磁转矩由上式第一项永磁转矩和上式第二项磁阻转矩两个组成部分共同构成,磁阻转矩的功率和大小直接影响电机永磁牵入起动的同步,由上式第二项可以很清楚地看出磁阻转矩的大小是由电机的交轴和直轴电抗之间的x q、x d的倒数差大小决定的。
永磁同步电动机起动问题的分析与解决
个角度。可见要实现矢量控制必须在电机正常运
行之前获得转子初始位置角 , 本文在对这种 同步 电 动机转子位置初始化的方法进行理论分析的基础上 进行了仿真与实验验证 , 明了该方法的实际可行 证
一
能的一个至关重要的环节¨ 。而要实现 d q J 、 轴的解 耦控制就必须准确地获得 d ( 轴 电机转子轴线 ) 所
rc in a d p a t a i t ysmua in a d e p rme t e e p o e . u t e o e te ma i m —t r u e t n rci b l y b i lt n x e i n r r v d F r r r xmu o c i o w hm h oq e—sa i gc n b e l t r n a er a— t i d b h sme n . z yti e as Ke r s p r n n g e s n h o o smoo ;oo o io nt l i g m xmu tr u trig v co o t l D P y wo d : e ma e t ma n t y c r n u tr r trp st n ii ai n ; a i m q e s t ;e trc n r ; S i i z o a n o
是实 现矢量 控 制使交 流 电机达 到直 流 电机 的控 制性
图 1 光 电码 盘输 出信 号 A、 Z B、
在 D P中对所捕获 的脉冲进行计数和处理 可 S 得到转子在一定时间内所转过的角度增量, 角度增 量与转子初始位置角相加可得转子 的当前位置 , 转 子初始位置角就是电机未起动时转子相对于定子的
单、 体积小 、 重量轻、 效率高、 因数高等优点。因 功率 此由永磁同步电动机 、 转子位置传感器 、 三相逆变器
永磁同步电动机系统建模仿真及性能分析
, = ( i 0 , , ) ( i 0 , , ) q
=
可靠 、 体积小 、 重量轻 以及具有较高 的效率和功率因数等优点, 它作
() 2
当 忽 略 磁 路 饱 和 的影 响 时 , ( ) 式 2 的磁 链 司 以 由交 、 轴 电 流 直
电机控制系统设计要求越来越高,既要考虑成本低廉 、控制算法合
理, 又需 兼 顾控 制 性 能好 、 开发 周期 短 。因此 , 立 永磁 同步 电动 机 建 系统 的仿 真模 型 对 系统设 计 和 性 能分 析具 有 十 分重 要 的 意义 。 】 S l e 作 为 一 个 功 能 强 大 的跨 学 科 多 领 域 的 高 性 能 系 统 仿 i or mp r 真软 件 , 汽 车 电子 、 电 、 在 机 电力 电子 和传 动 等 领 域 的仿 真 得 到 了 广 泛 的 应 用 。与 M t b相 比 ,i poe 具 有 建模 简 单 、 观 参 数 丰 aa l Sm l r r 可 富 以 及 具 有 强 大 的 后 处 理 功 能 等 诸 多 优 点 。 本 文 介 绍 了 基 于 Sm l r 真 软 件 的永 磁 同 步 电 动 机 系 统 建 模 仿 真 和 定 子 电 流 谐 ip e仿 o
Si lt n a d An lss o r n n g e i n h o o s Mo or mua i n ay i fPe ma e tMa n t Sy c r n u t o c
哈尔 滨工 业大 学 电气 工 程 系 ( 黑龙 江 哈 尔 滨 1 0 0 ) 安 群 涛 50 1
带阻尼绕组的永磁同步电动机起动分析_胡绪昌
尼绕组的永磁同步电动机在起动上的优点。
关键词:永磁同步电动机 阻尼绕组 起动分析 MATLAB 仿真
中图分类号:TM461
文献标识码:A
文章编号:1003-4862 (2009) 07-0010-05
