离散数学图的连通性判定方法介绍

合集下载

图的连通性判断算法的时间复杂度

图的连通性判断算法的时间复杂度

图的连通性判断算法的时间复杂度图是数学中一种常见的数据结构,在计算机科学中也有广泛的应用。

图由节点(顶点)和边组成,表示了不同元素之间的关系。

在图中,如果每个节点都可以通过路径相互到达,则该图被称为连通图,否则被称为非连通图。

图的连通性判断算法指的是判断给定的图是否是连通图的问题。

常见的图的连通性判断算法包括深度优先搜索(DFS)和广度优先搜索(BFS)算法。

接下来,将分别介绍这两种算法,并分析它们的时间复杂度。

一、深度优先搜索(DFS)算法深度优先搜索算法是一种递归的算法,通过访问节点的方式来遍历整个图。

DFS算法首先选择一个节点作为起始节点,然后通过递归地访问与该节点相邻的节点,直到没有未访问过的节点。

如果所有的节点都被访问过,则图是连通的;否则,图是非连通的。

DFS算法的时间复杂度取决于图的大小和结构。

假设图有n个节点和m条边,那么DFS算法的时间复杂度为O(n + m)。

在最坏的情况下,每个节点都需要被访问一次,并且每个节点都需要遍历它的所有相邻节点。

二、广度优先搜索(BFS)算法广度优先搜索算法是一种迭代的算法,通过按层级的方式遍历整个图。

BFS算法首先选择一个节点作为起始节点,然后按照从起始节点开始的顺序,依次访问每个节点的所有相邻节点。

通过不断扩展搜索的范围,直到所有节点都被访问过。

如果所有的节点都被访问过,则图是连通的;否则,图是非连通的。

BFS算法的时间复杂度也取决于图的大小和结构。

假设图有n个节点和m条边,那么BFS算法的时间复杂度为O(n + m)。

在最坏的情况下,每个节点都需要被访问一次,并且每次访问时都需要遍历其所有相邻节点。

总结:图的连通性判断算法的时间复杂度分别为O(n + m)的DFS算法和BFS算法。

其中,n表示图的节点数,m表示图的边数。

这两种算法在连通性判断问题上表现良好,并且可以在较短的时间内找到问题的解答。

需要注意的是,虽然DFS和BFS可以用于判断图的连通性,但它们在处理大规模图时可能存在效率问题。

图连通性算法及应用

图连通性算法及应用

图连通性算法及应用图是计算机科学领域中常见的数据结构,用于表示对象之间的关系。

在图论中,图的连通性是一个重要的概念,指的是在图中任意两个顶点之间是否存在路径。

图连通性算法是为了判断图中的连通性而设计的算法,并且在实际应用中有着广泛的应用。

一、连通性的定义与分类在图论中,连通性有两种常见的定义方式:强连通性和弱连通性。

强连通性是指在有向图中,任意两个顶点之间存在互相可达的路径;弱连通性是指在有向图中,将其所有有向边的方向忽略后,剩下的无向图是连通的。

本文将重点介绍无向图的连通性算法及其应用。

二、连通性算法的原理1. 深度优先搜索(DFS)深度优先搜索是最常用的连通性算法之一。

它从图中的一个顶点开始,沿着一条未访问过的边深入图中的下一个顶点,直到无法深入为止,然后回溯至上一个顶点,继续深入其他未访问过的顶点。

通过深度优先搜索算法,我们可以得到一个图的连通分量,从而判断图是否连通。

2. 广度优先搜索(BFS)广度优先搜索同样是常用的连通性算法之一。

它从图中的一个顶点开始,沿着一条未访问过的边遍历与该顶点直接相邻的所有顶点,然后再以这些相邻顶点为起点,继续遍历它们的相邻顶点,直到遍历完所有连通的顶点。

通过广度优先搜索算法,我们可以得到一个图的层次遍历树,从而判断图是否连通。

三、连通性算法的应用1. 社交网络分析在社交网络分析中,连通性算法可以用来判断一个社交网络中是否存在分割成多个互不相连的社群。

通过判断社交网络的连通性,我们可以发现隐藏在社交网络背后的关系网络,从而更好地理解和分析社会关系。

2. 网络路由优化在计算机网络中,连通性算法可以用来判断网络节点之间的连通性。

通过分析网络的拓扑结构,我们可以选择合适的路由算法,从而实现快速且可靠的数据传输。

3. 图像分割在计算机视觉和图像处理中,连通性算法可以用来判断图像中的连通区域。

通过判断图像的连通性,我们可以对图像进行分割和提取,从而实现目标检测和图像识别等应用。

离散数学图的连通性判定算法

离散数学图的连通性判定算法

离散数学图的连通性判定算法离散数学中,图是研究事物之间关系的一种可视化表示方式。

而图的连通性判定算法是判断图中各个节点之间是否存在连通路径的一种方法。

本文将介绍常用的离散数学图的连通性判定算法,并对其进行详细说明。

一、深度优先搜索算法深度优先搜索算法(Depth First Search,简称DFS)是一种用于遍历图或树的搜索算法。

在图的连通性判定中,DFS算法可以用于检测一个图是否是连通图。

算法步骤如下:1. 选择一个起始节点作为当前节点,并将其标记为已访问;2. 从当前节点出发,沿着一条未访问的边到达相邻节点;3. 若相邻节点未被访问,则将其标记为已访问,并将其设为当前节点,重复步骤2;4. 若当前节点的所有相邻节点都已被访问,则回溯到上一个节点,重复步骤3,直到回溯到起始节点。

通过DFS算法,我们可以遍历图中的所有节点,并判断图的连通性。

若在遍历过程中,所有节点都被访问到,则图是连通的;否则,图是非连通的。

二、广度优先搜索算法广度优先搜索算法(Breadth First Search,简称BFS)也是一种用于遍历图或树的搜索算法。

在图的连通性判定中,BFS算法同样可以用于判断图是否为连通图。

算法步骤如下:1. 选择一个起始节点作为当前节点,并将其标记为已访问;2. 将当前节点的所有相邻节点加入一个队列;3. 从队列中取出一个节点作为当前节点,并将其标记为已访问;4. 将当前节点的所有未访问的相邻节点加入队列;5. 重复步骤3和步骤4,直到队列为空。

