外文翻译外文文献英文文献国际建设工程风险分析

合集下载

建筑外文文献及翻译(参考模板)

建筑外文文献及翻译(参考模板)

外文原文Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of ProjectsLin Jingjing , Zhou GuohuaSchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm.Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority .1.INTRODUCTIONMore and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have discussed the resource allocation problem in multi-project environment with resources constrained. Reference [1] designed an iterative algorithm and proposeda mathematical model of the resource-constrained multi-project scheduling .Basedon work breakdown structure (WBS) and Dantzig-Wolfe decomposition method ,a feasible multi-project planning method was illustrated , as in [2] . References [3,4]discussed the resource-constrained project scheduling based on Branch Delimitation method .Reference [5] put forward the framework of human resource allocation in multi-project in Long-term ,medium-term and short-term as well as research and development(R&D) environment .Basedon GPSS language, simulation model of resources allocation was built to get the project’s duration time and resources distribution, as in [6]. Reference [7] solved the engineering project’s resources optimization problem using Genetic Algorithms. These literatures reasonably optimized resources allocation in multi-project, but all had the same prerequisite that the project’s importance is the same to each other .This paper will analyze the effects of project’s priority on human resource allocation ,which is to be introduced into a mathematical model ;finally ,a Genetic Algorithm is used to solve the model.2.EFFECTS OF PROJECTS PRIORITY ON HUMAN RESOUCE ALLOCATIONAND THE AFFECTING FACTORS OF PROJECT’S PRIORITYResource sharing is one of the main characteristics of multi-project management .The allocation of shared resources relates to the efficiency and rationality of the use of resources .When resource conflict occurs ,the resource demand of the project with highest priority should be satisfied first. Only after that, can the projects with lower priority be considered.Based on the idea of project classification management ,this paper classifies the affecting factors of project’s priority into three categories ,as the project’s benefits ,the complexity of project management and technology , and the strategic influence on the enterprise’s future development . The priority weight of the project is the function of the above three categories, as shown in (1).W=f(I,c,s…) (1)Where w refers to project’s priority weight; I refers to the benefits of th e project; c refers to the complexity of the project, including the technology and management; s refers to the influence of the project on enterprise .The bigger the values of the three categories, the higher the priority is.3.HUMAN RESOURCE ALLOCATION MODEL IN MULTI-PROJECTENVIRONMENT3.1Problem DescriptionAccording to the constraint theory, the enterprise should strictly differentiate the bottleneck resources and the non-bottleneck resources to solve the constraint problem of bottleneck resources .This paper will stress on the limited critical human resources being allocated to multi-project with definite duration times and priority.To simplify the problem, we suppose that that three exist several parallel projects and a shared resources storehouse, and the enterprise’s operation only involves one kind of critical human resources. The supply of the critical human resource is limited, which cannot be obtained by hiring or any other ways during a certain period .when resource conflict among parallel projects occurs, we may allocate the human resource to multi-project according to project’s priorities .The allocation of non-critical independent human resources is not considered in this paper, which supposes that the independent resources that each project needs can be satisfied.Engineering projects usually need massive critical skilled human resources in some critical chain ,which cannot be substituted by the other kind of human resources .When the critical chains of projects at the same time during some period, there occur resource conflict and competition .The paper also supposes that the corresponding network planning of various projects have already been established ,and the peaks of each project’s resources demand have been optimized .The delay of the critical chain will affect the whole project’s duration time .3.2 Model HypothesesThe following hypotheses help us to establish a mathematical model:(1)The number of mutually independent projects involved in resourceallocation problem in multi-project is N. Each project is indicated withQ i,while i=1,2, … N.(2)The priority weights of multi-project have been determined ,which arerespectively w1,w 2…w n .(3) The total number of the critical human resources is R ,with r k standingfor each person ,while k=1,2, …,R(4) Δk i = ⎩⎨⎧others toprojectQ rcer humanresou i k 01(5) Resources capturing by several projects begins on time. t E i is theexpected duration time of project I that needs the critical resources tofinish some task after time t ,on the premise that the human resourcesdemand can be satisfied .tAi is the real duration time of project I thatneeds the critical resource to finish some task after time t .(6) According to the contract ,if the delay of the project happens the dailycost loss due to the delay is △c i for pro ject I .According to the project’simportance ,the delay of a project will not only cause the cost loss ,butwill also damage the prestige and status of the enterprise .(while thelatent cost is difficult to quantify ,it isn’t considered in this articletemporarily.)(7) From the hypothesis (5) ,we can know that after time t ,the time-gapbetween the real and expected duration time of project I that needs thecritical resources to finish some task is △t i ,( △t i =t A i -t E i ). For thereexists resources competition, the time –gap is necessarily a positivenumber.(8) According to hypotheses (6) and (7), the total cost loss of project I is C i(C i = △t i * △C i ).(9) The duration time of activities can be expressed by the workload ofactivities divided by the quantity of resources ,which can be indicatedwith following expression of t A i =ηi / R i * ,.In the expression , ηi refersto the workload of projects I during some period ,which is supposed tobe fixed and pre-determined by the project managers on project planningphase ; R i * refers to the number of the critical human resources beingallocated to projects I actually, with the equation Ri * =∑=Rk ki 1δ existing. Due to the resource competition the resourcedemands of projects with higherPriorities may be guarantee, while those projects with lower prioritiesmay not be fully guaranteed. In this situation, the decrease of theresource supply will lead to the increase of the duration time of activitiesand the project, while the workload is fixed.3.3 Optimization ModelBased on the above hypotheses, the resource allocation model inmulti-project environment can be established .Here, the optimizationmodel is :F i =min Z i = min∑∑==Ni i N i Ci 11ω =min i i Ni i N i c t ∆∆∑∑==11ω (2) =min ∑∑==N i i N i 11ω )E i R i ki i t - ⎝⎛∑=1δη i c ∆ 2F =min Z 2=min ()i t ∆=min )E i R i ki i t -⎝⎛∑=1δη (3) Where wj=max(wi) ,(N j i 3,2,1,=∀) (4)Subject to : 0∑∑==≤R k ki N i 11δ=R (5)The model is a multi-objective one .The two objective functions arerespectively to minimize the total cost loss ,which is to conform to theeconomic target ,and to shorten the time delay of the project with highestpriority .The first objective function can only optimize the apparenteconomic cost ;therefore the second objective function will help to makeup this limitation .For the project with highest priority ,time delay will damage not only the economic benefits ,but also the strategy and the prestige of the enterprise .Therefore we should guarantee that the most important project be finished on time or ahead of schedule .4.SOLUTION TO THE MULTI-OBJECTIVE MODEL USING GENETICALGORITHM4.1The multi-objective optimization problem is quite common .Generally ,eachobjective should be optimized in order to get the comprehensive objective optimized .Therefore the weight of each sub-objective should be considered .Reference [8] proposed an improved ant colony algorithm to solve this problem .Supposed that the weights of the two optimizing objectives are αand β ,where α+β=1 .Then the comprehensive goal is F* ,where F*=αF1+βF2.4.2The Principle of Genetic AlgorithmGenetic Algorithm roots from the concepts of natural selection and genetics .It’s a random search technique for global optimization in a complex search space .Because of the parallel nature and less restrictions ,it has the key features of great currency ,fast convergence and easy calculation .Meanwhile ,its search scope is not limited ,so it’s an effective method to solve the resource balancing problem ,as in [9].The main steps of GA in this paper are as follow:(1)EncodingAn integer string is short, direct and efficient .According to thecharacteristics of the model, the human resource can be assigned to be acode object .The string length equals to the total number of humanresources allocated.(2)Choosing the fitness functionThis paper choose the objective function as the foundation of fitnessfunction .To rate the values of the objective function ,the fitness of then-th individual is 1/n。

建筑英文文献及翻译

建筑英文文献及翻译

建筑英文文献及翻译第一篇:建筑英文文献及翻译外文原文出处: NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages 147-149动力性能对建筑物的破坏引言:建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很重要的角色。

特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已经有的建筑,使他们可以了解地震的影响。

许多标准(例如:欧标,2003;欧标,2006),建议用简单的表达式来表达一个建筑物的高度和他的基本周期。

这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人,1997),从而人为的低估了标准周期。

因为这个原因,他们通常提供比较低的设计标准当与那些把设计基础标准牢记在心的人(例:乔普拉本和高尔,2000)。

当后者从已进行仔细建立的数字模型中得到数值(例:克劳利普和皮诺,2004;普里斯特利权威,2007)。

当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准(例:纳瓦洛苏达权威,2004)。

一个概述不同的方式比较确切的结果刊登在马西和马里奥(2008);另外,一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准确的结构参数表(建筑高度,开裂,空隙填实,等等)。