Analysis of Jump-start of a Permanent-magnet Synchronous Motor with Damp Resistance
⎪⎪ψ q = Lqiq + Lmqi2q
⎨⎪ψ 2d = L2di2d + Lmd id + Lmdi f
(2)
⎪⎩ψ 2q = L2qi2q + Lmqiq
电磁转矩方程:
Tem = p (ψ d iq − ψ q id )
(3)
机械运动方程:
J
dΩ dt
= Tem
− TL
− RΩΩ
(4)
式中 id、iq 等是三相转换到 d、q 轴后的电流;L1、
L2 分别是定子、转子漏电感;Lmd、Lmq 分别是定 子、转子间 d、q 轴的互电感;Ld、Lq 是定子绕组 d、q 轴电感,且
11
船电技术 2009 年 第 7 期
Ld =Lmd +L1、Lq =Lmq +L1; L2d、L2q 是转子绕组 d、q 轴电感,且 L2d =Lmd +L2、L2q =Lmq +L2。 2.2 带阻尼绕组永磁同步电动机在 d、q 旋转坐标 系下的数学模型 在分析数学模型过程中对各参数量作如下 规定: (1)气隙磁场按正弦分布,忽略空间谐波 磁场的影响; (2)忽略电机铁心的饱和,磁滞及涡流的 影响; (3)定子绕组在空间上星型对称分布,相 邻两个绕组空间角度相差 2π/n; (4)永磁体等效为一个励磁绕组,其励磁 电流 ifd 恒定不变,电机转子上的阻尼回路看成两 组等效的阻尼绕组:直轴阻尼绕组和交轴阻尼绕 组。 根据定子 n 相静止坐标系与 d、q 旋转坐标 系之间的变换矩阵可以得到带阻尼绕组永磁电 动机在 d、q 旋转坐标系下的数学模型如下[3] : 磁链方程
永磁同步电动机调速范围的优化及性能分析
2021年第49卷第3期D设计分析esign and analysis 程献会等 永磁同步电动机调速范围的优化及性能分析17 收稿日期:2020-11-24基金项目:山西省自然基金(2013011035-1);中国博士后科学基金(2018M640250)永磁同步电动机调速范围的优化及性能分析程献会,王淑红(太原理工大学电气与动力工程学院,太原030024)摘 要:根据内嵌式调速永磁同步电动机的弱磁控制特点,以弱磁扩速倍数为优化目标,利用有限元仿真软件,分析了内嵌式调速永磁同步电动机矩形和V 形永磁体尺寸和位置对电机参数和调速范围的影响,通过优化永磁体的位置和尺寸扩大了电机弱磁调速范围㊂计算了优化后电机的参数,对比了优化前后电机调速的范围㊂为内嵌式调速永磁同步电动机的优化和参数计算提供一定的参考㊂关键词:内嵌式调速永磁同步电动机;永磁体尺寸;调速范围;有限元分析中图分类号:TM351 文献标志码:A 文章编号:1004-7018(2021)03-0017-04Optimization and Performance Analysis of Speed Control Range of Permanent Magnet Synchronous MotorCHENG Xian -hui ,WANG Shu -hong(School of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)Abstract :According to the embedded control weak magnetic control characteristics of permanent magnet synchronousmotor,with weak magnetic speed ratio as the optimization goal,and using finite element simulation software,embedded speed permanent magnet synchronous motor was analyzed rectangle and V the size and position of permanent magnet motor parameters and the influence