bq29312
一种W波段测云雷达中频信号采集装置
专利名称:一种W波段测云雷达中频信号采集装置专利类型:实用新型专利
发明人:郭强,谢承华,罗继成
申请号:CN202122096037.7
申请日:20210901
公开号:CN215728782U
公开日:
20220201
专利内容由知识产权出版社提供
摘要:本实用新型涉及一种W波段测云雷达中频信号采集装置,它包括模数转换模块、直接数字频率合成模块、时钟发生模块、控制/信号处理模块、光纤收发模块、电源管理模块和电平转换模块;模数转换模块与所述控制/信号处理模块的输入端连接,控制/信号处理模块的输出端与直接数字频率合成模块的输入端连接;光纤收发模块、时钟发生模块和电平转换模块与控制/信号处理模块相互连接,电源管理模块的供电输出端与控制/信号处理模块的供电输入端连接。
本实用新型利用
ADS42LB69模数转换芯片的双通道采集保证了信号的通道平衡性,及高精度、高采样率的信号采集,提高了中频信号模数转换质量为后端信号处理和雷达产品生成提供更准确的数据源。
申请人:成都远望科技有限责任公司
地址:610041 四川省成都市高新区九兴大道6号高发大厦B幢219、419室
国籍:CN
代理机构:北京天奇智新知识产权代理有限公司
代理人:王大刚
更多信息请下载全文后查看。
BQ20Z80ADBT-V110;BQ20Z80DBTG4;BQ20Z80DBT;BQ20Z80DBTR;BQ20Z80DBTRG4;中文规格书,Datasheet资料
FEATURESAPPLICATIONSDESCRIPTIONbq20z80bq20z80ASLUS782–JULY2007 SBS1.1-COMPLIANT GAS GAUGE ENABLED WITH IMPEDANCE TRACK™TECHNOLOGY FOR USE WITH THE bq29312A•38-Pin TSSOP(DBT)•Patented Impedance Track™TechnologyAccurately Measures Available Charge in•Notebook PCsLi-Ion and Li-Polymer Batteries•Medical and Test Equipment•Better than1%Error Over Lifetime of the•Portable Instrumentation Battery•Instant Accuracy–No Learning CycleRequiredThe bq20z80SBS-compliant gas gauge IC,•Supports the Smart Battery Specification SBSincorporating patented Impedance Track™V1.1technology,is designed for battery-pack or in-system •Works With the TI bq29312A Analoginstallation.The bq20z80measures and maintains Front-End(AFE)Protection IC to Provide an accurate record of available charge in Li-ion orComplete Pack Electronics Solution Li-polymer batteries using its integrated •Full Array of Programmable Voltage,Current,high-performance analog peripherals.The bq20z80monitors capacity change,battery impedance, and Temperature Protection Featuresopen-circuit voltage,and other critical parameters of •Integrated Time Base Removes Need forthe battery pack,and reports the information to the External Crystal with Optional Crystal Inputsystem host controller over a serial-communication •Electronics for7.2-V,10.8-V or14.4-V Battery bus.It is designed to work with the bq29312A analog Packs With Few External Components front-end(AFE)protection IC to maximizefunctionality and safety,and minimize component •Based on a Powerful Low-Power RISC CPUcount and cost in smart battery circuits.Core With High-Performance Peripherals•Integrated Field Programmable FLASH The Impedance Track technology continuouslyanalyzes the battery impedance,resulting in superior Memory Eliminates the Need for Externalgas-gauging accuracy.This enables remaining Configuration Memorycapacity to be calculated with discharge rate,•Measures Charge Flow Using atemperature,and cell aging all accounted for during High-Resolution,16-Bit Integrating each stage of every cycle.Delta-Sigma Converter–Better Than0.65nVh of Resolution AVAILABLE OPTIONS–Self-Calibrating PACKAGE(1)T A–Offset Error Less Than1μV38-PIN TSSOP(DBT)38-PIN TSSOP(DBT)Tube Tape and Reel •Uses16-Bit Delta-Sigma Converter for–40°C toAccurate Voltage and Temperature bq20z80ADBT(2)bq20z80ADBTR(3)85°CMeasurements–40°C tobq20z80DBT(2)bq20z80DBTR(3)•Extensive Data Reporting Options For85°CImproved System Interaction•Optional Pulse Charging Feature for ImprovedCharge Times•Drives3-,4-or5-Segment LED Display for(1)For the most current package and ordering information,seeRemaining Capacity Indicationthe Package Option Addendum at the end of this document,or see the TI website at .•Supports SHA-1Authentication(2)A single tube quantity is50units.•Lifetime Data Logging(3)A single reel quantity is2000unitsPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.Impedance Track is a trademark of Texas Instruments.PRODUCTION DATA information is current as of publication date.Copyright©2007,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters. SYSTEM DIAGRAMXCK1 / VSSAFIL TVDDASR2SR1VSSAVSSATNC - No internal connectionbq20z80bq20z80ASLUS782–JULY2007These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.TSSOP(DBT)(TOP VIEW)2Submit Documentation Feedbackbq20z80bq20z80ASLUS782–JULY2007 TERMINAL FUNCTIONSTERMINALI/O(1)DESCRIPTION1VIN I Voltage measurement input from the AFE2TS1I1st Thermistor voltage input connection to monitor temperature3TS2I2nd Thermistor voltage input connection to monitor temperature4PU O Output to pull up the PRES pin for system detection5PRES I Active low input to sense system insertion and typically requires additional ESD protection6SCLK I/OD Communication clock to the AFE7SAFE O Active high output to enforce additional level of safety protection;e.g.,fuse blow.(Inverse of pin12) 8VDDD P Positive supply for digital circuitry and I/O pinsBackup power to the bq20z80data registers during periods of low operating voltage.RBI accepts a 9RBI Pstorage capacitor or a battery input.10SDATA I/O Data transfer to and from the AFE12SAFE O Active low output to enforce additional level of safety protection;e.g.,fuse blow.(Inverse of pin7) 13NC–Not used—leave floating14NC–Not used—leave floating15SMBC I/OD SMBus clock open-drain bidirectional pin used to clock the data transfer to and from the bq20z80 16SMBD I/OD SMBus data open-drain bidirectional pin used to transfer address and data to and from the bq20z80Display control for the LEDs.This pin is typically connected to bq29312A REG via a100-kΩresistor 17DISP Iand a push-button switch to VSSD.Active low input to detect secondary protector output status and allows the bq20z80to report the 18PFIN Istatus of the2nd level protection output20LED5O LED5display segment that drives an external LED depending on the firmware configuration21LED4O LED4display segment that drives an external LED depending on the firmware configuration22LED3O LED3display segment that drives an external LED depending on the firmware configuration23LED2O LED2display segment that drives an external LED depending on the firmware configuration24LED1O LED1display segment that drives an external LED depending on the firmware configuration25XALERT I Input from bq29312A XALERT output.26MRST I Master reset input that forces the device into reset when held highConnections for a small-value sense resistor to monitor the battery charge-and discharge-current 27SR2IAflowConnections for a small-value sense resistor to monitor the battery charge-and discharge-current 28SR1IAflow31VDDA P Positive supply for analog circuitryAnalog input connected to the external PLL filter components which are a150-pF capacitor to V SSA, 32FILT IA in parallel with a61.9-kΩresistor and a2200-pF capacitor in series.Place these components asclose as possible to the bq20z80to ensure optimal performance.32.768-kHz crystal oscillator output pin or connected to a100-kΩ,50-ppm or better resistor if the33XCK2/ROSC Ointernal oscillator is used.34XCK1/VSSA I32.768-kHz crystal oscillator input pin or connected to VSSA if the internal oscillator is used35CLKOUT O32.768-kHz output for the bq29312.This pin should be directly connected to the AFE.36,37NC-Not used—leave floating11,19,38VSSD P Negative supply for digital circuitry29,30VSSA P Negative supply for analog circuitry.(1)I=Input,IA=Analog input,I/O=Input/output,I/OD=Input/Open-drain output,O=Output,OA=Analog output,P=Power3Submit Documentation FeedbackABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSbq20z80bq20z80ASLUS782–JULY 2007over operating free-air temperature range (unless otherwise noted)(1)RANGEV DDA and V DDD relative to V SS (2)Supply voltage range –0.3V to 4.1V V (IOD)relative to V SS (2)Open-drain I/O pins–0.3V to 6V V I relative to V SS (2)Input voltage range to all other pins –0.3V to VDDA +0.3VT A Operating free-air temperature range –40°C to 85°C T stg Storage temperature range–65°C to 150°C(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)V SS refers to the common node of V (SSA)and V (SSD).V DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONS MIN TYP MAX UNIT V DD Supply voltageVDDA and VDDD 33.3 3.6V No flash programming 350(1)I DDOperating mode currentμA bq20z80+bq29312A 375Sleep mode8(1)I (SLP)Low-power storage mode current μA bq20z80+bq29312A 28Shutdown Mode 0.1(1)I (SLP)Shutdown CurrentμAbq20z80+bq29312A 0.1Output voltage low SMBC,SMBD,SDATA,SCLK,SAFE,I OL =0.5mA 0.4V SAFE,PU V OLLED1–LED5I OL =10mA 0.4V V OH Output high voltage,SMBC,SMBD,SDATA,SCLK,SAFE,I OH =–1mAV DD –0.5V SAFE,PUV ILInput voltage low SMBC,SMBD,SDATA,SCLK,XALERT,–0.30.8V PRES,PFIN DISP–0.30.8V V IHInput voltage high SMBC,SMBD,SDATA,SCLK,XALERT,26V PRES,PFIN DISP2V DD +0.3V C INInput capacitance5pF V (AI1)Input voltage range VIN,TS1,TS2V SS –0.30.8x V DDV V (AI2)Input voltage range SR1,SR2V SS –0.250.25Z (AI1)Input impedance SR1,SR20V–1V 2.5M ΩZ (AI2)Input impedance VIN,TS1,TS20V–1V8M Ω(1)This value does not include the bq29312A4Submit Documentation FeedbackPOWER-ON RESET2.102.152.202.252.302.352.402.452.50T A - Free-Air Temperature - °C- N e g a t i v e G o i n g I n p u t T h r e s h o l d V o l t a g e - VPOWER ON RESET BEHAVIORvsFREE-AIR TEMPERATUREV I T V h y s - H y s t e r i s i s V o l t a g e - m VINTEGRATING ADC (Coulomb Counter)CHARACTERISTICSPLL SWITCHING CHARACTERISTICSOSCILLATORbq20z80bq20z80ASLUS782–JULY 2007V DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONS MIN TYP MAX UNIT V IT–Negative-going voltage input 2.1 2.3 2.5V V HYSPower-on reset hysteresis50150200mVV DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYPMAX UNIT V (SR)Input voltage range,V (SR2)and V (SR1)V (SR)=V(SR2)–V(SR1)–0.250.25V V (SROS)Input offset1μVINLIntegral nonlinearity error0.004%0.019%V DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYP MAXUNIT t (SP)Start-up time(1)0.5%frequency error25ms(1)The frequency error is measured from the trimmed frequency of the internal system clock which is 128oscillator frequency,nominally 4.194MHz.V DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYP MAX UNITROSC =100k Ω–2%0.25%2%f (exo)Frequency error from 32.768kHzROSC =100k Ω,V DD =3.3V –1%0.25%1%XCK1=12-pF XTAL–0.25%0.25%ROSC =100k Ω250μs f (sxo)Start-up time(1)XCK1=12-pF XTAL200ms(1)The start-up time is defined as the time it takes for the oscillator output frequency to be within 1%of the specified frequency.5Submit Documentation FeedbackDATA FLASH MEMORY CHARACTERISTICSREGISTER BACKUPbq20z80bq20z80ASLUS782–JULY 2007V DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONS MIN TYP MAX UNIT t DRData retentionSee (1)10Years Flash programming write-cyclesSee (1)20,000Cyclest (WORDPROG)Word programming time See (1)2ms I (DDPROG)Flash-write supply currentSee(1)815mA(1)Specified by design.Not production testedV DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP MAX UNIT I (RBI)RBI data-retention input current V (RBI)>3V,V DD <V IT10100nA V (RBI)RBI data-retention voltage (1)1.3V(1)Specified by design.Not production tested.6Submit Documentation FeedbackSMBus TIMINGSPECIFICATIONSbq20z80bq20z80ASLUS782–JULY 2007V DD =3V to 3.6V,T A =–40°C to 85°C (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYP MAX UNIT f SMB SMBus operating frequency Slave mode,SMBC 50%duty cycle 10100kHzf MAS SMBus master clock frequency Master mode,no clock low slave extend51.2t BUF Bus free time between start and stop 4.7t HD:STA Hold time after (repeated)start 4μst SU:STA Repeated start setup time 4.7t SU:STO Stop setup time 4Receive mode 0t HD:DAT Data hold time Transmit mode 300nst SU:DAT Data setup time 250t TIMEOUT Error signal/detect See(1)2535ms t LOW Clock low period 4.7μs t HIGH Clock high periodSee (2)450t LOW:SEXT Cumulative clock low slave extend time See (3)25ms t LOW:MEXT Cumulative clock low master extend time See(4)10t F Clock/data fall time (V ILMAX –0.15V)to (V IHMIN +0.15V)300ns t R Clock/data rise time0.9VDD to (VILMAX –0.15V)1000(1)The bq20z80times out when any clock low exceeds t TIMEOUT .(2)t HIGH:MAX .is minimum bus idle time.SMBC =1for t >50μs causes reset of any transaction involving the bq20z80that is in progress.(3)t LOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.(4)t LOW:MEXT is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.SMBus TIMING DIAGRAM7Submit Documentation FeedbackFEATURE SETPrimary (1st Level)Safety FeaturesSecondary (2nd Level)Safety FeaturesCharge Control Featuresbq20z80bq20z80ASLUS782–JULY 2007NOTEThe bq20z80-V102is designed to work with the bq29312A AFE.The bq20z80features are only available with the bq29312A..The bq20z80supports a wide range of battery and system protection features that care easily configured.The primary safety features includes:•Battery cell over/undervoltage protection •Battery pack over/undervoltage protection •2independent charge overcurrent protection •3independent discharge overcurrent protection •Short circuit protection•Overtemperature protection •Host watchdogThe secondary safety features of the bq20z80can be used to indicate more serious faults via the SAFE (pin 7)and SAFE (pin 12)pins.These pins can be used to blow a in-line fuse to permanently disable the battery pack from charging or discharging.The secondary safety features includes:•Safety over voltage •Battery cell imbalance•2nd level protection IC input •Safety overcurrent•Safety overtemperature •Open thermistor•Charge FET and 0Volt Charge FET fault •Discharge FET fault•Fuse blow failure detection •AFE communication error •Internal flash data errorThe bq20z80charge control features includes:•Report the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts.•Determines the chemical state of charge of each battery cell using Impedance Track™and can reduce the charge difference of the battery cells in fully charged state of the battery pack gradually using cell balancing algorithm during charging.This prevents fully charged cells from overcharging causing excessive degradation and also increases the usable pack energy by preventing to early charge termination •supports pre-charging/zero-volt charging •support fast charging •supports pulse charging •detects charge termination•report charging faults and also indicate charge status via charge and discharge alarms.8Submit Documentation FeedbackGas GaugingLED DisplayLifeTime Data Logging FeaturesAuthenticationPower ModesCONFIGURATIONOscillator Functionbq20z80bq20z80ASLUS782–JULY2007 FEATURE SET(continued)The bq20z80uses the Impedance Track™Technology to measure and calculate the available charge in battery cells.The achievable accuracy is better than the coulomb counting method over the lifetime of the battery and there is no full charge discharge learning cycle required.See Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm application note (SLUA364)for further details.The bq20z80can drive3-,4-,or5-segment LED display for remaining capacity indication.The bq20z80offers a lifetime data logging array,where all important measurements are stored for warranty and analysis purposes.The data monitored includes:•Lifetime maximum temperature•Lifetime minimum temperature•Lifetime maximum battery cell voltage•Lifetime minimum battery cell voltage•Lifetime maximum battery pack voltage•Lifetime minimum battery pack voltage•Lifetime maximum charge current•Lifetime maximum discharge current•Lifetime maximum charge power•Lifetime maximum discharge power•Lifetime maximum average discharge current•Lifetime maximum average discharge power•Lifetime average temperatureThe bq20z80supports authentication by the host using SHA-1.The bq20z80supports3different power modes to reduce power consumption:•In Normal Mode,the bq20z80performs measurements,calculations,protection decision,data update in1 second intervals.Between these intervals,the bq20z80is in a reduced power stage.•In Sleep Mode,the bq20z80performs measurements,calculations,protection decision,data update in adjustable time intervals.Between these intervals,the bq20z80is in a reduced power stage.•In Shutdown Mode the bq20z80is completely disabled.The oscillator of the bq20z80can be set up for internal or external operation.On power up,the bq20z80 automatically attempts to start the internal oscillator.If a100-kΩresistor is not connected to ROSC(pin33), then it attempts to start the oscillator using an external32.768-kHz crystal.NOTEInstall either the100-kΩROSC resistor or the12-pF,32.768-kHz crystal.Do notinstall both.9Submit Documentation FeedbackSystem Present OperationBATTERY PARAMETER MEASUREMENTSCharge and Discharge CountingVoltageCurrentAuto CalibrationTemperatureCOMMUNICATIONSSMBus On and Off Statebq20z80bq20z80ASLUS782–JULY 2007FEATURE SET (continued)The performance of the internal oscillator depends on the tolerance of the 100-k Ωresistor between RSOC (pin 33)and VSSA (pin 34).Choose a resistor with a tolerance of ±0.1%,and 50-ppm or better temperature drift.Place this resistor as close as possible to the bq20z80.If a 12-pF crystal is used,place it as close as possible to the XCK1(pin 34)and XCK2(pin 33)pins.If not properly implemented,the PCB layout in this area can degrade oscillator performance.The bq20z80pulls the PU pin high periodically (1s).Connect this pin to the PRES pin of the bq20z80via a resistor of approximately 5k Ω.The bq20z80measures the PRES input during the PU-active period to determine its state.If PRES input is pulled to ground by external system,the bq20z80detects this as system present.The bq20z80uses an integrating delta-sigma analog-to-digital converter (ADC)for current measurement,and a second delta-sigma ADC for individual cell and battery voltage,and temperature measurement.The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1and SR2pins.The integrating ADC measures bipolar signals from -0.25V to 0.25V.The bq20z80detects charge activity when V SR =V (SR1)-V (SR2)is positive and discharge activity when V SR =V (SR1)-V (SR2)is negative.The bq20z80continuously integrates the signal over time,using an internal counter.The fundamental rate of the counter is 0.65nVh.The bq20z80updates the individual series cell voltages through the bq29312A at one second intervals.The bq20z80configures the bq29312A to connect the selected cell,cell offset,or bq29312A VREF to the CELL pin of the bq29312A,which is required to be connected to VIN of the bq20z80.The internal ADC of the bq20z80measures the voltage,scales and calibrates it appropriately.This data is also used to calculate the impedance of the cell for the Impedance Track™gas-gauging.The bq20z80uses the SR1and SR2inputs to measure and calculate the battery charge and discharge current using a 5m Ωto 20m Ω(typical)sense resistor.The bq20z80provides an auto-calibration feature to cancel the voltage offset error across SR1and SR2for maximum charge measurement accuracy.The bq20z80performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5s.The bq20z80TS1and TS2inputs,in conjunction with two identical NTC thermistors (default are Semitec 103AT),measure the battery environmental temperature.The bq20z80can also be configured to use its internal temperature sensor.The bq20z80uses SMBus v1.1with Master Mode and package error checking (PEC)options per the SBS specification.The bq20z80detects an SMBus off state when SMBC and SMBD are logic-low greater than an adjustable period of time.Clearing this state requires either SMBC or SMBD to transition high.Within 1ms,the communication bus is available.10Submit Documentation Feedback分销商库存信息:TIBQ20Z80ADBT-V110BQ20Z80DBTG4BQ20Z80DBT BQ20Z80DBTR BQ20Z80DBTRG4。
TI 各种IC的功能描述 summary - V01
Item PN
1
BQ27200
2
BQ20Z45
3
BQ2060
4
BQ20Z80
5
BQ20Z65
6
BQ20Z70
7
BQ20Z75
8BQ20Z95来自9BQ27541
10
BQ27545
11
BQ2016
12
BQ20Z90
13
BQ76920
14
BQ76930
15
BQ76940
16
BQ8050
1~2 cell Fuel Gauge & AFE, AFE protection (N-FET/high side), I2C or HDQ communication,cell balancne
1 cell Fuel Gauge & AFE, AFE protection (N-FET/high side), I2C communication
1-4 cell, Fuel Gauge, HDQ or SMBus communication, cell balance, LED display 2-4cell, Fuel Gauge, work with the bq29312A AFE protection IC(P-FET/high side,cell balance), SMBus communication, LED display 2-4cell, Fuel Gauge, AFE protection (N-FET/high side), SMBus communication, cell balancne, LED display 2-4cell, Fuel Gauge , work with the bq29330 analog AFE protection IC(N-FET/high side,cell balance), SMBus communication 2-4cell, Fuel Gauge & AFE protection (N-FET/high side) , cell balancne,SMBus communication
TI针对电源管理推出的impedance track技术
TI针对电源管理推出Impedance Track™技术(华强电子世界网讯)日前,德州仪器 (TI) 凭借其在电池管理方面雄厚的研发实力宣布推出一款功能独特的“电量监测计”技术,能够在电池整个寿命周期内以高达 99% 的精确度计算锂电池组的剩余电量。
新型Impedance Track™ 技术使便携式医疗设备、工业设备以及笔记本的设计人员和用户能够延长电池使用寿命,并始终能了解电池内剩余的可用能量。
TI 的创新型阻抗跟踪技术可精确监测阻抗改变或由电池老化、温度以及循环模式造成的电阻,从而准确预计双节池组、三节电池组和四节电池组的运行时间。
该技术集成在TI 基于闪存的 bq20z8x 电量监测计芯片组中,在电池组处于静止状态时,通过在相应的温度下关联电池组的空载电压和充电状态可以分析出准确的电荷状态。
该技术能够从静态电压中明确得出准确的“起始和终止位置”,并从相应的容量差中得出总容量,从而消除了完全充电与放电的必要。
对于如心脏起搏器等特定应用或用于电信系统(从不完全放电)中的电池组而言,阻抗跟踪将确保我们始终能够实时获得准确的电量信息。
阻抗跟踪依靠动态建模算法得知电池随着老化、温度或使用产生了多少衰减,并关联电池电解槽中阳极/阴极的典型化学属性,而跟电池属于何种品牌无关。
事实上,阻抗跟踪允许在同一电池组中混合使用来自不同制造商的电池,这就实现了电源的灵活性与持续性。
目前许多电量监测计集成电路技术均依赖静态而不可靠的建模技术,要求创建大型数据库才能测量数百种可用电池参数的具体属性。
而即将获得专利的阻抗跟踪技术能够显著降低 OED 及 OEM 厂商所需的开发与实施设置时间,可保证获得正确的特性,因为我们再也不需要什么数据库了。
双芯片 bq20z8x 电量监测计通过系统管理总线 (SMBus) 接口向系统主机控制器报告电量信息。
诸如 TMS320C55x 数字信号处理器等主机控制器管理剩余电池电量的目的在于进一步延长系统的运行时间。
纬世锂电池电芯型号系列表
容量重量内阻(mAh)(g)(m Ω)12033502033270520.032.5 5.0120↓ 3.729.0±1.5有模具,有刀模221657021651050721.065.018.070↓ 3.737.0±2.0有模具,有刀模322517522518007.522.051.014.070↓ 3.737.0±1.5有模具,有刀模422706422701250 6.422.070.015.060↓ 3.737.0±1.5有模具,有刀模52294802294S 16008.322.594.525.070↓ 3.73 6.5±1.5有模具,有刀模623725423721000 5.423.072.018.065↓ 3.738.0±1.5有模具,有刀模7244492244410009.224.041.518.070↓ 3.73 6.5±1.5有模具,有刀模82467482467930 4.924.367.015.060↓ 3.738.0±2.0有模具,有刀模9502535400525.534.57.0120↓ 3.7313.0±1.5有模具,有刀模10582535P 470 5.8323.135.58.0120↓ 3.7310.0±1.5有模具,有刀模112638522638600 5.326.338.510.080↓ 3.7313.0±1.0有模具,有刀模122661482661850 4.826.561.015.060↓ 3.7413.0±1.0有模具,有刀模132836682836HV 690 6.828.036.012.060↓ 3.8312.0±1.5有模具,有刀模1428666028661400628.064.024.060↓ 3.7314.0±1.5有模具,有刀模15294088294010008.530.338.018.050↓ 3.7312.0±1.5有模具,有刀模16299494299428009.329.092.546.060↓ 3.739.0±1.5有模具,有刀模177330357507.329.535.014.5100↓ 3.7313.0±1.0有模具,有刀模18733035P 7007.329.535.014.0100↓ 3.7313.0±2.0有模具,有刀模1910303510001029.535.521.070↓ 3.7310.0±1.0有模具,有刀模20403035430 4.030.337.524.090↓ 3.7318.0±1.5有模具,有刀模21603035600 6.030.533.010.070↓ 3.7315.0±1.5有模具,有刀模22853035S 9208.630.035.016.060↓ 3.7316.0±2.0有模具,有刀模233038603038700 6.030.238.012.070↓ 3.7314.0±1.5有模具,有刀模24423040450 4.230.038.58.070↓ 3.7315.0±1.5有模具,有刀模25533040700 5.330.041.512.080↓ 3.7313.0±1.0有模具,有刀模26953040S 9009.530.040.019.080↓ 3.7310.0±1.5有模具,有刀模273043623043HV 900 6.230.041.519.050↓ 3.8315.0±1.5有模具,有刀模28453048720 4.3530.048.013.080↓ 3.7417.0±1.0有模具,有刀模29103048175010.230.548.532.060↓ 3.7310.0±1.5有模具,有刀模30673048750 5.330.547.516.080↓ 3.7412.0±1.5有模具,有刀模31305686305617008.630.056.034.050↓ 3.7310.0±1.0有刀模、有模具326730732000 6.730.073.040.060↓ 3.7512.0±2.5有模具,有刀模336030731700 6.030.073.026.050↓ 3.7412.0±1.5有模具,有刀模343165353165850 3.531.365.517.060↓ 3.7313.0±1.0有刀模、有模具35319478319426007.831.092.048.040↓ 3.7413.0±1.5有模具,有刀模36324658324610005.732.046.021.050↓3.7318.0±1.0有刀模、有模具系列25353035304030483073极耳中心距备注型号Max:厚(mm)惠州市纬世新能源有限公司Huizhou WES New Energy Limited CompanyMax:宽(mm)Max:高(mm)电压(V)极耳宽度编号:W-PR-0003版本:00页码:1/1常规方形备注:HV为4.35V高电压,P为高倍率,重量为估算,与实际电芯存在偏差。
TI BQ IC简介 (Gas Gauge IC)
(電量監測芯片及類比前端保護芯片雖然能提供電壓過載保護, 但它們仍需要透過取樣才能監控電壓,使整個鋰電池保護系統 的反應時間會受到限制,因此需要反應快速、即時和獨立的二
段保護芯片與電量監測芯片及類比前端保護芯片一起工作。)
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 8
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 16
TI Gas Gauge IC 頂端標記
Device: bq20Z90 (IT 2nd Gen. Gas Gauge IC) 30-pin TSSOP(DBT) 引腳/封裝 Level-2-260C-1 YEAR(潮濕敏感度等級/回流焊溫度) YMS(89K) : 2008年9月在馬來西亞封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點: T: 台灣 W: 菲律賓 K: 馬來西亞 J : 日本 G4: TI 器件/封裝組合轉換成“環保”複合成型 材料的標記. LLLL(FL2K): 追蹤碼(LTC)
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 17
TI Gas Gauge IC 頂端標記
Device: bq20Z75 (IT 2nd Gen. Gas Gauge IC, bq20z70 +bq29330) 38-pin TSSOP(DBT) 引腳/封裝 Level-2-260C-1 YEAR(潮濕敏感度等級/回流焊溫度) YMS(88T) : 2008年8月在台灣封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點:
BQ2084中文说明书
BQ2084中文版本说明书特征1.能精确测量可充电锂离子及锂聚合物电池2.支持智能电池标准(SBS)V1.13.内含集成时基,无需外置晶振选择输入.4.和TI29312模拟前端(AFE)保护IC配合,用较少的外部组件便可为7.2V,10.8V 或14.4V电池组提供完整的电子环境.5.以功能强大且低能耗的精简指令微处理器及高效能的外围设备作为基础.6.集成闪存无需外置EEPROM7.利用16位增量累积转换器精确测量电压和温度8.使用一个16位的高分辨率积分转换器测量充电电流..●高于0.65-nVh的分辨率●自我纠正功能●偏差小于1uV9.对单电池的参数设置可实现最大的电量测量精度.10.可驱动3到5个LED进行容量指示11.38-Pin的TSSOP封装适用范围笔记本计算机医疗及测试仪器便携式仪器.概述用于电池组或系统内置的复合智能电池规范的电量监测芯片bq2084-v23,可准确纪录可充电锂离子或锂聚合物电池组的相关资料. bq2084 监测的电池容量和其它关键参数通过一系列总线将这些信号传递给系统的主控制器. 这种IC与AFE保护IC共同作用, 才能在智慧电池线路中使其功能和安全性最大化, 以及组件数量和消耗最小化. 主监控器利用bq2084发送的信号, 可合理的管理电池能源,使得系统的运行时间尽可能的延长.bq2084使用一个积分转换器,持续取样充放电电流的测量值.自矫正积分转换器拥有高于0.65nVh 的分辨率, 小于1uV(典型值)的误差,实现最佳的电量测量. bq2084使用16位A/D 转换器实现电压和温度的测量. 与bq29312相结合, 自带的A/D 转换器不仅可检测电池组中每个电池的电压, 而且可使bq2084产生必要的控制信号来平衡电池及保证电池中化学物质的安全性.bq2084支持SBData 的要求及充电控制功能,遵照系统管理总线(SMBus)二线协议传递信息, 这些信息包括剩余容量, 温度,电压,电流,预计剩余使用时间. bq2084也提供LED显示的驱动电路和按键输入,可利用三段、四段或五段显示器,分别以20%、25%和33%的增幅来显示从空电池到满电池之间的电池电力。
蓄电池单体活化仪
ZBT3932智能蓄电池活化仪使用手册武汉智能星电气有限公司2012-2-20目录一、概述 (3)二、功能及操作步骤 (8)三、日常维护 (23)四、常见问题解答及使用技巧 (23)五、缩写一览表 (26)六、软件部分 (26)1、概述 (26)2、系统安装 (27)3、主要功能及使用方法 (31)七、注意事项 (36)八、运输、贮存 (37)九、售后服务 (37)ZBT3932蓄电池单体活化仪一、概述1.用途智能蓄电池活化仪(2V-12V一体机,适用于2V、6V、12V蓄电池,以下简称活化仪),是专用于日常维护中对落后蓄电池处理的便携式产品,它具有三种独立的使用方式:电池放电方式,电池充电方式和电池活化方式。
可以针对落后电池不同的实际情况,对落后电池进行容量试验,低压恒流充电,或设置多个循环周期对最小容量的电池作循环多次充放电,以激化电池极板失效的活性物质使电池活化,提升落后电池的容量。
同时配备PC机应用软件,把采集的数据上传至计算机,便于进行各种分析。
2. 功能2.1充放电、活化及曲线指示功能活化仪可记录充电、放电及活化过程中的蓄电池电压、电流变化趋势,并有相应的曲线指示功能,曲线在每次工作执行完后即可显示。
屏幕右边显示充(放)电曲线,左边显示充(放)电或活化参数,包括:电压(电流)提示、电池内阻、充(放)电电流、充(放)电截止电压、执行总时间。
(用英文缩写表示,见五、缩写一览表)。
2.2 数据查看(回放)在进行充(放)电及活化操作时,按【返回】键可以使充(放)电或活化过程随时中断。
中断工作时可选择是否保存之前的充(放)电、活化过程中采集的各种数据。
在有数据查看时,选择已有记录的序号,则得到需要回放的曲线。
按左右键可以切换不同序号以得到不同的回放曲线波形。
2.3数据管理此功能允许用户对电池的已测控数据进行管理,包括数据的上传以及曲线回放。
2.4系统升级此功能允许用户对设备进行在线的软件升级更新。
保健床垫控制器音乐助眠调节装置[实用新型专利]
专利名称:保健床垫控制器音乐助眠调节装置专利类型:实用新型专利
发明人:孙金明,邸宗敏
申请号:CN200820141777.X
申请日:20080829
公开号:CN201251935Y
公开日:
20090603
专利内容由知识产权出版社提供
摘要:本实用新型涉及一种保健床垫控制器音乐助眠调节装置,包括的电路控制部分由内置音乐存储器,MP3解码芯片,外置USB存储设备接口,功放电路,内置音箱,耳机插口连接组成;所述内置音乐存储器或插入外置USB存储设备接口的存储设备中的MP3文件数据,传输至MP3解码芯片,将数据文件转换为电信号传输至功放电路,进行放大等处理后,通过内置音箱或插入耳机插口的耳机,播放MP3音乐。
其中,所述内置音乐存储器采用128MB容量的SD卡;所述MP3采用型号为
BU9435KV解码芯片。
本实用新型拥有助眠音效的音乐助眠调节装置,播放助眠音效等柔和的音乐,能够使人精神处于放松状态,减缓压力,使人体能够更容易地进入睡眠状态,为使人们获得更高质量的睡眠提供了重要的帮助。
申请人:天津天狮生物发展有限公司
地址:301700 天津市新技术产业园区武清开发区源泉路6号
国籍:CN
代理机构:天津市三利专利商标代理有限公司
代理人:刘英兰
更多信息请下载全文后查看。
浅谈笔记本电脑电池的保护电路
浅谈笔记本电脑电池的保护电路作者:王晓玲来源:《电脑知识与技术》2012年第15期摘要:现在的笔记本电脑的电池,大部分都已经采用了锂离子电池,由于锂离子电池的放电性能跟之前的镍氢电池相比,其化学反应要剧烈得多,所以当笔记本电脑采用锂离子电池时,多采用多级保护电路来保证笔记本电脑电池在工作中保证安全,该文主要从笔记本电脑电池起保护作用的电子元件和PCB板的系统保护电路来阐述笔记本电脑电池的保护控制。
关键词:笔记本电脑电池;过充电保护;过放电保护;过电流保护;过温保护中图分类号:TP331文献标识码:A文章编号:1009-3044(2012)15-3728-03随着现代电子行业的迅猛烈发展,笔记本电脑因为其体积小,重量轻,便于携带等优点,已逐步替代台式电脑,走进了千家万户,成为现代人工作,学习,生活常用的现代化电子设备。
2000年前笔记本电脑的电池,往往采用镍氢电池进行制造,但由于镍氢电池重量重,具有记忆效应,在使用的时候,其性能往往不尽人意,自从19世纪,90年代,发明了锂离子电池,并进行了商品化生产,锂离子电池的生产工艺不断改进,其电池的容量也不断增加,其中以松下,三洋等品牌的锂离子电池的性能比较优良,在出口的笔记本电脑的电池,多数采用这些品牌的单电池进行组装,制造成电池组。
但锂离子电池在工作时,其内部进行的化学反应非常剧烈,也具有一定的危险性,所以一般,由锂离子电池制造加工成的笔记本电池,其保护控制部分,要比由镍氢电池加工成的笔记本电池要复杂的多。
[1]1锂离子电池的结构锂离子电池的正极材料为氧化物,常见有氧化锰锂、氧化钴锂、氧化镍锂、磷酸铁锂等。
锂离子电池的负极材料主要是石墨化碳材料,其导电剂为乙炔黑。
其电解质,有碳酸脂和聚合物两种。
锂离子电池的隔膜采用聚烯微孔隔膜,而且此隔膜在离子今昔功能交换的时候,保液能力好,强度高,抗氧化性能好。
最后外壳由铝壳或塑壳组成。
[2]2笔记本电脑电池的参数要求笔记本电脑电池,规定了充放电的一些基本电气性能,现以单节松下电池,型号为CGR18650,容量为2000mAH,9个单电池进行三并联再三串联加工制造成的笔记本电池组为例进行说明:3笔记本电池组的保护功能元件在笔记本电脑的电池中,除了用有保护功能的电路板实现相应的保护功能外,还增加了有独立保护功能的电子元件,来实现保护功能。
BQ29312PWG4资料