联系基础和上层建筑的震动周期可能发生共振的效果。

这个原因对于他们的振动,可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。

通常,结构工程师和岩土工程师有不同的观点在共振作用和一些变化的地震活动。

结构工程师们认为尽管建筑物和土壤的自振周期和地震周期都非常的接近。

但对于建筑物周期而言,到底是因为结构还是非结构造成的破坏提出了疑问。

外文翻译外文文献英文文献国际建设工程风险分析

外文翻译外文文献英文文献国际建设工程风险分析

外文翻译外文文献英文文献国际建设工程风险分析外文文献:This analysis used a case study methodology to analyze the issues surrounding the partial collapse of the roof of a building housing the headquarters of the Standards Association of Zimbabwe (SAZ). In particular, it examined the prior roles played by the team of construction professionals. The analysis revealed that the SAZ’s traditional construction project was general ly characterized by high risk. There was a clear indication of the failure of a contractor and architects in preventing and/or mitigating potential construction problems as alleged by the plaintiff. It was reasonable to conclude that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It appeared justified for the plaintiff to have brought a negligence claim against both the contractor and the architects. The risk analysis facilitated, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction prject and riskThe structural design of the reinforced concrete elements was done by consulting engineers Knight Piesold (KP). Quantity surveying services were provided by Hawkins, Leshnick & Bath (HLB). The contract was awarded to Central African Building Corporation (CABCO) who was also responsible for the provision of a specialist roof structure using patented “gang nail” roof trusses. The building construction proceeded to completion and was handed over to the owners on Sept. 12, 1991. The SAZ took effective occupation of the headquarters building without a certificate of occupation. Also, the defects liability period was only three months .The roof structure was in place 10 years At first the SAZ decided to go to arbitration, but this failed to yield an immediate solution. The SAZ then decided to proceed to litigate in court and to bring a negligence claim against CABCO. The preparation for arbitration was reused for litigation. The SAZ’s qua ntified losses stood at approximately $ 6 million in Zimbabwe dollars (US $1.2m) .After all parties had examined the facts and evidence before them, it became clear that there was a great probability that the courts might rule that both the architects and the contractor were liable. It was at this stage that the defendants’ lawyers requested that the matter be settled out of court. The plaintiff agreed to this suxamined the prior roles played by the project management function and construction professionals in preventing/mitigating potential construction problems. It further assessed the extent to which the employer/client and parties to a construction contract are able to recover damages under that contract. The main objective of this critical analysis was to identify an effective risk management strategy for future construction projects. The importance of this study is its multidimensional examination approach.Experience sugge be misleading. All construction projects are prototypes to some extent and imply change. Change in the construction industry itself suggests that past experience is unlikely to be sufficient on its own. A structured approach is required. Such a structure can not and must not replace the experience and expertise of the participant. Rather, it brings additional benefits that assist to clarify objectives, identify the nature of the uncertainties, introduces effective communication systems, improves decision-making, introduces effective riskcontrol measures, protects the project objectives and provides knowledge of the risk history .Construction professionals need to know how to balance the contingencies of risk with their specific contractual, financial, operational and organizational requirements. Many construction professionals look at risks in dividually with a myopic lens and do not realize the potential impact that other associated risks may have on their business operations. Using a holistic risk management approach will enable a firm to identify all of the organization’s business risks. This will increase the probability of risk mitigation, with the ultimate goal of total risk elimination .Recommended key construction and risk management strategies for future construction projects have been considered and their explanation follows. J.W. Hinchey stated that there is and can be no ‘best practice’ standard for risk allocation on a high-profile project or for that matter, any project. He said, instead, successful risk management is a mind-set and a process. According to Hinchey, the ideal mind-set is for the parties and their representatives to, first, be intentional about identifying project risks and then to proceed to develop a systematic and comprehensive process for avoiding, mitigat and its location. This is said to be necessary not only to allow alternative responses to be explored. But also to ensure that the right questions are asked and the major risks identified. Heads of sources of risk are said to be a convenient way of providing a structure for identifying risks to completi on of a participant’s part of the project. Effective risk management is said to require a multi-disciplinary approach. Inevitably riskmanagement requires examination of engineering, legal and insurance related solutions .It is stated that the use of analytical techniques based on a statistical approach could be of enormous use in decision making . Many of these techniques are said to be relevant to estimation of the consequences of risk events, and not how allocation of risk is to be achieved. In addition, at the present stage of the development of risk management, Atkinson states that it must be recognized that major decisions will be made that can not be based solely on mathematical analysis. The complexity of construction projects means that the project definition in terms of both physical form and organizational structure will be based on consideration of only a relatively small number of risks . This is said to then allow a general structured approach that can be applied to any construction project to increase the awareness of participants .The new, simplified Construction Design and Management Regulations (CDM Regulations) which came in to f 1996, into a single regulatory package.The new CDM regulations offer an opportunity for a step change in health and safety performance and are used to reemphasize the health, safety and broader business benefits of a well-managed and co-ordinated approach to the management of health and safety in construction. I believe that the development of these skills is imperative to provide the client with the most effective services available, delivering the best value project possible.Construction Management at Risk (CM at Risk), similar to established private sector methods of construction contracting, is gaining popularity in the public sector. It is a process that allows a client to select a construction manager(CM) based on qualifications; make the CM a member of a collaborative project team; centralize responsibility for construction under a single contract; obtain a bonded guaranteed maximum price; produce a more manageable, predictable project; save time and money; and reduce risk for the client, the architect and the CM.CM at Risk, a more professional approach to construction, is taking its place along with design-build, bridging and the more traditional process of design-bid-build as an established method of project delivery.The AE can review to get the projec. Competition in the community is more equitable: all subcontractors have a fair shot at the work .A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.It was reasonable to assume that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It did appear justified for the plaintiff to have brought a negligence claim against both the contractor and the architects.In many projects clients do not understand the importance of their role in facilitating cooperation and coordination; the desi recompense. They do not want surprises, and are more likely to engage in litigation when things go wrong.中文译文:国际建设工程风险分析索赔看来是合乎情理的。