of the speed range,through optimizing the position and size of the permanent magnet motor weak magnetic speed range had expanded.The parameters of the optimized motor were calculated,and the range of motor speed before and after optimization was compared.It provided a certain basis for the optimization and parameter calculationof the built-in speed-regulating permanent magnet synchronous motor.Key words :built-in speed-regulating permanent magnet synchronous motor,permanent magnet size,speed regulatingrange,finite element analysis0 引 言永磁同步电动机具有结构简单㊁运行可靠㊁效率高等显著优点,其应用范围较为广泛,在航空㊁国防㊁工业生产和日常生活中都可以看到它的身影[1-2]㊂已有许多专家学者对永磁同步电动机进行过优化设计,从而使电机性能更优越,使用更广泛㊂文献[3]采用田口法,以电机的效率和磁钢用量作为优化目标,对内嵌式永磁电动机进行优化设计;文献[4]同样采用田口法对铁耗和转矩脉动进行了优化㊂文献[5-6]对电动汽车用永磁同步电动机进行了电磁设计和弱磁调速分析;文献[7]中搭建了凸极式永磁同步电动机弱磁调速的控制系统;文献[8]从内置式永磁同步电动机的数学模型及弱磁控制方式入手,采用数值计算方法,分析了不同参数对电机弱磁调速的影响;文献[9]讨论了永磁体分段对永磁同步电动机参数和调速范围的影响;文献[10]设置了一种分段Halbach 结构的表贴式永磁同步电动机以降低涡流损耗等;文献[11]对V 形异步起动永磁同步电动机的齿槽转矩进行了优化;文献[12]采用多目标遗传算法对不同类型的电机结构进行优化㊂对于调速永磁同步电动机,在传统的控制方法下,电机受到电源电压和电流的限制,基速以上很难有较大的调速范围㊂为了扩大电机的调速范围,并确保电机的恒功率运行范围和电机性能,不仅要采用带有弱磁控制模块的控制系统,电机本体参数也应与控制系统有较好的配合,满足弱磁调速策略对电机参数的要求㊂永磁同步电动机的励磁由电机转子上的永磁体提供,永磁体在电机制作时已放置好,励磁无法根据实际需要进行调节,所以在电机设计时应考虑永磁体的尺寸和位置,为弱磁调速控制提供合理的永磁体磁链及交直轴电感参数㊂本文在电机设计过程中,以弱磁调速的倍数为电机永磁体尺寸的优化目标,使用有限元仿真软件,对两种不同形状的永磁体电机进行参数化仿真,确定电机永磁体的位置和尺寸对电机调速范围的影响㊂分析了矩形永磁体和V 形永磁体在不同尺寸和位置,对电机参数的影响,给出永磁体的尺寸,完 D设计分析esign and analysis 2021年第49卷第3期 程献会等 永磁同步电动机调速范围的优化及性能分析 18 成对电机调速范围的优化并分析电机性能㊂1 永磁同步电动机弱磁调速的基本原理1.1 永磁同步电动机的数学模型在三相电流对称㊁电机稳定运行且忽略定子绕组电阻㊁铁心饱和㊁铁耗的情况下,永磁同步电动机在d,q坐标轴下的数学模型如式(1)㊁式(2)㊂电压方程:u=u2d+u2q= ω(L q i q)2+(L d i d+ψf)2(1)电磁转矩方程:T em=32p[ψf i q+(L d-L q)i d i q](2)由电压方程可得出:ω=u(L q i q)2+(L d i d+ψf)2(3)式中:p为电机的极对数;L q,L d分别为电机定子的交直轴电感;i q,i d分为电机定子的交直轴电流;ψf 