通过BFS算法,我们可以逐层遍历图中的节点,并判断图的连通性。

若在遍历过程中,所有节点都被访问到,则图是连通的;否则,图是非连通的。

三、并查集算法并查集算法(Disjoint Set Union,简称DSU)是一种用于处理一些不相交集合的数据结构。

在图的连通性判定中,并查集算法可以用于判断图的连通性。

算法步骤如下:1. 初始化并查集,将每个节点设为一个单独的集合;2. 对于图中的每一条边(u, v),判断节点u和节点v是否属于同一个集合;3. 若节点u和节点v属于不同的集合,则将它们合并为一个集合;4. 重复步骤2和步骤3,直到遍历完所有边。

图的代数连通度

图的代数连通度

图的代数连通度图代数,又称为离散数学(discrete mathematics),是数学的一个分支,主要研究由一组节点和联系这些节点的边组成的网络,也称为图。

其中图的一种重要性质是连通性,它表明图中节点之间是否都可以相互访问。

因此,如何检测图中节点之间的联系,以及如何衡量图中节点之间的联系强度,成为离散数学研究的重要内容。

在此背景下,图的代数连通度受到了广泛关注。

图的代数连通度是指图中节点之间的联系强度,它可以通过图的邻接矩阵(adjacency matrix)来衡量。

例如,当图中有 n 个节点时,可以建立一个 nxn的二元矩阵,它的每一个元素 aij示节点 i 节点 j 之间的边的权重,如果这条边存在,则 aij 为 1,反之为 0。

图的代数连通度是一种度量图节点间联系强度的量化指标。

有一种常用的方法,称为^1度量,它表示图中任何两个节点之间的联系强度。

在具体的计算中,它可以使用图的邻接矩阵来求解,其计算公式为:A1(i,j)=aij其中,aij为节点i到节点j之间的边的权重,如果节点i与节点j存在边,则aij的值为1,反之aij的值为0。

这一度量的计算,可以直接表示节点之间的联系强度,这样就可以度量图中任意两个节点之间的联系强度。

除此之外,还有其他度量方法,包括特征值度量、最大边度量等。

特征值度量是利用图的邻接矩阵,求解图的连通特征值而得到的。

而最大边度量则是利用最大边权重来衡量图的连通性。

这些度量方法都可以有效地量化图的连通性,但也存在一定的局限性。

特征值度量只能度量图中任意两个节点之间的联系强度,而无法衡量图中不同节点组合的联系强度;而最大边度量又因为不能有效的衡量图的连通性,因此,可以说这些度量方法都有其局限性。

另一方面,图的代数连通度可以有效地提供图中节点间联系强度的量化指标。

它可以通过一组不同的系数和一系列矩阵运算来实现,并且可以有效地衡量图中任意几个节点之间的联系强度,而不受两个节点之间的边的数量的限制。

离散数学中的图的连通性与欧拉路径问题

离散数学中的图的连通性与欧拉路径问题

离散数学中的图的连通性与欧拉路径问题图论是离散数学中的一个重要分支,研究对象是图。

图是由一组顶点和连接这些顶点的边组成的数学结构。

在图论中,连通性和欧拉路径问题是两个基本概念,对于理解和解决图相关的问题具有重要意义。

一、连通性在图论中,连通性是指图中任意两个顶点之间存在一条路径。

如果一个图中任意两个顶点都是连通的,则称该图是连通图;如果一个图不是连通图,那么它可以被分解为多个连通的子图,这些子图称为连通分量。

连通性在实际应用中具有广泛的应用。

例如,在社交网络中,连通性可以用来判断两个人之间是否存在关系链;在计算机网络中,连通性可以用来判断网络中的主机之间是否可以进行通信。

二、欧拉路径问题欧拉路径问题是图论中的一个经典问题,它要求找出一条路径,经过图中每条边一次且仅一次。

如果存在这样的路径,则称图具有欧拉路径。

欧拉路径问题有两种情况:1. 欧拉回路:如果存在一条路径,从起点出发,经过图中每条边恰好一次后回到起点,则称该图具有欧拉回路。

2. 半欧拉路径:如果存在一条路径,从起点出发,经过图中每条边恰好一次后到达终点,但不回到起点,则称该图具有半欧拉路径。

欧拉路径问题的解决方法有欧拉定理和深度优先搜索算法。

欧拉定理指出,一个连通图具有欧拉回路的充分必要条件是每个顶点的度数都是偶数;一个连通图具有半欧拉路径的充分必要条件是除了起点和终点外,其它顶点的度数都是偶数。

深度优先搜索算法(DFS)是一种用来遍历图或树的算法,它可以用来解决欧拉路径问题。

DFS从起点开始遍历图,当遍历到某个顶点时,选择一个未访问过的邻接顶点进行继续遍历,直到无法继续遍历为止。

通过DFS算法,可以找到图中的欧拉路径。

三、总结离散数学中的图的连通性与欧拉路径问题是图论中的两个基本概念。

连通性用来描述图中顶点之间的连接情况,欧拉路径问题则是要找出一条路径,经过图中每条边一次且仅一次。

这两个概念在实际应用中具有广泛的应用,对于理解和解决图相关的问题具有重要意义。

图的连通性_离散数学─图论初步

图的连通性_离散数学─图论初步

则称v是割
割点
(注意:只需考虑割点所在的连通分支,以下讨论不妨只 考虑连通图)
关于割点的三个等价命题
• 对于连通图,以下三个命题等价:
(1) v是割点。 (2) 存在V-{v}的划分{V1, V2}, 使 u∈V1, w∈V2, uw-通路均包含v。 (3) 存在顶点u,w(u≠v, w≠v),使得任意的uw-通路均包含v。 – 证明: (1) (2): ∵v是割点,G-v至少存在两个连通分支,设其中一个的
假设这样的公共点中距离v最近的
是x(不妨假设它在P上),则Q+wv 边以及P上的ux-段+P’上的xv-段是u
u,v之间两条中间点不相交的通路。
P
x
v
w Q
连通性的一般性质
• Menger定理(Whitney定理的推广)
– 图G是k-连通图 当且仅当 G中任意两点被至少k条除端
点外顶点不相交关联
的顶点(集合)分隔v与G-C,κ(G)≤|F|。
连通度的上限(续)
dG(v) ≤
|F|
连通度的上限(续)
• 若G中的各顶点均和F中的某条边关联。对任意顶点 v,令C是G-F中包含v的连通分支。考虑v的任一邻居 w。若w在C中,则w必定和F中的某条边关联;若 w在G-C中,则边vw属于F。因此,|N(v)| ≤ |F|, 即dG(v) ≤ |F|.
图的连通性
离散数学─图论初步
内容提要
• 通路与回路 • 通路与同构 • 无向图的连通性
– 连通度 – 2-连通图
• 有向图的连通性
– 无向图的定向
通路的定义
• 定义:图G中从v0到vn的长度为n的通路是G的n条
边e1,…, en的序列,满足下列性质