建筑施工中英文对照外文翻译文献

建筑施工中英文对照外文翻译文献

建筑施工中英文对照外文翻译文献建筑施工中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:Building construction concrete crack ofprevention and processingAbstractThe crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure.Keyword:Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering.Concrete building and Gou piece usually all take sewer to make of, because of crack of existence and development usually make inner part of reinforcing bar etc. material creation decay, lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of external appearance, service life, severity will threat arrive people's life and property safety.A lot of all of crash of engineerings is because of the unsteady development of the crack with the result that.Modern age scienceresearch with a great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem is ineluctable, also acceptable in certainly of the scope just need to adopt valid of measure will it endanger degree control at certain of scope inside.The reinforced concrete norm is also explicit provision:Some structure at place of dissimilarity under the condition allow existence certain the crack of width.But at under construction should as far as possible adopt a valid measure control crack creation, make the structure don't appear crack possibly or as far as possible decrease crack of amount and width, particularly want to as far as possible avoid harmful crack of emergence, insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperature variety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical effect.Want differentiation to treat in the actual engineering, work°out a problem according to the actual circumstance.In the concrete engineering the familiar crack and the prevention1.Stem Suo crack and preventionStem the Suo crack much appear after the concrete protect be over of a period of time or concrete sprinkle to build to complete behind of around a week.In the cement syrup humidity of evaporate would creation stem Suo, and this kind of constringency is can't negative.Stem Suo crack of the creation be main is because of concrete inside outside humidity evaporate degree dissimilarity but cause to transform dissimilarity of result:The concrete is subjected to exterior condition of influence, surface humidity loss lead quick, transform bigger, inner part degree of humidity variety smaller transform smaller, bigger surface stem the Suo transform to be subjected to concrete inner part control, creation more big pull should dint but creation crack.The relative humidity is more low, cement syrup body stem Suo more big, stem the Suo crack be more easy creation.Stem the Suo crack is much surface parallel lines form or the net shallow thin crack, width many between 0.05-0.2 mm, the flat surface part much see in the big physical volume concrete and follow it more in thinner beam plank short todistribute.Stem Suo crack usually the anti- Shen of influence concrete, cause the durable of the rust eclipse influence concrete of reinforcing bar, under the function of the water pressure dint would creation the water power split crack influence concrete of loading dint etc..Concrete stem the Suo be main with water ash of the concrete ratio, the dosage of the composition, cement of cement, gather to anticipate of the dosage of the property and dosage, in addition etc. relevant.Main prevention measure:While being to choose to use the constringency quantity smaller cement, general low hot water mire and powder ash from stove cement in the adoption, lower the dosage of cement.Two is a concrete of stem the Suo be subjected to water ash ratio of influence more big, water ash ratio more big, stem Suo more big, so in the concrete match the ratio the design should as far as possible control good water ash ratio of choose to use, the Chan add in the meantime accommodation of reduce water.Three is strict control concrete mix blend with under construction of match ratio, use of concrete water quantity absolute can't big in match ratio design give settle of use water quantity.Four is the earlier period which strengthen concrete to protect, and appropriate extension protect of concrete time.Winter construction want to be appropriate extension concrete heat preservation to overlay time, and Tu2 Shua protect to protect.Five is a constitution the accommodation is in the concrete structure of the constringency sew.2.The Su constringency crack and preventionSu constringency is the concrete is before condense, surface because of lose water quicker but creation of constringency.The Su constringency crack is general at dry heat or strong wind the weather appear, crack's much presenting in the center breadth, both ends be in the centerthin and the length be different, with each other not coherent appearance.Shorter crack general long 20-30 cm, the longer crack can reach to a 2-3 m, breadth 1-5 mm.It creation of main reason is:The concrete is eventually almost having no strength or strength before the Ning very small, perhaps concrete just eventually Ning but strength very hour, be subjected to heat or compare strong wind dint of influence, the concrete surface lose water to lead quick, result in in the capillary creation bigger negative press but make a concrete physical volume sharplyconstringency, but at this time the strength of concrete again can't resist its constringency, therefore creation cracked.The influence concrete Su constringency open the main factor of crack to have water ash ratio, concrete of condense time, environment temperature, wind velocity, relative humidity...etc..Main prevention measure:One is choose to use stem the Suo value smaller higher Huo sour salt of the earlier period strength or common the Huo sour brine mire.Two is strict the control water ash ratio, the Chan add to efficiently reduce water to increment the collapse of concrete fall a degree and with easy, decrease cement and water of dosage.Three is to sprinkle before building concrete, water basic level and template even to soak through.Four is in time to overlay the perhaps damp grass mat of the plastics thin film, hemp slice etc., keep concrete eventually before the Ning surface is moist, perhaps spray to protect etc. to carry on protect in the concrete surface.Five is in the heat and strong wind the weather to want to establish to hide sun and block breeze facilities, protect in time.3.Sink to sink crack and preventionThe creation which sink to sink crack is because of the structure foundation soil quality not and evenly, loose soft or return to fill soil dishonest or soak in water but result in the asymmetry sink to decline with the result that;Perhaps because of template just degree shortage, the template propped up to once be apart from big or prop up bottom loose move etc. to cause, especially at winter, the template prop up at jelly soil up, jelly the soil turn jelly empress creation asymmetry to sink to decline and cause concrete structure creation crack.This kind crack many is deep enter or pierce through sex crack, it alignment have something to do with sinking to sink a circumstance, general follow with ground perpendicular or present 30 °s-45 °Cape direction development, bigger sink to sink crack, usually have certain of wrong, crack width usually with sink to decline quantity direct proportion relation.Crack width under the influence of temperature variety smaller.The foundation after transform stability sink to sink crack also basic tend in stability.Main prevention measure:One is rightness loose soft soil, return to fill soil foundation a construction at the upper part structure front should carry on necessity ofHang solid with reinforce.Two is the strength that assurance template is enough and just degree, and prop up firm, and make the foundation be subjected to dint even.Three is keep concrete from sprinkle infusing the foundation in the process is soak by water.Four is time that template tore down to can't be too early, and want to notice to dismantle a mold order of sequence.Five is at jelly soil top take to establish template to notice to adopt certain of prevention measure.4.Temperature crack and preventionTemperature crack much the occurrence is in big surface or difference in temperature variety of the physical volume concrete compare the earth area of the concrete structure.Concrete after sprinkling to build, in the hardening the process, cement water turn a creation a great deal of of water turn hot, .(be the cement dosage is in the 350-550 kg/m 3, each sign square the rice concrete will release a calories of 17500-27500 kJ and make concrete internal thus the temperature rise to reach to 70 ℃or so even higher)Because the physical volume of concrete be more big, a great deal of of water turn hot accumulate at the concrete inner part but not easy send forth, cause inner part the temperature hoick, but the concrete surface spread hot more quick, so formation inside outside of bigger difference in temperature, the bigger difference in temperature result in inner part and exterior hot the degree of the bulge cold Suo dissimilarity, make concrete surface creation certain of pull should dint.When pull should dint exceed the anti- of concrete pull strength extreme limit, concrete surface meeting creation crack, this kind of crack much occurrence after the concrete under construction period.In the concrete of under construction be difference in temperature variety more big, perhaps is a concrete to be subjected to assault of cold wave etc., will cause concrete surface the temperature sharply descend, but creation constringency, surface constringency of the concrete be subjected to inner part concrete of control, creation very big of pull should dint but creation crack, this kind of crack usually just in more shallow scope of the concrete surface creation.The alignment of the temperature crack usually none settle regulation, big area structure the crack often maneuver interleave;The size bigger structure of the beam plank length, the crack run parallel with short side more;Thorough with pierce throughsex of temperature crack general and short side direction parallelism or close parallelism, crack