二次函数(顶点式)图像性质
二次函数图像与性质完整归纳
二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。
二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。
根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。
在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。
根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。
除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。
根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。
根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。
平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。
二次函数图像与性质ppt课件
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
二次函数及其图象和性质
二次函数及其图象和性质(二)一、内容提要(一)二次函数的解析式:1.一般式:y=ax2+bx+c;其中a≠0, a, b, c 为常数2.顶点式:y=a(x-h)2+k;其中a≠0, a, h, k 为常数,(h,k)为顶点坐标。
3.交点式:y=a(x-x1)(x-x2);其中a≠0, a, x1,x2为常数,x1,x2是抛物线与横轴两交点的横坐标。
注:这种形式可以作为了解内容,重点是前两种。
(二)二次函数的图象:抛物线(三)性质:1.对称轴,顶点坐标:2.开口方向:a>0, 抛物线开口向上,并向上无限延伸。
a<0, 抛物线开口向下,并向下无限延伸。
3.增减性:(Ⅰ)a>0时,当x时,y随x增大而减少当x>时,y随x增大而增大(Ⅱ)a<0时,当x时,y随x增大而增大当x>时,y随x增大而减小4.最值:(Ⅰ)a>0时,当x=时,(Ⅱ)a<0时,当x= 时,5.抛物线与y轴交点坐标:(0,C)特别地当C=0时,抛物线过原点,反之也成立。
6.抛物线与x轴的位置关系:(Ⅰ)Δ=b2-4ac<0,抛物线与x轴无交点。
(Ⅱ)Δ=b2-4ac=0,抛物线与x轴只有一个交点,交点坐标为(,0)(Ⅲ)Δ=b2-4ac>0,抛物线与x轴有两个交点,交点坐标为(,0)二、典型例题:例1.已知+3x+6是二次函数,求m的值,并判断此抛物线开口方向,写出顶点坐标及对称轴。
解:由题意得解得 m=-1∴y=-3x2+3x+6=,开口向下,顶点坐标(),对称轴x=。
说明:在y=a(x-h)2+k中,(h,k)是抛物线的顶点坐标,所以一般求抛物线的顶点坐标时,常常利用配方法把解析式转化为上述表达形式,直接写出顶点坐标,对称轴方程,也可以用顶点坐标公式()求得,解题时可根据系数的情况选择适当的方法。
例2.已知抛物线y=ax2+bx+c 如图所示,直线x=-1是其对称轴,(1)确定a,b,c, Δ=b2-4a c的符号,(2)求证:a-b+c>0, (3)当x取何值时,y>0, 当x取何值时y<0。
二次函数的顶点式的图像及性质
顶点式的图像特点
顶点式的图像特点包括:对称性(关于顶点对称)、顶点的坐标与图像的位 置、抛物线的开口方向和形状。
顶点式与二次函数的关系
顶点式是一种方程形式,通过顶点和开口方向表达了二次函数的图像特点, 能够帮助我们更好地理解和分析二次函数。
顶点式与平移变换的关系
顶点式可以通过改变顶点的坐标实现平移变换,从而在坐标平面上移动和调整抛物线的位置。
顶点式的性质
顶点式具有区间可见性、单调性、最值、极值点的性质等,这些性质帮助我 们更好地理解和分析二次函数的图像特点。
顶点式的应用示例
顶点式在物理学、经济学等领域有广泛的应用。例如,通过顶点式可以研究抛物线的最小值、最大值以及最优 解等问题。
二次函数的顶点式的图像 及性质
本节介绍二次函数的顶点式,包括定义、一般形式和性质。我们将展示顶点 式的图像特点,并说明与二次函数、平移变换的关系,最后提Байду номын сангаас应用示例。
顶点式的含义
顶点式是用来表示二次函数的一种方程形式。它通过给出顶点的坐标和抛物 线的开口方向来描述二次函数的图像。
顶点式的一般形式
二次函数的顶点式一般形式为:y = a(x - h)^2 + k,其中(h, k)表示顶点的坐标,a表示抛物线的开口方向和形状 (正值为开口向上,负值为开口向下)。
二次函数的图像和性质表格
配方法
将二次函数通过配方转化为顶点式$y=a(xh)^2+k$,其中$(h,k)$为顶点坐标。根据 $a$的正负和顶点坐标可求得最值。
公式法
对于一般形式的二次函数$y=ax^2+bx+c$ ,其最值可通过公式$-frac{b}{2a}$求得对 称轴,再代入原函数求得最值。
04 典型二次函数图 像举例
对称轴与顶点坐标
对称轴
对于一般形式$y=ax^2+bx+c$的二次函 数,其对称轴为直线$x=-frac{b}{2a}$。
VS
顶点坐标
顶点的横坐标为对称轴与抛物线的交点, 即$x=-frac{b}{2a}$,纵坐标为$cfrac{b^2}{4a}$。
与坐标轴交点情况
与$x$轴交点
解方程$ax^2+bx+c=0$,若$Delta=b^2-4ac>0$,则有两个不相等的实数根,即抛物线与$x$轴 有两个交点;若$Delta=0$,则有两个相等的实数根,即抛物线与$x$轴有一个交点;若$Delta<0$ ,则无实数根,即抛物线与$x$轴无交点。
