学案6通项公式

合集下载

北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式

§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。

等差数列教学教案设计一等奖

等差数列教学教案设计一等奖

4、等差数列教学设计一等奖2。

2。

1等差数列学案一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。

2、等差中项:若三个数组成等差数列,那么A叫做与的,即或。

3、等差数列的单调性:等差数列的公差时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是。

4、等差数列的通项公式:。

5、判断正误:①1,2,3,4,5是等差数列; ()②1,1,2,3,4,5是等差数列; ()③数列6,4,2,0是公差为2的等差数列; ()④数列是公差为的等差数列; ()⑤数列是等差数列; ()⑥若,则成等差数列; ()⑦若,则数列成等差数列; ()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ()⑨等差数列的`公差是该数列中任何相邻两项的差。

()6、思考:如何证明一个数列是等差数列。

二、实战操作:例1、(1)求等差数列8,5,2,的第20项。

(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。

5、等差数列教学设计一等奖教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

数列的通项公式及前n项和的求法(自己整理的学案)

数列的通项公式及前n项和的求法(自己整理的学案)

数列:通项公式的求法一 、公式法(定义法):适用于等差或等比数列等差数列的通项公式: 1(1)n a a n d =+-;等比数列的通项公式: 11n n a a q -= 等差数列的定义: 1n n a a d --=;变式:112n n n a a a +-=+,1n n a a d -=+; 等比数列的定义:1n n a q a -=;变式:211n n n a a a +-=,1n n a qa -=; 二 、利用n S 求n a (知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n ; 利用n S 求n a 一般为三步:(1)当n=1时利用S 1=a 1求出a 1 (2)当2n ≥时,利用1n n n S S a --=求出n a ; (3)检验a 1的值合不合由第二步求出的n a 的表达式; 例一:数列{a n }中,S n 是其前n 项和,若S n =2a n -1, ((1)求1a 的值(2)求数列的通项公式a n解:(1)当n=1时,有S 1=2a 1-1即a 1=2a 1-1求得a 1=1;(2)当2n ≥时,S n =2a n -1① S n-1=2a n-1-1②; ①—②有a n =2a n —2a n-1 得1122n n n n a a a a --=⇒=,所以{a n }为一以2为公比1为首项的等比数列,所以11122n n n a --=⨯= (3)经检验,11a =也合12n n a -=,所以数列{a n }的通项公式为12n n a -=。

练习1、数列{a n }的各项为正数, 11a =且有2211230n n n n a a a a ++--=,则{a n }的通项公式是__________.2、已知数列{a n }的前n 项和为S n ,且S n =3n +n ,则数列的通项公式a n =________.3、各项都为正数的数列{a n }中,有11a =且331log 3log n n a a --=,则通项公式a n =________.4、数列{a n }中,11a =,且当1n >时有13n n a a -=,求数列的通项公式a n ________.5、数列{a n }中,11a =且点1(,)n n a a +在直线2y x =-上,通{a n }的通项公式为________.6、数列{a n }中,S n 是其前n 项和,若2S n =3a n —3,(1)求1a 的值(2)求数列的通项公式a n三、形如sra pa a n n n +=--11型(取倒数法)例3. 已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a解:取倒数:⇔+=-2111n n a a 2111=--n n a a 1113(1)222n n n a a ∴=+-⋅=- 2.43n a n ∴=- 练习1。

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。

数列的通项公式-学案

数列的通项公式-学案

数列的通项公式【本课重点】累加、累积及简单的构造法确定数列通项公式【预习导引】l 、己知n s 则n a = 等差数列通项n a = 等比数列通项n a =2、己知n a =1-n a +2,1a =1,则n a = 己知n a =31-n a ,1a =1,则n a =3、已知数列{}n a 中11=a ,2111=--n n a a ,则=-81011a a ,=n a 14、己知n a =1-n a +n ,1a =1则n a = ,己知n a =21-n a +1,1a =1,则n a =5、己知n a =1+n n a n-l ,1a =1,则n a = 【典型例题】 例 1 (1)设数列{}n a 满足11=a 且n a a n n +=-1,求数列{}n a 的通项(2)设数列{}n a 满足10a =且n n n a a 21+=-求{}n a 的通项公式。

例2(1)已知数列{}n a 满足)2(2,111≥==-n a a a n n n 求数列{}n a 的通项公式(2)已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

{}{}n n n n n a a a a a a 的通项公式求数列,满足已知数列例,1111311=-=-例4(1)已知数列{}n a 满足11=a ,121+=+n n a a ,(1)求证:数列{}1+n a 是等比数列;(2)求数列的通项公式n a课后作业1 数列2 , 23- , 34 , 45- , 56 …的一个通项公式是 2若数列{}n a 的前n 项和为1322-+=n n S n ,则n a = 3数列{}n a 满足11211n n a a n a +=++=,,则数列{}n a 的通项公式是4已知数列{}n a 满足nn a a a n n ++==+2111,2,则n a = 5已知数列{}n a 中,1113,3(2),n n n a a a n --==⋅≥求通项.n a6已知数列{}n a 的前n 项和满足12n n S a =+,求通项公式n a .7已知数列{}a n 中()1112,2n n n n a a a a a n --==-⋅≥,求通项公式8在数列{}n a 中,11111,(1)2n n n n a a a n ++==++ ,设n n a b n=,求数列{}n b 的通项公式。

2021高考数学(理)人教A版一轮复习学案+作业:第六章 6.1 数列的概念与简单表示法 Word

2021高考数学(理)人教A版一轮复习学案+作业:第六章 6.1 数列的概念与简单表示法 Word

姓名,年级:时间:§6。

1 数列的概念与简单表示法最新考纲考情考向分析1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2。

了解数列是自变量为正整数的一类特殊函数.以考查S n与a n的关系为主,简单的递推关系也是考查的热点.本节内容在高考中以选择、填空的形式进行考查,难度为低档。

1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式如果数列{a n}的第n项a n与序号n之间的关系能用公式a n =f (n)表示,这个公式叫做数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和2。

数列的表示方法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项用公式表示递推公式使用初始值a1和a n+1=f (a n)或a1,a2和a n+1=f (a n,a n-1)等表示数列的方法n n若数列{a n}的前n项和为S n,则a n=错误!4.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1〈a n常数列a n+1=a n概念方法微思考1.数列的项与项数是一个概念吗?提示不是,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的通项公式a n=3n+5与函数y=3x+5有何区别与联系?提示数列的通项公式a n=3n+5是特殊的函数,其定义域为N*,而函数y=3x+5的定义域是R,a n=3n+5的图象是离散的点,且排列在y=3x+5的图象上.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ×)(2)所有数列的第n项都能使用公式表达.(×)(3)根据数列的前几项归纳出数列的通项公式可能不止一个.(√)(4)1,1,1,1,…不能构成一个数列.(×)题组二教材改编2.在数列{a n}中,已知a1=1,a n+1=4a n+1,则a3=________。