along long side cent the segment appear, in the center more airtight.Crack width the size be different, be subjected to temperature variety influence more obvious, winter compare breadth, summer more narrow.The concrete temperature crack that the heat inflation cause is usually in the center the thick both ends be thin, but cold Suo crack of thick thin variety not too obvious.The emergence of the this kind crack will cause the rust eclipse of reinforcing bar, the carbonization of concrete, the anti- jelly which lower concrete melt, anti- tired and anti- Shen ability etc..Main prevention measure:One is as far as possible choose to use low hot or medium hot water mire, like mineral residue cement, powder ash from stove cement...etc..Two is a decrease cement dosage, cement dosage as far as possible the control is in the 450 kg/m 3 following.Three is to lower water ash ratio, water ash of the general concrete ratio control below 0.6.Four is improvement the bone anticipate class to go together with, the Chan add powder ash from stove or efficiently reduce water etc. to come to reduce cement dosage and lower water to turn hot.Five is an improvement concrete of mix blend to process a craft, lower sprinkle of concrete to build temperature.Six is the in addition that the Chan add a have of fixed amount to reduce water and increase Su, slow Ning etc. function in the concrete, improvement the concrete mix to match a thing of mobility, protect water, lower water to turn hot, postpone hot Feng of emergence time.Seven is the heat season sprinkle to build can the adoption take to establish to hide sun plank etc. assistance measure control concrete of Wen Sheng, lower to sprinkle temperature of build the concrete.Eight is the temperature of big physical volume concrete should the dint relate to structure size, concrete structure size more big, temperature should dint more big, so want reasonable arrangement construction work preface, layering, cent the piece sprinkle to build, for the convenience of in spread hot, let up control.Nine is at great inner part constitution of the physical volume concrete cool off piping, cold water perhaps cold air cool off, let up concrete of inside outside difference in temperature.Ten is the supervision which strengthen concrete temperature, adopt to cool off in time, protection measure.11 is to reserve temperature constringency to sew.12 is to let up to control, sprinkle proper before building concrete in the Ji rockand old concrete top build a 5 mm or so sand mat a layer or usage asphalt etc. material Tu2 Shua.13 is to strengthen concrete to protect, the concrete after sprinkle build use moist grass Lian in time, hemp slice's etc. overlay, and attention sprinkle water to protect, appropriate extension protect time, assurance the concrete surface be slow-moving cool off.At the cold season, concrete surface should constitution heat preservation measure, in order to prevent cold wave assault.14 is the allocation be a little amount in the concrete of reinforcing bar perhaps add fiber material concrete of temperature crack control at certain of scope inside.5.Crack and prevention that the chemical reaction causeAlkali bone's anticipating the crack that reaction crack and reinforcing bar rust eclipse cause is the most familiar in the reinforced concrete structure of because of chemical reaction but cause of crack.The concrete blend a future reunion creation some alkalescence ion, these ion with some activity the bone anticipate creation chemical reaction and absorb surroundings environment in of water but the physical volume enlarge, make concrete crisp loose, inflation open crack.In this kind of crack general emergence concrete structure usage period, once appear very difficult remediable, so should at under construction adopt valid the measure carry on prevention.Main of prevention measure:While being to choose to anticipate with the alkali activity small freestone bone.Two is the in addition which choose to use low lye mire with low alkali or have no alkali.Three is the Chan which choose to use accommodation with anticipate to repress an alkali bone to anticipate reaction.Because the concrete sprinkle to build, flap Dao bad perhaps is a reinforcing bar protection layer thinner, the harmful material get into concrete to make reinforcing bar creation rust eclipse, the reinforcing bar physical volume of the rust eclipse inflation, cause concrete bulge crack, the crack of this kind type much is a crack lengthways, follow the position of reinforcing bar ually of prevent measure from have:One is assurance reinforcing bar protection the thickness of the layer.Two is a concrete class to go together with to want good.Three is a concrete to sprinkle to note and flap Dao airtight solid.Four is a reinforcing bar surface layer Tu2 Shua antisepsiscoating.Crack processingThe emergence of the crack not only would influence structure of whole with just degree, return will cause the rust eclipse of reinforcing bar, acceleration concrete of carbonization, lower durable and anti- of concrete tired, anti- Shen ability.Therefore according to the property of crack and concrete circumstance we want differentiation to treat, in time processing, with assurance building of safety usage.The repair measure of the concrete crack is main to have the following some method:Surface repair method, infuse syrup, the Qian sew method, the structure reinforce a method, concrete displacement method, electricity chemistry protection method and imitate to living from heal method.Surface repair the method be a kind of simple, familiar of repair method, it main be applicable to stability and to structure loading the ability don't have the surface crack of influence and deep enter crack of processing.The processing measure that is usually is a surface in crack daubery cement syrup, the wreath oxygen gum mire or at concrete surface Tu2 Shua paint, asphalt etc. antisepsis material, at protection of in the meantime for keeping concrete from continue under the influence of various function to open crack, usually can adoption the surface in crack glue to stick glass fiber cloth etc. measure.1, infuse syrup, the Qian sew methodInfuse a syrup method main the concrete crack been applicable to have influence or have already defend Shen request to the structure whole of repair, it is make use of pressure equipments gum knot the material press into the crack of concrete, gum knot the material harden behind and concrete formation one be whole, thus reinforce of purpose.The in common use gum knot material has the cement the syrup, epoxy, A Ji C Xi sour ester and gather ammonia ester to equalize to learn material.The Qian sew a method is that the crack be a kind of most in common use method in, it usually is follow the crack dig slot, the Qian fill Su in the slot or rigid water material with attain closing crack of purpose.The in common use Su material has PVC gum mire,plastics ointment, the D Ji rubber etc.;In common use rigid water material is the polymer cement sand syrup.2, the structure reinforce a methodWhen the crack influence arrive concrete structure of function, will consideration adopt to reinforce a method to carry on processing to the concrete structure.The structure reinforce medium in common use main have the following a few method:The piece of enlargement concrete structure in every aspect accumulate, outside the Cape department of the Gou piece pack type steel, adoption prepare should the dint method reinforce, glue to stick steel plate to reinforce, increase to establish fulcrum to reinforce and jet the concrete compensation reinforce.3, concrete displacement methodConcrete displacement method is processing severity damage concrete of a kind of valid method, this method be first will damage of the concrete pick and get rid of, then again displacement go into new of concrete or other material.The in common use displacement material have:Common concrete or the cement sand syrup, polymer or change sex polymer concrete or sand syrup.4, the electricity chemistry protection methodThe electricity chemistry antisepsis is to make use of infliction electric field in lie the quality of electricity chemical effect, change concrete or reinforced concrete the environment appearance of the place, the bluntness turn reinforcing bar to attain the purpose of antisepsis.Cathode protection method, chlorine salt's withdrawing a method, alkalescence to recover a method is a chemistry protection method in three kinds of in common use but valid method.The advantage of this kind of method is a protection method under the influence of environment factor smaller, apply reinforcing bar, concrete of long-term antisepsis, since can used for crack structure already can also used for new set up structure.5, imitate to living from legal moreImitate to living from heal the method be a kind of new crack treatment, its mimicry living creature organization secrete a certain material towards suffering wound part auto, but make the wound part heal of function, join some and special composition(suchas contain to glue knot of the liquid Xin fiber or capsule) in the concrete of the tradition the composition, at concrete inner part formation the intelligence type imitate to living from heal nerve network system, be the concrete appear crack secrete a parts of liquid Xin fiber can make the crack re- heal.ConclusionThe crack is widespread in the concrete structure existence of a kind of phenomenon, it of emergence not only will lower the anti- Shen of building ability, influence building of usage function, and will cause the rust eclipse of reinforcing bar, the carbonization of concrete, lower the durable of material, influence building of loading ability, so want to carry on to the concrete crack earnest research, differentiation treat, adoption reasonable of the method carry on processing, and at under construction adopt various valid of prevention measure to prevention crack of emergence and development, assurance building and Gou piece safety, stability work.From《CANADIAN JOURNAL OF CIVIL ENGINEERING》译文:建筑施工混凝土裂缝的预防与处理混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。