《离散数学》 第八章 欧拉图与哈密尔顿图

《离散数学》 第八章  欧拉图与哈密尔顿图

1 10 1
8.1 欧拉图
8.1.4 欧拉图的应用
欧拉图的应用,计算机旋转鼓轮的设计原理。
现在构造一个有向图G,G有8个顶点,每个顶点分别表示 000~111的一个二进制数。设α i∈{0,1},从顶点α 1α 2α 3 引出两条有向边,其终点分别为α 2α 30和α 2α 31,这两条边 分别为α 1α 2α 30以及α 1α 2α 31,按照此种方法,对于八个 顶点的有向图共有16条边,在这个图的任意一条通路中,其 邻接的边必是α iα jα kα t和α jα kα tα s的形式,即前一条有 向边的后3位与后一条有向边的前3位相同。因为图中的16条 边被记成不同的4位二进制信息,即对应于图中的一条欧拉 回路。
推论 无向连通图中顶点与间存在欧拉通路,当且仅当中 与的度数为奇数,而其他顶点的度数为偶数。
8.1 欧拉图
8.1.2 欧拉图的判定
b
a
d
c
图8.1-2
v1
v2
v1
v3
v4
v5
v6
v2
(a)
图8.1-3
v4
v3 (b)
8.1 欧拉图
8.1.2 欧拉图的判定
定理8.1.3 有向图是欧拉图,当且仅当是强连通的,且 中每个顶点的入度都等于出度。
8.2 哈密尔顿图
8.2.1 哈密尔顿图
在图8.2-2中,(a)、(b)中存在哈密尔顿回路,是哈密 尔顿图,(c)中存在哈密尔顿通路,但不存在哈密尔顿回 路,是半哈密尔顿图,(d)中既无哈密尔顿回路,也无哈 密尔顿通路,不是哈密尔顿图。
( a)
( b)
( c)
( d)
8.2 哈密尔顿图
8.2.2 哈密尔顿图的判定

离散数学点连通度

离散数学点连通度

离散数学点连通度
离散数学是数学的一个分支,研究离散的数学结构和离散的数学对象之间的关系。


散数学中一个重要的概念是图,图是一种用来描述对象之间关系的数学结构。

在图中,点
代表对象,边代表对象之间的关系。

点连通度是图论中的一个重要概念,用于描述图中点和点之间的连接性。

具体而言,
点连通度是指一个图中任意两个不同点之间的存在一条路径的程度。

在离散数学中,点连
通度被广泛研究,因为它对很多实际问题具有重要意义。

计算图的点连通度有多种方法,其中一种常见的方法是使用最短路径算法。

最短路径
算法可以计算出给定两个点之间的最短路径长度,通过计算所有点对之间的最短路径长度,可以得到图的点连通度。

除了最短路径算法,还有其他方法可以计算图的点连通度,比如割点算法和连通子图
算法。

割点算法可以找到图中的关键点,这些关键点的去除会导致图的连通性变差。

而连
通子图算法可以找到图中的最大连通子图,从而计算出图的点连通度。

离散数学中点连通度的研究涉及到很多领域,比如计算机科学、网络分析和社交网络等。

在计算机科学中,点连通度被广泛应用于网络路由和可靠性分析等问题。

在网络分析中,点连通度可以帮助我们理解网络的稳定性和韧性。

在社交网络中,点连通度可以帮助
我们理解个体之间的联系和信息传播。

总结而言,离散数学中点连通度是一个重要的概念,用于描述图中点和点之间的连接性。

计算图的点连通度可以通过最短路径算法、割点算法和连通子图算法等方法实现。


连通度在计算机科学、网络分析和社交网络等领域具有广泛的应用。

离散数学推理规则公式

离散数学推理规则公式

离散数学推理规则公式
离散数学的推理规则包括以下几种:
1. 前提引入规则(P规则):可以在证明的任何时候引入前提。

2. 结论引入规则(T规则):在证明的任何时候,已证明的结论都可以作为后续证明的前提。

3. 置换规则:在证明的任何时候,命题公式中的任何子命题公式都可以用与之等价的命题公式置换。

4. 假言推理规则(P∧ (P→Q) ⇒ Q)。

5. 附加规则(P ⇒ P∨Q)。

6. 化简规则(P∧ Q ⇒ P)。

7. 拒收式规则(¬Q∧(P→Q) ⇒ ¬P)。

8. 假言三段论规则((P→Q)∧(Q→R) ⇒ P→R)。

9. 析取三段论规则(¬P∧(P∨Q) ⇒ Q)。

10. 构造性二难规则((P∨Q)∧(P→R)∧(Q→S) ⇒ (S∨R))。

以上内容仅供参考,建议查阅离散数学书籍或咨询数学领域专业人士获取更多专业信息。

离散数学--第7章 图论-2(路与连通)

离散数学--第7章 图论-2(路与连通)
u1 v4 v1 v4 v3 u4 v2 u4 u3 G2 v3 u u13 v1 u2 v2 u2
15
连通图可以看成是只有一个连通分支的图,即 w(G ) 1 。
返回 结束
7.2.2 图的连通性
4、有向图的连通
强连通—— G 中任一对顶点都互相可达 (双向) 连通 单向连通—— G 中任一对顶点至少一 向可达

10
(vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的路。
证明思路:多于n-1条边的路中必有重复出现的结点,反 复删去夹在两个重复结点之间的边之后,剩余的边数不会 超过n-1条边。
v n 在一个 阶图中,若从顶点 i 到 v j 存在 推论:
通路(vi v j ) ,则从 vi 到 v j 存在长度小于等于
返回 结束
7.2.2 图的连通性
7.2.2 图的j 存在路,称 有向图中,从 vi 到 v j 存在路,称 (注意方向) 2、短程线,距离。 短程线——连通或可达的两点间长度最短的 路。 距离——短程线的长度,
12
vi 到 v j 是 连通的(双向)。 vi 可达 v j 。
1 v1e1v2e5v5e7v6 2 v1e1v2e2v3e3v4e4v2e5v5e7v6
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路
简单通路
复杂通路
返回 结束
7.2.1 路
例1、(2)
7
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
7.2 路与连通
内容:图的通路,回路,连通性。 重点:

数学离散数学常见题型解析

数学离散数学常见题型解析

数学离散数学常见题型解析数学离散数学是一门研究数学中离散性、不连续性的分支学科,它与连续性数学形成鲜明对比。

离散数学的研究对象包括离散结构和离散现象,如集合、关系、逻辑、图论等。

在离散数学中,常见的题型有集合论题、逻辑题、图论题等。

本文将对这些常见题型的解题方法进行详细的解析。

一、集合论题解析集合是离散数学的基础概念之一,集合论题主要考察集合的性质和运算。

其中常见的题型包括求交集、并集、补集等。

1.求交集求交集即求两个或多个集合中共有的元素。

解题时需要列出各个集合的元素,然后找出它们的公共元素,即为交集。

例如,已知集合A={1,2,3},B={2,3,4},求A和B的交集。

解答如下:交集A∩B={2,3}。

2.求并集求并集即求两个或多个集合中所有的元素的集合。

解题时需要列出各个集合的元素,然后将它们的元素合并起来即可。

例如,已知集合A={1,2,3},B={2,3,4},求A和B的并集。

解答如下:并集A∪B={1,2,3,4}。

3.求补集求补集即求一个集合中不包含在另一个集合中的元素。

解题时需要明确补集的参照集合。

例如,已知参照集合U={1,2,3,4,5},集合A={2,3,4},求A相对于U的补集。

解答如下:补集A'={1,5}。

二、逻辑题解析逻辑题主要考察命题逻辑和谓词逻辑的推理和判断。

常见的题型包括命题的合取、析取、蕴含关系等。

1.命题合取命题合取即多个命题同时成立,才能得出最终结论为真。

解题时需要逐个判断每个命题的真假,并根据合取关系得出最终结论。

例如,已知命题p:明天下雨,命题q:今天是周二。

判断命题p 合取q的真假。

解答如下:根据实际情况判断,如果p和q都为真,则p合取q为真;反之则为假。

2.命题析取命题析取即多个命题中至少有一个成立,就能得出最终结论为真。

解题时需要逐个判断每个命题的真假,并根据析取关系得出最终结论。

例如,已知命题p:明天下雨,命题q:今天是周二。

判断命题p析取q的真假。

《离散数学》第七章图的基本概念讲稿

《离散数学》第七章图的基本概念讲稿

《离散数学》第七章图的基本概念讲稿7.1 ⽆向图及有向图⼀、本节主要内容⽆向图与有向图顶点的度数握⼿定理简单图完全图⼦图补图⼆、教学内容⽆序对: 两个元素组成的⼆元组(没有顺序),即⽆论a,b是否相同,(a,b )=(b, a )⽆序积: A与B 为两个集合,A&B={(x,y) |x∈A∧y∈B}例A={a1, a2}, B={b1, b2}A&B={(a1 , b1 ), (a1 , b2 ) ,(a2 , b1 ) ,(a2 , b2 )}A&A={(a1 , a1 ), (a1 , a2 ) ,(a2 , a2 )}多重集合: 元素可以重复出现的集合⽆向图与有向图定义⽆向图G=, 其中(1) V?≠为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}定义⽆向图G=, 其中(1) V≠?为顶点集,元素称为顶点(2) E为V&V的多重⼦集,其元素称为⽆向边,简称边.例如, G=如图所⽰,其中V={v1, v2, …,v5},E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ⽆向图与有向图(续)定义有向图D=, 其中(1) V同⽆向图的顶点集, 元素也称为顶点(2) E为V?V的多重⼦集,其元素称为有向边,简称边.⽤⽆向边代替D的所有有向边所得到的⽆向图称作D的基图右图是有向图,试写出它的V和E⽆向图与有向图(续)通常⽤G表⽰⽆向图, D表⽰有向图,也常⽤G泛指⽆向图和有向图,⽤ek表⽰⽆向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=?平凡图: 1 阶零图顶点和边的关联与相邻定义设ek=(vi, vj)是⽆向图G=的⼀条边, 称vi, vj为ek的端点, ek与vi ( vj)关联.若vi ≠ vj, 则称ek与vi ( vj)的关联次数为1;若vi = vj, 则称ek为环, 此时称ek与vi 的关联次数为2;若vi不是ek端点, 则称ek与vi 的关联次数为0.⽆边关联的顶点称作孤⽴点.定义设⽆向图G=, vi,vj∈V,ek,el∈E,若(vi,vj) ∈E, 则称vi,vj相邻;若ek,el⾄少有⼀个公共端点, 则称ek,el相邻.对有向图有类似定义. 设ek=?vi,vj?是有向图的⼀条边, vi,vj是ek端点,⼜称vi 是ek的始点, vj是ek的终点,vi邻接到vj, vj邻接于vi.邻域和关联集设⽆向图G , v ∈V(G)v 的邻域 N(v)={u|u ∈V(G)∧(u,v)∈E(G)∧u ≠v} v 的闭邻域 = N(v)∪{v} v 的关联集 I(v)={e|e ∈E(G)∧e 与v 关联} 设有向图D, v ∈V(D)v 的后继元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的先驱元集 ={u|u ∈V(D)∧∈E(G)∧u ≠v}v 的邻域v 的闭邻域顶点的度数设G=为⽆向图, v ∈V,v 的度数(度) d(v): v 作为边的端点的次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边 G 的最⼤度?(G)=max{d(v)| v ∈V} G 的最⼩度δ(G)=min{d(v)| v ∈V} 例如 d(v5)=3, d(v2)=4, d(v1)=4, ?(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e1是环顶点的度数(续)设D=为有向图, v ∈V,v 的出度d+(v): v 作为边的始点的次数之和 v 的⼊度d -(v): v 作为边的终点的次数之和 v 的度数(度) d(v): v 作为边的端点次数之和 d(v)= d+(v)+ d-(v)D 的最⼤出度?+(D), 最⼩出度δ+(D) 最⼤⼊度?-(D), 最⼩⼊度δ-(D) 最⼤度?(D), 最⼩度δ(D) 例如 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3,+(D)=4, δ+(D)=0, ?-(D)=3, δ-(D)=1, ?(D)=5, δ(D)=3. 图论基本定理——握⼿定理定理任意⽆向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点⼊度之和等于出度之和等于边数.)(v N )(v D +Γ)(v D -Γ)()()(v v v N D D D -+ΓΓ= }{)()(v v N v N D D =证 G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,m 条边共提供2m 度.有向图的每条边提供⼀个⼊度和⼀个出度, 故所有顶点⼊度之和等于出度之和等于边数. 握⼿定理(续)推论在任何⽆向图和有向图中,度为奇数的顶点个数必为偶数. 证设G=为任意图,令 V1={v | v ∈V ∧d(v)为奇数} V2={v | v ∈V ∧d(v)为偶数}则V1∪V2=V, V1∩V2=?,由握⼿定理可知∑∑∑∈∈∈+==21)()()(2V v V v Vv v d v d v d m由于2m,∑∈2)(V v v d 均为偶数,所以 ∑∈1)(V v v d 也为偶数, 但因为V1中顶点度数都为奇数,所以|V1|必为偶数.图的度数列设⽆向图G 的顶点集V={v1, v2, …, vn} G 的度数序列: d(v1), d(v2), …, d(vn) 如右图度数序列:4,4,2,1,3设有向图D 的顶点集V={v1, v2, …, vn} D 的度数序列: d(v1), d(v2), …, d(vn) D 的出度序列: d+(v1), d+(v2), …, d+(vn) D 的⼊度序列: d -(v1), d -(v2), …, d -(vn) 如右图度数序列:5,3,3,3出度序列:4,0,2,1 ⼊度序列:1,3,1,2 握⼿定理的应⽤例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数序列吗? 