学案2:4.3.1 第1课时 等比数列的概念及通项公式

学案2:4.3.1 第1课时 等比数列的概念及通项公式

4.3.1 第1课时 等比数列的概念及通项公式【学习目标】1.通过实例,理解等比数列的概念并学会简单应用.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程【自主学习】知识点1 等比数列的概念一般地,如果一个数列从 起,每一项与它的前一项的比等于 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母 表示. 知识点2 等比中项的概念(1)如果在a 与b 中间插入一个数G ,使a ,G ,b 成 ,那么G 叫做a 与b 的等比中项,这三个数满足关系式 .(2)等比中项与等比中项的异同,对比如下表:知识点3 等比数列的通项公式首项为1a ,公比为q 的等比数列的通项公式是111(,0)n n a a q a q -=≠.等比数列通项公式的变形:n mn m a a q -=.【合作探究】探究一 等比数列的判定与证明【例1】已知f (x )=log m x (m >0且m ≠1),设f (a 1),f (a 2),…,f (a n ),…是首项为4,公差为2的等差数列,求证:数列{a n }是等比数列.【练习1】已知数列{a n }的前n 项和为S n ,且S n =13(a n -1)(n ∈N *).(1)求a 1,a 2;(2)证明:数列{a n }是等比数列.探究二 等比中项【例2】若1,a,3成等差数列,1,b,4成等比数列,则ab 的值为( )A .±12B.12C .1D .±1【练习2】2+1与2-1的等比中项是( ) A .1B .-1C .±1D.12探究三等比数列通项公式的应用【例3】一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.【练习3】在等比数列{a n}中.(1)已知a1=3,q=-2,求a6;(2)已知a3=20,a6=160,求a n.探究四等比数列的实际应用【例4】某种放射性物质不断变化为其他物质,每经过一年剩余的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年,放射性物质衰变到原来的一半所需时间称为这种物质的半衰期)【练习4】某制糖厂2011年制糖5万吨,如果从2011年起,平均每年的产量比上一年增加20%,那么到哪一年,该糖厂的年制糖量开始超过30万吨?(保留到个位,lg 6≈0.778,lg 1.2≈0.079)【课堂达标】1.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于()A.64 B.81C.128 D.2432.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9 B.10 C.11 D.123.已知6,a,b,48成等差数列,6,c,d,48成等比数列,则a+b+c+d=________. 4.数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________. 5.已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求证:数列{a n+1}是等比数列;(2)求{a n}的通项公式.【参考答案】【自主学习】知识点1 等比数列的概念 第2项同一常数公比q (q ≠0)知识点2 等比中项的概念 (1)等比数列ab =G 2(2)等比两相反数ab >0 【合作探究】探究一 等比数列的判定与证明 【例1】证明 由题意知f (a n )=4+2(n -1)=2n +2=log m a n , ∴a n =m2n +2,∴a n +1a n =m 2(n +1)+2m2n +2=m 2,∵m >0且m ≠1,∴m 2为非零常数, ∴数列{a n }是等比数列. 【练习1】(1)解 ∵a 1=S 1=13(a 1-1),∴a 1=-12.又a 1+a 2=S 2=13(a 2-1),∴a 2=14.(2)证明 ∵S n =13(a n -1),∴S n +1=13(a n +1-1),两式相减得a n +1=13a n +1-13a n ,即a n +1=-12a n ,∴数列{a n }是首项为-12,公比为-12的等比数列.探究二 等比中项 【例2】 【答案】D【解析】∵1,a,3成等差数列,∴a =1+32=2,∵1,b,4成等比数列,∴b 2=1×4,b =±2,∴a b =2±2=±1.【练习2】 【答案】C【解析】设x 为2+1与2-1的等比中项, 则x 2=(2+1)(2-1)=1,∴x =±1. 探究三 等比数列通项公式的应用 【例3】解 设这个等比数列的第1项是a 1,公比是q ,那么⎩⎪⎨⎪⎧a 1q 2=12,①a 1q 3=18,②②÷①,得q =32,将q =32代入①,得a 1=163.因此,a 2=a 1q =163×32=8.综上,这个数列的第1项与第2项分别是163与8.【练习3】解 (1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96. (2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧ a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1q n -1=5×2n -1. 探究四 等比数列的实际应用 【例4】解 设这种物质最初的质量是1,经过n 年,剩余量是a n , 由条件可得,数列{a n }是一个等比数列. 其中a 1=0.84,q =0.84, 设a n =0.5,则0.84n =0.5.两边取对数,得n lg 0.84=lg 0.5,用计算器算得n ≈4. 答 这种物质的半衰期大约为4年. 【练习4】解 记该糖厂每年制糖产量依次为a 1,a 2,a 3,…,a n ,…. 则依题意可得a 1=5,a na n -1=1.2(n ≥2且n ∈N *), 从而a n =5×1.2n -1,这里a n =30,故1.2n -1=6, 即n -1=log 1.26=lg 6lg 1.2=0.7780.079≈9.85,故n =11.答 从2021年开始,该糖厂年制糖量开始超过30万吨.【课堂达标】1.【答案】A【解析】∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1,故a 7=1·26=64. 2.【答案】C【解析】在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1q m -1=q m -1,∴m -1=10,∴m =11. 3.【答案】90【解析】6,a ,b,48成等差数列,则a +b =6+48=54; 6,c ,d,48成等比数列,设其公比为q ,则q 3=486=8,q =2,故c =12,d =24,从而a +b +c +d =90.4.【答案】1【解析】设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1,∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.5.(1)证明 方法一 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,且a 1+1=2.∴{a n +1}是以2为首项,2为公比的等比数列. 方法二 ∵a n +1+1a n +1=2a n +1+1a n +1=2(a n +1)a n +1=2(n ∈N *),∴数列{a n +1}是等比数列.(2)解 由(1)知{a n +1}是等比数列,公比为2,首项为2. ∴a n +1=2n ,∴a n =2n -1,n ∈N *.。

高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5

高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5

学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n,且a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2B .3C .-2D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30°B.60°C.90°D.120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92B .47C .46D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4B .3C .2D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52B .62C .-62D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52B .51C .50D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26B .29C .39D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15B .22C .7D .29 答案 A解析 设{a n }的首项为a 1,公差为d , 根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b ,∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12B.13C.14D.16 答案 A 解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A. 二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +26a n -4-2a n +2=a n +24a n -8=a n -2+44a n -2=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。

等差数列与通项公式

等差数列与通项公式

环球雅思学科教师辅导学案辅导科目:数学 年级:高一 学科教师: 课 时 数: 3授课类型 等差数列与通项公式教学目的 掌握等差数列的通项公式与前n 项和公式.教学内容1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差都等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 就叫做这个数列的公差。

即1(2,)n n a a d n n N *--=≥∈ 2、等差中项若,,a A b 成等差数列,那么A 叫做,a b 的等差中项。

两个实数,a b 的等差中项只有一个,就是这两个数的算术平均数2a b+。

3、等差数列的性质①等差数列的通项公式*1(1)()()n m a a n d a n m d n N =+-=+-∈,n ma a d n m-=-。

5、知三求二等差数列有5个基本量,1,,,,n n a d n a S ,求解它们,多利用方程组的思想,知三求二。

注意要弄准它们的值。

6、特殊设法三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++。

同步讲解1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。

1、设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列设{}n a 是等差数列,求证:以b n =na a a n+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。

3、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。

4、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。

2017--高二数学必修5-数列通项公式求法学案

2017--高二数学必修5-数列通项公式求法学案

新学案-------------------------------求通项公式的方法汇总1、{a n}等差数列,a n=________________①、已知等差数列{a n}满足a2=0,a6+a8=-10 ,求数列{a n}的通项公式;②、已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根,求{a n}的通项公式;③、已知等差数列{a n}满足a1+a2=10,a4-a3=2,求{a n}的通项公式;2、{a n}等比数列,a n=________________①设{a n}是公比为正数的等比数列,a1=2 ,a3=a2+4,。

求{a n}的通项公式②等比数列{a n}的各项均为正数,且2a1+3a2=1,a3=9a2a6,求数列{a n}的通项公式;一般地,对于型如a n+1=a n+f(n)类的通项公式,且f(1)+f(2)+...+f(n)的和比较好求,我们可以采用此方法来求an。

1{a n}的首项a1=3,a n-a n-1=2(n>1),求它的通项公式.【讲】、数列{a n}中,a1=1,a n-a n-1=2n-1(n=2,3,4…),求数列{a n}的通项公式.讲解记录:【练】:在数列{a n}中,a1=1,a n+1-a n=2n(n∈N*),求数列{a n}的通项公式.解答:当f(n)为常数,即:1a nna+= m(其中q是不为0的常数),此数列为等比且na=1am⋅1{a n}的首项a1=3,1nnaa-=2(n>1),求它的通项公式【讲】:已知数列{a n}满足:a1=3,1a nna+=1nn+,求数列{a n}的通项公式.讲解记录:【练】:在数列{a n}中a1=1,1nnaa-=11nn-+(n≥2),求数列的通项公式。

解题过程:若已知数列的前n 项和Sn 或Sn 与a n 的关系的表达式,求数列{a n }的通项a n 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n求解。