PWFEATURES APPLICATIONSDESCRIPTIONSYSTEM PARTITIONING DIAGRAMbq29312SLUS546E–MARCH2003–REVISED MARCH2005THREE AND FOUR CELL LITHIUM-ION ORLITHIUM-POLYMER BATTERY PROTECTION AFE•Notebook PCs•2-,3-,or4-Cell Series Protection Control•Medical and Test Equipment•Can Directly Interface With the bq2084Gas•Portable Instrumentation Gauges•Provides Individual Cell Voltages and BatteryVoltage to Battery Management HostThe bq29312is a2-,3-,or4-cell lithium-ion battery •Integrated Cell Balancing Drivepack protection analog front end(AFE)IC that •I2C Compatible User Interface Allows Accessincorporates a 3.3-V,25-mA low-dropout regulator to Battery Information(LDO).The bq29312also integrates an I2C compat-•Programmable Threshold and Delay for Over ible interface to extract battery parameters such as Load and Short Circuit During Charge and cell voltages and control output status.Other par-Discharge ameters such as current protection thresholds anddelays can be programmed into the bq29312to •System Alert Interrupt Outputincrease the flexibility of the battery management •Host Control Can Initiate Sleep Power Mode system.and Ship ModeThe bq29312provides safety protection for over-•Integrated3.3-V,25-mA LDOcharge,overload,short-circuit,overvoltage,and •Supply Voltage Range From4.5V to25V undervoltage conditions in conjunction with the bat-tery management host.In overload and short-circuit •Low Supply Current of60-µA Typicalconditions,the bq29312turns the FET drive offautonomously dependant on the internal configurationsetting.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2003–2005,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters. DESCRIPTION(Continued)PACKAGE DISSIPATION RATINGSABSOLUTE MAXIMUM RATINGSbq29312SLUS546E–MARCH2003–REVISED MARCH2005These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.The communications interface allows the host to observe and control the current status of the bq29312.It enables cell balancing,enters different power modes,sets overload levels,sets the overload blanking delay time, sets short-circuit threshold levels for charge and discharge,and sets the short-circuit blanking delay time.Cell balancing of each cell is performed via a cell bypass path,which is enabled via the internal control register accessible via the I2C compatible interface.The maximum bypass current is set via an external series resistor and internal FET on resistance(typical400Ω).ORDERING INFORMATIONPACKAGED(1)T ATSSOP(PW)bq29312PW–25°C to85°Cbq29312PWR(1)For the most current package and ordering information,see the Package Option Addendum at theend of this document,or see the TI website at .POWER RATINGPOWER RATING DERATING FACTORPACKAGET A≤25°C ABOVE T A≤25°C TA≤70°C T A=85°C PW874mW 6.99W/°C559mW454mWover operating free-air temperature range unless otherwise noted(1)(2)bq29312V SS Supply voltage range PACK,BAT–0.3V to34VVC1,VC2,VC3,VC4–0.3V to34VSR1,SR2–1.0V to1.0VVC5–1.0V to4.0VV I Input voltage range VC1to VC2,VC2to VC3,VC3to VC4,VC4to–0.3to8.5VVC5WDI,SLEEP,SCLK,SDATA–0.3to8.5VZVCHG–0.3V to34VDSG,CHG–0.3V to BATOD–0.3V to34VV O Output voltage rangePMS–0.3V to PACK–0.2VTOUT,SCLK,SDATA,CELL,XALERT–0.3to7V Current for cell balancing10mAContinuous total power dissipation See Dissipation Rating TableT stg Storage temperature range–65°C to150°C Lead temperature(soldering,10sec)300°C(1)Stresses beyond those listed under"absolute maximum ratings"may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under"recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltages are with respect to ground of this device except VCn–VC(n+1),where n=1,2,3,4cell voltage.2RECOMMENDED OPERATING CONDITIONSbq29312 SLUS546E–MARCH2003–REVISED MARCH2005MIN NOM MAX UNITSupply Voltage(BAT or PACK) 4.5(1)25VV I(STARTUP)Start-up voltage(PACK) 5.0VVC1,VC2,VC3,VC40BATSR1,SR2–0.50.5VC5–0.5 3.0V I Input voltage range VVCn–VC(n+1),(n=1,2,3,4)0 5.0PMS0PACKSLEEP0REGV IH0.8×REG REG V Logic level input voltage SCLK,SDATA,WDI0.2×V IL0REGV IH V PACK–0.2V PACK V PMS logic level PMSV IL00.2 PMS pull up/pull down resistance RPMS1001000kΩV O Output voltage OD25VI O Output current XALERT,SDATA200µACELL±10µA Input current,External3.3V REGI I SLEEP-0.5 1.0µAcapacitorC(REG) 4.7µFR(CELL)100ΩExtend CELL output filterC(CELL)100nFOD1mAI OL Input frequencyWDI32.768kHz WDI high time228µsT A Operating temperature–2585°C (1)V(PACK)supply voltage must rise above start-up voltage on power up to enable the internal regulator which drives REG and TOUT asrequired.Once V(PACK)is above the start-up voltage,it can fall down to the minimum supply voltage and still meet the specifications of the bq29312.3ELECTRICAL CHARACTERISTICSbq29312SLUS546E–MARCH 2003–REVISED MARCH 2005T A =25°C,C (REG)=4.7µF,BAT =14V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYPMAXUNITSUPPLY CURRENT No load at REG,TOUT,XALERT,SCLK,and SDATA.6090I CC1Supply current 1ZVCHG =off ,VMEN =on,WDI no clock,µAT A =–25°C to 85°C 100Select VC5=VC4=0VSupply current 2No load at REG,TOUT,XALERT,SCLK,and SDATA.I CC2(Depends of VM T A =–25°C to 85°C2550µAZVCHG =off,VMEN =off,WDI no clocktopology selected)No load at REG,TOUT,XALERT,SCLK,and I (SLEEP)Sleep current SDATA.CHG,DSG and ZVCHG =off,REG =on,T A =–25°C to 85°C 2040µA VMEN =off,WDI no clock,SLEEP =REG or OPEN REG,CHG,DSG and ZVCHG =off,REG =off,I (SHIP)Ship currentT A =–25°C to 85°C0.11.0µAVMEN =off,WDI no clock,VPACK=0V 3.3V LDO8.0V <BAT or PACK ≤25V,I O ≤25mA–4% 3.32%V 6.5V <BAT or PACK ≤8V,I O ≤25mA –9% 3.32%Regulator output V (REG)T A =–25°C to 85°Cvoltage5.4V ≤BATor PACK ≤6.5V,I O ≤16mA –9% 3.32%V 4.5V ≤BAT or PACK ≤25V,I O ≤2mA–2%3.32%VRegulator output ∆V (EGTEMP)change with 5.4V ≤BAT ≤25V,I O =2mA,T A =–25°C to 85°C ±0.2%temperature ∆V (REGLINE)Line regulation 5.4V ≤BAT or PACK ≤25V,I O =2mA 310mV BAT =14V,0.2mA ≤I O ≤2mA 715∆V (REGLOAD)Load regulation mV BAT =14V,0.2mA ≤I O ≤25mA 40100BAT =14V,REG =3.0V 25100I MAXCurrent limitmABAT =14V,REG =0V1250CELL VOLTAGE MONITOR V (Cn)–V (Cn +1)=0V,8.0V ≤BAT or PACK ≤25V 0.975V (CELL OUT)CELL output V V (Cn)–V (Cn +1)=4.5V,8.0V ≤BAT or PACK ≤25V 0.3REF CELL output Mode (1),8.0V ≤BAT or PACK ≤25V –1%0.9751%V PACK/PACKCELL outputMode (2)–5%5%V25K =(CELL output (VC5=0.0V,VC4=4.5V)0.1470.1500.153–CELL output (VC5=VC4=0.0V)/4.5K CELL scale factorK =(CELL output (VC2=13.5V,VC1=18.0V)0.1470.1500.153–CELL output (VC2=VC1=13.5V)/4.5CELL output offset CELL output (VC2=17.0V,VC1=17.0V)VICR –1mV errorCELL output (VC2=VC1=0.0V)Cell balance internal R (BAL)rds (ON)for internal FET switch at V DS =2.0V200400800Ωresistance(1)Register Address =0x04,b2(CAL0)=b3(CAL1)=1,Register Address =0x03,b0(VMEN)=1(2)Register Address =0x03,b1(PACKOUT)=1,b0(VMEN)=14ELECTRICAL CHARACTERISTICS (Continued)bq29312SLUS546E–MARCH 2003–REVISED MARCH 2005T A =25°C,C (REG)=4.7µF,BAT =14V (unless otherwise noted)PARAMETERTEST CONDITIONMINNOMMAXUNITOVER LOAD (OL)AND SHORT CIRCUIT (SC)DETECTION V OL OL detection threshold range,typical (1)–50–205mV ∆V OL OL detection threshold program step 5mV V HYS(OL)OL detection threshold hysteresis 71013mV Charge 100475V (SC)SC detection threshold range,typical (2)mV Discharge –100–475Charge 25∆V (SC)SC detection threshold program step mV Discharge–25V HYS(SC)SC detection threshold hysteresis Charge and Discharge405060mVV OL =50mV (min)405060V (OL_acr)OL detection threshold accuracy (1)DischargeV OL =100mV 90100110mVV OL =205mV (max)184205226V SC =100mV (min)80100120V (SC_acr)SC detection threshold accuracy (2)Charge and DischargeV SC =200mV 180200220mV V SC =475mV (max)426475523FET DRIVE CIRCUITV (FETOND)=V (BAT)–V (DSG)BAT=20V 121518VGS connect 1M ΩOutput voltage,charge and discharge FETs V (FETON)VonV (FETONC)=V (PACK)–V (CHG)PACK =20V 121518VGS connect 1M ΩV (ZCHG)ZVCHG clamp voltagePACK=4.5V 3.33.53.7V V (FETOFF)=V (PACK)–V (DSG)PACK=16V 0.2Output voltage,charge and discharge FETs V (FETOFF)V off V (FETOFF )=V (BAT)–V (CHG)BAT =16V 0.2V DSG :10%–90%40200t r Rise time C L =4700pF µs V CHG :10%–90%40200V DSG :90%–10%40200t fFall timeC L =4700pFµsV CHG :90%–10%40200THERMISTOR DRIVE I O =–1mA at TOUT pin,rds (ON)=(V REG –V O (TOUT))/1mA,r DS(on)TOUT pass-element series resistance50100ΩT A =–25°C to 85°CLOGIC XALERT T A =–25°C to 85°C 60100200R (PUP)Internal pullup resistancek ΩSDATA,SCLK,T A =–25°C to 85°C 61020XALERT,I O =200µA,T A =–25°C to 85°C 0.2V OLLogic level output voltageSDATA,I O =50µA,T A =–25°C to 85°C 0.4V OD I O =1mA,T A =–25°C to 85°C0.6(1)See OL register for setting detection threshold (2)See SC register for setting detection threshold5AC ELECTRICAL CHARACTERISTICSAC TIMING SPECIFICATIONS (I 2C COMPATIBLE SERIALINTERFACE)t SCLKSDATASCLK SDATASCLK SDATAbq29312SLUS546E–MARCH 2003–REVISED MARCH 2005T A =25°C,C (REG)=4.7µF,BAT =14V (unless otherwise noted)PARAMETERTEST CONDITIONMIN NOM MAX UNIT t (WDTINT)WDT start-up detect time 2507002000ms t (WDWT)WDT detect time100µsPARAMETERMIN MAX UNIT t r SCLK SDATA rise time 1000ns t f SCLK SDAT fall time 300ns t w(H)SCLK pulse width high 4.0µs t w(L)SCLK pulse width low4.7µs t su(STA)Setup time for START condition4.7µs t h(STA)START condition hold time after which first clock pulse is generated 4.0µs t su(DAT)Data setup time 250ns t h(DAT)Data hold time0µs t su(STOP)Setup time for STOP condition4.0µs t su(BUF)Time the bus must be free before new transmission can start 4.7µst V Clock low to data out valid 900ns t h(CH)Data out hold time after clock low 0ns f SCLClock frequency100kHz6PIN ASSIGNMENTSBA T DSG VC1 VC2 VC3 VC4 VC5 SR1 SR2 WDIGNDODPMSP ACKZVCHGCHGSLEEPREGT OUTXALER TGNDSDA T ASCLKbq29312SLUS546E–MARCH2003–REVISED MARCH2005PW PACKAGE(TOP VIEW)Terminal FunctionsTERMINALDESCRIPTIONNAME NO.BAT1Diode protected BAT+terminal and primary power source.DSG2Push-pull output discharge FET gate driveVC13Sense voltage input terminal for most positive cell and balance current input for most positive cell.Sense voltage input terminal for second most positive cell,balance current input for second most positive cell and VC24return balance current for most positive cell.Sense voltage input terminal for third most positive cell,balance current input for third most positive cell and return VC35balance current for second most positive cell.Sense voltage input terminal for least positive cell,balance current input for least positive cell and return balance VC46current for third most positive cell.VC57Sense voltage input terminal for most negative cell,return balance current for least positive cell.SR18Current sense positive terminal when charging relative to SR2SR29Current sense negative terminal when discharging relative to SR2current sense terminalWDI10Digital input that provides the timing clock for the OC and SC delays and also acts as the watchdog clock.CELL11Output of scaled value of the measured cell voltage.GND12Analog ground pin and negative pack terminalSCLK13Open-drain bidirectional serial interface clock with internal10kΩpull-up to V(REG).SDATA14Open-drain bidirectional serial interface data with internal10kΩpull-up to V(REG).GND15Connect to GNDXALERT16Open-drain output used to indicate status register changes.With internal100kΩpull-up to V(REG)TOUT17Provides thermistor bias currentREG18Integrated3.3-V regulator outputSLEEP19This pin is pulled up to V(REG)internally,open or H level makes Sleep modeCHG20Push-pull output charge FET gate driveZVCHG21The ZVCHG FET drive is connected herePACK22PACK positive terminal and alternative power sourcePMS230-V charge configuration select pin,CHG terminal ON/OFF is determined by this pin.OD24NCH FET open drain output7SLEEP FROM GGGG INTERFACESDATA ALERT TO GGOUTPUTGG INTERFACESCLK0.2 m bq29312SLUS546E–MARCH 2003–REVISED MARCH 2005FUNCTIONAL BLOCK DIAGRAM8SHIP MODE SET BY STATE CTL REGISTER b1 = 1 AND NO SUPPLY POWER TO PACKEnrering These States*1: Interrupt Request is Granted When Only External Sleep Pin Changes *2: When PMS connect to Pack, Default State of CHG FET is ON.bq29312SLUS546E–MARCH 2003–REVISED MARCH 2005STATE DIAGRAM9FUNCTIONAL DESCRIPTIONLow-Dropout Regulator (REG)InitializationOverload DetectionShort-Circuit DetectionOverload and Short-Circuit DelayOverload and Short-Circuit Responsebq29312SLUS546E–MARCH 2003–REVISED MARCH 2005The inputs for this regulator can be derived from the battery cell stack (BAT)or the pack positive terminal (PACK).The output is typically 3.3V with the minimum output capacitance for stable operation is 4.7µF and is also internally current limited.During normal operation,the regulator limits output current to typically 50mA.The bq29312internal control circuit is powered by the REG voltage,which it also monitors.When the voltage at REG falls below 2.3V,the internal circuit turns off the FETs and disables all controllable functions,including the REG and TOUT outputs.REG does not start up unless a voltage above V (STARTUP)is supplied to the PACK terminal.After the regulator has started,based on PACK voltage,it keeps operating through the BAT input,even if the PACK voltage is removed.If the BAT input is below the minimum operating range,then the bq29312does not operate if the supply to the PACK input is removed.After start up,when the REG voltage is above 2.4V,the bq29312is in Normal mode.The initial state of the CHG output depends on the PMS input.If PMS =PACK then CHG =ON however,if PMS =GND then CHG =OFF.The overload detection is used to detect abnormal currents in the discharge direction.This feature is used to protect the pass FETs,cells and any other inline components from excessive current conditions.The detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state.The overload sense voltage is set in the OLV register,and delay time is set in the OLT register.The overload threshold can be programmed from 50mV to 205mV in 5-mV steps with the default being 50mV and hysteresis of 10mV.The short current circuit detection is used to detect abnormal current in either the charge or discharge direction.This safety feature is used to protect the pass FETs,cells,and any other inline components from