解不可能. 它们都有奇数个奇数.例2 已知图G 有10条边, 4个3度顶点, 其余顶点的度数均⼩于等于2, 问G ⾄少有多少个顶点? 解设G 有n 个顶点. 由握⼿定理, 4?3+2?(n-4)≥2?10 解得 n ≥8握⼿定理的应⽤(续)例3 给定下列各序列,哪组可以构成⽆向图的度数序列 (2,2,2,2,2) (1,1,2,2,3) (1,1,2,2,2) (1,3,4,4,5)多重图与简单图定义(1) 在⽆向图中,如果有2条或2条以上的边关联同⼀对顶点, 则称这些边为平⾏边, 平⾏边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平⾏边, 简称平⾏边, 平⾏边的条数称为重数.(3) 含平⾏边的图称为多重图.(4) 既⽆平⾏边也⽆环的图称为简单图.注意:简单图是极其重要的概念多重图与简单图(续)例如e5和e6 是平⾏边重数为2不是简单图e2和e3 是平⾏边,重数为2 e6和e7不是平⾏边不是简单图图的同构定义设G1=, G2=为两个⽆向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的vi,vj∈V1,(vi,vj)∈E1(∈E1)当且仅当(f(vi),f(vj))∈E2(∈E2),并且,(vi,vj)()与(f(vi),f(vj))()的重数相同,则称G1与G2是同构的,记作G1?G2.图的同构(续)⼏点说明:图之间的同构关系具有⾃反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:①边数相同,顶点数相同②度数列相同(不计度数的顺序)③对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构图的同构(续)例1 试画出4阶3条边的所有⾮同构的⽆向简单图例2 判断下述每⼀对图是否同构:(1)度数列不同不同构例2 (续)(2)不同构⼊(出)度列不同度数列相同但不同构为什么?完全图与正则图n阶⽆向完全图Kn: 每个顶点都与其余顶点相邻的n阶⽆向简单图.简单性质: 边数m=n(n-1)/2, ?=δ=n-1n阶有向完全图: 每对顶点之间均有两条⽅向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ?=δ=2(n-1),+=δ+=?-=δ-=n-1n阶k正则图: ?=δ=k 的n阶⽆向简单图简单性质: 边数m=nk/2完全图与正则图(续)(1) 为5阶⽆向完全图K5(2) 为3阶有向完全图(3) 为彼得森图, 它是3 正则图⼦图定义设G=, G '=是2个图(1) 若V '?V且E '?E, 则称G '为G的⼦图, G为G '的母图, 记作G '?G(2)若G '?G且G '≠ G(即V '?V 或E '?E),称G '为G的真⼦图(3) 若G '?G 且V '=V,则称G '为G的⽣成⼦图(4) 设V '?V 且V '≠?, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的⼦图称作V '的导出⼦图,记作G[V '](5) 设E '?E且E '≠?, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的⼦图称作E '的导出⼦图, 记作G[E ']⼦图(续)例画出K4的所有⾮同构的⽣成⼦图补图定义设G=为n阶⽆向简单图,以V为顶点集,所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G?G.若G ? G , 则称G 是⾃补图.例画出5阶7条边的所有⾮同构的⽆向简单图⾸先,画出5阶3条边的所有⾮同构的⽆向简单图然后,画出各⾃的补图7.2 通路、回路与图的连通性⼀、本节主要内容简单通(回)路, 初级通(回)路, 复杂通(回)路⽆向连通图, 连通分⽀弱连通图, 单向连通图, 强连通图点割集与割点边割集与割边(桥) ⼆、教学内容通路与回路定义给定图G=(⽆向或有向的),设G 中顶点与边的交替序列Γ=v0e1v1e2…elvl ,(1) 若?i(1≤i ≤l), vi -1 和 vi 是ei 的端点(对于有向图, 要求vi -1是始点, vi 是终点), 则称Γ为通路, v0是通路的起点, vl 是通路的终点, l 为通路的长度. ⼜若v0=vl ,则称Γ为回路. (2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为初级通路(初级回路).初级通路⼜称作路径, 初级回路⼜称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路). 通路与回路(续) 说明:在⽆向图中,环是长度为1的圈, 两条平⾏边构成长度为2的圈. 在有向图中,环是长度为1的圈, 两条⽅向相反边构成长度为2的圈. 在⽆向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2. 通路与回路(续)定理在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通路,则从vi 到vj 存在长度⼩于等于n -1的通路.推论在n 阶图G 中,若从顶点vi 到vj (vi ≠vj )存在通121212G G G G G G ??例设与均为⽆向简单图,当且仅当路,则从vi到vj存在长度⼩于等于n-1的初级通路.定理在⼀个n阶图G中,若存在vi到⾃⾝的回路,则⼀定存在vi到⾃⾝长度⼩于等于n的回路.推论在⼀个n阶图G中,若存在vi到⾃⾝的简单回路,则⼀定存在长度⼩于等于n的初级回路.⽆向图的连通性设⽆向图G=,u与v连通: 若u与v之间有通路. 规定u与⾃⾝总连通.连通关系R={| u,v ∈V且u~v}是V上的等价关系连通图: 平凡图, 或者任意两点都连通的图连通分⽀: V关于R的等价类的导出⼦图设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk]是G的连通分⽀, 其个数记作p(G)=k.G是连通图? p(G)=1u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ? u=vd(u,v)=d(v,u)(对称性)d(u,v)+d(v,w)≥d(u,w) (三⾓不等式)点割集记G-v: 从G中删除v及关联的边G-V': 从G中删除V'中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设⽆向图G=, 如果存在顶点⼦集V'?V, 使p(G-V')>p(G),⽽且删除V'的任何真⼦集V''后(? V''?V'),p(G-V'')=p(G), 则称V'为G的点割集. 若{v}为点割集, 则称v为割点.点割集(续)例{v1,v4}, {v6}是点割集, v6是割点.{v2,v5}是点割集吗?边割集定义设⽆向图G=, E'?E, 若p(G-E')>p(G)且?E''?E',p(G-E'')=p(G), 则称E'为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上⼀页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e8是桥,{e7,e9,e5,e6}是边割集吗?⼏点说明:Kn⽆点割集n阶零图既⽆点割集,也⽆边割集.若G连通,E'为边割集,则p(G-E')=2若G连通,V'为点割集,则p(G-V')≥2有向图的连通性设有向图D=u可达v: u到v有通路. 