2021高中数学第二章数列习题课(一)求数列的通项公式学案苏教版必修5

2021高中数学第二章数列习题课(一)求数列的通项公式学案苏教版必修5

习题课(一) 求数列的通项公式学习目标n 项和S n 与a n 的关系求通项公式的方法.知识点一 通过数列前假设干项归纳出数列的一个通项公式思考 你能看出数列(1):-1,1,-1,1…与数列(2): 0,2,0,2…的联系吗?由此写出数列(2)的一个通项公式.答案 数列(1)每项加1得到数列(2).数列(1)的通项公式是a n =(-1)n,故数列(2)的通项公式是a n =(-1)n+1.梳理 通过数列前假设干项归纳出数列的一个通项公式,关键是依托根本数列如等差数列、等比数列,寻找a n 与n ,a n 与a n +1的联系. 知识点二 利用递推公式求通项公式思考 还记得我们是如何用递推公式a n +1-a n =d 求出等差数列的通项公式的吗? 答案 累加法.梳理 递推公式求通项公式的主要思路,就是要通过对递推公式赋值、变形,构造出我们熟悉的等差数列或等比数列,进而求出通项公式.赋值、变形的常见方法有累加、累乘、待定系数法、换元、迭代等.知识点三 利用前n 项和S n 与a n 的关系求通项公式 思考 如何用数列{a n }的前n 项和S n 表示a n ?答案 a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.梳理 当S n 或S n 与a n 的关系式,可以借助上式求出通项公式,或者得到递推公式,再由递推公式求得通项公式.在应用上式时,不要忘记对n 讨论.1.数列可由其前四项完全确定.(×)2.可以在公式许可的范围内根据需要对递推公式中的n 任意赋值.(√) 3.{S n }也是一个数列.(√)类型一 通过数列前假设干项归纳出数列的一个通项公式 例1 由数列的前几项,写出数列的一个通项公式: (1)3,5,3,5,3,5,…; (2)12,23,34,45,56,…; (3)2,52,134,338,8116,…;(4)12,16,112,120,130,…. 考点 数列的通项公式题点 根据数列的前几项写出通项公式a n =4+(-1)n .(2)数列中的项以分数形式出现,分子为项数,分母比分子大1,所以它的一个通项公式为a n =nn +1.(3)数列可化为1+1,2+12,3+14,4+18,5+116,…,所以它的一个通项公式为a n =n +12n -1.(4)数列可化为11×2,12×3,13×4,14×5,15×6,…,所以它的一个通项公式为a n =1n (n +1).反思与感悟 这类数列通常是由根本数列如等差数列、等比数列通过加减乘除运算得到,故解决这类问题可以根据所给数列的特点(递增及增长速度、递减及递减速度、是否摆动数列)联想根本数列,再考察它与根本数列的关系.跟踪训练1 由数列的前几项,写出数列的一个通项公式: (1)1,-7,13,-19,25,… (2)14,37,12,713,916,… (3)1,-85,157,-249,…考点 数列的通项公式题点 根据数列的前几项写出通项公式解 (1)数列每一项的绝对值构成一个以1为首项,6为公差的等差数列,且奇数项为正,偶数项为负,所以它的一个通项公式为a n =(-1)n +1(6n -5).(2)数列化为14,37,510,713,916,…,分子、分母分别构成等差数列,所以它的一个通项公式为a n =2n -13n +1.(3)数列化为22-13,-32-15,42-17,-52-19,…,所以数列的一个通项公式为a n =(-1)n +1(n +1)2-12n +1.类型二 利用递推公式求通项公式 命题角度1 累加、累乘例2 (1)数列{a n }满足a 1=1,对任意的n ∈N *都有a n +1=a 1+a n +n ,求通项公式; (2)数列{a n }满足a 1=23,a n +1=nn +1a n ,求a n .考点 递推数列通项公式求法 题点 一阶线性递推数列解 (1)∵a n +1=a n +n +1,∴a n +1-a n =n +1,即a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,等式两边同时相加得a n -a 1=2+3+4+…+n (n ≥2), 即a n =a 1+2+3+4+…+n =1+2+3+4+…+n =n (n +1)2(n ≥2),a 1=1也符合上式.∴a n =n (n +1)2.(2)由条件知a n +1a n =n n +1,分别令n =1,2,3,…,n -1, 代入上式得(n -1)个等式累乘之, 即a 2a 1·a 3a 2·a 4a 3…a n a n -1=12×23×34×…×n -1n (n ≥2),∴a n a 1=1n(n ≥2),又∵a 1=23,∴a n =23n (n ≥2),a 1=23也符合上式.∴a n =23n.反思与感悟 型如a n +1=a n +f (n )的递推公式求通项可以使用累加法,步骤如下: 第一步 将递推公式写成a n +1-a n =f (n ).第二步 依次写出a n -a n -1,…,a 2-a 1,并将它们累加起来. 第三步 得到a n -a 1的值,解出a n .第四步 检验a 1是否满足所求通项公式,假设成立,那么合并;假设不成立,那么写出分段形式.累乘法类似.跟踪训练 2 (1)在数列{a n }中,a 1=1,a n +1=2na n (n ∈N *),那么数列{a n }的通项公式为__________.考点 递推数列通项公式求法 题点 一阶线性递推数列 答案 (1)22n n-n a =(n ∈N *)解析 由a n +1=2na n ,得a n +1a n=2n, 即a 2a 1·a 3a 2·a 4a 3…a n a n -1=21×22×23×…×2n -1,即a n a 1=21+2+3+…+(n -1)(经历证a 1=1也符合)(n ∈N *).(2)在数列{a n }中,a 1=1,a n -a n -1=n -1 (n =2,3,4,…),求{a n }的通项公式. 考点 递推数列通项公式求法 题点 a n +1=pa n +f (n )型 解 ∵当n =1时,a 1=1,当n ≥2时,⎭⎪⎬⎪⎫a 2-a 1=1,a 3-a 2=2,a 4-a 3=3,…,a n -a n -1=n -1,这n -1个等式累加得, a n -a 1=1+2+…+(n -1)=n (n -1)2,故a n =n (n -1)2+a 1=n 2-n +22且a 1=1也满足该式,∴a n =n 2-n +22(n ∈N *).命题角度2 构造等差(比)数列例3 在数列{a n }中,a 1=1,a n +1=2a n +3,求a n . 考点 递推数列通项公式求法 题点 一阶线性递推数列解 递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,那么t =-3. 故递推公式为a n +1+3=2(a n +3).(1)(1)(1)22212,22---===n n n n n n n a a 故令b n =a n +3,那么b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.反思与感悟 型如a n +1=pa n +q (其中p ,q 为常数,且pq (p -1)≠0)可用待定系数法求得通项公式,步骤如下:第一步 假设将递推公式改写为a n +1+t =p (a n +t ). 第二步 由待定系数法,解得t =qp -1.第三步 写出数列⎩⎨⎧⎭⎬⎫a n +q p -1的通项公式.第四步 写出数列{a n }通项公式.跟踪训练3 数列{a n }满足a n +1=2a n +3×5n,a 1=6,求数列{a n }的通项公式. 考点 递推数列通项公式求法 题点 a n +1=pa n +f (n )型 解 设a n +1+x ×5n +1=2(a n +x ×5n),①将a n +1=2a n +3×5n代入①式,得2a n +3×5n+x ×5n +1=2a n +2x ×5n,等式两边消去2a n ,得3×5n+x ×5n +1=2x ×5n,两边除以5n,得3+5x =2x ,那么x =-1,代入①式得a n +1-5n +1=2(a n -5n).②由a 1-51=6-5=1≠0及②式得a n -5n≠0,那么a n +1-5n +1a n -5n =2,那么数列{a n -5n}是以1为首项,2为公比的等比数列,那么a n -5n =2n -1,故a n =2n -1+5n (n ∈N *).类型三 利用前n 项和S n 与a n 的关系求通项公式例4 数列{a n }的前n 项和为S n ,假设S n =2a n -4,n ∈N *,那么a n =________. 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项 答案 2n +1解析 因为S n =2a n -4,所以S n -1=2a n -1-4(n ≥2),两式相减可得S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,整理得a n =2a n -1,即a na n -1=2,因为S 1=a 1=2a 1-4,即a 1=4,所以数列{a n }是首项为4,公比为2的等比数列,那么a n =4×2n -1=2n +1.反思与感悟 S n =f (a n )或S n =f (n )解题步骤:第一步 利用S n 满足条件p ,写出当n ≥2时,S n -1的表达式.第二步 利用a n =S n -S n -1(n ≥2),求出a n 或者转化为a n 的递推公式的形式.第三步 假设求出n ≥2时的{a n }的通项公式,那么根据a 1=S 1求出a 1,并代入{a n }的通项公式进展验证,假设成立,那么合并;假设不成立,那么写出分段形式.如果求出的是{a n }的递推公式,那么问题化归为类型二.跟踪训练4 在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *),求数列{a n }的通项a n .考点 a n 与S n 关系题点 由S n 与a n 递推式求通项 解 (1)由a 1+2a 2+3a 3+…+na n =n +12a n +1,得当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式作差得na n =n +12a n +1-n2a n ,得(n +1)a n +1=3na n (n ≥2),即数列{na n }从第二项起是公比为3的等比数列,且a 1=1,a 2=1,于是2a 2=2,故当n ≥2时,na n =2·3n -2.于是a n =⎩⎪⎨⎪⎧1,n =1,2n·3n -2,n ≥2.1.等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,那么数列{a n }的通项公式a n =________.考点 等比数列的通项公式 题点 数列为等比数列求通项公式 答案 2n解析 ∵{a n }单调递增,∴q >0, 又a 25=a 10>0,∴a n >0,q >1, 由条件得2⎝⎛⎭⎪⎫a n a n +1+a n +2a n +1=5,即2⎝ ⎛⎭⎪⎫1q +q =5,∴q =2或q =12(舍), 由a 25=a 10得(a 1q 4)2=a 1q 9, ∴a 1=q =2,故a n =2n.2.设数列{a n }的前n 项和为S n ,假设S 2=4,a n +1=2S n +1,n ∈N *,那么a 1=________,S 5=________. 