excessive current conditions.The detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state.The short-circuit thresholds and delay time are set in the SCC and SCD registers respectively where SCC is for charging and SCD is for discharge.The short-circuit threshold can be programmed from 100mV to 475mV in 25-mV steps with the default being 100mV and hysteresis of 50mV.The overload delay (default =1ms)allows the system to momentarily accept a high current condition without disconnecting the supply to the load.The delay time can be increased via the OLT register,which can be programmed for a range of 1ms to 31ms with steps of 2ms.The short-circuit delay (default =0µs)is programmable in the SCC and SCD registers.This register can be programmed from 0µs to 915µs with steps of 61µs.When an overload or short-circuit fault is detected,the FETs are turned off.The STATUS (b0…b2)register reports the details of short-circuit (charge),short-circuit (discharge),and overload.The respective STATUS (b0…b2)bits are set to 1and the XALERT output is triggered.This condition is latched until the CONTROL (b0)is set and then reset.If a FET is turned on via resetting CONTROL (b0)and the error condition is still present on the system,then the device reenters the protection response state.10FUNCTIONAL DESCRIPTION(continued)Cell VoltageThe cell voltage is translated to allow a system host to measure individual series elements of the battery.The series element voltage is translated to a GND-based voltage equal to0.15±0.002of the series element voltage. This provides a range from0V to4.5V.The translation output is inversely proportional to the input using the following equation.Where,V(CELL OUT)=–K×V(CELL IN)+0.975(V)Programming CELL_SEL(b1,b0)selects the individual series element.The CELL_SEL(b3,b2)selects the voltage monitor mode,cell monitor,offset etc.Calibration of Cell Voltage Monitor Amplifier GainThe cell voltage monitor amplifier has an offset and to increase accuracy this can be calibrated.There are a couple of method by calibration circumstance.The following procedure shows how to measure and calculate the offset and gain as one of example.•Step1–Set CAL1=1,CAL0=1,CELL1=0,CELL0=0,VMEN=1–V REF is trimmed to0.975V within±1%,measuring V REF eliminates its error.–Measure internal reference voltage V REF from VCELL directly.–VREF=measured reference voltage•Step2–Set CAL1=0,CAL0=0,CELL1=0,CELL0=0,VMEN=1–The output voltage includes the offset and represented by:V O(4-5)=V REF+(1+K)×V OS(V)Where K=CELL Scaling Factor–V OS=Offset voltage at input of the internal operational-amplifier•Step3–Set CAL1=1,CAL0=0,CELL1=0,CELL0=0,VMEN=1–Measuring scaled REF voltage through VCELL amp.–The output voltage includes the scale factor error and offset and is represented by:V(OUTR)=V REF+(1+K)×V OS–K×V REF(V)•Step4–Calculate(V O(4-5)–V(OUTR)/V REF–The result is the actual scaling factor,K(ACT)and is represented by:K(ACT)=(V O(4-5)–V(OUTR))/V REF=(V REF+(1+K)×V OS)-(V REF+(1+K)×V OS–K×V REF)/V REF=K×V REF/V REF=K•Step5–Calculate the actual offset value where:V OS(ACT)=(V O(4-5)–V REF)/(1+K(ACT))•Step6–Calibrated cell voltage is calculated by:VCn–VC(n+1)={V REF+(1+K(ACT))×V OS(ACT)–V(CELLOUT)}/K(ACT)–{V O(4-5)–V(CELLOUT)}/K(ACT)SLUS546E–MARCH2003–REVISED MARCH2005FUNCTIONAL DESCRIPTION(continued)For improved measurement accuracy,V OS(ACT)for each cell voltage should be measured.•Set CAL1=0,CAL0=0,CELL1=0,CELL0=1,VMEN=1•Set CAL1=0,CAL0=0,CELL1=1,CELL0=0,VMEN=1•Set CAL1=0,CAL0=0,CELL1=1,CELL0=1,VMEN=1Measuring V O(3-4),V O(2-3),V O(1-2),•VC4–VC5={V O(4-5)–V(CELLOUT)}/K(ACT)•VC3–VC4={V O(3-4)–V(CELLOUT)}/K(ACT)•VC2–VC3={V O(2-3)–V(CELLOUT)}/K(ACT)•VC1–VC2={V O(1-2)–V(CELLOUT)}/K(ACT)Cell Balance ControlThe cell balance control allows a small bypass path to be controlled for any one series element.The purpose of this bypass path is to reduce the current into any one cell during charging to bring the series elements to the same voltage.Series resistors placed between the input pins and the positive series element nodes control the bypass current value.Individual series element selection is made using bits4through7of the CELL_SEL register.Thermistor Drive Circuit(TOUT)The TOUT pin can be enabled to drive a thermistor from REG.The typical thermistor resistance is10kΩat 25°C.The default-state is OFF to conserve power.The maximum output impedance is100Ω.TOUT is enabled in FUNCTION CTL Register(bit5).Open Drain Drive Circuit(OD)The open drain output has1-mA current source drive with a maximum output voltage of25V.The OD output is enabled or disabled by OUTPUT CTL Register(bit4)and has a default state of OFF.XALERT(XALERT)XALERT is driven low when an OL or SC current fault is detected,if the SLEEP pin changes state or a watchdog fault occurs.To clear XALERT,toggle(from0,set to1then reset to0)OUTPUT CTL(bit0),then read the STATUS register.Latch Clear(LTCLR)When a current limit fault or watch dog timer fault occurs,the state is latched.To clear these faults,toggle(from 0,set1then reset to0)LTCLR in the OUTPUT CTL register(bit0).Figure1is the LTCLR and XALERT clear example after sensing short-circuit.I 2CLTCLR Write = 1LTCLR Write = 0Read STATUS Register2-,3-,or 4-Cell ConfigurationFUNCTIONAL DESCRIPTION (continued)Figure 1.LTCLR and XALERT Clear Example After Sensing Short LTCLR and XALER Clear ExampleIn a 3-cell configuration,VC1is shorted to VC2.In a 2-cell configuration,VC1and VC2are shorted to VC3.Watchdog Input (WDI)REGGG 32 kHz OutputREGGG 32 kHz OutputWatchdog SenseEXT FET ControlDSG and CHG FET Driver ControlSLUS546E–MARCH 2003–REVISED MARCH 2005FUNCTIONAL DESCRIPTION (continued)The WDI input is required as a time base for delay timing when determining overload and short-circuit delay periods and is used as part of the system watchdog.Initially the watchdog monitors the hosts oscillator start up,if there is no response from the host within 700ms of the bq29312reaching its minimum operating voltage,then the bq29312turns both CHG,DSG and ZVCHG FETs OFF.Once the watchdog has been started during this wake up period,it monitors the host for an oscillation stop condition,which is defined as a period of 100µs (typ)where no clock input is received.If an oscillator stop condition is identified,then the watchdog turns the CHG,DSG and ZVCHG FETs OFF.When the host clock oscillation is started,WDF is released,but the flag is latched until LTCLR is toggled.Figure 2.Watchdog Timing Chart—WDI Fault at StartupFigure 3.Watchdog Timing Chart—WDI Fault After StartupThe bq29312drives the DSG,CHG,and ZVCHG FET off if an OL or SC safety threshold is breached depending on the current direction.The host can force any FET on or off only if the bq29312integrated protection control allows.The DSG and CHG FET drive gate-to-drain voltage is clamped to 15V (typ).Precharge and 0V Charging—Theory of OperationSLEEP Control Input (SLEEP)Power ModesFUNCTIONAL DESCRIPTION (continued)The default-state of the CHG and DSG FET drive is off,when PMS =GND.A host can control the FET drive by programming OUTPUT CTL (b3...b1)where b1is used to control the discharge FET,b2is used to control the charge FET and b3is used to control the ZVCHG FET.These controls are only valid when not in the initialized state.The CHG drive FET can be powered by PACK and the DSG FET can be powered by BAT.The bq29312supports both a charger that has a precharge mode and one that does not.The bq29312also supports charging even when the battery falls to 0V.Detail is described in the application section.The SLEEP input is pulled-up internally to REG.When SLEEP is pulled to REG,the bq29312enters the SLEEP mode.The SLEEP mode disables all the FET outputs and the OL,SC and watchdog faults are also disabled.The RAM configuration is still valid on exit of the SLEEP mode.The host can force the bq29312into SLEEP mode via register control also.Table 1.SLEEP Control InputSLEEPITEMEXIT SLEEPFUNCTION I 2C READ/WRITEI 2C Read/Write Active REG Output ActiveExternal pin control:CHG,DSG,ZVCHG,TOUT,OD OC and SC protection:Write is available,Last pre-sleep entry configuration is valid.(If changeSCD,SCC and OCD but read is disabledconfiguration,latest write data is valid.)CELL Translation DisabledPACKOUT,VMEN Cell Balancing:CB[3:0]Watchdog:WDDISThe bq29312has three power modes,Normal,Sleep,and Ship.The following table outlines the operational functions during these power modes.Table 2.Power ModesPOWER TO EXIT POWERTO ENTER POWER MODE MODE DESCRIPTIONMODE MODENormalSLEEP =GND andThe battery is in normal operation with protection,power STATE CTL(b0)=0and management and battery monitoring functions available and STATE CTL(b1)=0operating.The supply current of this mode varies as the host can enable and disable various power management features.Sleep{SLEEP =REG (floating)or SLEEP =GND and All functions stop except LDO and I 2C interface.STATE CTL(b0)=1}and STATE CTL(b0)=0On entry to this mode,all registers are masked off keeping their STATE CTL(b1)=0state.The host controller can change the RAM registers via the I 2C interface,but reading data is disabled until exit of Sleep mode.ShipSTATE CTL(b1)=1Supply voltage to PACKThe bq29312is completely shut down as in the sleep mode.In And supply at the PACK pin is addition the REG output is disabled,I 2C interface is powered removeddown and memory is not valid.CommunicationsSCLKNote: Slave = bq29312Data Note: Slave = bq29312Master DrivesNACK and StopSCLKNote: Slave = bq29312Master DrivesNACK and Stop SLUS546E–MARCH2003–REVISED MARCH2005The I2C compatible serial communications provides read and write access to the bq29312data area.The data is clocked via separate data(SDATA)and clock(SCLK)pins.The bq29312acts as a slave device and does not generate clock munication to the bq29312is provided from GPIO pins or an I2C supporting port of a host system controller.The slave address for the bq29312is7bits and the value is0100000(0x20).(MSB)I2C ADDRESS+R/W BIT(LSB)(MSB)I2C ADDRESS(0x20)(LSB)Write(1)00100000Read1(1)Bit0:0=write,1=readThe bq29312does not have the following functions compatible with the I2C specification.•The bq29312is always regarded as a slave.•The bq29312does not return a NACK for an invalid register address.•The bq29312does not support the general code of the I2C specification,and therefore does not return an ACK.•The bq29312does not support the address auto increment,which allows continuous reading and writing.•The bq29312allows data to written or read from the same location without resending the location address.Figure4.I2C-Bus Write to bq29312Figure5.I2C-Bus Read from bq29312:Protocol AFigure6.I2C-Bus Read from bq29312:Protocol BRegister MapThe bq29312has9addressable registers.These registers provide status,control,and configuration information for the battery protection system.Table3.Addressable RegistersNAME ADDR TYPE DESCRIPTIONSTATUS0x00R Status registerOUTPUT CTL0x01R/W Output pin control from system hostSTATE CTL0x02R/W State controlFUNCTION CTL0x03R/W Function controlCELL_SEL0x04R/W Battery cell select for cell translation and balance bypass and select mode for calibrationOLV0x05R/W Overload threshold voltageOLT0x06R/W Overload delay timeSCC0x07R/W Short-circuit current threshold voltage and delay for chargeSCD0x08R/W Short-circuit current threshold voltage and delay for dischargeSTATUS:Status registerSTATUS REGISTER(0x00)7654321000ZVCLMP SLEEPDET WDF OL SCCHG SCDSG The STATUS register provides information about the current state of the bq29312.Reading the STATUS register clears the XALERT pin.STATUS b0(SCDSG):This bit indicates a short-circuit in the discharge direction.0=Current below the short-circuit threshold in the discharge direction(default).1=Current greater than or equal to the short-circuit threshold in the discharge direction.STATUS b1(SCCHG):This bit indicates a short-circuit in the charge direction.0=Current below the short-circuit threshold in the charge direction(default).1=Current greater than or equal to the short-circuit threshold in the charge direction.STATUS b2(OL):This bit indicates an overload condition.0=Current less than or equal to the overload threshold(default).1=Current greater than overload threshold.STATUS b3(WDF):This bit indicates a watchdog fault condition has occurred.0=32kHz oscillation is normal(default).1=32kHz oscillation stopped or not started and the watchdog has timed out.STATUS b4(SLEEPDET):This bit indicates the bq29312is SLEEP mode.0=bq29312is not SLEEP mode(default).1=bq29312is SLEEP mode.STATUS b5(ZVCLMP):This bit indicates ZVCHG output is clamped.0=ZVCHG pin is not clamped(default).1=ZVCHG pin is clamped.。
BQ2084DBT-V140资料