是电机的永磁体磁链;ω为电机角频率㊂由式(3)可以看出,当电机的端电压和电流达到极限值,且电流全部为直轴去磁电流时,电机可以达到理想最大转速:ωmax=u limψf-L d i lim(4) 调速永磁同步电动机的电压和电流的极限值取决于控制系统的逆变器,如果需要更高的转速范围,需要减小永磁体的磁链和增加直轴电感㊂但过小的永磁体磁链会造成电机转矩的下降,在电机优化时应综合考虑,不应为了单纯提高调速范围而牺牲太多的转矩㊂1.2 基于最大转矩电流比控制的弱磁调速性能分析凸极永磁同步电动机采用最大转矩电流比控制时,电机的电流矢量应满足:∂(T em/i s)∂i d=0∂(T em/i s)∂i q=üþýïïïï(5) 定子电流矢量轨迹如图1所示,当电机的端电图1 定子电流矢量轨迹压和电流达到极限值时,经过公式推导可得出此时的转折速度:ωb=u lim(L q i lim)2+ψ2f+(L d+L q)C2+8ψf L d C16(L d-L q)(6)式中:C=-ψf+ψ2f+8(L d-L q)2i2lim㊂ 定义电机的弱磁扩速倍数:k=ωmaxωb(7) 将弱磁率ξ=L d i sψf和凸极率ρ=L qL d代入到式(7)中,可得:k=ωmaxωb= 1+(ρξ)2+116(1-ρ)[(1+ρ)C2f+8C f]1-ξ(8)式中:C f=-1+1+8(1-ρ)2ξ2㊂根据式(8)可得如图2所示的凸极永磁同步电动机弱磁扩速倍数随凸极率和弱磁率的变化曲线,可以看出,电机的弱磁扩速倍数随凸极率和弱磁率的增加而增加㊂对永磁同步电动机的凸极率和弱磁率进行优化,便可以影响电机的扩速范围㊂图2 弱磁扩速倍数k与ξ,ρ的关系2 永磁同步电动机优化分别对原功率为2.2kW,永磁体为矩形和V形的两台内置式永磁同步电动机进行优化,以弱磁率和凸极率为优化目标,使其满足两倍以上的调速范围㊂2.1 建立电机的物理模型样机的基本参数如表1所示,电机的物理模型如图3㊁图4所示㊂在电机基本结构尺寸不变的情况下,对电机的永磁体尺寸㊁位置进行优化,永磁体尺寸主要有永磁体宽度b m,永磁体磁化方向长度h m㊂矩形永磁体的位置主要靠轴心距确定,就是永磁体下边缘距离电机中心的距离,即o2㊂轴心距越大,永磁体离气隙越近,离电机转轴的中心则越远㊂V形永磁体的位置还要依靠永磁体旋转角度来确 2021年第49卷第3期 D设计分析esign and analysis 程献会等 永磁同步电动机调速范围的优化及性能分析19 定,旋转角为θ㊂表1 电机的基本参数参数值参数值定子外径Φso /mm 155定子槽数36定子内径Φsi /mm 98极对数2转子内径Φri /mm 38额定转速n /(r㊃min -1)1500气隙长度δ/mm0.6轴向长度l /mm105图3 矩形永磁体电机模型图4 V 形永磁体电机模型2.2 电机的优化在初步确定电机额定电流的情况下,对永磁体的尺寸范围进行优化设计㊂利用Maxwell 软件,分别建立两种永磁同步电动机的2D 模型,并设置永磁体宽度㊁磁化方向长度和轴心距为参数化变量,求解不同情况下的凸极率和弱磁率,参数化范围如表2㊁表3所示㊂表2 矩形永磁体参数矩形参数范围步长宽度b m /mm30~502磁化方向长度h m /mm4~5.50.5轴心距o 2/mm33~351表3 V 形永磁体参数V 形参数范围步长单片宽度b m /mm 15~242磁化方向长度h m /mm4~70.5轴心距o 2/mm30~351 对在此范围内的所有不同组合进行参数化扫描仿真,并进行最优化求解,最优化算法采用默认的拟牛顿算法,它是求解非线性优化问题最有效的方法之一,收敛速度快㊂最优化求解的目标为ρ≥1.5,ξ≥0.5,由图2可以看出,理论上满足3倍的调速范围㊂经过Maxwell的最优化求解,可得出永磁体宽度㊁永磁体磁化方向长度和轴心距的初选结果㊂2.2.1 永磁体的尺寸确定经过分析和有限元软件的计算,可得到ρ和ξ随电机永磁体尺寸的参数变化规律㊂矩形永磁体和V 形永磁体的变化规律都是随着电机永磁体厚度和磁化方向的增加,ρ增加且ξ下降;永磁体宽度对两个参数的影响更明显,如图5㊁图6所示㊂(a)矩形永磁体电机(b)V 形永磁体电机图5 