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项 答案 1 121解析 a 1+a 2=4,a 2=2a 1+1,解得a 1=1,a 2=3,再由a n +1=2S n +1,即a n =2S n -1+1(n ≥2),得a n +1-a n =2a n ,即a n +1=3a n (n ≥2),又a 2=3a 1,所以a n +1=3a n (n ≥1),S 5=1-351-3=121.3.如果数列{a n }的前n 项和S n =2a n -1,那么此数列的通项公式a n =________. 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项 答案 2n -1解析 当n =1时,S 1=2a 1-1, ∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), ∴a n =2a n -1,∴{a n }是首项为1,公比为2的等比数列, ∴a n =2n -1,n ∈N *.4.数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.证明{a n }是等比数列,并求其通项公式. 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项解 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 所以{a n }是首项为11-λ,公比为λλ-1的等比数列,所以a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.1.不管哪种类型求通项公式,都是以等差数列、等比数列为根底.2.利用数列前假设干项归纳通项公式,对无穷数列来说只能算是一种猜测,是否对所有项都适用还需论证.3.待定系数法求通项,其本质是猜测所给递推公式可以变形为某种等差数列或等比数列,只是其系数还不知道,一旦求出系数,即意味着猜测成立,从而可以借助等差数列或等比数列求得通项.4.使用递推公式或前n 项和求通项时,要注意n 的取值范围.一、填空题1.在数列{a n }中,a 1=2,a n +1=a n +2n (n ∈N *),那么a 100的值是________. 考点 递推数列通项公式求法 题点 a n +1=pa n +f (n )型 答案 9902解析 a 100=(a 100-a 99)+(a 99-a 98)+…+(a 2-a 1)+a 1 =2(99+98+…+2+1)+2 =2×99×(99+1)2+2=9 902.2.在数列{a n }中,a 1=1,a n +1=a n1+2a n ,那么这个数列的第n 项为__________.考点 递推数列通项公式求法 题点 一阶线性递推数列 答案12n -1解析 ∵a n +1=a n 1+2a n ,∴1a n +1=1a n+2.∴⎩⎨⎧⎭⎬⎫1a n 为等差数列,公差为2,首项1a 1=1. ∴1a n =1+(n -1)·2=2n -1,∴a n =12n -1. 3.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,那么a n =______________.考点 递推数列通项公式求法 题点 a n +1=pa n +f (n )型 答案 2+ln n解析 由a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n 得a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n ,∴(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=ln 21+ln 32+…+ln n n -1=ln ⎝ ⎛⎭⎪⎫2×32×…×n n -1=ln n ,即a n -a 1=ln n ,a n =ln n +2(经历证a 1=2也符合).4.数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,那么此数列的通项公式a n =__________.考点 递推数列通项公式求法 题点 a n +1=pa n +f (n )型 答案n2n -1解析 ∵a n +1=12a n +12n ,∴2n +1a n +1=2n a n +2, 即2n +1a n +1-2n a n =2.又21a 1=2,∴数列{2na n }是以2为首项,2为公差的等差数列, ∴2na n =2+(n -1)×2=2n , ∴a n =n2n -1.5.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n =________.考点 递推数列通项公式求法 题点 一阶线性递推数列 答案 2n-1解析 由题意,得a n -a n -1=2n -1,∴a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+21+22+…+2n -1=1-2n1-2=2n -1,即a n =2n-1.6.一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):那么第8行中的第5个数是________.考点 数列的通项公式题点 根据数列的前几项写出通项公式 答案 132解析 前7行中共有1+2+22+…+26=27-1=127个数,那么第8行中的第5个数是127+5=132.7.假设数列{a n }的前n 项和为S n ,a 1=2,且对于任意大于1的整数n ,点(S n ,S n -1)在直线x -y -2=0上,那么数列{a n }的通项公式为________________. 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项 答案 a n =4n -2解析 由题意得S n -S n -1=2,n ∈N *,n ≥2,∴{S n }是首项为S 1=a 1=2,公差为2的等差数列.∴S n =2n ,∴S n =2n 2, ∴a n =S n -S n -1=2n 2-2(n -1)2=4n -2,n ∈N *,n ≥2,a 1=2也适合上式.∴a n =4n -2,n ∈N *.8.在数列{a n }中,a 1=3,a n +1-2a n =0,数列{b n }的通项满足关系式a n b n =(-1)n(n ∈N *),那么b n =________.考点 递推数列通项公式求法 题点 一阶线性递推数列 答案 (-1)n3·2n -1解析 易知{a n }是首项为3,公比为2的等比数列, ∴a n =3×2n -1,∴b n =(-1)n a n =(-1)n3×2n -1.9.在数列{a n }中,a 1=1,a n +1=n +1na n ,那么数列{a n }的通项公式a n =________. 考点 递推数列通项公式求法 题点 累乘法求通项 答案 n 解析 a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1 =nn -1·n -1n -2·…·32·21=n (经历证a 1=1也符合). 10.数列{a n }满足a n +1=3a n +2,且a 1=1,那么a n =________. 考点 递推数列通项公式求法题点 一阶线性递推数列答案 2×3n -1-1解析 设a n +1+A =3(a n +A ),化简得a n +1=3a n +2A . 又a n +1=3a n +2,∴2A =2,即A =1.∴a n +1+1=3(a n +1),即a n +1+1a n +1=3. ∴数列{a n +1}是等比数列,首项为a 1+1=2,公比为3. 那么a n +1=2×3n -1,即a n =2×3n -1-1.11.假设数列{a n }的前n 项和S n =23a n +13,那么{a n }的通项公式是a n =________. 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1, 即a n =-2a n -1,又a n ≠0,故a n a n -1=-2,故a n =(-2)n -1. 二、解答题12.S n =4-a n -12n -2,求a n 与S n . 考点 a n 与S n 关系题点 由S n 与a n 递推式求通项解 ∵S n =4-a n -12n -2,∴S n -1=4-a n -1-12n -3, ∴当n ≥2时,S n -S n -1=a n =a n -1-a n +12n -3-12n -2. ∴a n =12a n -1+⎝ ⎛⎭⎪⎫12n -1. ∴a n⎝ ⎛⎭⎪⎫12n -a n -1⎝ ⎛⎭⎪⎫12n -1=2,∴2n a n -2n -1a n -1=2, ∴{2n a n }是等差数列,d =2,首项为2a 1.∵a 1=S 1=4-a 1-12-1=2-a 1,∴a 1=1,∴2n a n =2+2(n -1)=2n .∴a n =n ·⎝ ⎛⎭⎪⎫12n -1, ∴S n =4-a n -12n -2=4-n ·12n -1-12n -2=4-n +22n -1. 13.设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解 (1)当n =1时,T 1=2S 1-1,∵T 1=S 1=a 1,所以a 1=2a 1-1,求得a 1=1.(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2S n -2S n -1-2n +1,∴S n =2S n -1+2n -1,①∴S n +1=2S n +2n +1,②②-①得a n +1=2a n +2,∴a n +1+2=2(a n +2),求得a 1+2=3,a 2+2=6, ∴a n +2≠0.∴a n +1+2a n +2=2(n ≥2). 又a 2+2a 1+2=2,也满足上式, ∴{a n +2}是以3为首项,2为公比的等比数列.∴a n +2=3·2n -1, ∴a n =3·2n -1-2,n ∈N *.三、探究与拓展14.假设在数列{a n }中,a 1=3且a n +1=a 2n (n 是正整数),那么它的通项公式a n 为________________.考点 递推数列通项公式求法题点 其他递推数列问题答案 a n =123n -解析 由题意知a n >0且a n ≠1,将a n +1=a 2n 两边取对数得lg a n +1=2lg a n ,且lg a n ≠0,即lg a n +1lg a n=2,所以数列{lg a n }是以lg a 1=lg 3为首项,2为公比的等比数列,lg a n =(lg a 1)·2n -1=lg 123n -.即a n =123n -.15.数列{a n }满足a 1=1,a 2=4,a n +2=4a n +1-3a n (n ∈N *).(1)求a 3,a 4的值;(2)证明:数列{a n +1-a n }是等比数列;(3)求数列{a n }的通项公式.考点 递推数列通项公式求法题点 一阶线性递推数列(1)解 a 3=4a 2-3a 1=13,a 4=4a 3-3a 2=40.(2)证明 ∵a n +2=4a n +1-3a n , ∴a n +2-a n +1=3(a n +1-a n ).又a 1=1,a 2=4,∴a n +2-a n +1a n +1-a n =3,那么{a n +1-a n }是以a 2-a 1=3为首项,3为公比的等比数列.(3)解 由(2)得a n +1-a n =3n , 那么当n ≥2时,a n -a n -1=3n -1, 故a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=1-3n 1-3=3n -12. 又a 1=1适合上式,故a n =3n -12,n ∈N *.。