与$y$轴交点
抛物线与$y$轴的交点为点$(0,c)$。
03 二次函数性质分 析
奇偶性判断方法
观察法
通过观察二次函数的表达式,判断其是否满足$f(-x)=f(x)$或$f(-x)=-f(x)$,若满足则函数为偶函数或奇函数。
代数法
将$-x$代入二次函数的表达式,化简后与原函数比较,若相等则为偶函数,若互为相反数则为奇函数。
二次函数表达式
一般形式为$f(x) = ax^2 + bx + c$ ,其中$a$、$b$、$c$为常数,且$a neq 0$。
二次函数图像与性质完整归纳
二次函数的图像与性质一、二次函数的基本形式1. 二次函数基本形式:的性质:2y ax =a 的绝对值越大,抛物线的开口越小。
2. 的性质:2y ax c =+上加下减。
3. 的性质:()2y a x h =-左加右减。
4. 的性质:()2y a x h k =-+的符号a 开口方向顶点坐标对称轴性质a >向上()00,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .00a <向下()00,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()0c ,轴y 时,随的增大而增大;时,0x >y x 0x <随的增大而减小;时,有最小值y x 0x =y .c 0a <向下()0c ,轴y 时,随的增大而减小;时,0x >y x 0x <随的增大而增大;时,有最大值y x 0x =y .c 的符号a 开口方向顶点坐标对称轴性质a >向上()0h ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y .00a <向下()0h ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .0的符号a 开口方向顶点坐标对称轴性质a >向上()h k ,X=h时,随的增大而增大;时,x h >y x x h <随的增大而减小;时,有最小值y x x h =y二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;()2y a x h k =-+()h k ,⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2y ax =()h k,【【【(h <0)【【【【【(h >0)【【【(h 【【|k|【【【2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.h k 概括成八个字“左加右减,上加下减”. 方法二:⑴沿轴平移:向上(下)平移个单位,变成c bx ax y ++=2y m c bx ax y ++=2(或)m c bx ax y +++=2m c bx ax y -++=2⑵沿轴平移:向左(右)平移个单位,变成c bx ax y ++=2m c bx ax y ++=2(或)c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(2三、二次函数与的比较()2y a x h k =-+2y ax bx c =++从解析式上看,与是两种不同的表达形式,后者通过()2y a x h k =-+2y ax bx c =++配方可以得到前者,即,其中.22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭2424b ac b h k a a -=-=,.k 0a <向下()h k ,X=h时,随的增大而减小;时,x h >y x x h <随的增大而增大;时,有最大值y x x h =y .k四、二次函数图象的画法2y ax bx c =++五点绘图法:利用配方法将二次函数化为顶点式,确2y ax bx c =++2()y a x h k =-+定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点y ()0c ,()0c ,、与轴的交点,(若与轴没有交点,则取两组关于对称轴()2h c ,x ()10x ,()20x ,x 对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.x y 五、二次函数的性质2y ax bx c =++ 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.0a >2bx a =-2424b ac b a a ⎛⎫-- ⎪⎝⎭,当时,随的增大而减小;当时,随的增大而增大;当2b x a <-y x 2bx a>-y x 时,有最小值.2b x a =-y 244ac b a- 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当0a <2bx a =-2424b ac b aa ⎛⎫-- ⎪⎝⎭,时,随的增大而增大;当时,随的增大而减小;当时,2b x a <-y x 2b x a >-y x 2bx a=-有最大值.y 244ac b a-六、二次函数解析式的表示方法1. 一般式:(,,为常数,);2y ax bx c =++a b c 0a ≠2. 顶点式:(,,为常数,);2()y a x h k =-+a h k 0a ≠3. 