凸极率和弱磁率随永磁体宽度的变化(a)矩形永磁体电机(b)V 形永磁体电机图6 凸极率和弱磁率随永磁体磁化方向长度的变化两个优化参数变化趋势并不相同,在有限元优化求解给出的结果下,要想达到优化目标,并考虑制作工艺难度㊂最后确定矩形永磁体尺寸确定为宽42mm,厚4mm;V 形永磁体尺寸确定为单片永磁体宽20mm,厚4mm㊂2.2.2 永磁体的位置确定在永磁体尺寸确定的情况下,随着轴心距的增加,如图7所示,矩形永磁体电机的ρ会增加,ξ会下降;V 形永磁体电机的ρ和ξ呈相同变化规律,凸极率增加,弱磁率下降㊂(a)矩形永磁体电机(b)V 形永磁体电机图7 凸极率和弱磁率随轴心距的变化经过优化求解,矩形永磁体电机轴心距选择35mm;V 形永磁体电机轴心距选择33mm㊂V 形永磁体不仅要考虑轴心距,还要考虑永磁体旋转的角度θ对交直轴电感的影响㊂如图8所示,随着旋转角度的增加,凸极率上升,弱磁率下降,最终旋转角选择23°㊂图8 凸极率和弱磁率随旋转角度的变化3 电机参数分析与对比3.1 矩形永磁体电机在永磁体尺寸和位置确定之后,对电机模型进行有限元仿真,电机的直轴电感为0.074H,交轴电感为0.143H,磁链为0.608Wb,仿真得出凸极率为1.93,弱磁率为0.597,满足求解目标㊂ D设计分析esign and analysis 2021年第49卷第3期 程献会等 永磁同步电动机调速范围的优化及性能分析 20 对优化后的电机进行MATLAB仿真分析,采用基于最大转矩电流比的弱磁控制方式,控制框图如图9所示㊂在空载及负载条件下进行仿真分析,对比优化前后电机的调速范围,结果如表4㊁图10所示㊂可以看出,优化后空载条件下调速范围可以达到两倍以上,负载下调速范围也明显提高,达到了优化的目的㊂图9 弱磁控制框图表4 矩形永磁体电机最高转速对比转矩T/(N㊃m)优化前n f/(r㊃min-1)优化后n a/(r㊃min-1)仿真实验仿真020001900310010185018002400(a)空载下电机转速(b)负载下电机转速图10 矩形永磁体电机转速优化3.2 V形永磁体电机对确定永磁体位置和尺寸的电机模型进行有限元仿真,电机的直轴电感为0.073H,交轴电感为0.142H,磁链为0.635Wb,凸极率为1.96,弱磁率为0.56,满足求解要求㊂对优化后的V形永磁体电机,进行基于最大转矩电流比的弱磁调速控制下的空载及负载仿真,结果如表5所示㊂空载可以达到两倍左右的调速范围,负载下速度也有所提高,满足优化目标,如图11所示㊂表5 V形永磁体电机最高转速对比转矩T/(N㊃m)转速n/(r㊃min-1)优化前优化后022003000 1020002450(a)空载下电机转速(b)负载下电机转速图11 V形永磁体电机转速优化4 结 语本文借助有限元仿真软件,以内嵌式永磁同步电动机的调速范围为优化目标,讨论了矩形和V形永磁体不同尺寸和位置对电机参数的影响,结合对调速范围的影响,确定了电机永磁体的尺寸和位置,完成了电机的优化设计㊂以优化完成的电机尺寸,对其进行参数分析和对比,较之前的电机有了明显的转速范围的提升,达到了本次优化的目的㊂优化过程和结果对内嵌式永磁同步电动机的设计和参数提供了一定的参考㊂参考文献[1] 唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2015.[2] 王秀和.永磁电机[M].北京:中国电力出版社,2011.[3] 贾金信,杨向宇,曹江华.基于田口法的内嵌式永磁电动机的优化设计[J].微电机,2013,46(6):1-4.[4] 王艾萌,温云.田口法在内置式永磁同步电机优化设计中的应用[J].华北电力大学学报(自然科学版),2016,43(3):39-44.[5] 陈晨.纯电动汽车用永磁同步电动机设计及弱磁扩速分析[D].天津:天津大学,2010.[6] 解志霖.电动大巴车用永磁电机设计[D].沈阳:沈阳工业大学,2017.[7] 郭殿林,陈康,包兵.电动汽车凸极式永磁同步电机弱磁调速的研究[J].煤矿机械,2016,37(7):58-60.[8] 皮秀,王善铭.弱磁调速的永磁同步电机参数的分析设计[J].