由数列递推公式求通项公式的常用方法

由数列递推公式求通项公式的常用方法

21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。

初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。

一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。

二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。

习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。

设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。

能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。

学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。

比如,初中“网络课件构件设计”导学案设计。

①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。

②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。

元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。

元数据设计时可参照SCORM。

定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。

)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。

高中数学 同步学案 等差数列的性质

高中数学 同步学案 等差数列的性质

第2课时 等差数列的性质学 习 目 标核 心 素 养1.掌握等差数列的有关性质.(重点、易错点) 2.能灵活运用等差数列的性质解决问题.(难点)1.通过等差数列性质的学习,体现了数学运算素养. 2.借助等差数列的实际应用,培养学生的数学建模及数学运算素养.1.等差数列与一次函数(1)等差数列的通项公式a n =a 1+(n -1)d,当d =0时,a n 是关于n 的常函数;当d≠0时,a n 是关于n 的一次函数;点(n,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点.(2)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d,a m ,a n (m≠n),则d =a n -a 1n -1=a n -a mn -m ,从而有a n =a m +(n -m)d.思考1:已知等差数列中任意两项是否可以直接求公差?[提示] 等差数列{a n }的图象是均匀分布在一条直线上的孤立的点,任选其中两点(n,a n )(m,a m )(m≠n),类比直线的斜率公式可知公差d =a n -a mn -m.2.等差中项如果a,A,b 这三个数成等差数列,那么A =a +b 2.我们把A =a +b2叫做a 和b 的等差中项.3.等差数列的性质(1)项的运算性质:在等差数列{a n }中,若m +n =p +q(m,n,p,q∈N *),则a m +a n =a p +a q . (2)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和,即a 1+a n =a 2+a n -1=a 3+a n -2=….(3)若{a n },{b n }分别是公差为d,d′的等差数列,则有数列 结论{c +a n } 公差为d 的等差数列(c 为任一常数) {c·a n }公差为cd 的等差数列(c 为任一常数){a n +a n +k } 公差为2d 的等差数列(k 为常数,k∈N *) {pa n +qb n } 公差为pd +qd′的等差数列(p,q 为常数)(4){a n }的公差为n n n }为常数列.思考2:等差数列{a n }中,若a 5=7,a 9=19,则a 2+a 12=________,a 7=________. [提示] ∵a 2+a 12=2a 7=a 5+a 9=26, ∴a 2+a 12=26,a 7=13.思考3:还记得高斯怎么计算1+2+3+…+100的吗? [提示] 利用1+100=2+99=….1.在等差数列{a n }中,a 3+a 5=10,则a 1+a 7等于( ) A .5 B .8 C .10 D .14 C [a 1+a 7=a 3+a 5=10.]2.等差数列{a n }中,a 100=120,a 90=100,则公差d 等于( ) A .2 B .20 C .100D .不确定A [∵a 100-a 90=10d,∴10d=20,即d =2.]3.在等差数列{a n }中,若a 5=6,a 8=15,则a 14=________. 33 [由题意得d =a 8-a 58-5=15-68-5=3.∴a 14=a 8+6d =15+18=33.]4.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12=________. 15 [由等差数列的性质得a 7+a 9=a 4+a 12=16, 又∵a 4=1,∴a 12=15.]等差中项及其应用【例1】 已知数列{x n }的首项x 1=3,通项x n =2np +nq(n∈N *,p,q 为常数),且x 1,x 4,x 5成等差数列.求p,q 的值.思路探究:由x 1,x 4,x 5成等差数列得出一个关于p,q 的等式,结合x 1=3推出2p +q =3,从而得p,q. [解] 由x 1=3,得2p +q =3,①又x 4=24p +4q,x 5=25p +5q,且x 1+x 5=2x 4得, 3+25p +5q =25p +8q, ②由①②得,q =1,p =1.在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n≥2,n∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项.1.在-1与7之间顺次插入三个数a,b,c 使这五个数成等差数列,求此数列. [解] (1)∵-1,a,b,c,7成等差数列, ∴b 是-1与7的等差中项, ∴b=-1+72=3.又a 是-1与3的等差中项, ∴a=-1+32=1.又c 是3与7的等差中项,∴c=3+72=5,∴该数列为-1,1,3,5,7.等差数列的性质及应用【例2】 (1)n 1815910(2)数列{a n }为等差数列,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列{a n }的通项公式; (3)在等差数列{a n }中,a 15=8,a 60=20,求a 75的值. 思路探究:(1)利用等差中项求解;(2)利用m +n =p +q,则a m +a n =a p +a q 求解; (3)利用d =a m -a nm -n 求解.[解] (1)由等差数列的性质,得 a 1+3a 8+a 15=5a 8=120, ∴a 8=24,又2a 9=a 8+a 10, ∴2a 9-a 10=a 10+a 8-a 10=a 8=24. (2)∵a 2+a 8=2a 5,∴3a 5=9, ∴a 5=3,∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7.②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2,或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d, 得a n =2n -7或a n =-2n +13. (3)∵a 60=a 15+(60-15)d,∴d=20-860-15=415,∴a 75=a 60+(75-60)d =20+15×415=24.解决本类问题一般有两种方法一是运用等差数列{a n }的性质:若m +n =p +q =2w,则a m +a n =a p +a q =2a w (m,n,p,q,w 都是正整数); 二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.提醒:递增等差数列d>0,递减等差数列d<0,解题时要注意数列的单调性对d 的取值的限制.2.已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66,求a 2,a 3,a 4.[解] ∵{a n }为等差数列,∴2a 3=a 2+a 4,∴3a 3=18,∴a 3=6,设公差为d,则(6-d)×6×(6+d)=66, ∴d 2=25,∴d=±5,∴⎩⎪⎨⎪⎧a 2=1,a 4=11或⎩⎪⎨⎪⎧a 2=11,a 4=1.等差数列的设法与求解[探究问题]1.若三个数成等差数列,如何设这三个数使计算较为方便?[提示] 设等差中项为a,公差为d,则这三个数分别为a -d,a,a +d,这样计算较为方便. 2.若四个数成等差数列,如何设这四个数使计算较为方便?[提示] 设这四个数分别为a -3d,a -d,a +d,a +3d,计算较为方便.【例3】 已知三个数组成等差数列,首末两项之积为中项的5倍,后两项的和为第一项的8倍,求此三个数.思路探究:根据这三个数成等差数列,可设这三个数为x -d,x,x +d. [解] 设此三个数分别为x -d,x,x +d,由题意得⎩⎪⎨⎪⎧(x -d )(x +d )=5x ,x +x +d =8(x -d ),解得⎩⎪⎨⎪⎧x =0,d =0或⎩⎪⎨⎪⎧x =9,d =6,故此三数分别为0,0,0或3,9,15.(变条件)本例条件改为:三个数成单调递增等差数列,它们的和等于18,它们的平方和等于116,求此数列.[解] 设所求数列为a -d,a,a +d(d>0), 根据题意得到方程组⎩⎪⎨⎪⎧(a -d )+a +(a +d )=18,①(a -d )2+a 2+(a +d )2=116,②由①得a =6.将a =6代入②, 得d =2,d =-2(舍). 所以所求数列为4,6,8.设等差数列的三个技巧(1)对于连续奇数项的等差数列,可设为:…,x -d,x,x +d,…,此时公差为d.(2)对于连续偶数项的等差数列,通常可设为:…,a -3d,a -d,a +d,a +3d,…,此时公差为2d. (3)等差数列的通项可设为a n =pn +q.1.在等差数列{a n }中,每隔相同数目的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.2.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a 1,d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.1.判断正误(1)若{a n }是等差数列,则{|a n |}也是等差数列.( ) (2)若{|a n |}是等差数列,则{a n }也是等差数列.( )(3)若{a n }是等差数列,则对任意n∈N *都有2a n +1=a n +a n +2.( )(4)数列{a n }的通项公式为a n =3n +5,则数列{a n }的公差与函数y =3x +5的图象的斜率相等.( ) [答案] (1)× (2)× (3)√ (4)√[提示] (1)错误,如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误,如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列. (3)正确,根据等差数列的通项可判定对任意n∈N *都有2a n +1=a n +a n +2成立. (4)正确.因为a n =3n +5的公差d =3,而直线y =3x +5的斜率也是3. 2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( ) A .20 B .30 C .40 D .50 C [∵a 3+a 11=a 5+a 9=2a 7, ∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d)-(a 7+6d)=2a 7=40.]3.已知数列{a n }是等差数列,若a 4+a 7+a 10=17,a 4+a 5+a 6+…+a 12+a 13+a 14=77且a k =13,则k =________.18 [∵a 4+a 7+a 10=3a 7=17, ∴a 7=173.又∵a 4+a 5+…+a 13+a 14=11a 9=77,∴a 9=7. 故d =a 9-a 79-7=7-1732=23.∵a k =a 9+(k -9)d =13, ∴13-7=(k -9)×23,∴k=18.]4.(1)已知{a n }是等差数列,且a 1-a 4+a 8-a 12+a 15=2,求a 3+a 13的值. (2)已知在等差数列{a n }中,若a 49=80,a 59=100,求a 79. [解] (1)因为{a n }是等差数列, 所以a 1+a 15=a 4+a 12=a 3+a 13=2a 8. 又因为a 1-a 4+a 8-a 12+a 15=2, 所以a 8=2,即a 3+a 13=2a 8=2×2=4. (2)因为{a n }是等差数列,可设公差为d. 由a 59=a 49+10d,知10d =100-80,解得d =2. 又因为a 79=a 59+20d,所以a 79=100+20×2=140.。