两根式:(,,是抛物线与轴两交点的横坐标).12()()y a x x x x =--0a ≠1x 2x x 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以x 240b ac -≥用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数中,作为二次项系数,显然.2y ax bx c =++a 0a ≠ ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越0a >a a 大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越0a <a a 大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决a a a 定开口的大小.2. 一次项系数b在二次项系数确定的前提下,决定了抛物线的对称轴.a b ⑴ 在的前提下,0a >当时,,即抛物线的对称轴在轴左侧;0b >02ba-<y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的右侧.0b <02ba->y ⑵ 在的前提下,结论刚好与上述相反,即0a <当时,,即抛物线的对称轴在轴右侧;0b >02ba->y 当时,,即抛物线的对称轴就是轴;0b =02ba-=y 当时,,即抛物线对称轴在轴的左侧.0b <02ba-<y 总结起来,在确定的前提下,决定了抛物线对称轴的位置.a b 的符号的判定:对称轴在轴左边则,在轴的右侧则,ab abx 2-=y 0>ab y 0<ab 概括的说就是“左同右异”总结:3. 常数项c⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;0c >y x y⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;0c =y y 0 ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为0c <y x y 负.总结起来,决定了抛物线与轴交点的位置.c y 总之,只要都确定,那么这条抛物线就是唯一确定的.a b c ,,二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;x 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称x关于轴对称后,得到的解析式是; 2y ax bx c =++x 2y ax bx c =---关于轴对称后,得到的解析式是;()2y a x h k =-+x ()2y a x h k =--- 2. 关于轴对称y关于轴对称后,得到的解析式是; 2y ax bx c =++y 2y ax bx c =-+关于轴对称后,得到的解析式是;()2y a x h k =-+y ()2y a x h k =++ 3. 关于原点对称 关于原点对称后,得到的解析式是;2y ax bx c =++2y ax bx c =-+-关于原点对称后,得到的解析式是;()2y a x h k =-+()2y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;2y ax bx c =++222b y ax bx c a=--+-关于顶点对称后,得到的解析式是.()2y a x h k =-+()2y a x h k =--+ 5. 关于点对称()m n ,关于点对称后,得到的解析式是()2y a x h k =-+()m n ,()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择a 合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:y=3(x+4)22y=3x 2十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数的图象64212++=x x y 【解】)128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x 以为中间值,取的一些值,列表如下:4-=x x x …-7-6-5-4-3-2-1…y …25023--223-025…【例2】求作函数的图象。
第1讲 二次函数的图像及性质
第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。
二次函数图像与性质解析版版
二次函数的图像及性质知识点1.二次函数的定义:形如的函数叫二次函数。
限制条件(1)自变量的最高次数是;(2)二次项系数。
2.二次函数的解析式(表达式)——三种形式,重点是前两种。
(1)一般式:;(2)顶点式:y=a(x-h)2+k(a≠0),此时二次函数的顶点坐标为(,),对称轴是。
注意:顶点形式的最大优点是直接从解析式看出顶点坐标和对称轴,比较方便。
离开它用一般形式也可以。
※(3)交点式(两点式):设x1、x2是抛物线与x轴的两个交点的横坐标,则y=a(x-x1)(x-x2)此时抛物线的对称轴为直线x=221xx+。
注意:(1)当顶点在X轴上(即抛物线与X轴只有一个交点(0,x1))时,函数表达式为。
这个交点是抛物线的什么点?(2)是不是任意一个二次函数都可以写成交点形式?在什么条件下才有交点式?(3)利用这种形式只是解决相关问题要简便一些,直接用一般形式也可以。
实际上利用一般形式和顶点坐标公式可以解决二次函数的多数问题。
▲三种二次函数的解析式的联系:针对一般形式而言,顶点式:y=a(x-h)2+k(a≠0)中,h= ;k= 。
当Δ=b2-4ac 时,才有两根式。
3、二次函数y=ax2+bx+c(a≠0)的图象与性质 ----抛物线的特征---待定系数a,b,c的作用二次函数y=ax2+bx+c(a≠0)的图象是一条线,它是一个对称图形,抛物线与对称轴的交点叫抛物线的点。