规定u到⾃⾝总是可达的.可达具有⾃反性和传递性D弱连通(连通): 基图为⽆向连通图D单向连通: ?u,v∈V,u可达v 或v可达uD强连通: ?u,v∈V,u与v相互可达强连通?单向连通?弱连通有向图的连通性(续)例下图(1)强连通, (2)单连通, (3) 弱连通有向图的短程线与距离u到v的短程线: u到v长度最短的通路(u可达v)u与v之间的距离d: u到v的短程线的长度若u不可达v, 规定d=∞.性质:d+d ≥d注意: 没有对称性7.3 图的矩阵表⽰⼀、本节主要内容⽆向图的关联矩阵有向图的关联矩阵有向图的邻接矩阵有向图的可达矩阵⼆、教学内容⽆向图的关联矩阵定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).定义设⽆向图G=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)n?m为G的关联矩阵,记为M(G).性质关联次数为可能取值为0,1,2有向图的关联矩阵定义设⽆环有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令则称(mij)n ?m 为D 的关联矩阵,记为M(D). 性质:有向图的邻接矩阵定义设有向图D=, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令 )1(ij a 为顶点vi 邻接到顶点vj 边的条数,称()1(ij a )n ?n 为D 的邻接矩阵, 记作A(D), 简记为A. 1110001110()1001200000M G=1100010111()0000101110M D ---?=-??-??平⾏边的列相同)4(2)3(),...,2,1()()2(),...,2,1(2)1(,11mm n i v d m m j m ji ijimj ijni ij =====∑∑∑==(1)1(1)1(1)(),1,2,...,(2)(),1,2,...,nij i j n ij ji a d vi n a d v j n+=-=====∑∑性质D 中的通路及回路数定理设A 为n 阶有向图D 的邻接矩阵, 则Al(l ≥1)中元素)(l ij a 为D 中vi 到vj 长度为 l 的通路数, )(l ii a 为vi 到⾃⾝长度为 l 的回路数,∑∑==n i nj l ija11)( 为D 中长度为 l 的通路总数,∑=ni l iia1)( 为D 中长度为 l 的回路总数.D 中的通路及回路数(续)推论设Bl=A+A2+…+Al(l ≥1), 则Bl 中元素为D 中长度⼩于或等于l 的通路数,为D 中长度⼩于或等于l 的回路数. 例有向图D 如图所⽰, 求A, A2, A3, A4, 并回答问题:(1) D 中长度为1, 2, 3, 4的通路各有多少条?其中回路分别为多少条? (2) D 中长度⼩于或等于4的通路为多少条?其中有多少条回路?12100010()00010010A D=有向图的可达矩阵定义设D=为有向图, V={v1, v2, …, vn}, 令称(pij)n ?n 为D 的可达矩阵, 记作P(D), 简记为P. 性质:P(D)主对⾓线上的元素全为1.D 强连通当且仅当P(D)的元素全为1. 有向图的可达矩阵(续)例右图所⽰的有向图D 的可达矩阵为7.4 最短路径及关键路径⼀、本节主要内容最短路关键路线⼆、教学内容对于有向图或⽆向图G 的每条边,附加⼀个实数w(e),则称w(e)为边e 上的权. G 连同附加在各边上的实数,称为带权图.设带权图G=,G 中每条边的权都⼤于等于0.u,v 为G 中任意两个顶点,从u 到v 的所有通=1101110111110001P路中带权最⼩的通路称为u 到v 的最短路径.求给定两个顶点之间的最短路径,称为最短路径问题. 算法:Dijkstra(标号法){}()*()*1()*()()1()*1.2./5.i r r i i i i ir i r r j j j j j r i r v l v v v l v r p l l v v v l v r l v v p r T V r ∞==-j ij r r 如果顶点与v 不相邻,则w =为顶点到顶点最短路径的权,如果顶点获得了标号,则称顶点在第步获得了标号(永久性标号)3.为顶点到顶点最短路径的权的上界,如果顶点获得了标号,则称顶点在第步获得了t 标号(临时性标号)4.P 已经获得标号为第步通过集P 为第步未通过集例:求图中v0与v5的最短路径(0)*000(0)0(1)*(0)(1)*1010100,{},T {},1,2,3,4,5{},min {},T T {}(2)T j jj i j i v T l P l w j l l l P P t ∈=======?=-0012345j i i i i 第步(r=0):v 获得p 标号v v ,v ,v ,v ,v ,v 获得t 标号第1步(r=1):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标1(1)(0)(1)*(2)*(1)(2)*2121(2)(1)(2)*2min{,}{},min {},T T {}(2)T min{,}j jj iij i j iv T j j iij ll lw l l l P P t l l l w ∈=+==?=-=+i i i i 号:第2步(r=2):(1)求下⼀个p 标号的顶点,将标在顶点v 处,表明顶点v 获得p 标号.修改通过集和未通过集:v v 修改中各顶点的标号:2.关键路径问题,(){/,}(){/,}D D D V E v V v x x V v x E v v x x V x v E v +=<>∈Γ=∈∧<>∈Γ=∈∧<>∈-设为⼀个有向图,,则为的后继元集为的先继元集定义:PERT 图设D=是n 阶有向带权图1. D 是简单图2. D 中⽆环路3. 有⼀个顶点出度为0,称为发点;有⼀个顶点⼊度为0,称为收点4. 记边的权为wij,它常常表⽰时间1. 最早完成时间:⾃发点v1开始,沿最长路径(权)到达vi 所需时间,称为vi 的最早完成时间,记为TE (vi ),i=1,2,…,nj 1i i j ij v ()234567TE(v )=0,v (1)TE(v )={(v )+w },1,2,,max TE(v )=max{0+1}=1;TE(v )=max{0+2,1+0}=2;TE(v )=max{0+3,2+2}=4;TE(v )=max{1+3,4+4}=8;TE(v )=max{2+4,8+1}=9;TE(v )=max{1+4,2+D i v i TE i n -∈Γ≠=显然的最早完成时间按如下公式计算:813784}=6;TE(v )=max{6+6,9+1}=12;v v v v 关键路径:从发点到收点的⼀条最长路径,2. 最晚完成时间:在保证收点vn 的最早完成时间不增加的条件下,⾃发点v1最迟到达vi 所需时间,称为vi 的最晚完成时间,记为TL (vi ).j n n i i j ij v ()876543TL(v )=TL(v ),v ()TL(v )={(v )-w },1,2,,min TL(v )=12;TL(v )=min{12-6}=6;TL(v )=min{12-1}=11;TL(v )=min{11-1}=10;TL(v )=min{10-4}=6;TL(v )=min{6-2,11-4,6-4}=2;TL(D i v i n TL i n∈Γ≠=+显然的最晚完成时间按如下公式计算:21v )=min{2-0,10-3,6-4}=2;TL(v )=min{2-1,2-2,6-3}=0;3. 缓冲时间:TS(vi)=TL(vi)- TE(vi) TS(v1)= TS(v3)= TS(v7)= TS(v8)=0 TS(v2)=2-1=1; TS(v4)=6-4=2; TS(v5)=10-8=2; TS(v6)=11-9=2。