项目风险管理分析中英文对照外文翻译文献

项目风险管理分析中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Project Risk AnalysisChapter 1 Introduction1.1 About this compendiumThis course compendium is to be used in the course “Risikostyring is projector”. The focus will be on the following topics:• R isk identification• Risk structuring• Risk modeling in the light of a time schedule and a cost model• Risk follows upWe will also discuss elements related to decision analysis where risk is involved, and use of life cycle cost and life cycle profit models. The course compendium comprises a large number of exercises, and it is recommended to do most of the exercises in order to get a good understanding of the topics and methods described. A separate MS Excel program, pRisk.xls has been developed in order to assist numerical calculations and to conduct Monte Carlo simulation.1.2 DefinitionsAleatory uncertaintyVariation of quantities in a population. We sometimes use the word variability rather than aleatory uncertainty.Epistemic uncertaintyLack of knowledge about the “world”, and observable quantities in particular. DependencyThe relation between the sequences of the activities in a project.Observable quantityA quantity expressing a state of the “world”, i.e. a quantity of the p hysical reality or nature, that is unknown at the time of the analysis but will, if the system being analyzed is actually implemented, take some value in the future, and possibly become known. ParameterWe use the term parameter in two ways in this report. The main use of a parameter is that it is a quantity that is a part of the risk analysis models, and for which we assign numerical values. The more academic definition of a parameter used in a probabilitystatement about an observable quantity, X, is that a parameter is a construct where the value of the parameter is the limiting value where we are not able to saturate our understanding about the observable quantity X whatsoever new information we could get hold of. Parameter estimateThe numeric value we assess to a parameter.ProbabilityA measure of uncertainty of an event.RiskRisk is defined as the answer to the three questions [14]: i) what can go wrong? ii) How likely is it? And if it goes wrong, iii) what are the consequences? To describe the risk is a scenarioRisk acceptanceA decision to accept a risk.Risk acceptance criterionA reference by which risk is assessed to be acceptable or unacceptable.ScheduleA plan which specifies the start and finalization point of times for the activities in a project.Stochastic dependencyTwo or more stochastic variables are (stochastically) dependent if the expectation of one stochastic variable depends on the value of one or more of the other stochastic variables. Stochastic variableA stochastic variable, or random quantity, is a quantity for which we do not know the value it will take. However, we could state statistical properties of the variable or make probability statement about the value of the quantity.1.3 DEFINITIONSUncertaintyLack of knowledge about the performance of a system, and observable quantities in particular.Chapter 2Risk ManagementGenerally, risk management is defined (IEC 60300-3-9) as a “systematic application ofmanagement policies, procedures and practices to the tasks of analyzing, evaluating and controlling risk”. It will comprise (IEC definitions in parentheses):• Risk assessment, i.e.–Risk analysis (“Systematic use of available information to identify hazards and to estimate the r isk to individuals or populations, property or the environment”)–Risk evaluation (“Process in which judgments are made on the tolerability of the risk on the basis of risk analysis and taking into account factors such as socio-economic and environmental aspects”)• Risk reduction/control (Decision making, implementation and risk monitoring).There exists no common definition of risk, but for instance IEC 60300-3-9 defines risk as a “combination of the frequency, or probability, of occurrence and the consequence of a specified hazardous events”. Most definitions comprise the elements of probabilities and consequences. However, some as Klinke and Renn suggest a very wide definition, stating: “Risk refers to the possibility that human actions or events lead to consequences that affect aspects of what humans value”. So the total risk comprises the possibility of number (“all”)unwanted/hazardous events. It is part of the risk analysis to delimit which hazards to include. Further, risk usually refers to threats in the future, involving a (high) degree of uncertainty. In the following we will present the basic elements of risk management as it is proposed to be an integral part of project management.2.1 Project objectives and criteriaIn classical risk analysis of industrial systems the use of so-called risk acceptance criteria has played a central role in the last two or tree decades. Basically use of risk acceptance criteria means that some severe consequences are defined, e.g. accident with fatalities. Then we try to set an upper limit for the probability of these consequences that could be accepted, i.e. we could not accept higher probabilities in any situations. Further these probabilities could only be accepted if risk reduction is not possible, or the cost of risk reduction is very high.In recent years it has been a discussion in the risk analysis society whether it is fruitful or not to use risk acceptance criteria according to the principles above. It is argued that very often risk acceptance criteria are set arbitrary, and these do not necessarily support the overall best solutions. Therefore, it could be more fruitful to use some kind of risk evaluation criteria, rather than strict acceptance criteria. In project risk management we could establish acceptance criteria related to two types of events:• Events with severe consequences related to health, environment and safety.• Events with severe consequences related to project costs, project quality, project duration, oreven termination of the project. In this course we will have main focus on the project costs and the duration of the project. Note that both project cost and project duration are stochastic variables and not events. Thus it is not possible to establish acceptance criteria to project cost or duration directly. Basically, there are three types of numeric values we could introducein relation to such stochastic variables describing the project:1. Target. The target expresses our ambitions in the project. The target shall be something we are striving at, and it should be possible to reach the target. It is possible to introduce (internal) bonuses, or other rewards in order to reach the targets in a project.2. Expectation. The expectations are the value the stochastic variables will achieve in the long run, or our expectation about the outcome. The expectation is less ambitious than the target. The expectation will in a realistic way account for hazards, and threats and conditions which often contribute to the fact that the targets are not met.3. Commitment. The commitments are values related to the stochastic variables which are regulated in agreements and contracts. For example it could be stated in the contract that a new bridge shall be completed within a given date. If we are not able to fulfill the commitments, this will usually result in economical consequences, for example penalties for defaults, or in the worst case canceling of the contract.2.2 Risk identificationA scenario is a description of a imagined sequence or chain of events, e.g. we have a water leakage, and we are not able to stop this leakage with ordinary tightening medium due to the possible environmental aspects which is not clarified at the moment. Further the green movement is also likely to enter the scene in this case. A hazard is typically related to energies, poisonous media etc, and if they are released this will result in an accident or a severe event. A threat is a wider term than hazard, and we include also aspects as “wrong” method applied, “lack of competence and experience”. The term threat is also very often used in connection with security problems, e.g. sabotage, terrorism, and vandalism.2.3 Structuring and modeling of riskIn Section 2.2 we have identified methods to identify events and threats. We now want to relate these events and threats to the explicit models we have for project costs and project duration.2.3.1 Model for project execution time/schedule modelingWhen analyzing the execution time for a project we will have a project plan and typicallya Gantt diagram as a starting point. The Gantt diagram is transformed into a so-called flow network where the connections between the activities are explicitly described. Such a flow network also comprises description of duration of the activities in terms of probability statements. The duration of each activity is stochasticVariables, which we denote Ti for activity in a flow network we might also have uncertain activities which will be carried out only under special conditions. These conditions could be described in terms of events, and we need to describe the probability of occurrence of such events. Thus, there is a set of quantities, i.e. time variables and events in the model. The objective is now to link the undesired events and threats discussed in Section 2.2 to these time variables and events. Time variables are described by a probability distribution function. Such a distribution function comprises parameters that characterize the time variable. Often a parametric probability distribution is described by the three quantities L (low), M (most likely) and H high. If an undesired event occur, it is likely that the values of L, M and H will be higher than in case this event does not occur. A way to include the result from the risk identification process is then to express the different values of L, M and H depending on whether the critical event occurs or not. If we in addition are able to assess the probability of occurrence of the critical event, the knowledge about this critical event has been completely included into the risk model. Based on such an explicit modeling of the critical event, we could also easily update the model in case of new information about the critical event is obtained, for example new information could be available at a later stage in the process and changes of the plan could still be possible in light of the new information.2.3.2 Cost modelingThe cost model is usually based on the cost breakdown structure, and the cost elements will again be functions of labor cost, overtime cost, purchase price, hour cost of renting equipment, material cost, amount of material etc. The probabilistic modeling of cost is usually easier than for modeling project execution time. The principle is just to add a lot of cost terms, where each cost term is the product of the unit price and the number of units. We introduce price and volume as stochastic variables to describe the unit price and the number of units. The price and volume variables should also be linked to the undesired events and threats we have identified in Section 2.2. Often it is necessary to link the cost model to the schedule model. For example in case of delays it might be necessary to put more effort into the project to catch up with the problems, and these efforts could be very costly. Also, if the project is delayed we may need to pay extra cost to sub-contractors that have to postpone their support into the project.2.3.3 Uncertainty in schedule and cost modelingAs indicated above we will establish probabilistic models to describe the duration and cost of a project. The result of such a probabilistic modeling is that we treat the duration and cost as stochastic variables. Since duration and costs are stochastic variables, this means that there is uncertainty regarding the values they will take in the real project we are evaluating. Sometimes we split this uncertainty into three different categories, i) Aleatory uncertainty (variability due to e.g. weather conditions, labor conflicts, breakdown of machines etc.), ii) para meter or epistemic uncertainty due to lack of knowledge about “true” parameter values, and iii) model uncertainty due to lack of detailed, or wrong modeling. Under such thinking, the aleatory uncertainty could not be reduced; it is believed to be the result of the variability in the world which we cannot control. Uncertainty in the parameters is, however, believed to be reducible by collecting more information. Also uncertainty in the models is believed to be reducible by more detailed modeling, and decomposition of the various elements that go into the model. It is appealing to have a mental model where the uncertainty could be split into one part which we might not reduce (variability), and one part which we might reduce by thorough analysis and more investigation (increased knowledge). If we are able to demonstrate that the part of the uncertainty related to lack of knowledge and understanding has been reduced to a sufficient degree, we could then claim high confidence in the analysis. In some situation the owner or the authorities put forward requirements. Which could be interpreted as confidence regarding the quality of the analysis? It is though not always clear what is meant by such a confidence level. As an example, let E(C) be the expected cost of ap roject. A confidence statement could now be formulated as “The probability that the actual project cost is within an interval E(C) ± 10% should at least be 70%”. It is, however, not straight forward to document such a confidence level in a real analysis. T he “Successive process (trinnvisprosessen)” [4] is an attempt to demonstrate how to reduce the “uncertainty” in the result to a certain level of confidence.We also mention that Even [12] has recently questioned such an approach where there exist model uncertainty and parameter uncertainty, and emphasizes that we in the analysis should focus on the observable quantities which will become evident for us if the project is executed, e.g. the costs, and that uncertainty in these quantities represent the lack of knowledge about which values they will take in the future. This discussion is not pursuit any more in this presentation.2.4 Risk elements for follow up: Risk and opportunity registerAs risk elements and threats are identified in Section 2.2 these have to be controlled as far as possible. It is not sufficient to identify these conditions and model them in the schedule and cost models, we also have to mitigate the risk elements and threats. In order to ensure a systematic follow up of risk elements and threats it is recommended to establish a so-called threat log. The terms ‟Risk Register…and ‟Risk & Opportunity Register…(R&OR) is sometimes used rather than the term ‟threat log.… A R&OR is best managed by a database solution, for example an MS-Access Database. Each row in the database represents one risk element or threat. The fields in such a database could vary, but the following fields seems reasonable: • ID. An identifier is required in order to keep track of the threat in relation to the quantitative risk models, to follow up actions ET.• Description. A description of the threat is necessary in order to understand the content of the problem. It could be necessary to state the immediate consequences (e.g. occupational accident), but also consequences in terms of the main objectives of the project, e.g. time and costs.• Likelihood or probability. A judgment regarding how probable it is that the threat or the risk condition will be released in terms of e.g. undesired or critical events.• Impact. If possible, give a direct impact on cost and schedule if the event occurs, either by an expected impact, or by L, M and H values.• References to cost and schedule. In order to update the schedule and cost models it is convenient to give an explicit reference from the R&OR into the schedule and cost models. • Manageability. Here it is descried how the threat could be influenced, either by implementing measures to eliminate the threat prior to it reveals it self, or measures in orderto reduce the consequences in case of the threat will materialize.• Alert information. It is important to be aware of information that could indicate the development of the threat before it eventually will materialize. If such information is available we could implement relevant measures if necessary. For example it could be possible to take ground samples at a certain cost, but utilizing the information from such samples could enable us to choose appropriate methods for tunnel penetration.• Measures. List of measures that could be implemented to reduce the risk.• Deadline and responsible. Identification of who is responsible for implementing and follow up of the measure or threat, and any deadlines.• Status. Both with respect to the threat and any measure it is valuable to specify the development, i.e. did the treat reveal it self into undesired events with unwanted consequences, did the measure play any positive effect etc.2.5 Correction and controlAs the project develops the R&OR is the primary control tool for risk follow up. By following the status of the various threats, risk elements and measures we could monitor the risk in the project. This information should of course be linked to the time and cost plans. If a given threat does not reveal in terms of undesired events, the time and cost estimates could be lowered and this gain could be utilized in other part of the project, or in other projects. In the opposite situation it is necessary to increase the time and cost estimates, and we need to consider new measures, and maybe spend some of the reserves to catch up in case of an expected delay. During the life cycle of a project it will occur new threats and risk elements which we did not foresee in the initial risk identification process. Such threats must continuously be entered into the R&OR, and measures need to be considered.一、介绍(一)关于本纲要本课程纲要过程中研究的是“风险也是一种项目”。

建筑工程外文文献(含翻译)

建筑工程外文文献(含翻译)

外文文献:Construction of the competition and competition strategy Engineering and construction firms from the United States dominated the global market for many decades but recent world events have altered their position.To investigate the driving forces and trends that will affect engineering and construction competition in the next decade, a research project, called the "Anatomy of Construction Competition in the Year 2000", was sponsored by the Construction Industry Institute's Construc—tion 2000 Task Force— The project examined the factors that affect competitiveness, including the following, The shaping of corporate capabilities; vertical integration and horizontal expansion to increase corporate capabilities and market share, including acquisition and mergers by offshore conglomerates and the acquisition of foreign firms by U. S. companies.Financing options; the role of privatization, build-own-transfer projects, and the nature of project financing in future markets,Management, organization, and structure; future management and organizational approaches, structures, and techniques to attract personnel to perform in a global competitive environment.Work force characteristics; future availability of engineering and construction workers at the professional and craft levels.Technological issues:how technology will affect competition and be used to offset work force shortages.Research Objectives and ScopeThis research project's goal is to collect information, to adapt to the 2000 and the engineering construction after adjustment,formulate strategies needed to provide insight and formulate 2000 engineering construction of possible development plan. This study reviewed the project construction process of history, current development trend, to determine the impact of the industry, and the impetus to the future industrial enterprises are related to reshape the ability, privatisation and financing methods of potential function and management, organization structure, methods for future development direction。

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照中文翻译:工程造价专业毕业外文文献工程造价专业是一种重要的工程技术专业,主要负责工程投资的评估、选择和控制工程项目成本,以及项目质量、进度和安全。

因此,工程造价专业需要具备丰富的知识和技能,包括工程建设、经济学、管理学、数学、统计学等方面。

为了提高工程造价专业学生的综合能力,学习外文文献是不可或缺的步骤。

本文将介绍几篇与工程造价专业相关的外文文献,并提供中英文对照。

1)《The Role of Quantity Surveyors in Sustainable Construction》该文研究了数量调查师在可持续建筑中的作用,并深入探讨了数量调查师在项目的可持续性评估、营建阶段和运营阶段的角色和责任。

该文指出,数量调查师可以通过成本控制、资源利用、和材料选择等方面促进可持续建筑的发展,为未来可持续发展提供支持。

中文翻译:数量调查师在可持续建筑中的作用2)《Cost engineering》该文研究了造价工程的理论和实践,并提供了一系列工具和方法用于项目成本的控制和评估。