不过这个结论成立的条件是自变量的取值范围是。
(1)形状----开口大小。
由决定,越大,开口越。
(2)开口方向:由决定。
当a>0时,函数开口方向向;当a<0时,函数开口方向向;(3)对称轴:直线x= ;注意:一次函数的图象是直线,但直线的解析式不一定是一次函数。
例如与坐标轴平行(垂直)的直线的解析式是X=K,或Y=K,它们为什么不是一次函数呢?▲(4)顶点坐标公式:(,);利用顶点坐标公式的注意事项:当求得顶点横坐标后,可以用纵坐标公式,也可以不用纵坐标公式,而直接将横坐标代入哪里求得纵坐标。
二次函数的图像和性质总结
二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。
二次函数的图象与性质
(1)求抛物线的解析式;
解:(1)当 y=0 时, 1 x- 4 =0,解得 x=4,即 A(4,0), 33
抛物线过点
A,对称轴是
x=
3 2
,得
16a 12
3 2a
3 2
,
c
0,
解得
a c
1, 4,
8
16
64
所以二次函数 y=- 3 x2+bx+c 的图象与 x 轴有公共点. 16
∵- 3 x2+ 9 x+3=0 的解为 x1=-2,x2=8,∴公共点的坐标是(-2,0)或(8,0). 16 8
2.(2019云南)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且 与x轴有两个交点. (1)求k的值;
y 随 x 的增大而减小
二次函数的图象和性质
【例1】 (2018成都)关于二次函数y=2x2+4x-1,下列说法正确的是( D ) (A)图象与y轴的交点坐标为(0,1) (B)图象的对称轴在y轴的右侧 (C)当x<0时,y的值随x值的增大而减小 (D)y的最小值为-3
【例2】 已知二次函数y=2(x-1)(x-m-3)(m为常数). (1)求证:不论m为何值,该函数的图象与x轴总有公共点; (2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?
标可以看出对应 的函数值,4a+2b+c的值是x=2时对应的函数值,4a-2b+c的
的式子的值
值是x=-2时对应的函数值…
二次函数y=ax2+bx+c的图象与a,b,c的关系
二次函数的性质及其图象
象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题
得
4a 2b 4 36a 6b 0
,解得
a
1 2
;
b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<
二次函数的图像与性质课件
一阶导数等于零的点是函数的拐点,也是单调性的分界点。通过分析这
些点的左右两侧的导数符号变化,可以判断出函数的单调性。
二次函数的极值问题
极值的概念
01
02
03
极值
函数在某点的值大于或小 于其邻近点的值,称为该 函数在该点有极值。
极大值
函数在某点的左侧递减, 右侧递增,则该点为极大 值点。
极小值
函数在某点的左侧递增, 右侧递减,则该点为极小 值点。
顶点坐标
总结词
顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点坐标可以通过公式计算得出,顶点的x坐标为-b/2a,y坐标为cb^2/4a。这个顶点是抛物线的最低点或最高点,取决于抛物线的开口方向。
对称轴
总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是抛物线的对称轴,也是顶点的x 坐标。
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于x轴对称当且仅当$a > 0$,关于y轴对称当且仅当 $a < 0$。
点对称
总结词
二次函数的图像关于某点对称。
详细描述
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于点$(h, k)$对称当且仅当 $f(h+x) = f(h-x)$且$f(k+y) = f(k-y)$。
解方程问题
总结词
通过二次函数的图像与x轴的交点,可以求 解一元二次方程的根。
详细描述
一元二次方程的根即为二次函数图像与x轴 的交点横坐标。通过观察二次函数的开口方 向和与x轴的交点数,可以判断一元二次方 程实数根的个数。
考点07 二次函数的图像与性质(解析版)
考点七二次函数的图像与性质知识点整合一、二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.三、二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小2.二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y =a (x –h )2+k ,顶点坐标为(h ,k ).2.保持y =ax 2的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例引领变式拓展考向二二次函数的图象与性质二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例引领1x=时有最小值2-,即a-当2x=-时有最大值6,即4解得:89a=,109b=-,∴1118110 333939 a b⎛-=⨯-⨯-⎝②a<0时,如图,1x =时有最大值6,即26a a b -+=当2x =-时有最小值2-,即44a a +解得:89a =-,469b =,∴11181462333939a b ⎛⎫-=⨯--⨯=- ⎪⎝⎭,故答案为:23或2-.4.定义:两个不相交的函数图象在竖直方向上的最短距离,抛物线223y x x =-+与直线y x =-【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,变式拓展【答案】②③④【分析】本题考查了二次函数图象与系数的关系,①根据抛物线开口向下可得在y轴右侧,得0b>,抛物线与x=,即对称轴是直线1【答案】②④/④②【分析】本题考查二次函数的图象和性质,结合的数学思想是解题的关键.【详解】解:将点(11933b c b c ++=⎧⎨++=⎩,。