学案6:7.3.2 正弦型函数的性质与图像(一)

学案6:7.3.2 正弦型函数的性质与图像(一)

7.3.2正弦型函数的性质与图像(一)学习目标1.理解y=A sin (ωx+φ)中ω,φ,A对图像的影响.掌握y=sin x与y=A sin(ωx+φ)图像间的变换关系.2.理解用五点法作图作y=A sin(ωx+φ)的图像.3.了解y=A sin(ωx+φ)图像的物理意义,能指出振幅、周期、频率、初相.4.会求正弦型函数y=A sin(ωx+φ)的周期、单调性、最值、值域.知识梳理知识点一正弦型函数一般地,形如y=A sin(ωx+φ)的函数,称为正弦型函数,其中A,ω,φ都为常数,且A≠0,ω≠0.正弦型函数的性质1.φ对y=sin(x+φ),x∈R的图像的影响函数y=sin(x+φ)(φ≠0)的图像可以看作是把正弦曲线y=sin x图像上所有的点向(当φ>0时)或向(当φ<0时)平行移动个单位而得到的.2.ω(ω>0)对y=sin(ωx+φ)的图像的影响函数y=sin(ωx+φ)的图像,可以看作是把y=sin(x+φ)图像上所有点的横坐标(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标)而得到的.3.A(A>0)对y=A sin(ωx+φ)的图像的影响函数y=A sin(ωx+φ)的图像,可以看作是把y=sin(ωx+φ)图像上所有点的纵坐标(当A >1时)或(当0<A<1时)到原来的倍(横坐标不变)而得到的.知识点三正弦型函数y=A sin(ωx+φ)中,A,ω,φ的物理意义1.振幅:.2.初相:.3.周期:T=2π|ω|.4.频率:f =1T =|ω|2π.题型探究探究一 三角函数的图像变换例1.说明y =2sin ⎝⎛⎭⎫2x -π6+1的图像是由y =sin x 的图像怎样变换的?反思感悟 对平移变换应先观察函数名是否相同,若函数名不同则先化为同名函数.再观察x 前系数,当x 前系数不为1时,应提取系数确定平移的单位和方向,方向遵循左加右减,且从ωx →ωx +φ的平移量为⎪⎪⎪⎪φω个单位.先平移后伸缩和先伸缩后平移中,平移的量是不同的,在应用中一定要区分清楚,以免混乱而导致错误.弄清平移对像是减少错误的好方法.跟踪训练1.把函数y =cos 2x +1的图像上所有点的横坐标伸长到原 的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )二、用“五点法”画y =A sin(ωx +φ)的图像 例2.作出y =3sin ⎝⎛⎭⎫12x -π4一个周期上的图像.反思感悟 (1)用“五点法”作图时,五点的确定,应先令ωx +φ分别为0,π2,π,3π2,2π,解出x ,从而确定这五点.(2)作给定区间上y =A sin(ωx +φ)的图像时,若x ∈[m ,n ],则应先求出ωx +φ的相应范围,在求出的范围内确定关键点,再确定x ,y 的值,描点、连线并作出函数的图像. 跟踪训练2.作出y =2.5sin ⎝⎛⎭⎫2x +π4的图像.三、正弦型函数的周期例3.求下列函数的周期 (1)y =12sin π3x ;(2)y =3sin ⎝⎛⎭⎫2x +π6.反思感悟 对于形如y =A sin(ωx +φ)(A ≠0,ω≠0)的函数的最小正周期的求法,常直接利用T =2π|ω|来求解,对于形如y =|A sin ωx |的函数的周期情况常结合图像法来求解. 跟踪训练3.函数f (x )=3sin ⎝⎛⎭⎫2x -π6-1的最小值和最小正周期是( ) A .-3-1,π B .-3+1,π C .-3,π D .-3-1,2π 四、正弦型函数的单调性例4.求函数y =3sin(π3-x2)的单调增区间.反思感悟 求正弦型函数的单调区间的策略 (1)结合正弦函数的图像,熟记它的单调区间.(2)在求形如y =A sin(ωx +φ)(A ≠0,ω>0)的函数的单调区间时,应采用“换元法”整体代换,将“ωx +φ”看作一个整体“z ”,即通过求y =A sin z 的单调区间而求出原函数的单调区间.当A >0时y =A sin z 与y =sin x 的单调性相同,当A <0时,y =A sin z 与y =sin x 的单调性相反. (3)求形如y =A sin(ωx +φ),x ∈D 的单调区间时,先求y =A sin(ωx +φ),x ∈R 的单调区间,再把所求的单调区间和区间D 取交集即得y =A sin(ωx +φ),x ∈D 上的单调区间. 跟踪训练4.函数y =sin ⎝⎛⎭⎫2x -π6,x ∈[0,π]的单调递增区间为______________________. 五、正弦型函数的最值、值域例5.求下列函数的最大值和最小值,并写出取得最值时的x 的取值集合. (1)y =3sin(2x -2π3);(2)y =3-2sin(3x +π6).反思感悟 形如y =A sin(ωx +φ)的三角函数,令t =ωx +φ,根据题中x 的取值范围,求出t 的取值范围,再利用正弦函数的图像、有界性求出y =A sin t 的最值(值域). 跟踪训练5.已知函数f (x )=2cos(π3-x2),若x ∈[-π,π],求f (x )的最大值、最小值.课堂小结 1.知识清单: (1)平移变换. (2)伸缩变换. (3)五点法作图.(4)正弦型函数的周期公式. (5)正弦型函数的单调性. (6)正弦型函数的最值、值域.2.方法归纳:整体代换思想,换元思想,数形结合. 3.常见误区:(1)先平移和先伸缩时平移的量不一样.(2)单调区间漏写k ∈Z ,用集合表示,以及用并集符号连接. 当堂检测1.函数y =2sin(2x +π3)+1的最小正周期为( )A.π2B .πC .2πD .4π2.最大值是12,周期是6π,初相是π6的三角函数的表达式可能是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6 D .y =12sin ⎝⎛⎭⎫x +π6 3.为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图像,只需把函数y =sin 2x 的图像上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度4.把y =sin x 的图像上所有点的横坐标和纵坐标都缩短到原 的13倍,得________的图像.5.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图像重合,则φ=________.6.已知f (x )=1+2sin(2x -π4),画出f (x )在x ∈⎣⎡⎦⎤-π2,π2上的图像.参考答案知识梳理知识点一 正弦型函数 正弦型函数的性质1.φ对y =sin(x +φ),x ∈R 的图像的影响 左 右 |φ|2.ω(ω>0)对y =sin(ωx +φ)的图像的影响 缩短 不变3.A (A >0)对y =A sin(ωx +φ)的图像的影响 伸长 A知识点三 正弦型函数y =A sin(ωx +φ)中,A ,ω,φ的物理意义 1.|A | 2.φ例1.解:法一 (先伸缩后平移)y =sin 的图像――→各点的纵坐标伸长到原 的2倍横坐标不变y =2sin 的图像y =2sin(2x )的图像y =2sin ⎝⎛⎭⎫2x -π6的图像向上平移1个单位长度,y =2sin ⎝⎛⎭⎫2x -π6+1的图像. 法二 (先平移后伸缩)y =sin 的图像――→各点的纵坐标伸长到原 的2倍横坐标不变y =2sin y =2sin ⎝⎛⎭⎫x -π6的图像y =2sin ⎝⎛⎭⎫2x -π6的图像――→向上平移1个单位y =2sin ⎝⎛⎭⎫2x -π6+1的图像. 跟踪训练1.【答案】A【解析】变换后的三角函数为y =cos(x +1),结合四个选项可得A 选项正确.例2.解:(1)列表:x π2 32π 52π 72π 92π 12x -π4 0 π2 π 32π 2π 3sin ⎝⎛⎭⎫12x -π43-3描点、连线如图所示:跟踪训练2.解:令X =2x +π4,则x =12⎝⎛⎭⎫X -π4.列表: X 0 π2π 3π2 2π x -π8 π8 3π8 5π8 7π8 y2.5-2.5描点连线,如图所示.例3.解:法一 (1)y =12sin π3x=12sin(π3x +2π) =12sin ⎣⎡⎦⎤π3(x +6), ∴此函数的周期为6. (2)y =3sin(2x +π6)=3sin(2x +π6+2π)=3sin ⎣⎡⎦⎤2(x +π)+π6, ∴此函数的周期为π法二 (1)T =2ππ3=6.(2)T =2π2=π.跟踪训练3.【答案】A【解析】∵3sin ⎝⎛⎭⎫2x -π6的最小值是- 3. ∴f (x )的最小值是-3-1. f (x )的周期T =2π2=π.例4.解:y =3sin ⎝⎛⎭⎫π3-x 2=3sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-x 3=3sin(x 2+2π3), 由-π2+2k π≤x 2+2π3≤π2+2k π,k ∈Z ,得-7π3+4k π≤x ≤-π3+4k π,k ∈Z .∴y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间为⎣⎡⎦⎤4k π-7π3,4k π-π3( k ∈Z ). 跟踪训练4.【答案】⎣⎡⎦⎤0,π3,⎣⎡⎦⎤5π6,π 【解析】令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,又因为0≤x ≤π,∴0≤x ≤π3或5π6≤x ≤π,∴原函数的单调递增区间为⎣⎡⎦⎤0,π3,⎣⎡⎦⎤5π6,π. 例5.解:(1)当2x -2π3=2k π+π2,k ∈Z ,即x =k π+7π12(k ∈Z )时,y max =3,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+7π12,k ∈Z . 当2x -2π3=2k π-π2,k ∈Z ,即x =k π+π12(k ∈Z )时,y min =-3,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π12,k ∈Z . (2)当3x +π3=2k π-π2(k ∈Z ),即x =2k π3-5π18(k ∈Z )时,y max =5,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π3-5π18,k ∈Z . 当3x +π3=2k π+π2,k ∈Z ,即x =2k π3+π18,k ∈Z 时,y min =1,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π3+π18,k ∈Z . 跟踪训练5. 解:f (x )=2cos(π3-x 2)=2cos(x 2-π3).由-π≤x ≤π,得-5π6≤x 2-π3≤π6.当x 2-π3=0,即x =2π3时,[f (x )]max =2. 当x 2-π3=-5π6,即x =-π时,[f (x )]min =- 3. 当堂检测 1.【答案】B 【解析】 T =2π2=π.2.【答案】A【解析】由T =2πω,∴ω=2π6π=13,∴y =12sin ⎝⎛⎭⎫13x +π6. 3.【答案】D【解析】∵y =sin ⎝⎛⎭⎫2x -π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6, ∴将函数y =sin 2x 的图像向右平行移动π6个单位长度,可得y =sin ⎝⎛⎭⎫2x -π3的图像. 4.【答案】y =13sin 3x【解析】 将y =sin x 的图像横坐标缩短到原 的13倍得y =sin 3x 的图像,纵坐标再缩短为原的13倍得y =13sin 3x 的图像. 5.【答案】5π6【解析】本题主要考查三角函数图像的平移、三角函数的性质、三角运算等知识,意在考查考生的运算求解能力及转化与化归思想的应用.将y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+φ的图像,化简得y =-cos(2x +φ),又可变形为y =sin ⎝⎛⎭⎫2x +φ-π2.由题意可知φ-π2=π3+2k π(k ∈Z ),所以φ=5π6+2k π(k ∈Z ),结合-π≤φ<π知φ=5π6.6.解:∵-π2≤x ≤π2,∴-π≤2x ≤π,-54π≤2x -π4≤34π.(1)列表如下x -π2 -3π8 -π8 π8 3π8 π2 2x -π4-54π -π -π2 0 π2 34π f (x )211-211+22(2)描点连线成图,如图所示:。