离散数学的连通性基础知识

离散数学的连通性基础知识

离散数学的连通性基础知识离散数学是研究离散对象及其性质、结构、关系和操作的数学分支。

而离散数学中连通性是一个重要的概念,用于描述图论、算法、网络等领域中对象之间的联通性质。

本文将介绍离散数学中连通性的基础知识,包括连通图、连通关系、路径等概念及相关性质。

一、连通图在图论中,一个图G被称为连通图,当且仅当任意两个顶点之间都存在一条路径。

具体而言,对于图G=(V,E),其中V是顶点的集合,E是边的集合,若对于任意两个顶点v和u,存在一条路径连接它们,则称图G是连通的。

连通图可以进一步分为强连通图和无向连通图。

强连通图是指有向图中,任意两个顶点之间都存在一条有向路径,即无论从哪一个顶点出发都可以到达其他任意一个顶点。

无向连通图是指无向图中,任意两个顶点之间都存在一条无向路径,即无论选择哪一条边或者路径,都可以从一个顶点到达另一个顶点。

一个具有n个顶点的完全图K_n是一个连通图,其中任意两个顶点之间都存在一条边。

二、连通关系在集合论中,连通关系是用来描述集合中元素之间的连通性质。

给定一个集合S和一个关系R,如果对于集合S中的任意两个元素x和y,存在一个元素序列x_1, x_2, ..., x_k,使得x=x_1, y=x_k,并且对于序列中的任意相邻元素x_i和x_{i+1},(x_i, x_{i+1})\in R,则称关系R是S上的连通关系。