第02讲 二次函数的图像与性质——顶点式(解析版)-2024学年九年级数学上册同步学与练(人教版)
第02讲二次函数的图像与性质——顶点式课程标准学习目标①二次函数()2h x a y -=的图像与性质②二次函数k ax y +=2的图像与性质③二次函数()k h x a y +-=2的图像与性质1.掌握()2h x a y -=、k ax y +=2、()k h x a y +-=2的函数与性质。
2.能够利用三种函数的图像与性质进行解题。
知识点01()()02≠±=a h x a y 的图像与性质1.()2h x a y ±=的图像与性质:由函数的平移可知,可将2ax y =向左右平移h个单位得到函数()2h x a y ±=。
由2ax y =的图像与性质可得到函数()2h x a y ±=的图像与性质如下:()()02≠+=a h x a y 0>a 0<a 大致图像<h (向左平移)>h (向右平移)<h (向左平移)>h (向右平移)开口方向开口向上开口向下顶点坐标(h ,0)(h ,0)对称轴hx =hx =增减性对称轴右边y 随x 的增大而增大。
对称轴左边y 随x的增大而减小。
对称轴右边y 随x 的增大而减小。
对称轴左边y 随x 的增大而增大。
最值函数轴最小值这个值是0。
函数轴最大值这个值是。
题型考点:①二次函数()2h x a y -=的图像与性质。
【即学即练1】1.抛物线y =(x +1)2的对称轴是()A .直线y =﹣1B .直线1C .直线x =﹣1D .直线x =1【解答】解:抛物线y =(x +1)2的对称轴是直线x =﹣1,故选:C .【即学即练2】2.同一坐标系中,二次函数y =(x ﹣a )2与一次函数y =a +ax 的图象可能是()A .B .C .D .【解答】解:A 、由一次函数y =a +ax 的图象可得:a <0或a >0,此时二次函数y =(x ﹣a )2的顶点(a ,0),a <0,矛盾,故错误;B 、由一次函数y =a +ax 的图象可得:a <0,此时二次函数y =(x ﹣a )2的顶点(a ,0),a >0,矛盾,故错误;C 、由一次函数y =a +ax 的图象可得:a <0或a >0,此时二次函数y =(x ﹣a )2的顶点(a ,0),a <0,矛盾,故错误;D 、由一次函数y =a +ax 的图象可得:a >0,此时二次函数y =(x ﹣a )2的顶点(a ,0),a >0,故正确;故选:D .【即学即练3】3.对于二次函数y =﹣2(x +3)2的图象,下列说法正确的是()A .开口向上B .对称轴是直线x =﹣3C .当x >﹣4时,y 随x 的增大而减小D .顶点坐标为(﹣2,﹣3)【解答】解:由y =﹣2(x +3)2得抛物线开口向下,对称轴为直线x =﹣3,顶点坐标为(﹣3,0),x ≤﹣3时y 随x 增大而增大,x >﹣3时y 随x 增大而减小.故选:B .知识点02()2≠+=a k ax y 1.()02≠+=a k ax y 的图像与性质:由函数的平移可知,可将2ax y =向上下平移k 个单位得到函数k ax y ±=2。
二次函数顶点式图像性质总结
二次函数顶点式图像性质总结二次函数性质:a正号说明开口向上,负号说明开口向下;a的绝对值越大,抛物线开口越小;c表示抛物线与y轴的交点,图像过(0,c)点。
二次函数y=ax2+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程,即ax2+bx+c=0(a≠0)此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。
2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a).3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。
若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax2+bx+c(a≠0)的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax2+bx+c的最值(也就是极值):如果a>0(a<0),则当x=-b/2a 时,y最小(大)值=(4ac-b2)/4a.顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
初中:二次函数性质与图像
3.二次函数的图象与性质:
二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0
时,抛物线的开口向上,这时当x≤-
b 2a
时,y随x的增大而减
小;当x≥-2ba时,y随x的增大而增大;当x=-2ba时,y有最
小值
4ac-b2 4a
.当a<0时,抛物线开口向下,这时当x≤-
b 2a
时,y随x的增大而增大;当x≥-
1.二次函数的定义: 一般地,形如_y=ax2+bx+c(其中 a,b,c 是常数,a≠0) 的函数叫做二次函数.