高中化学人教版(2019)必修第二册学案:6

高中化学人教版(2019)必修第二册学案:6

第一节 化学反应与能量变化第1课时 化学反应与热能课程解读(见学生用书P36)知识点一 化学能与热能的相互转化 1.实验探究结论:化学反应除了有新物质生成以外,还总会伴随着能量变化,通常主要表现为热能的变化,有的__放出__热量,有的__吸收__热量。

2.吸热反应与放热反应(1)吸热反应:吸收热量的化学反应,是__热__能转化为__化学__能。

(2)放热反应:释放热量的化学反应,是__化学__能转化为__热__能。

知识点二 化学键与化学反应中能量变化的关系1.化学反应中能量变化的本质原因化学键的__断裂__与__形成__是化学反应中能量变化的主要原因。

2.决定化学反应中能量变化的因素反应物总能量大于生成物总能量,反应__放热__; 反应物总能量小于生成物总能量,反应__吸热__。

3.人类利用能源的三个阶段1.判断正误(正确的打“√”,错误的打“×”)。

(1)断裂旧化学键释放出能量而形成新化学键则吸收能量。

( × )(2)当反应物的总能量大于生成物的总能量时,化学反应吸收能量。

( × )(3)化学反应过程中的能量转化方式一定是化学能和热能之间的相互转化。

( × ) (4)化学反应过程中吸收或放出的能量多少取决于反应物和生成物的总能量。

( √ ) 2.下列属于氧化还原反应,且为吸热反应的是( B ) A .CaO +H 2O===Ca(OH)2 B .C +H 2O(g)=====高温CO +H 2C .Zn +2H +===Zn 2++H 2↑D .2NaOH +H 2SO 4===Na 2SO 4+2H 2O3.(1)硝酸铵溶于水温度降低,该变化是吸热反应吗? (2)放热反应一定容易发生,吸热反应一定难以发生吗? (3)为什么所有化学反应前后都有能量的变化?答:(1)不是。

硝酸铵溶于水温度降低是物理现象,不是化学变化,吸热反应必须是化学变化。

(2)不一定。

湘教版高中同步学案数学选择性必修第一册精品课件 第1章 数列 第1课时 等差数列的概念及通项公式

湘教版高中同步学案数学选择性必修第一册精品课件 第1章 数列 第1课时 等差数列的概念及通项公式
数列{an}中项的序号被4除余3的项是第3项,第7项,第11项,…,
∴b1=a3=-7,b2=a7=-27,故A正确,B错误;
对于D,设数列{an}中的第m项是数列{bn}中的第k项,则m=3+4(k-1)=4k-1,
∴当k=503时,m=4×503-1=2 011,
即数列{bn}中的第503项是{an}中的第2 011项,故D错误.故选AC.
2.若数列{an}满足a1=19,an+1=an-3(n∈N+),则当am=-2 021时,m的值是( C )
A.679
B.680
C.681
D.690
解析 ∵a1=19,an+1-an=-3(n∈N+),
∴{an}是以19为首项,-3为公差的等差数列,则an=19+(n-1)×(-3)=22-3n.
2
λ,使得数列
λ=-1.
-1
(3)由(2)知数列{ }是等差数列,其首项为
2
an=(n+1)2n+1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2,公差为
-1
1,则 =2+(n-1)·1,故
2
C级
学科素养创新练
14.(多选题)已知等差数列{an}是无穷数列,该数列的首项a1=3,公差d=-5,依
(2)假设存在实数 λ
+
∵ 2