RTTFEATURES DESCRIPTIONAPPLICATIONSbq2084-V140SLUS664B–JULY2005–REVISED AUGUST2006SBS v1.1-COMPLIANT GAS GAUGE FORUSE WITH THE bq29312•Provides Accurate Measurement of Available The bq2084-V140SBS-compliant gas gauge IC for Charge in Li-Ion and Li-Polymer Batteries battery pack or in-system installation maintains anaccurate record of available charge in Li-ion or •Supports the Smart Battery SpecificationLi-polymer batteries.The bq2084-V140monitors (SBS)V1.1capacity and other critical parameters of the battery •Integrated Time Base Removes Need for pack and reports the information to the system host External Crystal with Optional Crystal input controller over a serial communication bus.It is •Works With the TI bq29312Analog Front-End designed to work with the bq29312AFE protectionIC to maximize functionality and safety and minimize (AFE)Protection IC to Provide Complete Packcomponent count and cost in smart battery circuits.Electronics for7.2-V,10.8-V or14.4-V BatteryUsing information from the bq2084-V140,the host Packs With Few External Componentscontroller can manage remaining battery power to •Based on a Powerful Low-Power RISC CPU extend the system run time as much as possible.Core With High-Performance PeripheralsThe bq2084-V140uses an integrating converter with •Integrated Flash Memory Eliminates the Needcontinuous sampling for the measurement of battery for External Configuration EEPROMcharge and discharge currents.Optimized for •Uses16-Bit Delta Sigma Converter for coulomb counting in portable applications,the Accurate Voltage and Temperature self-calibrating integrating converter has a resolution Measurements better than0.65-nVh and an offset measurementerror of less than1-µV(typical).For voltage and •Measures Charge Flow Using a Hightemperature reporting,the bq2084-V140uses a Resolution16-Bit Integrating Converter16-bit A-to-D converter.With the bq29312,the –Better Than0.65-nVh of Resolution onboard ADC also monitors the pack and individual –Self-Calibrating cell voltages in a battery pack and allows thebq2084-V140to generate the control signals –Offset Error Less Than1-µVnecessary to implement the cell balancing and the •Programmable Cell Modeling for Maximum required safety protection for Li-ion and Li-polymer Battery Fuel Gauge Accuracy battery chemistries.•Drives3-,4-,or5-Segment LED Display forThe bq2084-V140supports the Smart Battery Data Remaining Capacity Indication(SBData)commands and charge-control functions.It•Available in a38-Pin TSSOP(DBT)Package communicates data using the System ManagementBus(SMBus)2-wire protocol.The data availableinclude the battery's remaining capacity,temperature,voltage,current,and remaining •Notebook PCsrun-time predictions.•Medical and Test EquipmentThe bq2084-V140provides LED drivers and a •Portable Instrumentationpushbutton input to depict remaining battery capacityfrom full to empty in20%,25%,or33%incrementswith a3-,4-,or5-segment display.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2005–2006,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters. DESCRIPTION(CONTINUED)ABSOLUTE MAXIMUM RATINGSbq2084-V140SLUS664B–JULY2005–REVISED AUGUST2006These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.The bq2084-V140contains1k bytes of internal data flash memory,which store configuration information.The information includes nominal capacity and voltage,self-discharge rate,rate compensation factors,and other programmable cell-modeling factors used to accurately adjust remaining capacity for use-conditions based on time,rate,and temperature.The bq2084-V140also automatically calibrates or learns the true battery capacity in the course of a discharge cycle from programmable near full to near empty levels.The bq29312analog front-end(AFE)protection IC is used to maximize functionality and safety and minimize component count and cost in smart battery circuits.The bq29312AFE protection IC provides power to the bq2084-V140from a2-,3-,or4-series Li-ion cell stack,eliminating the need for an external regulator circuit.ORDERING INFORMATIONPACKAGE(1)T A38-PIN TSSOP(DBT)(2)36-PIN QFN(RTT)(3)–20°C to85°C bq2084DBT-V140bq2084RTT-V140(1)For the most current package and ordering information,see the Package Option Addendum at the endof this document,or see the TI Web site at .(2)The bq2084DBT-V140is available in tape and reel.Add an R suffix to the device type(e.g.,bq2084DBTR-V140)to order tape and reel version.(3)The bq2084RTT-V140is available in tape and reel only.Add an T suffix to the device type(e.g.,bq2084RTTT-V140)to order mini tape and reel version.over operating free-air temperature range unless otherwise noted(1)UNIT Supply voltage range,V DD relative to V SS(2)–0.3V to4.1VOpen-drain I/O pins,V(IOD)relative to V SS(2)–0.3V to6VInput voltage range to all other pins,V I relative to V Ss(2)–0.3V to V DD+0.3VT A Operating free-air temperature range–20°C to85°CT stg Storage temperature range–65°C to150°C(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating condition s is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)V SS refers to the common node of V(SSA),V(SSD),and V(SSP).2Submit Documentation FeedbackELECTRICAL CHARACTERISTICS2.102.152.202.252.302.352.402.452.50T A - Free-Air Temperature - °C- N e g a t i v e G o i n g I n p u t T h r e s h o l d V o l t a g e - VPOWER ON RESET BEHAVIORvsFREE-AIR TEMPERATUREV I T V h y s - H y s t e r i s i s V o l t a g e - m VINTEGRATING ADC CHARACTERISTICSPLL SWITCHING CHARACTERISTICSbq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 2006V DD =3V to 3.6V,T A =–20°C to 85°C unless otherwise notedPARAMETERTEST CONDITIONS MIN TYP MAX UNIT V DD Supply voltageVDDA and VDDD 33.3 3.6V No flash programming I DD Operating mode current380µA or LEDs active I (SLP)Low-power storage mode currentSleep mode 8µAOutput voltage low SMBC,SMBD,SDATA,SCLK,SAFE,PU I OL =0.5mA 0.4V OLVLED1-LED5I OL =10mA0.4Input voltage low SMBC,SMBD,SDATA,SCLK,EVENT,PU,–0.30.8PRES,PFIN V ILVDISP–0.30.8Input voltage high SMBC,SMBD,SDATA,SCLK,EVENT,26PU,PRES,PFIN V IH V DISP2V DD +0.3V (AI1)Input voltage range VIN,TS V SS –0.3 1.0V V (AI2)Input voltage range SR1,SR2V SS –0.250.25V Z (AI1)Input impedance SR1,SR2–0.25V to 0.25V 2.5M ΩZ (AI2)Input impedance VIN,TS 0V–1V8M ΩPOWER-ON RESETV IT+Negative-going voltage input 2.1 2.3 2.5V V hysPower-on reset hysteresis50125200mVV DD =3V to 3.6V,T A =–20°C to 85°C unless otherwise notedPARAMETERTEST CONDITIONS MIN TYPMAX UNIT V (SR)Input voltage range,V (SR2)and V (SR1)V SR =V (SR2)–V (SR1)–0.250.25V V (SROS)Input offset1mVINLIntegral nonlinearity errorFAST =0,–0.1V to 0.8x V ref0.004%0.018%V DD =3V to 3.6V,T A =–20°C to 85°C unless otherwise notedPARAMETERTEST CONDITIONSMIN TYP MAX UNIT t (SP)Start-up time(1)±0.5%frequency error25ms(1)The frequency error is measured from the trimmed frequency of the internal system clock,which is 128x oscillator frequency,nominally 4.194MHz.3Submit Documentation FeedbackOSCILLATORDATA FLASH MEMORY CHARACTERISTICSREGISTER BACKUPSMBus TIMING SPECIFICATIONSbq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 2006V DD =3V to 3.6V,T A =–20°C to 85°C (unless otherwise noted)(TYP:V DD =3.3V,T A =25°C)PARAMETERTEST CONDITIONS MIN TYP MAX UNITROSC =100k –2%0.5%2%f (eio)Frequency error from 32.768kHz XCK1=12pF XTAL–0.25%0.25%f (dio)Frequency drift (1)ROSC =100k,T A =0°C to 50°C –1%1%f (sio)ROSC =100k 200µs Start-up time (2)f (sxo)XCK1=12pF XTAL250ms (1)The frequency drift is measured from the trimmed frequency at V DD =3.3V,T A =25°C.(2)The start-up time is defined as the time it takes for the oscillator output frequency to be ±1%V DD =3V to 3.6V,T A =–20°C to 85°C unless otherwise notedPARAMETERTEST CONDITIONS MIN TYP MAX UNIT t DRData retentionSee (1)10Years Flash programming write-cycles See (1)20kCyclest (WORDPROG)Word programming time See (1)2ms I (DDPROG)Flash-write supply currentSee(1)812mA(1)Specified by design.Not production tested.PARAMETERTEST CONDITIONS MIN TYP MAX UNIT I (RBI)RBI data-retention input current V RBI >2V,V DD <V IT10100nA V (RBI)RBI data-retention voltage(1)1.3V(1)Specified by design.Not production tested.V DD =3V to 3.6V,T A =-20°C to 85°C unless otherwise notedPARAMETERTEST CONDITIONSMIN TYP MAXUNIT f (SMB)SMBus operating frequency Slave mode,SMBC 50%duty cycle 10100kHz f (MAS)SMBus master clock frequency Master mode,no clock low slave extend51.2kHz t (BUF)Bus free time between start and stop 4.7µs T (HD:STA)Hold time after (repeated)start 4µs t (SU:STA)Repeated start setup time 4.7µs t (SU:STO)Stop setup time 4µs Receive mode 0t (HD:DAT)Data hold time ns Transmit mode 300t SU:DAT)Data setup time 250nst (TIMEOUT)Error signal/detect See(1)2535ms t (LOW)Clock low period 4.7µs t (HIGH)Clock high periodSee (2)450µs t LOW:SEXT)Cumulative clock low slave extend time See (3)25ms t LOW:MEXT Cumulative clock low master extend time See(4)10ms t f Clock/data fall time (V ILMAX –0.15V)to (V IHMIN +0.15V)300ns t r Clock/data rise time0.9V DD to (V ILMAX –0.15V)1000ns(1)The bq2084-V140times out when any clock low exceeds t (TIMEOUT).(2)t (HIGH)Max.is minimum bus idle time.SMBC =1for t >50ms causes reset of any transaction involving bq2084-V140that is in progress.(3)t (LOW:SEXT)is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.(4)t (LOW:MEXT)is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.4Submit Documentation FeedbackSMBus TIMINGDIAGRAMSSYSTEM DIAGRAMPresSMBusPack +Pack −bq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 20065Submit Documentation FeedbackPIN ASSIGNMENTSSMBDPU VSSD VSSD LED5VSSD LED3CLKOUT LED4N/C LED2XCK1 / VSSADISP VIN PFIN TS L E D 1S M B CM R S TS A F E E V E N TN /CS R 2V S S D S R 1S D A T AV S S AR B IV S S AV D D DV D D AN /CF I L TS C L KX C K 2 / R O S CP R ESTS VSSA PRES SCLK NC VDDD VSSD SAFE NC NC SMBC SMBD DISP PFIN VSSDbq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 2006QFN (RTT)(TOP VIEW)TSSOP (DBT)(TOP VIEW)Terminal FunctionsTERMINALI/O DESCRIPTION TSSOP QFN DISP 172I Display control for the LED drivers LED1through LED5CLKOUT 3520O 32.768-kHz output to the bq29312FILT 3217I Analog input connected to the external PLL filter EVENT 2510I Input from bq29312XALERT outputLED1249O LED2238O LED3227O LED display segments that each may drive an external LEDLED4216O LED5205O MRST 2611I Master reset input that forces the device into reset when held high 7,13,14,36,NC 21,29,35–No connection37PFIN 183I Active low input to detect secondary protector output status PRES 527I Active low input to sense system insertion PU 426O Output to pull up the PRES pin for detectionRegister backup that provides backup potential to the bq2084-V140data RBI 931I registers during periods of low operating voltage.RBI accepts a storage capacitor or a battery input.SAFE 1234O Active low output for additional level of safety protection;e.g.,fuse blow.SCLK 628O Communication clock to the bq29312SDATA 1032I/O Data transfer to and from bq29312SMBus clock open-drain bidirectional pin used to clock the data transfer to and SMBC1536I/Ofrom the bq2084-V1406Submit Documentation FeedbackFUNCTIONAL DESCRIPTION OSCILLATOR FUNCTIONSYSTEM PRESENT OPERATIONGENERAL OPERATIONbq2084-V140 SLUS664B–JULY2005–REVISED AUGUST2006Terminal Functions(continued)TERMINALI/O DESCRIPTIONNO.NO.NAMETSSOP QFNSMBus data open-drain bidirectional pin used to transfer address and data to SMBD161I/Oand from the bq2084-V140SR12813I Connections for a small-value sense resistor to monitor the battery charge-anddischarge-current flowSR22712ITS224I Thermistor voltage input connection to monitor temperatureVDDA3116I Positive supply for analog circuitryVDDD830I Positive supply for digital circuitry and I/O pinsVIN125I Single-cell voltage input from the bq29312VSSA3,29,3014,15I Negative supply for analog circuitryVSSD11,19,384,22,23,33I Negative supply for digital circuitry32.768-kHz crystal oscillator input pin or connected to VSSA if the internalXCK1/VSSA3419Ioscillator is used32.768-kHz crystal oscillator output pin or connected to a100-kΩ,50ppm or XCK2/ROSC3318Obetter resistor if the internal oscillator is usedThe oscillator of the bq2084-V140can be set up for an internal or external operation.As the bq2084-V140 powers up it automatically attempts to start the internal oscillator,but if a100-kΩresistor is not connected to ROSC(pin33),then it attempts to start the oscillator using an external32.768-kHz crystal.Either the100-kΩROSC resistor OR the12pF32.768-kHz crystal should be mounted,NOT both.The performance of the internal oscillator depends on the tolerance of the100-kΩresistor connected between RSOC(pin33)and VSSA(pin34).It is recommended that this resistor be as close to the bq2084-V140as possible and that it has a specification of±0.1%tolerance and±50ppm temperature drift or better.The12-pF crystal,if used,should also be placed as close to the XCK1(pin34)and XCK2(pin33)pins as possible.The layout of the PCB around these pins and components is also an additional contributing factor to oscillator performance degradation.The average temperature drift error of the oscillator function over a learning charge or discharge cycle introduces an equal capacity prediction error in a learned full charge capacity(FCC).When the bq2084-V140detects that the battery is inserted into the system via a low state on the PRES input, the bq2084-V140enters normal operating mode and sets the PRES bit in PackStatus().The discharge FET turns on within250ms of pack insertion.When the pack is removed from the system and the PRES input is high,then the bq2084-V140enters the battery removed state and turns OFF the charge and discharge FETs, and enables the0-V/precharging FET.If NR in Misc Config is set,then the PRES input can be left floating as it is not used.The bq2084-V140determines battery capacity by monitoring the amount of charge input or removed from a rechargeable battery.In addition to measuring charge and discharge,the bq2084-V140measures individual cell voltages,pack voltage,temperature,and current,estimates battery self-discharge,and monitors the battery for low-voltage thresholds using features of the bq29312AFE device.The bq2084-V140measures charge and discharge activity by monitoring the voltage across a small-value series sense resistor between the cell stack negative terminal and the negative terminal of the battery pack.The available battery charge is determined by monitoring this voltage and correcting the measurement for environmental and operating conditions.7Submit Documentation FeedbackMEASUREMENTSCHARGE AND DISCHARGE COUNTINGOFFSET CALIBRATIONDIGITAL FILTERVOLTAGECURRENTTEMPERATUREbq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 2006FUNCTIONAL DESCRIPTION (continued)The bq2084-V140interfaces with the bq29312to perform battery protection,cell balancing,and voltage translation functions.The bq2084-V140can accept any NTC