2.二次函数的三种表达式:
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),顶 点坐标是(h,k). (3)交点式:y=a(x-x1)(x-x2)(a,x1,x2是常数, a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图 象的对称轴为直线__x=x1+2 x2.
=ax2+bx+c的图象与x轴相交于A(-2,0),B(1,0)
两点.有下列结论:①ac>0;②二次函数y=ax2+bx
+c的图象的对称轴为直线x=-1;③2a+c=0;④a
-b+c>0.其中正确的有
()
A. 0个
B. 1个
C. 2个
D. 3个
【解析】 函数图象开口向下,∴a<0,与y轴的交点在y轴的正半轴, ∴c>0,∴ac<0,故①错误. 二次函数的图象与x轴相交于点A(-2,0),B(1,0),由对称性可知其对
(1)b2-4ac>0⇔抛物线与x轴有两个交点
-b±
2ba2-4ac,0.
(2)b2-4ac=0⇔抛物线与x轴只有一个交点-2ba,0. (3)b2-4ac<0⇔抛物线与x轴没有交点.
二次函数的顶点式图像与性质教案
二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 理解二次函数的一般形式:y = ax^2 + bx + c1.2 引入顶点式的概念:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 绘制二次函数的顶点式图像,观察顶点、开口方向、对称轴等特征1.4 探讨顶点式图像与一般形式图像的关系第二章:顶点式图像的性质2.1 理解顶点式图像的顶点坐标对图像的影响2.2 探讨顶点式图像的开口方向与a的关系2.3 分析顶点式图像的对称轴方程:x = h2.4 探讨顶点式图像的增减性:a > 0时,y随x增大而增大;a < 0时,y先增大后减小第三章:二次函数的顶点式与一元二次方程3.1 理解二次函数的顶点式与一元二次方程的根的关系3.2 利用顶点式将二次函数转化为一元二次方程:y = a(x h)^2 + k = 03.3 求解一元二次方程,得出x的值3.4 分析一元二次方程的根与顶点式图像的交点关系第四章:实际问题中的应用4.1 引入实际问题,如:抛物线与坐标轴的交点、物体运动等4.2 利用顶点式图像分析实际问题中的最大值、最小值等4.3 探讨实际问题中对称性的应用4.4 分析实际问题中开口方向与实际情况的关系第五章:总结与拓展5.1 总结二次函数的顶点式图像与性质的主要内容5.2 探讨二次函数的顶点式图像在实际问题中的应用5.3 提出拓展问题,如:二次函数的顶点式图像与线性函数的关系等5.4 鼓励学生自主研究,培养学生的探究能力第六章:对称轴与顶点的关系6.1 回顾顶点式y = a(x h)^2 + k 中对称轴的定义6.2 分析对称轴与顶点坐标的h 值的关系6.3 探讨对称轴在实际问题中的应用,如抛物线射击、几何图形的对称性等6.4 进行对称轴相关的练习题,巩固学生对对称轴的理解第七章:开口方向与二次函数的性质7.1 引入开口方向的概念,分析a 值对开口方向的影响7.2 探讨开口方向与顶点式图像的关系7.3 分析开口方向在实际问题中的应用,如球的体积、光学问题等7.4 进行开口方向相关的练习题,帮助学生理解开口方向的意义第八章:增减性分析8.1 回顾顶点式图像的增减性:a > 0 时,y 随x 的增大而增大;a < 0 时,y 的变化为先增大后减小8.2 分析增减性在实际问题中的应用,如气温变化、经济曲线等8.3 进行增减性相关的练习题,让学生掌握增减性的分析方法8.4 探讨增减性与对称轴、开口方向的关系第九章:实际问题中的二次函数应用9.1 引入复杂的实际问题,如利润最大化、路程优化等9.2 利用二次函数的顶点式图像分析实际问题,求解最优解9.3 探讨实际问题中二次函数的多种应用场景,如物理运动、工程设计等9.4 进行实际问题相关的练习题,提高学生解决实际问题的能力第十章:总结与拓展10.1 回顾本节课的主要内容,总结二次函数的顶点式图像与性质的关键点10.2 鼓励学生进行拓展学习,如研究三次函数、高次函数的图像与性质10.3 提出课程延伸问题,如二次函数的顶点式图像在、大数据等领域的应用10.4 布置课后作业,巩固学生对二次函数顶点式图像与性质的理解和应用重点和难点解析一、顶点式图像的绘制与观察:理解顶点式y = a(x h)^2 + k 并能绘制出相应的图像,观察顶点、开口方向和对称轴等特征。
(完整版)二次函数图象和性质知识点总结
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称轴
直线x=0 直线x=0 直线x=-1 直线x=1 直线x=-1 直线x=-1 直线x=h
顶点坐标
(0,0) (0,2) (-1,0) (1,-2) (-1,-2) (-1,2) (h,k)
y 5x 2
2
y 2( x 1)
2
y ( x 1)2 2
y ( x 1)2 2
教学目标:
1 会用描点法画出二次函数 的图像
开口方向,对称轴,顶点坐标
y a( x h) k
2
2 y a ( x h ) k 的 2 会说出二次函数图像
3 培养学生经历由具体到一般的探索事物的 规律的过程
复习归纳:完成下列两表
填表
抛物线
开口方向 对称轴 顶点坐标
2
y 0.5x
开口向上 直线X=-1
(-1, 0)
新课讲授:
操作题1:在同一坐标系内,画出函数
1 2 y x 1 2
1 2 y ( x 1) 1 2
1 2 y x 2
的图像.