中国科技论文在线,2010,5(8):585-591.[9] 孙慧芳,高琳,李计亮,等.弱磁调速用永磁同步电机设计分析[J].微电机,2010,43(12):16-20.[10] 高锋阳,齐晓东,李晓峰,等.部分分段Halbach永磁同步电机优化设计[J/OL].电工技术学报:1-14[2021-02-04].ht⁃tp:///10.19595/ki.1000-6753.tces.191554..[11] 李晓峰,高锋阳,齐晓东,等.对称V型异步起动永磁同步电机齿槽转矩优化[J/OL].电力系统及其自动化学报:1-9[2021-02-04]./10.19635/ki.csu-epsa.000497.[12] 刘晓宇,袁彬,戴太阳,等.基于自适应网格及响应面模型的永磁电机多目标优化[J].微特电机,2020,48(7):24-27,30.作者简介:程献会(1995 ),女,硕士研究生,研究方向为电机与电器㊂。
永磁同步电机毕业设计永磁同步电动机的电磁设计与分析
永磁同步电机毕业设计永磁同步电动机的电磁设计与分析永磁同步电机是一种采用永磁体作为励磁源的同步电机,具有结构简单、效率高、功率因数高等优点,在电动车、新能源车辆、工业驱动等领域得到了广泛应用。
本文将对永磁同步电机的电磁设计和分析进行探讨,以提高电机的性能和效率。
首先,电磁设计是永磁同步电机设计的核心环节之一、在电磁设计中,需要确定电机的电磁参数,如定子绕组的匝数、磁链、气隙长度等。
这些参数会直接影响电机的性能和效率。
通过有效控制这些参数,可以提高电机的工作效率和输出功率。
其次,对永磁同步电机的电磁场进行分析是电机设计的重要一步。
在电磁场分析中,可以使用有限元法对电机的磁场进行模拟和分析。
通过分析电机的磁场分布,可以预测电机在不同工况下的气隙磁密分布、磁场饱和情况等。
这些分析结果可以指导电机的结构设计和优化,从而提高电机的性能和效率。
另外,还需要对电机的电磁特性进行测试和分析。
通过电机的空载试验、短路试验和负载试验等,可以获取电机的电磁特性数据,如电机的转矩-转速特性、励磁特性、效率特性等。
这些特性数据可以用来评估电机的性能和效率,为电机的设计和控制提供依据。
最后,需要对永磁同步电机进行效果评估。
通过对电机的实际运行效果进行评估,可以验证电机设计和分析的准确性和有效性。
此外,还可以根据实际运行情况对电机进行调整和优化,进一步提高电机的性能和效率。
总之,永磁同步电机的电磁设计与分析是电机设计中的关键环节。
通过合理设计电机的电磁参数,进行电磁场分析和特性测试,以及对电机的效果评估,可以提高电机的性能和效率,满足不同应用场合的需求。
希望本文对永磁同步电机的电磁设计和分析提供了一定的参考。
永磁体同步电机
永磁体同步电机是一种电动机,其特点是使用永磁体来产生磁场,而不是传统的励磁绕组。
这种电动机具有结构简单、体积小、效率高、功率因数高等优点。
永磁同步电机已经在多个行业中得到广泛应用,如冶金、陶瓷、橡胶、石油和纺织等行业的中、低压电动机。
永磁同步电机的运行原理与普通电励磁同步电机相同,但由于使用了永磁体进行励磁,使得电动机结构更为简单,降低了加工和装配费用,同时还省去了容易出现问题的集电环和电刷,提高了电动机运行的可靠性。
此外,由于无需励磁电流,没有励磁损耗,从而提高了电动机的工作效率。
永磁同步电机的主要部件包括转子、定子和端盖等。
其中,转子是电机的主要旋转部分,包括永磁体、转子铁芯和轴承等;而定子是电机的固定部分,通常包括定子绕组和定子铁芯等。
总之,永磁同步电机是一种高效、可靠的电动机,具有广泛的应用前景。
随着技术的不断进步和应用需求的不断增长,永磁同步电机在未来仍将不断发展壮大。
第7章三相永磁同步伺服电动机的控制ppt课件
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第7章
第二节 三相永磁同步伺服电动机的
控制策略
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
以保持相电流幅值的不变。