thermistor (default is Semitec 103AT)for temperature measurement or can also be configured to use its internal temperature sensor.The bq2084-V140uses temperature to monitor the battery pack and to compensate the self-discharge estimate.The bq2084-V140uses an integrating sigma-delta analog-to-digital converter (ADC)for current measurement and a second sigma-delta ADC for individual cell and battery voltage and temperature measurement.The individual cell and pack voltages,Voltage(),Current(),AverageCurrent()and Temperature()are updated every 1s during normal operation.The integrating ADC measures the charge and discharge flow of the battery by monitoring a small-value sense resistor between the SR1and SR2pins.The integrating ADC measures bipolar signals from -0.25V to 0.25µV.The bq2084-V140detects charge activity when VSR =V(SR1)-V(SR2)is positive and discharge activity when VSR =V(SR1)-V(SR2)is negative.The bq2084-V140continuously integrates the signal over time,using an internal counter.The fundamental rate of the counter is 0.65nVh.The bq2084-V140updates RemainingCapacity()with the charge or discharge accumulated in this internal counter once every second.The bq2084-V140provides an auto-calibration feature to cancel the voltage offset error across SR1and SR2for maximum charge measurement accuracy.The bq2084-V140performs auto-calibration when the SMBus lines stay low for a minimum of 20s when it internally connects SR1to SR2and measures the internal offset.With this feature the bq2084-V140is capable of automatic offset calibration down to <1µV.The bq2084-V140does not measure charge or discharge counts below the digital filter threshold.The digital filter threshold is programmed in the Digital Filter DF 0x2c and should be set sufficiently high to prevent false signal detection with no charge or discharge flowing through the sense resistor.While monitoring SR1and SR2for charge and discharge currents,the bq2084-V140monitors the individual series cell voltages through the bq29312.The bq2084-V140configures the bq29312to present the selected cell to the CELL pin of the bq29312,which should be connected to VIN of the bq2084-V140.The internal ADC of the bq2084-V140then measures the voltage and scales it appropriately.The bq2084-V140then reports the Voltage()and the individual cell voltages in VCELL1(),VCELL2(),VCELL3(),and VCELL4().An additional SMBus command (0x45)returns the measured ADC Reading of the PACK input to the AFE.The bq2084-V140uses the SR1and SR2inputs to measure and calculate the battery charge and discharge current.This value is reported via the SBS command Current().AverageCurrent()is implemented as a single-pole IIR filter with a 14.5-s time constant.The TS input of the bq2084-V140along with an NTC thermistor measures the battery temperature as shown in the schematic.The bq2084-V140reports temperature via the SBS command Temperature().The bq2084-V140can also be configured to use its internal temperature sensor by setting the IT bit in Misc Configuration DF 0x2a-0x2b.Data flash locations DF 0xb5through DF 0xc0also have to be changed to prescribed values if the internal temperature sensor option is selected.8Submit Documentation FeedbackGAS GAUGE OPERATIONGeneralbq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 2006FUNCTIONAL DESCRIPTION (continued)Table 1.Data Flash Settings for Internal or External Temperature SensorINTERNAL TEMP EXTERNAL TEMP SENSOR SETTINGLOCATION SENSOR SETTING(Semitec 103AT)LABEL Dec (Hex)Dec (Hex)Dec (Hex)Misc.Config 42(0x2a)Bit 7=1Bit 7=0TS Const1A3164/5(0xb5/6)0(0x0000)–28285(0x9183)TS Const2A2166/7(0xb7/8)0(0x0000)20848(0x5170)TS Const3A1168/9(0xb9/a)–11136(0xd480)–7537(0xe28f)TS Const4A0170/1(0xbb/c)5734(0x1666)4012(0x0fac)Min Temp AD 172/3(0xbd/e)0(0x0000)0(0x000)Max Temp174/5(0xbf/c0)5734(0x1666)4012(0x0fac)The operational overview in Figure 1illustrates the gas gauge operation of the bq2084-V140.Table 3describes the bq2084-V140registers.Figure 1.bq2084-V140Gas Gauging Operational OverviewThe bq2084-V140accumulates a measure of charge and discharge currents and estimates self-discharge of the battery.The bq2084-V140compensates the charge current measurement for temperature and state-of-charge of the battery.The bq2084-V140also adjusts the self-discharge estimation based on temperature.The main charge counter RemainingCapacity()(RM)represents the available capacity or energy in the battery at any given time.The bq2084-V140adjusts RM for charge,self-discharge,and other compensation factors.The information in the RM register is accessible through the SMBus interface and is also represented through the LED display.9Submit Documentation FeedbackMain Gas-Gauge Registers Capacity Learning (FCC Update)and Qualified Dischargebq2084-V140SLUS664B–JULY 2005–REVISED AUGUST 2006The FullChargeCapacity()(FCC)register represents the last measured learned full discharge of the battery.It is used as the battery full-charge reference for relative capacity indication.The bq2084-V140updates FCC after the battery undergoes a qualified discharge from nearly full to a low battery level.FCC is accessible through the SMBus interface.The Discharge Count Register (DCR)is a non-accessible register that tracks discharge of the battery.The bq2084-V140uses the DCR register to update the FCC register if the battery undergoes a qualified discharge from nearly full to a low battery level.In this way,the bq2084-V140learns the true discharge capacity of the battery under system-use conditions.RemainingCapacity()(RM)RM represents the remaining capacity in the battery.The bq2084-V140computes RM in units of either mAh or 10mWh depending on the selected mode.See Battery Mode()(0x03)for units configuration.RM counts up during charge to a maximum value of FullChargeCapacity()(FCC)and down during discharge and self-discharge to a minimum of 0.In addition to charge and self-discharge compensation,the bq2084-V140calibrates RM at three low-battery-voltage thresholds,EDV2,EDV1,and EDV0and three programmable midrange thresholds VOC25,VOC50,and VOC75.This provides a voltage-based calibration to the RM counter.DesignCapacity ()(DC)DC is the user-specified battery full capacity.It is calculated from Pack Capacity DF 0x32-0x33and is represented in units of mAh or 10mWh.It also represents the full-battery reference for the absolute display mode.FullChargeCapacity()(FCC)FCC is the last learned measured discharge capacity of the battery.It is represented in units of either mAh or 10mWh,depending on the selected mode.On initialization,the bq2084-V140sets FCC to the value stored in Full Charge Capacity DF 0x36-0x37.During subsequent discharges,the bq2084-V140updates FCC with the last learned measured discharge capacity of the battery.The last learned measured discharge of the battery is based on the value in the Discharge Count Register (DCR)after a qualified discharge occurs.Once updated,the bq2084-V140writes the new FCC value to data flash in mAh to Full Charge Capacity .FCC represents the full-battery reference for the relative display mode,relative state of charge and AtRate()calculations.Discharge Count Register (DCR)The DCR register counts up during discharge,independent of RM.DCR counts discharge activity,battery load estimation,and self-discharge increments.The bq2084-V140initializes DCR,at the beginning of a discharge,to FCC -RM when FCC -RM is within the programmed value in Near Full DF 0x30.The DCR initial value of FCC -RM is reduced by FCC/128if SC =1(bit 5in Gauge Configuration )and is not reduced if SC =0.DCR stops counting when the battery voltage reaches the EDV2threshold on discharge.The bq2084-V140updates FCC with an amount based on the value in DCR if a qualified discharge occurs.The new value for FCC equals the DCR value plus the programmable nearly full and low battery levels,according to the following equation:FCC (new)=DCR (final)=DCR (initial)+Measured Discharge to EDV2+(FCC x Battery Low%)here Battery Low %=(value stored in DF 0x2f)÷2.56A qualified discharge occurs if the battery discharges from RM =FCC -Near Full to the EDV2voltage threshold with the following conditions:•No more than 256mAh of self-discharge or battery load estimation occurs during the discharge period.•The temperature does not drop below the low temperature threshold programmed in Learning Low Temp DF0xac during the discharge period.•The battery voltage reaches the EDV2threshold during the discharge period,and the voltage is greater thanor equal to the EDV2threshold minus 256mV when the bq2084-V140detects EDV2.•No midrange voltage correction occurs during the discharge period.10Submit Documentation FeedbackEnd-of-Discharge Thresholds and Capacity Correction EDV Thresholds and Near-Full Programmingbq2084-V140 SLUS664B–JULY2005–REVISED AUGUST2006•Current remains≤3C/32when EDV2or Battery Low%level is reached.•No overload condition exists when EDV2threshold is reached,or if RM()has dropped to Battery Low%x FCC,•No valid charge activity occurs during the discharge period.A valid charge is defined as an uninterrupted charge of10mAh into the battery.The bq2084-V140sets VDQ=1in PackStatus()when qualified discharge begins.The bq2084-V140sets VDQ =0if any disqualifying condition occurs.FCC cannot be reduced by more than256mAh or increased by more than512mAh during any single update cycle.The bq2084-V140saves the new FCC value to the data flash within4seconds of being updated.The bq2084-V140monitors the battery for three low-voltage thresholds,EDV0,EDV1,and EDV2.The EDV thresholds can be programmed for determination based on the overall pack voltage or an individual cell level. The EDVV bit in Pack Configuration DF0x28configures the bq2084-V140for overall voltage or single-cell EDV thresholds.If programmed for single-cell EDV determination,the bq2084-V140determines EDV on the basis of the lowest single-cell voltage.Fixed EDV thresholds must be programmed in EMF/EDV0DF0x95-0x96,EDV C0 Factor/EDV1DF0x97-0x98,and EDV R Factor/EDV2DF0x99-0x9a.If the CEDV bit in Gauge Configuration DF0x29is set,automatic compensated EDVs are enabled and the bq2084-V140computes the EDV0,EDV1,and EDV2voltage thresholds based on the values in DF0x95-0xa0 and the battery's current discharge rate and temperature.If FEDV0in Gauge Configuration is also set then EDV0is not compensated.The bq2084-V140disables EDV detection if Current()exceeds the Overload Current threshold programmed in DF0x5b-DF0x5c.The bq2084-V140resumes EDV threshold detection after Current() drops below the Overload Current threshold.Any EDV threshold detected is reset after charge is detected and VDQ is cleared after10mAh of charge.The bq2084-V140uses the EDV thresholds to apply voltage-based corrections to the RM register according to Table2.Table2.State-of-Charge Based on Low Battery VoltageTHRESHOLD RELATIVE STATE OF CHARGEEDV00%EDV13%EDV2Battery Low%The bq2084-V140performs EDV-based RM adjustments with Current()≤C/32.No EDV flags are set if current< C/32.The bq2084-V140adjusts RM as it detects each threshold.If the voltage threshold is reached before the corresponding capacity on discharge,the bq2084-V140reduces RM to the appropriate amount as shown in Table2.If an RM%level is reached on discharge before the voltage reaches the corresponding threshold,then RM is held at that%level until the threshold is reached.RM is only held if VDQ=1,indicating a valid learning cycle is in progress.If Battery Low%is set to zero,EDV1and EDV0corrections are disabled.The bq2084-V140uses the values stored in data flash for the EDV0,EDV1,and EDV2values or calculates the three thresholds from a base value and the temperature,capacity,and rate adjustment factors stored in data flash.If EDV compensation is disabled,then EDV0,EDV1,and EDV2are stored directly in mV in DF0x95-0x96, DF0x97-0x98,and DF0x99-0x9a,respectively.For capacity correction at EDV2,Battery Low%DF0x2f can be set at a desired state-of-charge, STATEOFCHARGE%,in the range of3-19%.Typical values for STATEOFCHARGE%are5-7%,representing 5-7%capacity.Battery Low%=(STATEOFCHARGE%x2.56)11Submit Documentation Feedback。
bq2084中文介绍
特征1.能精确测量可充电锂离子及锂聚合物电池2.支持智能电池标准(SBS)V1.13.内含集成时基,无需外置晶振选择输入.4.和TI29312模拟前端(AFE)保护IC配合,用较少的外部组件便可为7.2V,10.8V 或14.4V电池组提供完整的电子环境.5.以功能强大且低能耗的精简指令微处理器及高效能的外围设备作为基础.6.集成闪存无需外置EEPROM7.利用16位增量累积转换器精确测量电压和温度8.使用一个16位的高分辨率积分转换器测量充电电流..●高于0.65-nVh的分辨率●自我纠正功能●偏差小于1uV9.对单电池的参数设置可实现最大的电量测量精度.10.可驱动3到5个LED进行容量指示11.38-Pin的TSSOP封装适用范围笔记本计算机医疗及测试仪器便携式仪器.概述用于电池组或系统内置的复合智能电池规范的电量监测芯片bq2084-v23,可准确纪录可充电锂离子或锂聚合物电池组的相关数据. bq2084 监测的电池容量和其它关键参数通过一系列总线将这些信号传递给系统的主控制器. 这种IC与AFE保护IC共同作用, 才能在智能电池线路中使其功能和安全性最大化, 以及组件数量和消耗最小化. 主监控器利用bq2084发送的信号, 可合理的管理电池能源,使得系统的运行时间尽可能的延长.bq2084使用一个积分转换器,持续取样充放电电流的测量值.自矫正积分转换器拥有高于0.65nVh的分辨率, 小于1uV(典型值)的误差,实现最佳的电量测量. bq2084使用16位A/D 转换器实现电压和温度的测量. 与bq29312相结合, 自带的A/D 转换器不仅可检测电池组中每个电池的电压, 而且可使bq2084产生必要的控制信号来平衡电池及保证电池中化学物质的安全性.bq2084支持SBData 的要求及充电控制功能,遵照系统管理总线(SMBus)二线协议传递信息, 这些信息包括剩余容量, 温度,电压,电流,预计剩余使用时间. bq2084也提供LED显示的驱动电路和按键输入,可利用三段、四段或五段显示器,分别以20%、25%和33%的增幅来显示从空电池到满电池之间的电池电力。
TI BQ IC简介 (Gas Gauge IC)
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 1
Agenda
鋰離子電池簡介: 鋰離子電池的用途: TI鋰離子電池管理芯片組簡介: IC包裝: 如何使用TI官方網站:
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 2
鋰離子電池簡介
PROSPECT TECHNOLOGY CORP 11
TI IC封裝訊息
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 12
TI IC封裝訊息
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 13
TI Gas Gauge IC 頂端標記
Device: bq2084 (Gas Gauge IC) 38-Pin TSSOP(DBT) 引腳/封裝 Level-2-260C-1 YEAR(潮濕敏感度等級/回流焊溫度) YMS(82K) : 2008年2月在馬來西亞封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點: T: 台灣 K: 馬來西亞
功能: 主要功能用來報告精確的鋰離子電池的剩餘容量。它獨特的演算法可 以即時追蹤電池組電芯容量變化,電壓、溫度、充放電電流及充電狀 態和其它重要資訊,讓使用者知道目前電池組的使用狀況,並了解電 池組還能維持多久的執行時間,讓使用者評估電池組的電力是否可以
笔记本电池电路图