指导:(1) 列表时,要合理取值,首先考虑对称性,其次尽量取整 (2)描点时,一般先定顶点,然后根据对称性,描出对称点
所以这个函数的解析式为:
2( x 2)
2
2
又因为所求抛物线顶点坐标是(-1,3),所以h=-1,k=3
y 2( x 1) 3 2 y 2 x 4x 1 即: 2 拓展:如果给我们的函数形式是: y 2 x 4 x 1
图像如何画?
相应练习:
相同,其对称轴与抛物线
2
开口向下 开口向下 开口向下
直线X=0 直线X=0 直线X=0
(0,0)
y 0.5x 1
(0,1)
(0,-1)
y 0.5x 1
2
填表:
抛物线
开口方向 对称轴
直线X=0
顶点坐 标
(0, 0) (1, 0)
y 2x
2
开口向上
2
y 2( x 1)
开口向上 直线X=1
2
y 2( x 1)
归纳总结: y a( x h) k
2
图像的特点.
y a( x h)2 k 的图像性质:
(1)a的符号决定抛物线的开口方向 (2)对称轴是直线x=h (3)顶点坐标是(h,k)
小练习:
抛物线
1 2 y x 2
开口方 向
开口向上 开口向上 开口向上 开口向上 开口向上 开口向下
抛物线 2 y ax k(a 0) 开口方向 对称轴
开口向上 开口向上 开口向上
顶点坐标
(0,k) (h,0) (h,k)
y a(x h)2 (a 0)
y a(x h) k(a 0)
2
直线X=0 直线X=h 直线X=h
一条抛物线的形状与抛物线
y 3x 2 y ( x 2)
2
相同,且顶点的纵坐标是4,写出这条抛物 线的解析式.
小结:
本节课主要运用了数形结合的思想方法,通过对 函数图象的讨论,分析归纳出 y a (x h) 2 k 的性质: (1)a的符号决定抛物线的开口方向
(2)对称轴是直线x=h (3)顶点坐标是(h,k)
y 3( x 1)2 2
y a( x h) k (a 0)
2
开口向下
例题分析:
一条抛物线的形状与抛物线
y 2( x 2)
2
相同,其顶点坐标是(-1,3),写出这个抛物线的解析式. 解:设函数解析式为
y a( x h)2 k
因为所求抛物线的形状与 y 相同,所以a=-2.
1 y ( x 1) 2 1 的图像可以 y 1 x 2 先向下平移一个单位, 2 2 由 再向左平移一个单位,或者先向左平移一个单位再向下 平移一个单位而得到.
1 2 y ( x 1) 1 2
1 2 y ( x 1) 1 图像的性质:开口向下,对称 2 轴是x=-1,顶点坐标是(-1,-1)
(3)连线时,注意顶点附近的大致走向,画出的抛物线应 平滑,对称,且符合抛物线的特点
(4)对描点,连线中出现的误差,要适当修正,或修正不合 适的选值.
讨论题2:观察所画的函数图像并进行 比较,你认为函数的图像有哪些特点?
1 2 y x 2
1 2 y x 1 2
1 2 y