该文还深入探讨了工程造价和项目管理之间的关系,并提供了一些实用的案例研究来说明造价工程的实际应用。

中文翻译:造价工程3)《Construction cost management: learning from case studies》该文通过案例分析的方式来探讨建筑项目成本管理的实践。

该文提供了多个案例研究,旨在向读者展示如何运用不同的方法来控制和评估项目成本,并阐述了思考成本问题时需要考虑的多个因素。

中文翻译:建筑项目成本管理:案例学习4)《Project Cost Estimation and Control: A Practical Guide to Construction Management》该书是一本实用指南,详细介绍了在工程起始阶段进行项目成本估算的方法和技巧,以及如何在项目执行阶段进行成本控制。

中英文对照外文文献 计划风险管理中英文对照外文翻译文献

中英文对照外文文献 计划风险管理中英文对照外文翻译文献

中英文对照外文文献计划风险管理中英文对照外文翻译文献导读:就爱阅读网友为您分享以下“计划风险管理中英文对照外文翻译文献”资讯,希望对您有所帮助,感谢您对的支持!计划风险管理中英文对照外文翻译文献计划风险管理中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Schedule Risk ManagementINTRODUCTIONSchedule risks are both threats and opportunities to the success of a project. Threats tend to reduce the success ofmeeting the project goals and opportunities tend to increase the success. Risk management is the process of identifying, analyzing, qualifying and quantifying the risks, and developing a plan to deal with them. This is routinely done during baseline schedule development as well as during schedule updates. Implementation of risk. .1计划风险管理中英文对照外文翻译文献management starts with early planning in both budgetary cost estimating and preliminary master scheduling in order to determine budgets and schedules with a comfortable level of confidence in the completion date and final cost.While there are entire volumes addressing risk in construction projects, it is important to note that the issue of time-related risk has not been universally incorporated into planning. Assessing cost risk is more intuitive, and very often addressed through the use of heuristics, so it has become more of a standard of the industry than time-related risk management. Most estimators will automatically add a contingency toa cost estimate to cover the risk of performance based on the type of project and circumstances pertaining to theundertaking of the project. Estimators estimate this contingency using their own rules of thumb developed over years of estimating as well as estimate ingmanuals,such as Means’Cost Data or Cost Works. However, when it comes todeveloping the critical path method (CPM) schedules, risk management is often overlooked or underestimated.The purpose of this chapter is to provide an overview of risk management and the assessment process as well as best practices for incorporation of risk management into CPM schedule development and maintenance. For more detailed information about schedule risk, the reader should refer to risk management books, particularly those that focus on project management. One of the best resources available is David Hulett’s new book, Practical Schedule. .2计划风险管理中英文对照外文翻译文献Risk Analysis.Any risk management program starts with a good and accurate CPM schedule, created through the use of best practices and checked for quality, reasonableness, and appropriateness of the network model. Without awell-designed and developed CPM baseline schedule, a risk management process will not be effective. The risk analysis depends upon accurate and consistent calculations of the network logic, the appropriateness of the sequencing and phasing, and a reasonable approach to estimating activity durations.Most CPM schedules are not adjusted for risk but rather are developed as if there were one right answer for the schedule’s numerical data. Generally, activity durations are established by calculation of the quantity of work represented by an activity divided by the production rate, or by sheer ‘‘gut feeling’’of the project manager or crew leader. This production rate is normally established by the contractor’s historical records or an estimating system, such as Means’, that provides an accurate data base of average production rates. Once those durations are calculated, they are often used as deterministic values, which assumes that the durations are accurate and unlikely to change. This assumption ignores the fact that the schedule is attempting to predict how long it will take to complete an activity at some unknown time in the future,using an unknown crew composition, with variableexperience, and working. .3计划风险管理中英文对照外文翻译文献in unknown conditions. Risk management recognizes the uncertainty in duration estimating and provides a system to brain storm other risks that may occur during the project. Probability distributions are the best way to model planned activity durations, as noted by Hulett ‘‘The best way to understand the activity durations that are included in the schedule is as probabilistic statements of possible durations rather than a deterministic statement about how long the future activity will take.’’DEFINITION OF RISK TERMSThe Project Management Institute (PMI) defines project risk in its Project Management Body of Knowledge (PMBOK) as ‘‘an uncertain event or condition that, if it occurs, has a positive or negative effect on at least one project objective, such as time, cost, scope, or quality. A risk may have one or more causes and, if it occurs, one or more impacts.’’PMBOK adds ‘‘Risk conditions could include aspects of the project’s or organization’s environment that may contribute to project risk, such as poor projectmanagement practices, or dependency on external participants who cannot be controlled.’’Risk Management: A process designed to examine uncertainties occurring during project delivery and to implement actions dealing with those uncertainties in order to achieve project objectives The definition of risk management in PMBOK, 4th Edition, is: ‘‘systematic process of identifying, analyzing, and responding to project risk.’’. .4计划风险管理中英文对照外文翻译文献Risk definition by AACEi Cost Engineering Terminology7 is: ‘‘the degree of dispersion or variability around the expected or ‘best’value, which is estimated to exist for the economic variable in question, e.g., a quantitative measure of the upper and lower limits which are considered reasonable for the factor being estimated.’’Time Contingency: An amount of time added to the base estimated duration to allow for unknown impacts to the project schedule, or to achieve a certain level of confidence in the estimated duration.Probability: A measure of the likelihood of occurrence of anevent.Risk register: A checklist of potential risks developed during the risk identification phase of risk management.Risk allocation: A determination of how to respond to risks, which can include shifting risk, avoiding risks, preventing or eliminating risks, and incorporating risks into the schedule. Deterministic: A calculated approach to estimating single activity duration using work quantity divided by estimated production rate.Probabilistic: The determination of risk likelihood and consequences to establish duration ranges or risk-adjusted durations that can be used in a schedule in recognition that there are no certainties in estimating future durations. Monte Carlo analysis: A probabilistic approach to determining confidence levels of completion dates for a project schedule by calculating durations as. .5计划风险管理中英文对照外文翻译文献probability distributions.Probability distribution: The spread of durations in a statistically significant population that is used for the range of durations in probabilistic scheduling approaches.Confidence level: A measure of the statistical reliability of the prediction of project completion.What-if scenario: A modeling of a risk for use in a CPM schedule in order to predict the ramifications of an identified risk.Qualitative analysis: Occurring on the project, as well as assessing the severity of that risk should it occur and prioritizing the resultant list of risks.Quantitative analysis: The assigning of a probability to the qualitative description of the risk, ranking the risks, and calculating the potential impact from both individual risks as well as the cumulative effect of all risks identified. Exculpatory clauses: Disclaimer verbiage that is designed to shift risk. TYPES OF RISK IN CONSTRUCTION PROJECTSEverything that has ever gone wrong on a construction project is a potential risk on the next project. Many project managers instinctively develop a lessons-learned list of historical risks and take steps to minimize their exposure to those risks in the future.Risks vary by industry and even by construction project type as well as by personnel involved with the project. Aroadway or bridge project has a. .6计划风险管理中英文对照外文翻译文献different group of risks than a facility or building, and the selected contractors may have different degrees of influence on the level of risks to performance. If an owner attempts to save money in preconstruction services by limiting the extent of field investigation or development of as-built data, there will be a higher risk of discovery of unknown problems. The experience and competence of the architects and engineers handling the design of the project, as well as their quality control indevelopment of working drawings, directly affect the construction effort and, consequently, the risk associated with the plans and specifications.Even if the owner has been proactive in preconstruction investigation, there is always a risk of unforeseen conditions. This can be a function of the type of soils encountered, the local municipality, and its culture and history of keeping good records of obsolete utilities. If the city in which the project is to be built has a history of requiring contractors to remove all abandoned underground lines, there is a muchlower risk of underground conflicts.The selection of the project team can impact positively or negatively the probability of successful project completion. Design-bid-build projects that use procurement philosophies allowing all financially capable contractors to participate will likely experience a much higher level of risk to on-time performance than a procurement philosophy that requires qualification of proposed contractors to ensure that they have the appropriate experience and resources to construct the project. A single weak subcontractor on a project。

建筑类外文文献及中文翻译

建筑类外文文献及中文翻译

forced concrete structure reinforced with anoverviewReinSince the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance.Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency.1、 steel mechanical link1.1 radial squeeze linkWill be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linkedCharacteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.Easy and simple to handle, construction fast, save energy and material, comprehensive economy profitable, this method has been already a large amount of application in the project.Applicable scope : Suitable for Ⅱ , Ⅲ , Ⅳ grade reinforcing bar (including welding bad reinforcing bar ) with ribbing of Ф 18- 50mm, connection between the same diameter or different diameters reinforcing bar .1.2 must squeeze linkExtruders used in the covers, reinforced axis along the cold metal sleeve squeeze dedicated to insert sleeve Lane two hot rolling steel drums into a highly integrated mechanical linking methods.Characteristic: Easy to operate and joining fast and not having flame homework , can construct for 24 hours , save a large number of reinforcing bars and energy.Applicable scope : Suitable for , set up according to first and second class antidetonation requirement -proof armored concrete structure ФⅡ , Ⅲ grade reinforcing bar with ribbing of hot rolling of 20- 32mm join and construct live.1.3 cone thread connectingUsing cone thread to bear pulled, pressed both effort and self-locking nature, undergo good principles will be reinforced by linking into cone-processing thread at the moment the value of integration into the joints connecting steel bars.Characteristic: Simple , all right preparatory cut of the craft , connecting fast, concentricity is good, have pattern person who restrain from advantage reinforcing bar carbon content.Applicable scope : Suitable for the concrete structure of the industry , civil building and general structures, reinforcing bar diameter is for Фfor the the 16- 40mm one Ⅱ , Ⅲ grade verticality, it is the oblique to or reinforcing bars horizontal join construct live.conclusionsThese are now commonly used to connect steel synthesis methods, which links technology in the United States, Britain, Japan and other countries are widely used. There are different ways to connect their different characteristics and scope of the actual construction of production depending on the specific project choose a suitable method of connecting to achieve both energy conservation and saving time limit for a project ends.钢筋混凝土结构中钢筋连接综述改革开放以来,随着国民经济的快速、持久发展,各种钢筋混凝土建筑结构大量建造,钢筋连接技术得到很大的发展。