笔记本电池原理图MM1414,S-8254,BQ29311,BQ29312这四个是四节串联锂离子电池保护用的控制芯片.其它是电量计量芯片,也叫GAS GUAGE IC.它的主要功能是电量测量.此外它还检测电池的各种参数,如电压,电流,温度等,同时还包括与主机的通信,通过SMBUS 或单总线.寄存器中还存有其它信息,象制造厂信息,补偿参数,三级终止放电电压等等,有些参数是与电量测量相关的.有的芯片还提供二次保护控制.具体的情况你可以详细阅读一下数据手册,里面有详细说明.S-8244是针对3或4节串联锂离子电池的过充电保护控制芯片.它经常用于二次过充电保护控制上.输出常接一个受控温度FUSE,用于过充电保护.通常的过充电保护由一次保护电路完成,当一次保护电路失效后,二次保护电路可以动作,以避免电池被过充电而发生安全问题.它的保护是一次性的,保护动作后电池就无法使用.而基本的过充电保护是可恢复.注:电池最容易发生危险是被过充电时,因此才需要二次过充电保护.过放电只会使电芯损坏,却不会导致安全问题.什麽是一次保护电路與二次保护电路?一次保护电路是指基本的保护电路.它对锂离子电池起到过充电保护、过放电保护、过电流保护、短路保护的作用.此电路通常由锂离子电池保护IC配合两个充、放电开关的MOSFET来完成.在保护动作后,若符合恢复条件,电池就可恢复到正常状态,继续使用.二次保护是相对基本保护而言的,只是一种通俗的说话.它分好多种,前面提到S-8244就是用于二次过充电保护控制.它是在基本保护电路失效后来动作的,由于它常常是一次性的保护(比如控制温度FUSE,使它熔断),因此保护动作后电池就无法再使用了.是不是所谓的二次保护是由保险丝来完成的呢?不一定是保险丝,也有是控制电路的.象S-8244做的二次保护.有些电路好象很复杂.好象有二片充放管理芯片(除了MCU).TI的有个问题,为什么有些电路是管理和充放分开,如BQ2040 M1414 二个电路是独立的,但BQ2040可以控制笔记本对电池充电.所以有时会更换电芯后,机器能放电,但不能充,可你直接用一个外接电源却可充(因为这里不受BQ2040控制), 这种情况如何办? BQ2040外围的FLASH如何修改? 我也看到网上有软件,可都是些限制版,这种软件原理是什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWFEATURES APPLICATIONSDESCRIPTIONSYSTEM PARTITIONING DIAGRAMbq29312SLUS546E–MARCH2003–REVISED MARCH2005THREE AND FOUR CELL LITHIUM-ION ORLITHIUM-POLYMER BATTERY PROTECTION AFE•Notebook PCs•2-,3-,or4-Cell Series Protection Control•Medical and Test Equipment•Can Directly Interface With the bq2084Gas•Portable Instrumentation Gauges•Provides Individual Cell Voltages and BatteryVoltage to Battery Management HostThe bq29312is a2-,3-,or4-cell lithium-ion battery •Integrated Cell Balancing Drivepack protection analog front end(AFE)IC that •I2C Compatible User Interface Allows Accessincorporates a 3.3-V,25-mA low-dropout regulator to Battery Information(LDO).The bq29312also integrates an I2C compat-•Programmable Threshold and Delay for Over ible interface to extract battery parameters such as Load and Short Circuit During Charge and cell voltages and control output status.Other par-Discharge ameters such as current protection thresholds anddelays can be programmed into the bq29312to •System Alert Interrupt Outputincrease the flexibility of the battery management •Host Control Can Initiate Sleep Power Mode system.and Ship ModeThe bq29312provides safety protection for over-•Integrated3.3-V,25-mA LDOcharge,overload,short-circuit,overvoltage,and •Supply Voltage Range From4.5V to25V undervoltage conditions in conjunction with the bat-tery management host.In overload and short-circuit •Low Supply Current of60-µA Typicalconditions,the bq29312turns the FET drive offautonomously dependant on the internal configurationsetting.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2003–2005,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.PACKAGE DISSIPATION RATINGSABSOLUTE MAXIMUM RATINGSbq29312SLUS546E–MARCH 2003–REVISED MARCH 2005These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.The communications interface allows the host to observe and control the current status of the bq29312.It enables cell balancing,enters different power modes,sets overload levels,sets the overload blanking delay time,sets short-circuit threshold levels for charge and discharge,and sets the short-circuit blanking delay time.Cell balancing of each cell is performed via a cell bypass path,which is enabled via the internal control register accessible via the I 2C compatible interface.The maximum bypass current is set via an external series resistor and internal FET on resistance (typical 400Ω).ORDERING INFORMATIONPACKAGED (1)T ATSSOP (PW)bq29312PW –25°C to 85°Cbq29312PWR(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI website at .POWER RATINGPOWER RATINGDERATING FACTOR PACKAGET A ≤25°CABOVE T A ≤25°CT A ≤70°C T A =85°C PW874mW6.99W/°C559mW454mWover operating free-air temperature range unless otherwise noted (1)(2)bq29312V SSSupply voltage rangePACK,BAT–0.3V to 34V VC1,VC2,VC3,VC4–0.3V to 34V SR1,SR2–1.0V to 1.0V VC5–1.0V to 4.0V V IInput voltage rangeVC1to VC2,VC2to VC3,VC3to VC4,VC4to –0.3to 8.5V VC5WDI,SLEEP,SCLK,SDATA –0.3to 8.5V ZVCHG –0.3V to 34V DSG,CHG–0.3V to BAT OD –0.3V to 34V V OOutput voltage rangePMS–0.3V to PACK –0.2VTOUT,SCLK,SDATA,CELL,XALERT–0.3to 7V Current for cell balancing10mAContinuous total power dissipationSee Dissipation Rating TableT stg Storage temperature range–65°C to 150°CLead temperature (soldering,10sec)300°C(1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltages are with respect to ground of this device except VCn –VC(n +1),where n =1,2,3,4cell voltage.2RECOMMENDED OPERATING CONDITIONSbq29312 SLUS546E–MARCH2003–REVISED MARCH2005MIN NOM MAX UNITSupply Voltage(BAT or PACK) 4.5(1)25VV I(STARTUP)Start-up voltage(PACK) 5.0VVC1,VC2,VC3,VC40BATSR1,SR2–0.50.5VC5–0.5 3.0V I Input voltage range VVCn–VC(n+1),(n=1,2,3,4)0 5.0PMS0PACKSLEEP0REGV IH0.8×REG REG V Logic level input voltage SCLK,SDATA,WDI0.2×V IL0REGV IH V PACK–0.2V PACK V PMS logic level PMSV IL00.2 PMS pull up/pull down resistance RPMS1001000kΩV O Output voltage OD25VI O Output current XALERT,SDATA200µACELL±10µA Input current,External3.3V REGI I SLEEP-0.5 1.0µAcapacitorC(REG) 4.7µFR(CELL)100ΩExtend CELL output filterC(CELL)100nFOD1mAI OL Input frequencyWDI32.768kHz WDI high time228µsT A Operating temperature–2585°C (1)V(PACK)supply voltage must rise above start-up voltage on power up to enable the internal regulator which drives REG and TOUT asrequired.Once V(PACK)is above the start-up voltage,it can fall down to the minimum supply voltage and still meet the specifications of the bq29312.3ELECTRICAL CHARACTERISTICSbq29312SLUS546E–MARCH 2003–REVISED MARCH 2005T A =25°C,C (REG)=4.7µF,BAT =14V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYPMAXUNITSUPPLY CURRENT No load at REG,TOUT,XALERT,SCLK,and SDATA.6090I CC1Supply current 1ZVCHG =off ,VMEN =on,WDI no clock,µAT A =–25°C to 85°C 100Select VC5=VC4=0VSupply current 2No load at REG,TOUT,XALERT,SCLK,and SDATA.I CC2(Depends of VM T A =–25°C to 85°C2550µAZVCHG =off,VMEN =off,WDI no clocktopology selected)No load at REG,TOUT,XALERT,SCLK,and I (SLEEP)Sleep current SDATA.CHG,DSG and ZVCHG =off,REG =on,T A =–25°C to 85°C 2040µA VMEN =off,WDI no clock,SLEEP =REG or OPEN REG,CHG,DSG and ZVCHG =off,REG =off,I (SHIP)Ship currentT A =–25°C to 85°C0.11.0µAVMEN =off,WDI no clock,VPACK=0V 3.3V LDO8.0V <BAT or PACK ≤25V,I O ≤25mA–4% 3.32%V 6.5V <BAT or PACK ≤8V,I O ≤25mA –9% 3.32%Regulator output V (REG)T A =–25°C to 85°Cvoltage5.4V ≤BATor PACK ≤6.5V,I O ≤16mA –9% 3.32%V 4.5V ≤BAT or PACK ≤25V,I O ≤2mA–2%3.32%VRegulator output ∆V (EGTEMP)change with 5.4V ≤BAT ≤25V,I O =2mA,T A =–25°C to 85°C ±0.2%temperature ∆V (REGLINE)Line regulation 5.4V ≤BAT or PACK ≤25V,I O =2mA 310mV BAT =14V,0.2mA ≤I O ≤2mA 715∆V (REGLOAD)Load regulation mV BAT =14V,0.2mA ≤I O ≤25mA 40100BAT =14V,REG =3.0V 25100I MAXCurrent limitmABAT =14V,REG =0V1250CELL VOLTAGE MONITOR V (Cn)–V (Cn +1)=0V,8.0V ≤BAT or PACK ≤25V 0.975V (CELL OUT)CELL output V V (Cn)–V (Cn +1)=4.5V,8.0V ≤BAT or PACK ≤25V 0.3REF CELL output Mode (1),8.0V ≤BAT or PACK ≤25V –1%0.9751%V PACK/PACKCELL outputMode (2)–5%5%V25K =(CELL output (VC5=0.0V,VC4=4.5V)0.1470.1500.153–CELL output (VC5=VC4=0.0V)/4.5K CELL scale factorK =(CELL output (VC2=13.5V,VC1=18.0V)0.1470.1500.153–CELL output (VC2=VC1=13.5V)/4.5CELL output offset CELL output (VC2=17.0V,VC1=17.0V)VICR –1mV errorCELL output (VC2=VC1=0.0V)Cell balance internal R (BAL)rds (ON)for internal FET switch at V DS =2.0V200400800Ωresistance(1)Register Address =0x04,b2(CAL0)=b3(CAL1)=1,Register Address =0x03,b0(VMEN)=1(2)Register Address =0x03,b1(PACKOUT)=1,b0(VMEN)=14ELECTRICAL CHARACTERISTICS (Continued)bq29312SLUS546E–MARCH 2003–REVISED MARCH 2005T A =25°C,C (REG)=4.7µF,BAT =14V (unless otherwise noted)PARAMETERTEST CONDITIONMINNOMMAXUNITOVER LOAD (OL)AND SHORT CIRCUIT (SC)DETECTION V OL OL detection threshold range,typical (1)–50–205mV ∆V OL OL detection threshold program step 5mV V HYS(OL)OL detection threshold hysteresis 71013mV Charge 100475V (SC)SC detection threshold range,typical (2)mV Discharge –100–475Charge 25∆V (SC)SC detection threshold program step mV Discharge–25V HYS(SC)SC detection threshold hysteresis Charge and Discharge405060mVV OL =50mV (min)405060V (OL_acr)OL detection threshold accuracy (1)DischargeV OL =100mV 90100110mVV OL =205mV (max)184205226V SC =100mV (min)80100120V (SC_acr)SC detection threshold accuracy (2)Charge and DischargeV SC =200mV 180200220mV V SC =475mV (max)426475523FET DRIVE CIRCUITV (FETOND)=V (BAT)–V (DSG)BAT=20V 121518VGS connect 1M ΩOutput voltage,charge and discharge FETs V (FETON)VonV (FETONC)=V (PACK)–V (CHG)PACK =20V 121518VGS connect 1M ΩV (ZCHG)ZVCHG clamp voltagePACK=4.5V 3.33.53.7V V (FETOFF)=V (PACK)–V (DSG)PACK=16V 0.2Output voltage,charge and discharge FETs V (FETOFF)V off V (FETOFF )=V (BAT)–V (CHG)BAT =16V 0.2V DSG :10%–90%40200t r Rise time C L =4700pF µs V CHG :10%–90%40200V DSG :90%–10%40200t fFall timeC L =4700pFµsV CHG :90%–10%40200THERMISTOR DRIVE I O =–1mA at TOUT pin,rds (ON)=(V REG –V O (TOUT))/1mA,r DS(on)TOUT pass-element series resistance50100ΩT A =–25°C to 85°CLOGIC XALERT T A =–25°C to 85°C 60100200R (PUP)Internal pullup resistancek ΩSDATA,SCLK,T A =–25°C to 85°C 61020XALERT,I O =200µA,T A =–25°C to 85°C 0.2V OLLogic level output voltageSDATA,I O =50µA,T A =–25°C to 85°C 0.4V OD I O =1mA,T A =–25°C to 85°C0.6(1)See OL register for setting detection threshold (2)See SC register for setting detection threshold5AC ELECTRICAL CHARACTERISTICSAC TIMING SPECIFICATIONS (I 2C COMPATIBLE SERIALINTERFACE)t SCLKSDATASCLK SDATASCLK SDATAbq29312SLUS546E–MARCH 2003–REVISED MARCH 2005T A =25°C,C (REG)=4.7µF,BAT =14V (unless otherwise noted)PARAMETERTEST CONDITIONMIN NOM MAX UNIT t (WDTINT)WDT start-up detect time 2507002000ms t (WDWT)WDT detect time100µsPARAMETERMIN MAX UNIT t r SCLK SDATA rise time 1000ns t f SCLK SDAT fall time 300ns t w(H)SCLK pulse width high 4.0µs t w(L)SCLK pulse width low4.7µs t su(STA)Setup time for START condition4.7µs t h(STA)START condition hold time after which first clock pulse is generated 4.0µs t su(DAT)Data setup time 250ns t h(DAT)Data hold time0µs t su(STOP)Setup time for STOP condition4.0µs t su(BUF)Time the bus must be free before new transmission can start 4.7µst V Clock low to data out valid 900ns t h(CH)Data out hold time after clock low 0ns f SCLClock frequency100kHz6PIN ASSIGNMENTSBA T DSG VC1 VC2 VC3 VC4 VC5 SR1 SR2 WDIGNDODPMSP ACKZVCHGCHGSLEEPREGT OUTXALER TGNDSDA T ASCLKbq29312SLUS546E–MARCH2003–REVISED MARCH2005PW PACKAGE(TOP VIEW)Terminal FunctionsTERMINALDESCRIPTIONNAME NO.BAT1Diode protected BAT+terminal and primary power source.DSG2Push-pull output discharge FET gate driveVC13Sense voltage input terminal for most positive cell and balance current input for most positive cell.Sense voltage input terminal for second most positive cell,balance current input for second most positive cell and VC24return balance current for most positive cell.Sense voltage input terminal for third most positive cell,balance current input for third most positive cell and return VC35balance current for second most positive cell.Sense voltage input terminal for least positive cell,balance current input for least positive cell and return balance VC46current for third most positive cell.VC57Sense voltage input terminal for most negative cell,return balance current for least positive cell.SR18Current sense positive terminal when charging relative to SR2SR29Current sense negative terminal when discharging relative to SR2current sense terminalWDI10Digital input that provides the timing clock for the OC and SC delays and also acts as the watchdog clock.CELL11Output of scaled value of the measured cell voltage.GND12Analog ground pin and negative pack terminalSCLK13Open-drain bidirectional serial interface clock with internal10kΩpull-up to V(REG).SDATA14Open-drain bidirectional serial interface data with internal10kΩpull-up to V(REG).GND15Connect to GNDXALERT16Open-drain output used to indicate status register changes.With internal100kΩpull-up to V(REG)TOUT17Provides thermistor bias currentREG18Integrated3.3-V regulator outputSLEEP19This pin is pulled up to V(REG)internally,open or H level makes Sleep modeCHG20Push-pull output charge FET gate driveZVCHG21The ZVCHG FET drive is connected herePACK22PACK positive terminal and alternative power sourcePMS230-V charge configuration select pin,CHG terminal ON/OFF is determined by this pin.OD24NCH FET open drain output7SLEEP FROM GGGG INTERFACESDATA ALERT TO GGOUTPUTGG INTERFACESCLK0.2 m bq29312SLUS546E–MARCH 2003–REVISED MARCH 2005FUNCTIONAL BLOCK DIAGRAM8SHIP MODE SET BY STATE CTL REGISTER b1 = 1 AND NO SUPPLY POWER TO PACKEnrering These States*1: Interrupt Request is Granted When Only External Sleep Pin Changes *2: When PMS connect to Pack, Default State of CHG FET is ON.bq29312SLUS546E–MARCH 2003–REVISED MARCH 2005STATE DIAGRAM9FUNCTIONAL DESCRIPTIONLow-Dropout Regulator (REG)InitializationOverload DetectionShort-Circuit DetectionOverload and Short-Circuit DelayOverload and Short-Circuit Responsebq29312SLUS546E–MARCH 2003–REVISED MARCH 2005The inputs for this regulator can be derived from the battery cell stack (BAT)or the pack positive terminal (PACK).The output is typically 3.3V with the minimum output capacitance for stable operation is 4.7µF and is also internally current limited.During normal operation,the regulator limits output current to typically 50mA.The bq29312internal control circuit is powered by the REG voltage,which it also monitors.When the voltage at REG falls below 2.3V,the internal circuit turns off the FETs and disables all controllable functions,including the REG and TOUT outputs.REG does not start up unless a voltage above V (STARTUP)is supplied to the PACK terminal.After the regulator has started,based on PACK voltage,it keeps operating through the BAT input,even