在上面介绍的两种控制方式中,id=0的控制方式是最
常用的方式,下面主要介绍这种控制方式。
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第二节
第二节
三相永磁同步伺服电动机的控制策略
2.用软件实现空间电压矢量脉冲宽度调制(SVPWM) 用软件实现空间电压矢量脉宽调制的方法也是一种通
常使用的方法,这种方法的优越性在于其控制精度比 较高。 首先确定要求输出的电压空间矢量的幅值和方向角, 才能进行SVPWM运算。在三相永磁交流伺服电动机控 制系统中,可以通过闭环的实时计算来获得电压空间
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第二节
三相永磁同步伺服电动机的控制策略
1.控制id=0以实现最大转矩输出:
目前大多数的交流伺服电动机用于进给驱动,电动机 工作于其额定转速以下,属于恒转矩调速方式。在 这类应用场合,追求的是在一定的定子电流幅值下能 够输出最大的转矩,因此最佳的控制方式是使定子电
五种拓扑结构的永磁同步电动机性能分析与比较_王艾萌
图 2 永磁体重量比较
可见 ,内置式需要的永磁体较表面式少 。因为 内置式由于磁路不对称 ,有磁阻转矩产生 ,所以相对 于表面式 ,在产生相同的输出转矩时 ,内置式用的永 磁体量要少 。 2. 2 空载反电动势和脉动转矩的比较
转矩波动主要由齿槽转矩和脉动转矩两部分组 成 。齿槽转矩是永磁电机绕组不通电时永磁体和铁 心之间相互作用产生的转矩 ,会导致电动机产生振 动和噪声 。而常用消除齿槽转矩的方法有定子斜 槽 、转子斜极 、减小定子槽口宽度 、改变极弧系数等 。 定子斜槽在理想情况下可以完全消除齿槽转矩并且 简单易行 ,因此得到广泛应用 。本文的模型都是基 于斜槽后的模型 ,因此齿槽转矩可以忽略不计 。
求 。汽车电机要求高起动转矩 ,能够在一个很宽的
速度范围内保证恒功率输出 ,此外还要考虑到空间
狭小等的限制 。永磁电机以其效率高 、功率密度高 、
体积小 、重量轻 ,具有弱磁扩速潜力等诸多优点 ,成
为电动汽车驱动电机的理想选择 [ 1 - 3 ] 。通过对永磁
电机优化设计 ,可以使电动机的恒功率运行范围扩
关键词 :永磁同步电动机 ;拓扑结构 ;弱磁调速 ;有限元分析 中图分类号 : TM 341 文献标识码 : A 文章编号 : 1004 - 7018( 2010) 04 - 0020 - 04
Perfor mance Ana lysis and Com par ison of F ive PM SM Topolog ies
大 ,特别是永磁转子结构的不同对电机特性的影响
已有研究 [ 4 - 6 ] ,文献 [ 4 ]总结了各种不同永磁转子
五 拓扑结构的性能比较 ,包括表面式 、内置式单层 、双
三相电动机工作总结
三相电动机工作总结
三相电动机是工业生产中常见的一种电机,它具有结构简单、运行可靠、效率
高等特点,被广泛应用于各种机械设备中。
在工作过程中,三相电动机会产生旋转磁场,从而驱动机械设备运转。
下面我们来总结一下三相电动机的工作原理和特点。
首先,三相电动机的工作原理是基于三相交流电的磁场作用。
当三相电源接通后,电动机内部的定子绕组会产生旋转磁场,而转子内的导体则会受到磁场的作用而产生感应电流,从而产生转矩,驱动机械设备运转。
这种工作原理使得三相电动机具有启动力矩大、运行平稳等特点。
其次,三相电动机的效率较高。
由于三相电动机内部的磁场是由三相电源产生的,因此在运行过程中,磁场的旋转速度是固定的,这就使得三相电动机的效率较高,能够更好地满足工业生产的需求。
此外,三相电动机还具有结构简单、维护方便等特点。
由于三相电动机内部没
有需要直接接触的零部件,因此在运行过程中,很少需要进行维护保养,大大降低了使用成本。
总的来说,三相电动机作为一种常见的工业电机,具有工作原理简单、效率高、结构稳定等特点,被广泛应用于各种机械设备中,为工业生产提供了重要的动力支持。
希望通过对三相电动机的工作原理和特点的总结,能够更好地帮助大家了解和应用这种重要的电机设备。