-1 +
2 -1
=
+
满足题意,则 2
-2 -1 -
+
{ }为等差数列,且
2
2
=

-1 +

苏教版高中同步学案数学选择性必修第一册精品课件 第四章 数列 第1课时 等差数列的通项公式

苏教版高中同步学案数学选择性必修第一册精品课件 第四章 数列 第1课时 等差数列的通项公式
an=f(n)=a1+(n-1)d=dn+(a1-d).点(n,an)落在直线y=dx+(a1-d)上,并且这些点
的横坐标每增加1,函数值增加d.
过关自诊
1.判断正误.(正确的画“√”,错误的画“×”)
(1)在公差为d的等差数列{an}中,a2 022=a22+2 000d.( √ )
(2)若数列{an}为等差数列,则其通项公式为关于n的一次函数.( × )
(2)等差数列基本量的运算;
(3)等差数列的实际应用.
2.方法归纳:定义法、公式法.
3.常见误区:实际问题中项数的确定.
学以致用•随堂检测全达标
1.(2021广西桂林期末)在等差数列{an}中,若a1=2,a2=4,则a4=(
A.6
B.8
C.16
D.32
答案 B
解析 因为等差数列{an}中,a1=2,a2=4,所以公差d=a2-a1=4-2=2,则
【例1】 在等差数列{an}中,
(1)已知a1=2,d=3,求a10;
(2)已知a1=3,an=21,d=2,求n;
(3)已知a1=12,a6=27,求d;
1
(4)已知d=- 3 ,a7=8,求a1和an.
解 (1)a10=a1+(10-1)d=2+9×3=29.
(2)由an=a1+(n-1)d得3+2(n-1)=21,
3 + 6 = 16,
3 = 5,
且{an}是递增数列,得
6 = 11.
(2)设等差数列{an}的公差为 d,
1 + 2 = 5,
3 = 5,
1 = 1,


解得

苏教版高中同步学案数学选择性必修第一册 第4章 数列 等差数列-4.2.2 等差数列的通项公式

苏教版高中同步学案数学选择性必修第一册 第4章 数列 等差数列-4.2.2 等差数列的通项公式
3
−1 =
1

3
31
+ .
3
规律方法
等差数列{ }的通项公式 = 1 + − 1 中共含有四个变量,即1 ,,, ,
如果知道了其中的任意三个数,就可以由通项公式求出第四个数,这一求未知量的过程我
们通常称之为“知三求一”.
跟踪训练1已知在递增的等差数列{ }中,3 6 = 55,4 + 5 = 16.
1 + 2 = 5,
3 = 5,
1 = 1,
由ቊ
得ቊ
解得ቊ
6 = 11, 1 + 5 = 11,
= 2,
所以 = 1 + − 1 = 1 + 2 − 1 = 2 − 1.
【题型二】灵活设元解等差数列
例2(1) 三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数;
− 1), + ,此时公差为.
跟踪训练2(1) 已知四个数成等差数列且是递增数列,这四个数的平方和为94,首末
两数之积比中间两数之积少18,求此等差数列;
解设这四个数分别为 − 3, − , + , + 3,则
− 3 2 + − 2 + + 2 + + 3
− + + + = 9,
解设这三个数依次为 − ,, + ,由题意可得ቊ
解得
− =6 + ,
= 3,

所以这三个数依次为4,3,2.
= −1,
(2)四个数成递增等差数列,中间两数的和为2,首末两数的积为−8,求这四个数.
设这四个数依次为 − 3, − , + , + 3(公差为2 > 0),

苏教版高中同步学案数学选择性必修第一册精品课件 第四章 数列 培优课 求数列的通项公式

苏教版高中同步学案数学选择性必修第一册精品课件 第四章 数列 培优课 求数列的通项公式

所以an+2n+1=5×3n-1,即an=5×3n-1-2n+1.
探究点四 利用前n项和Sn与an的关系求通项公式
【例4】 (1)已知数列{an}的前n项和为Sn,若Sn=2an-4,则an=(
)
A.2n+1 B.2n
C.2n-1
D.2n-2
+2

(2)已知数列{an}的前n项和为Sn,且 Sn= 3 an,则 (n≥2)的最大值为(
公式.
解 等式两边同时除以 2

,得2
n
当 n=1

所以
2

时,2
=
=
1

,所以 2
2
=
-1

+2(n≥2),即2
-1
2
1
是以2为首项,以
1
+(n-1)×2,即 an=
2
3
22
×2n.

-1
-1
2
=2(n≥2).
2 为公差的等差数列,
变式探究2
将本例中“an=2an-1+2n”变为“an=2an-1+2n-1”,其余不变,求数列{an}的通项
即an=3n-1+2,所以a2 021=32 020+2.
2.已知数列{an}满足an+1=2an+3×5n,a1=6,则数列{an}的通项公式为(
)
A.an=2n-1+5n B.an=2n-1-5n
C.an=2n-1
D.an=21n-15
答案 A
解析 设an+1+x·5n+1=2(an+x·5n),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案6 数列的通项公式
学习目标:
了解数列通项公式的意义,会根据条件求解某些数列的通项公式。

学习过程:
一、 基本知识回顾:
1. 数列是特殊的函数,其解析式称为通项公式。

给出通项公式()
*()n a f n n N =∈,不仅能确定数列,而且便于研究项的变化,所以求数列的通项公式是数列的基本问题之一;
2. 求通项公式方法:
(1) 观察法:观察数列的特征,找出各项共同的构成规律,横看各项之间的关系结
构,纵看各项与项数n 的关系,从而确定出数列的通项公式。

(2) 构造等差、等比数列法:根据所给数列的递推公式以及其他关系式,构造出一
个新的等差数列或等比数列再求其通项
(3) 利用;11
;21S n a n S S n n n =⎧=⎨-≥-⎩求数列的通项公式
(4) 累加法:若数列{a n }满足1(),(1)(2)()n n a a f n f f f n --=+++ 且是可求的,
就可以用累加法求出其通项公式。

(5) 累积法:若数列{a n }满足1
(),(1)(2)()n n a f n f f f n a -=⋅⋅⋅ 且是可求的,就可以用累积法求出其通项公式。

(6) 待定系数法:若已知数列{a n }通项公式的结构形式,可以先设出通项公式,再
由已知条件求出待定系数。

二、 过关训练:
1. 已知等差数列的公差为2,若a 1,a 3,a 4成等比数列,则a 2= ( )
A .-4
B .-6
C .-8
D .-10
2. 已知数列{}n a 的前n 项和n S 22,n n n N *=+-∈,则正确的是 ( )
(A )数列{}n a 是等差数列 (B )数列{}n a 是等比数列
(C ) 数列{}1+n a 是等差数列 (D )数列{}1+n a 是等比数列
3. 已知数列{a n },那么“对任意的n ∈N +,点P n (n ,a n )都在某条直线上”是“{a n }为等
差数列”的 ( )
A .必要条件
B .充分条件
C .充要条件
D .既不充分也不必要条件
4.设{}n a 是公比为q 的等比数列,n S 是它的前n 项和,若{n S }是等差数列,则q= 。

5.设数列{a n }的前项的和S n =3
1(a n -1) (n ∈N +),则n a =
三、 课堂互动:
例1 已知数列}{n a ,0n a >且*n N ∈,它的前n 项和为n S ,如果21S ,22S ,…,
2n
S ,…是首项为3、公差为1的等差数列。

(1) 求数列}{n a 的通项公式;
(2) 问数列}{n a 是递增数列还是递减数列?说明理由。

例2 已知数列{a n }中,a 1=1,
221(1)k k k a a -=+-,2123k k k a a +=+,其中k =1,2,3…,
(1) 求a 3、a 5;
(2) 求{a n }的通项公式
四、 强化训练:
1.在数列{}n a 中,a 1=2,12(2n n n
a n a a n ++⎧=⎨⎩为奇数)(为偶数),则5a 等于 ( ) A .12 B .14 C .20 D .22 2.已知数列11231{}1,23(1)(2).n n n a a a a a a n a n -==++++-≥ 满足则n a = 。

3.有两个各项都是正数的数列{a n },{
b n },若对于任意自然数n 都有a n 、b n 2、 a n+1成等差数列,b n 2、a n+1、b n+12成等比数列,如果a 1=1,b 1=2,则n a = 。

4.已知数列{}n a 中,3
11=
a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a 。

5.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n . (1) 写出数列{}n a 的前三项321,,a a a ;
(2) 求出{}n a 的通项公式.
6.设A n 为数列{a n }的前n 项和,A n =2
3 (a n -1),数列{b n }的通项公式为b n =4n +3; (1)求数列{a n }的通项公式;
(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明:数列{d n }的通项公式为d n =32n +1
五、你还有什么不明白的地方?
高三数学《必修5》作业
班级 姓名 学号 分数 .
A 组:1.已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足则n a = .
2.设{}n a 是首项为1的正项数列,且()0
11221=+-+++n n n n a na na a n (n =1,2, 3,…),则它的通项公式是n a =________。

3.已知数列{}n a 中,21=a ,)2(1
211≥+=--n a a a n n n ,则n a = . B 组:已知数列{}n a 的前n 项和n S 与n a 的关系是n n n b ba S )1(11+-
+-= ,其中b 是与n 无关的常数,且1-≠b 。

求出用n 和b 表示的n a 的关系式。

相关文档
最新文档