if the PACK voltage is removed.If the BAT input is below the minimum operating range,then the bq29312does not operate if the supply to the PACK input is removed.After start up,when the REG voltage is above 2.4V,the bq29312is in Normal mode.The initial state of the CHG output depends on the PMS input.If PMS =PACK then CHG =ON however,if PMS =GND then CHG =OFF.The overload detection is used to detect abnormal currents in the discharge direction.This feature is used to protect the pass FETs,cells and any other inline components from excessive current conditions.The detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state.The overload sense voltage is set in the OLV register,and delay time is set in the OLT register.The overload threshold can be programmed from 50mV to 205mV in 5-mV steps with the default being 50mV and hysteresis of 10mV.The short current circuit detection is used to detect abnormal current in either the charge or discharge direction.This safety feature is used to protect the pass FETs,cells,and any other inline components from excessive current conditions.The detection circuit also incorporates a blanking delay before driving the control for the pass FETs to the OFF state.The short-circuit thresholds and delay time are set in the SCC and SCD registers respectively where SCC is for charging and SCD is for discharge.The short-circuit threshold can be programmed from 100mV to 475mV in 25-mV steps with the default being 100mV and hysteresis of 50mV.The overload delay (default =1ms)allows the system to momentarily accept a high current condition without disconnecting the supply to the load.The delay time can be increased via the OLT register,which can be programmed for a range of 1ms to 31ms with steps of 2ms.The short-circuit delay (default =0µs)is programmable in the SCC and SCD registers.This register can be programmed from 0µs to 915µs with steps of 61µs.When an overload or short-circuit fault is detected,the FETs are turned off.The STATUS (b0…b2)register reports the details of short-circuit (charge),short-circuit (discharge),and overload.The respective STATUS (b0…b2)bits are set to 1and the XALERT output is triggered.This condition is latched until the CONTROL (b0)is set and then reset.If a FET is turned on via resetting CONTROL (b0)and the error condition is still present on the system,then the device reenters the protection response state.10FUNCTIONAL DESCRIPTION(continued)Cell VoltageThe cell voltage is translated to allow a system host to measure individual series elements of the battery.The series element voltage is translated to a GND-based voltage equal to0.15±0.002of the series element voltage. This provides a range from0V to4.5V.The translation output is inversely proportional to the input using the following equation.Where,V(CELL OUT)=–K×V(CELL IN)+0.975(V)Programming CELL_SEL(b1,b0)selects the individual series element.The CELL_SEL(b3,b2)selects the voltage monitor mode,cell monitor,offset etc.Calibration of Cell Voltage Monitor Amplifier GainThe cell voltage monitor amplifier has an offset and to increase accuracy this can be calibrated.There are a couple of method by calibration circumstance.The following procedure shows how to measure and calculate the offset and gain as one of example.•Step1–Set CAL1=1,CAL0=1,CELL1=0,CELL0=0,VMEN=1–V REF is trimmed to0.975V within±1%,measuring V REF eliminates its error.–Measure internal reference voltage V REF from VCELL directly.–VREF=measured reference voltage•Step2–Set CAL1=0,CAL0=0,CELL1=0,CELL0=0,VMEN=1–The output voltage includes the offset and represented by:V O(4-5)=V REF+(1+K)×V OS(V)Where K=CELL Scaling Factor–V OS=Offset voltage at input of the internal operational-amplifier•Step3–Set CAL1=1,CAL0=0,CELL1=0,CELL0=0,VMEN=1–Measuring scaled REF voltage through VCELL amp.–The output voltage includes the scale factor error and offset and is represented by:V(OUTR)=V REF+(1+K)×V OS–K×V REF(V)•Step4–Calculate(V O(4-5)–V(OUTR)/V REF–The result is the actual scaling factor,K(ACT)and is represented by:K(ACT)=(V O(4-5)–V(OUTR))/V REF=(V REF+(1+K)×V OS)-(V REF+(1+K)×V OS–K×V REF)/V REF=K×V REF/V REF=K•Step5–Calculate the actual offset value where:V OS(ACT)=(V O(4-5)–V REF)/(1+K(ACT))•Step6–Calibrated cell voltage is calculated by:VCn–VC(n+1)={V REF+(1+K(ACT))×V OS(ACT)–V(CELLOUT)}/K(ACT)–{V O(4-5)–V(CELLOUT)}/K(ACT)SLUS546E–MARCH2003–REVISED MARCH2005FUNCTIONAL DESCRIPTION(continued)For improved measurement accuracy,V OS(ACT)for each cell voltage should be measured.•Set CAL1=0,CAL0=0,CELL1=0,CELL0=1,VMEN=1•Set CAL1=0,CAL0=0,CELL1=1,CELL0=0,VMEN=1•Set CAL1=0,CAL0=0,CELL1=1,CELL0=1,VMEN=1Measuring V O(3-4),V O(2-3),V O(1-2),•VC4–VC5={V O(4-5)–V(CELLOUT)}/K(ACT)•VC3–VC4={V O(3-4)–V(CELLOUT)}/K(ACT)•VC2–VC3={V O(2-3)–V(CELLOUT)}/K(ACT)•VC1–VC2={V O(1-2)–V(CELLOUT)}/K(ACT)Cell Balance ControlThe cell balance control allows a small bypass path to be controlled for any one series element.The purpose of this bypass path is to reduce the current into any one cell during charging to bring the series elements to the same voltage.Series resistors placed between the input pins and the positive series element nodes control the bypass current value.Individual series element selection is made using bits4through7of the CELL_SEL register.Thermistor Drive Circuit(TOUT)The TOUT pin can be enabled to drive a thermistor from REG.The typical thermistor resistance is10kΩat 25°C.The default-state is OFF to conserve power.The maximum output impedance is100Ω.TOUT is enabled in FUNCTION CTL Register(bit5).Open Drain Drive Circuit(OD)The open drain output has1-mA current source drive with a maximum output voltage of25V.The OD output is enabled or disabled by OUTPUT CTL Register(bit4)and has a default state of OFF.XALERT(XALERT)XALERT is driven low when an OL or SC current fault is detected,if the SLEEP pin changes state or a watchdog fault occurs.To clear XALERT,toggle(from0,set to1then reset to0)OUTPUT CTL(bit0),then read the STATUS register.Latch Clear(LTCLR)When a current limit fault or watch dog timer fault occurs,the state is latched.To clear these faults,toggle(from 0,set1then reset to0)LTCLR in the OUTPUT CTL register(bit0).Figure1is the LTCLR and XALERT clear example after sensing short-circuit.I 2CLTCLR Write = 1LTCLR Write = 0Read STATUS Register2-,3-,or 4-Cell ConfigurationFUNCTIONAL DESCRIPTION (continued)Figure 1.LTCLR and XALERT Clear Example After Sensing Short LTCLR and XALER Clear ExampleIn a 3-cell configuration,VC1is shorted to VC2.In a 2-cell configuration,VC1and VC2are shorted to VC3.Watchdog Input (WDI)REGGG 32 kHz OutputREGGG 32 kHz OutputWatchdog SenseEXT FET ControlDSG and CHG FET Driver ControlSLUS546E–MARCH 2003–REVISED MARCH 2005FUNCTIONAL DESCRIPTION (continued)The WDI input is required as a time base for delay timing when determining overload and short-circuit delay periods and is used as part of the system watchdog.Initially the watchdog monitors the hosts oscillator start up,if there is no response from the host within 700ms of the bq29312reaching its minimum operating voltage,then the bq29312turns both CHG,DSG and ZVCHG FETs OFF.Once the watchdog has been started during this wake up period,it monitors the host for an oscillation stop condition,which is defined as a period of 100µs (typ)where no clock input is received.If an oscillator stop condition is identified,then the watchdog turns the CHG,DSG and ZVCHG FETs OFF.When the host clock oscillation is started,WDF is released,but the flag is latched until LTCLR is toggled.Figure 2.Watchdog Timing Chart—WDI Fault at StartupFigure 3.Watchdog Timing Chart—WDI Fault After StartupThe bq29312drives the DSG,CHG,and ZVCHG FET off if an OL or SC safety threshold is breached depending on the current direction.The host can force any FET on or off only if the bq29312integrated protection control allows.The DSG and CHG FET drive gate-to-drain voltage is clamped to 15V (typ).Precharge and 0V Charging—Theory of OperationSLEEP Control Input (SLEEP)Power ModesFUNCTIONAL DESCRIPTION (continued)The default-state of the CHG and DSG FET drive is off,when PMS =GND.A host can control the FET drive by programming OUTPUT CTL (b3...b1)where b1is used to control the discharge FET,b2is used to control the charge FET and b3is used to control the ZVCHG FET.These controls are only valid when not in the initialized state.The CHG drive FET can be powered by PACK and the DSG FET can be powered by BAT.The bq29312supports both a charger that has a precharge mode and one that does not.The bq29312also supports charging even when the battery falls to 0V.Detail is described in the application section.The SLEEP input is pulled-up internally to REG.When SLEEP is pulled to REG,the bq29312enters the SLEEP mode.The SLEEP mode disables all the FET outputs and the OL,SC and watchdog faults are also disabled.The RAM configuration is still valid on exit of the SLEEP mode.The host can force the bq29312into SLEEP mode via register control also.Table 1.SLEEP Control InputSLEEPITEMEXIT SLEEPFUNCTION I 2C READ/WRITEI 2C Read/Write Active REG Output ActiveExternal pin control:CHG,DSG,ZVCHG,TOUT,OD OC and SC protection:Write is available,Last pre-sleep entry configuration is valid.(If changeSCD,SCC and OCD but read is disabledconfiguration,latest write data is valid.)CELL Translation DisabledPACKOUT,VMEN Cell Balancing:CB[3:0]Watchdog:WDDISThe bq29312has three power modes,Normal,Sleep,and Ship.The following table outlines the operational functions during these power modes.Table 2.Power ModesPOWER TO EXIT POWERTO ENTER POWER MODE MODE DESCRIPTIONMODE MODENormalSLEEP =GND andThe battery is in normal operation with protection,power STATE CTL(b0)=0and management and battery monitoring functions available and STATE CTL(b1)=0operating.The supply current of this mode varies as the host can enable and disable various power management features.Sleep{SLEEP =REG (floating)or SLEEP =GND and All functions stop except LDO and I 2C interface.STATE CTL(b0)=1}and STATE CTL(b0)=0On entry to this mode,all registers are masked off keeping their STATE CTL(b1)=0state.The host controller can change the RAM registers via the I 2C interface,but reading data is disabled until exit of Sleep mode.ShipSTATE CTL(b1)=1Supply voltage to PACKThe bq29312is completely shut down as in the sleep mode.In And supply at the PACK pin is addition the REG output is disabled,I 2C interface is powered removeddown and memory is not valid.CommunicationsSCLKNote: Slave = bq29312Data Note: Slave = bq29312Master DrivesNACK and StopSCLKNote: Slave = bq29312Master DrivesNACK and Stop SLUS546E–MARCH2003–REVISED MARCH2005The I2C compatible serial communications provides read and write access to the bq29312data area.The data is clocked via separate data(SDATA)and clock(SCLK)pins.The bq29312acts as a slave device and does not generate clock munication to the bq29312is provided from GPIO pins or an I2C supporting port of a host system controller.The slave address for the bq29312is7bits and the value is0100000(0x20).(MSB)I2C ADDRESS+R/W BIT(LSB)(MSB)I2C ADDRESS(0x20)(LSB)Write(1)00100000Read1(1)Bit0:0=write,1=readThe bq29312does not have the following functions compatible with the I2C specification.•The bq29312is always regarded as a slave.•The bq29312does not return a NACK for an invalid register address.•The bq29312does not support the general code of the I2C specification,and therefore does not return an ACK.•The bq29312does not support the address auto increment,which allows continuous reading and writing.•The bq29312allows data to written or read from the same location without resending the location address.Figure4.I2C-Bus Write to bq29312Figure5.I2C-Bus Read from bq29312:Protocol AFigure6.I2C-Bus Read from bq29312:Protocol BRegister MapThe bq29312has9addressable registers.These registers provide status,control,and configuration information for the battery protection system.Table3.Addressable RegistersNAME ADDR TYPE DESCRIPTIONSTATUS0x00R Status registerOUTPUT CTL0x01R/W Output pin control from system hostSTATE CTL0x02R/W State controlFUNCTION CTL0x03R/W Function controlCELL_SEL0x04R/W Battery cell select for cell translation and balance bypass and select mode for calibrationOLV0x05R/W Overload threshold voltageOLT0x06R/W Overload delay timeSCC0x07R/W Short-circuit current threshold voltage and delay for chargeSCD0x08R/W Short-circuit current threshold voltage and delay for dischargeSTATUS:Status registerSTATUS REGISTER(0x00)7654321000ZVCLMP SLEEPDET WDF OL SCCHG SCDSG The STATUS register provides information about the current state of the bq29312.Reading the STATUS register clears the XALERT pin.STATUS b0(SCDSG):This bit indicates a short-circuit in the discharge direction.0=Current below the short-circuit threshold in the discharge direction(default).1=Current greater than or equal to the short-circuit threshold in the discharge direction.STATUS b1(SCCHG):This bit indicates a short-circuit in the charge direction.0=Current below the short-circuit threshold in the charge direction(default).1=Current greater than or equal to the short-circuit threshold in the charge direction.STATUS b2(OL):This bit indicates an overload condition.0=Current less than or equal to the overload threshold(default).1=Current greater than overload threshold.STATUS b3(WDF):This bit indicates a watchdog fault condition has occurred.0=32kHz oscillation is normal(default).1=32kHz oscillation stopped or not started and the watchdog has timed out.STATUS b4(SLEEPDET):This bit indicates the bq29312is SLEEP mode.0=bq29312is not SLEEP mode(default).1=bq29312is SLEEP mode.STATUS b5(ZVCLMP):This bit indicates ZVCHG output is clamped.0=ZVCHG pin is not clamped(default).1=ZVCHG pin is clamped.。