建筑 外文翻译 外文文献 英文文献 中英对照 国际建设工程风险分析

建筑 外文翻译 外文文献 英文文献 中英对照 国际建设工程风险分析

Risk Analysis of the International Construction ProjectBy: Paul Stanford KupakuwanaCost Engineering Vol. 51/No. 9 September 2009ABSTRACTThis analysis used a case study methodology to analyse the issues surrounding the partial collapse of the roof of a building housing the headquarters of the Standards Association of Zimbabwe (SAZ). In particular, it examined the prior roles played by the team of construction professionals. The analysis revealed that the SAZ‟s traditional construction project was gener ally characterized by high risk. There was a clear indication of the failure of a contractor and architects in preventing and/or mitigating potential construction problems as alleged by the plaintiff. It was reasonable to conclude that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It appeared justified for the plaintiff to have brought a negligence claim against both the contractor and the architects. The risk analysis facilitated, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. It further served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. Clients do not want surprise, and are more likely to engage in litigation when things go wrong.KEY WORDS:Arbitration, claims, construction, contracts, litigation, project and risk The structural design of the reinforced concrete elements was done by consulting engineers Knight Piesold (KP). Quantity surveying services were provided by Hawkins, Leshnick & Bath (HLB). The contract was awarded to Central African Building Corporation (CABCO) who was also responsible for the provision of a specialist roof structure using patented “gang nail” roof trusses. The building construction proceeded to completion and was handed over to the ownerson Sept. 12, 1991. The SAZ took effective occupation of the headquarters building without a certificate of occupation. Also, the defects liability period was only three months .The roof structure was in place 10 years before partial failure in December 1999. The building insurance coverage did not cover enough, the City of Harare, a government municipality, issued the certificate of occupation 10 years after occupation, and after partial collapse of the roof .At first the SAZ decided to go to arbitration, but this failed to yield an immediate solution. The SAZ then decided to proceed to litigate in court and to bring a negligence claim against CABCO. The preparation for arbitration was reused for litigation. The SAZ‟s quantified losses stood at approximately $ 6 million in Zimbabwe dollars (US $1.2m) .After all parties had examined the facts and evidence before them, it became clear that there was a great probability that the courts might rule that both the architects and the contractor were liable. It was at this stage that the defendants‟ lawyers req uested that the matter be settled out of court. The plaintiff agreed to this suggestion, with the terms of the settlement kept confidential .The aim of this critical analysis was to analyse the issues surrounding the partial collapse of the roof of the building housing the HQ of Standard Association of Zimbabwe. It examined the prior roles played by the project management function and construction professionals in preventing/mitigating potential construction problems. It further assessed the extent to which the employer/client and parties to a construction contract are able to recover damages under that contract. The main objective of this critical analysis was to identify an effective risk management strategy for future construction projects. The importance of this study is its multidimensional examination approach.Experience suggests that participants in a project are well able to identify risks based on their own experience. The adoption of a risk management approach, based solely in pastexperience and dependant on judgement, may work reasonably well in a stable low risk environment. It is unlikely to be effective where there is a change. This is because change requires the extrapolation of past experience, which could be misleading. All construction projects are prototypes to some extent and imply change. Change in the construction industry itself suggests that past experience is unlikely to be sufficient on its own. A structured approach is required. Such a structure can not and must not replace the experience and expertise of the participant. Rather, it brings additional benefits that assist to clarify objectives, identify the nature of the uncertainties, introduces effective communication systems, improves decision-making, introduces effective risk control measures, protects the project objectives and provides knowledge of the risk history .Construction professionals need to know how to balance the contingencies of risk with their specific contractual, financial, operational and organizational requirements. Many construction professionals look at risks in dividually with a myopic lens and do not realize the potential impact that other associated risks may have on their business operations. Using a holistic risk management approach will enable a firm to identify all of the organization‟s business risks. This will increase the probability of risk mitigation, with the ultimate goal of total risk elimination .Recommended key construction and risk management strategies for future construction projects have been considered and their explanation follows. J.W. Hinchey stated that there is and can be no …best practice‟ standard for risk allocation on a high-profile project or for that matter, any project. He said, instead, successful risk management is a mind-set and a process. According to Hinchey, the ideal mind-set is for the parties and their representatives to, first, be intentional about identifying project risks and then to proceed to develop a systematic and comprehensive process for avoiding, mitigating, managing and finally allocating, by contract, those risks inoptimum ways for the particular project. This process is said to necessarily begin as a science and ends as an art .According to D. Atkinson, whether contractor, consultant or promoter, the right team needs to be assembled with the relevant multi-disciplinary experience of that particular type of project and its location. This is said to be necessary not only to allow alternative responses to be explored. But also to ensure that the right questions are asked and the major risks identified. Heads of sources of risk are said to be a convenient way of providing a structure for identifying risks to completion of a participant‟s part of the project. Effective risk management is said to require a multi-disciplinary approach. Inevitably risk management requires examination of engineering, legal and insurance related solutions .It is stated that the use of analytical techniques based on a statistical approach could be of enormous use in decision making . Many of these techniques are said to be relevant to estimation of the consequences of risk events, and not how allocation of risk is to be achieved. In addition, at the present stage of the development of risk management, Atkinson states that it must be recognized that major decisions will be made that can not be based solely on mathematical analysis. The complexity of construction projects means that the project definition in terms of both physical form and organizational structure will be based on consideration of only a relatively small number of risks . This is said to then allow a general structured approach that can be applied to any construction project to increase the awareness of participants .The new, simplified Construction Design and Management Regulations(CDM Regulations) which came in to force in the UK in April 2007, revised and brought together the existing CDM 1994 and the Construction Health Safety and Welfare(CHSW) Regulations 1996, into a single regulatory package.The new CDM regulations offer an opportunity for a step change in health and safety performance and are used to reemphasize the health, safety and broader business benefits of a well-managed and co-ordinated approach to the management of health and safety in construction.I believe that the development of these skills is imperative to provide the client with the most effective services available, delivering the best value project possible.Construction Management at Risk (CM at Risk), similar to established private sector methods of construction contracting, is gaining popularity in the public sector. It is a process that allows a client to select a construction manager (CM) based on qualifications; make the CM a member of a collaborative project team; centralize responsibility for construction under a single contract; obtain a bonded guaranteed maximum price; produce a more manageable, predictable project; save time and money; and reduce risk for the client, the architect and the CM.CM at Risk, a more professional approach to construction, is taking its place along with design-build, bridging and the more traditional process of design-bid-build as an established method of project delivery.The AE can review the CM‟s approach to the work, making helpful recommendations. The CM is allowed to take bids or proposals from subcontractors during completion of contract documents, prior to the guaranteed maximum price (GMP), which reduces the CM‟s risk and provides useful input to design. The procedure is more methodical, manageable, predictable and less risky for all.The procurement of construction is also more business-like. Each trade contractor has a fair shot at being the low bidder without fear of bid shopping. Each must deliver the best to get the projec. Competition in the community is more equitable: all subcontractors have a fair shot at the work .A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.It was reasonable to assume that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It did appear justified for the plaintiff to have brought a negligence claim against both the contractor and the architects.In many projects clients do not understand the importance of their role in facilitating cooperation and coordination; the design is prepared without discussion between designers, manufacturers, suppliers and contractors. This means that the designer can not take advantage of suppliers‟ or contractors‟ knowledge of build ability or maintenance requirements and the impact these have on sustainability, the total cost of ownership or health and safety .This risk analysis was able to facilitate, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. This work also served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. They do not want surprises, and are more likely to engage in litigation when things go wrong.中文译文:国际建设工程风险分析保罗斯坦福库帕库娃娜工程造价卷第五十一期2009年9月9日摘要此次分析用实例研究方法分析津巴布韦标准协会总部(SAZ)的屋顶部分坍塌的问题。