连通关系可以用来描述图中顶点之间的连通性质。

对于图G=(V,E),其中V是顶点的集合,E是边的集合。

我们可以定义一个关系R,使得对于任意两个顶点v和u,(v, u)\in R当且仅当v和u之间存在一条路径。

这样我们就可以利用连通关系R来刻画图G中顶点之间的连通性。

三、路径路径是指在图中从一个顶点到另一个顶点的一条经过的边的序列。

如果存在一条路径从顶点v到顶点u,我们可以称v是u的先驱,u是v的后继。

路径的长度是指路径上所经过的边的数量。

最短路径是指在图中两个顶点之间路径长度最短的路径。

图的连通性判断算法

图的连通性判断算法

图的连通性判断算法图是离散数学中一个重要的概念,它由一组顶点和连接这些顶点的边组成。

在图理论中,连通性是一个基本的性质,它描述了图中是否存在一条路径将所有的顶点连接起来。

本文将介绍一些常用的图的连通性判断算法。

1. 深度优先搜索算法(DFS)深度优先搜索算法是一种经典的图遍历算法,也可以用于判断图的连通性。

该算法从一个起始顶点开始,沿着一条路径尽可能深入地搜索图,直到无法再继续下去。

然后回溯到上一个未访问的顶点,重复上述过程,直到所有的顶点都被访问过。

如果在搜索过程中,所有的顶点都被访问到,则图是连通的;否则,图是不连通的。

2. 广度优先搜索算法(BFS)广度优先搜索算法也是一种常用的图遍历算法,可以用于判断图的连通性。

该算法从一个起始顶点开始,按照广度优先的顺序逐层遍历与当前节点相邻的顶点。

如果在遍历过程中,所有的顶点都被访问到,则图是连通的;否则,图是不连通的。

3. 并查集算法并查集是一种用于解决"动态连通性"问题的数据结构,也可以用于判断图的连通性。

并查集通过维护一个森林(或称为集合)来表示各个顶点之间的关系,其中每个集合表示一个连通分量。

并查集提供了合并集合和查找集合的操作,通过这些操作可以判断图的连通性。

4. 可连通性矩阵可连通性矩阵是一种基于矩阵的图表示方法,用于判断图的连通性。

对于一个有n个顶点的图,可连通性矩阵是一个n×n的矩阵,其中第i行第j列的元素表示顶点i和顶点j之间是否存在一条路径。

如果对于所有的顶点对(i,j),可连通性矩阵中的元素都为1,则图是连通的;否则,图是不连通的。

5. 最小生成树算法最小生成树算法是用于求解连通图的一种常用算法,它通过选取图中的一些边来构建一棵树,该树包含图中的所有顶点,并且总权值最小。

如果最小生成树的边数等于顶点数减1,则原图是连通的;否则,原图是不连通的。

总结:本文介绍了几种常用的图的连通性判断算法,包括深度优先搜索算法、广度优先搜索算法、并查集算法、可连通性矩阵和最小生成树算法。

离散数学连通分支数怎么算

离散数学连通分支数怎么算

离散数学连通分支数怎么算
设R为空间X中点的连通关系,每个等价类R[x]称为空间X 的一个连通分支。

设Y为空间X的非空子集,Y作为X的子空间的连通分支称为X的子集Y的连通分支。

拓扑空间X的全部连通分支之族是X的一个分类。

换言之,X的每个连通分支都是非空集;X的不同连通分支不相交;X的全部连通分支之并为X。

对于一个无向图而言,它的一个极大连通子图即为一连通支。

比如说,一个图由三部分构成,其中每一部分都是连通的,但三个部分之间相互不连通,那么每一部分即为无向图的一个连通分支。

此图的连通分支数为3。

更形象些,你把教学楼四周的几棵树合起来看做是一个无向图,树叶和树枝分叉点为图的结点,树枝为图的边,每一棵树是连通的,但树与树之间没有树枝相连。

因而,每棵树都可视为一个连通分支,树的个数为连通分枝数。

拓扑空间X的全部连通分支之族是X的一个分类。

换言之,X的每个连通分支都是非空集;X的不同连通分支不相交;X的全部连通分支之并为X。

拓扑空间X是连通空间当且仅当X是它的唯一连通分支。

C不是拓扑空间X的任意连通子集的真子集。

则称C为拓扑空间X的一个连通分支(或极大连通子集),设X是多于一点的拓扑空间,若拓扑空间
X的每个单点集都是X的连通分支。

离散数学 图论-通路与回路

离散数学 图论-通路与回路

§14.4
图的矩阵表示
一、图的矩阵表示 用矩阵表示图之前,必须将图的顶点或边标定成顺序,使其成为标定图 1、无向图的关联矩阵 1)定义14.24 设无向图G=<V,E>,V={v1,v2,…,vn}。 E={e1,e2,e3,…em},令mij为顶点vi与边ej的关联次数,则称(mij)nxm为G的 关联矩阵,记作 M(G). 2)关联矩阵的性质: 关联矩阵是n行(结点数)m列(边数)的矩阵
6、有关强连通图与单向连通图的判定 (1)定理: 设有向图D=<V,E>,V={v1,v2,…,vn}. D是强连通图当且仅当D中存在经过每个顶点至少一次的回路. (2) 定理 设D是n阶有向图 D是单向连通图当且仅当D中存在经过每个顶点至少一次的通路.
例2.设有向图D是单向连通图,但不是强连通图,问在D中至少加几条边所 得图D’就能成为强连通图? 作业:P292 16、17、18、39、40(1、2)、43
(1)M(G)每列元素之和均为2,这正说明每条边关联两个顶点(环所关联的两个端 点重合). ∑mij = 2 (j = 1,2,…,m) (2)M(G)第i行元素之和为结点vi的度数,i=1,2,…n (3) 所有行的和(即矩阵所有元素之和)等于边数的2倍(该例10=边数5的2倍 )。 ∑d(vi)=∑∑mij= ∑2 = 2m,这个结果正是握手定理的内容(即各顶 点的度数之和等于边数的2倍) . (4)第j列与第k列相同,当且仅当边ej与ek是平行边. (5) 某行i的和为0(即 ∑mij = 0),当且仅当vi是孤立点. 2、有向图的关联矩阵 定义:设有向图D=<V,E>中无环,V={v1,v2,…,vn}。 E={el,e2,…,em}, 令 1 vi为边ej的起点 mij = 0 vi为边ej不关联 -1 vi为边ej的终点 则称(mij)nxm,为D的关联矩阵,记作M(D)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学图的连通性判定方法介绍离散数学是一门研究离散结构以及这些结构中的对象、性质和关系的学科。

其中,图论是离散数学中的一个重要分支,主要研究图的性质和关系。

图是由节点和边组成的结构,可以用于表示各种实际问题以及计算机科学中的数据结构。

在图的研究中,连通性是一个重要的概念,它描述了图中节点之间是否存在路径相连。

在实际应用中,判断图的连通性是一个常见的问题。

下面将介绍几种常用的图的连通性判定方法。

1. 深度优先搜索(DFS)
深度优先搜索是一种常用的图遍历算法,它通过栈来实现。

该算法从图的某个节点开始,首先访问该节点并将其标记为已访问,然后递归地访问它的邻居节点,直到所有可达的节点都被访问过。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

2. 广度优先搜索(BFS)
广度优先搜索也是一种常用的图遍历算法,它通过队列来实现。

与深度优先搜索不同的是,广度优先搜索首先访问图中的某个节点,并将其标记为已访问。

然后访问该节点的所有邻居节点,并将未访问的邻居节点加入队列。

接下来,依次从队列中取出节点并访问其邻居节点,直到队列为空。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

3. 并查集
并查集是一种数据结构,用于管理元素之间的动态连通性。

在图的连通性判定中,可以使用并查集来判断图中的节点是否连通。

首先,将每个节点都初始化为一个独立的集合。

然后,遍历图中的所有边,如果两个节点之间存在边,则将它们所在的集合合并为一个集合。

最后,判断图中是否只存在一个集合,如果是,则图是连通的。

否则,图是不连通的。

4. 最小生成树
最小生成树是一种保留了图连通性的树结构。

在连通性判定中,可以通过构建最小生成树来判断图的连通性。

首先,选择一个节点作为起始节点。

然后,从所有与当前树相连的边中选择权值最小的边,并将连接的节点加入树中。

重复该过程,直到树中包含了图中的所有节点。

如果最后构建的树包含图中的所有节点,则图是连通的。

否则,图是不连通的。

综上所述,深度优先搜索、广度优先搜索、并查集和最小生成树是常用的图的连通性判定方法。

根据具体问题的需求,选择相应的方法进行判断,有助于解决图的连通性相关的实际问题。

相关文档
最新文档