关于建筑行业安全施工的分析毕业设计外文文献翻译、中英文翻译

关于建筑行业安全施工的分析毕业设计外文文献翻译、中英文翻译

附录AAnalysis of Safety Performance in the Construction IndustryData source:The HKU Scholars HubOver the years, many researchers have investigated into the safety performance of the construction industry. Some of them identified factors leading to the occurrence of accidents on construction sites. The high frequency of construction accident has casted the industry a considerable amount. The government and many concerned parties have taken measures against the potential causes of accidents, aiming at reducing accidents and promoting safety in the industry.1. Definition of AccidentLaney (1982) states that the simplest definition of an accident is “an uncontrollable occurrence which results in injury or damage”. The events leading up to an accident are controllable in most cases. International Labor Office Geneva (1983) and Kennedy (1997) also agree that accidents don’t just happen, they are preventable. All industrial accidents are, either directly or indirectly, attributable to human failings. Rowlandson (1997) points out that a number of elements which need to be incorporated into the definition if this is to be useful in terms of accident prevention. These elements are:a. lack of management control;b. basic personal and task factors;c. sub-standard acts and conditions – the symptoms of the accident;d. an unplanned and undesired event or incident – the accident;e. an undesired outcome – death, injury or property damage;f. a cost.He thus defines accident as: “... an unplanned incident leading to death, injury or property damage which stems from inadequate management control of work processes manifesting itself in personal or job factors which lead to substandard actions or conditions which are seen as the immediate causes of the accident.”2. Common Accidents in Construction IndustryAccording to Lingard and Rowlinson (1994) accident proneness can be measured by thefrequency of accident occurrence. According to some researches, construction industry has the highest accident rate over the years, thus it is said to be more accident-prone than other industries. It is essential to understand why construction industry is more vulnerable to accident than the others. The Labour Department classified construction accidents by types. Table 1 shows the number of injuries in 2004 and figures in blankets are the number of fatality fixed or stationary object 11.9%Fall of person from height 11.7%Injured whilst lifting or carrying 16.0%Slip, trip or fall on same level 17.3%Striking against or stuck by moving object 19.7%Contact with moving machinery or object being machined 7.0%Others 16.4%The above chart shows the major accidents which contributed more than 5% of the construction accidents in 2004:3. Facors Affecting Safety Performance of Construction IndustryMany researchers have studied the factors affecting safety performance on construction sites. Stranks (1994) points out that the reasons of the poor safety recordmay correlate with many factors such as complexity of the work or system, risk nature of works, management style, safety knowledge and commitment, and personal behavior. Here are several factors that affect safety performance of contraction industry.a. Company SizeTam and Fung (1998) study the effectiveness of safety management strategies on safety performance. In this study, the safety performance of companies is gauged by their accident rates in 1994 as accident rates are steadier throughout the year and they can be easily obtained. In the study, it is found that company size, in term of number of management staff, affects safety performance. Tam and Fung (1998) observe that the accident rate of small companies is highest, the rate for medium sized lies almost at the industrial average and that for the large firms is the lowest. This demonstrates that larger firms generally have better safety records. This could be resulted from the more structured and formalized safetyprogrammers, and stronger management commitment to safety. It is found that the higher number of employees in the organization, the lower figure of the accident rate.b. Level of SubcontractingMulti-layer subcontracting is unique to China construction industry and has been the most common practice being used with long history. Subcontractors would normally further subcontract their work without the consent of their principal contractor to several smaller firms in order to minimize their overheads. Multi-layers of subcontractors is one of the major difficulties in implementing safety management. Recent study carried out by Wong and So (2004) shows the current status of the subcontracting practice and how multi-layer subcontracting system affects construction safety performance. Their questionnaire survey reveals that the majority of respondents (45.5%) would sublet 80-90% of their works to subcontractors. None of the respondents would carry out construction work that fully relies on their own effort; at least 30% of works would be subcontracted out.Lai (1987) attributes the high site accident rates to the use of labour-only subcontractors. As subcontracted workers are highly mobile, lack loyalty to contractors and are rewarded according to work done, they are difficult to control. Implementing safety practices on site becomes more difficult. Recent researchers, like Wong (1999) and Lee (1996), believe multi-layer subcontracting system is one of the major causes to poor safety performance in China’s construction industry. The most extreme case of subcontracting quoted by Lee (1999) was subcontracting up to 15 layers. He describes such multi-layer subcontracting as common and excessive.Small business, like subcontractors, face with specific health and safety challenges. Many firms lacked adequate resources and were often struggling to survive. Moreover, they lack an understanding of their obligations and the health and safety issues of their processes. These can be supported by Rawlinson’s (1999) study for Housing Authority. He finds that average 84% of workers injured from 1995 to 1998 were subcontractors’ w orkers. Such situation may be due to subcontractors’ workers’ inadequate training and awareness of safe working practice. Tam and Fung (1998) find there is a significant difference between trained and un-trained employees in relation to accident rate.4. CommunicationAccording to Wong (2002), communication is a major factor affecting the safety on sites. However, it has seldom been discussed before. Wong (2002) conducts a research to find out the causes of communication problems between main contractors and subcontractors. He identifies 12 factors leading to poor communication in construction industry. Among them, 10 are discussed here as they are more relevant to the territory and have been discussed by other researchers. These factors are listed below:i. Industry NatureIn order to complete the project on time, construction projects are carried out under almost all sorts of weather conditions. Besides, construction workers are usually not well-educated. These cause communication difficulties.ii. Industry CultureWong (2000) identifies sub-contracting system is a hurdle to construction safety as they are engaged on day-work basis, thus they are not aware to site safety.iii. Client TypeThere are 2 types of clients, public and private ones. Government bodies are public clients. Private clients can be further divided into experienced and inexperienced. Their concern and expectation on site safety performance appear to be different.iv. Organization StructureFryer (1997) suggests that organization structure, including hierarchy, downsizing and decentralization vs. decentralization, rigidity vs. flexibility, rules and procedure, would affect the result of communications. According to Wong (2002), downsizing became popular since 1990s because this can allow flexibility for people for respond more quickly to change.v. Relationship of Main and Sub-ContractorsThe poor relationship between contractors is an obstacle to construction safety. However, such situation could be resolved by partnering. Wong (2002) says that partnering is considered by most of the project participants as a worthwhile initiative.vi. Communication BarriersHicks and Gullett (1983) points out that communication overload and inattention to message can cause ineffective communication. People may receive more information than they can process or they spend time evaluating the sender and the message before the entiremessage is being passed or read.vii. Content of InformationWong (2002) attributes poor safety performance to the content of information. If content of information, such as method statements, working, drawings or safety procedures, are inaccurate or unclear, safety could not be effectively achieved.viii. Value of CommunicatorsTam et al (2001) point out that many production personnel rank safety in a lower priorities when compare with meeting the production schedule, quota and cost targets. Besides, Nichols and Stevens (1999) mention the failure of many superiors to listen. As a result, safety issue does not receive enough attention.ix. Provision of Continuous TrainingEnrichment of safety knowledge is essential. Teo et al (2005) carry out a study to find out the methods in fostering workers’ safe work behaviours. They find that training is an important way to enable workers to work safely, because they are equipped with the knowledge of how to work safely.x. Workers’ AttitudeWorkers’ incorrect attitude towards site safety is a big difficulty in making safety sites. In Chan et al’s (1999) research, it is fou nd that workers do not think they have the duty to comply with safety regulations for the main contractors. They will be more aware to safety issues after serious accident but they will resume their own way of practice shortly after that. Hinze (2002) and Vredenburgh (2002) state that site safety could only be improved if workers change their behaviours towards site safety. Teo et al (2005) also agree that negligence in safety and lack of awarenessto ensure lingering dangers on site would increase the chances of workers getting injured.5. Accident Costs and Safety CostsThe construction industry in China, especially for building projects, has a very poor safety record. According to Hinze and Raboud (1988), it is a common perception that “safety” is unprod uctive and not vital to the success of a project as contractors may not be appreciated by just keeping good safety on sites. However, it should be noted that accidents do not just lead to injury and loss of lives, a huge amount of accident costs is induced as well.Accordingly, safety investment in construction projects could better the safety performance and avoid the huge amount of accident costs. Ridiculously, most contractors are not willing to invest their money, time and effort to operate and to maintain effective safety programmers. They are not fully aware of the costs of an accident.Over the years, there have been many studies of the cost of accidents and it is found that, accident costs could be huge. Rowlinson (1997) identifies that cost of an accident is not only constituted of hospitalization and compensation costs of the individual involved in the accident. De Saram and Tang (2005) admit that construction accidents may result in numerous damages and losses. By understanding all the costs incurred by construction accidents, contractors might be surprised, and thus realize the importance of site safety investment.6. Safety Management SystemSafety management systems are not new to us. Many have been written on it. Site safet is regarded as an integral part of the project objective and safety attitudes a part of the project culture in order to pursue site safety effectively. Management at head office and on-site must be seen to care. Only then, an effective and committed safety officer will be appointed and given sufficient call on time and resources to achieve site safety.According to the Labour Department, below are the objectives of setting up a safety management system:a. to prevent improper behaviour that may lead to accidents;b. to ensure that problems are detected and reported; andc. to ensure that accidents are reported and handled properly.Besides, a safety management system enables flexibility of developing safety policies and measures most suitable to the particular circumstances of individual companies. The inputs from employer and employees make the safety management processes more readily be modified to keep pace with changing circumstances.An effective safety management system can be used to manage and control both existing and potential hazards and its effectiveness can be maximized when an organization is able to combine occupational safety and health issues into its business strategy.In this paper, statistics of construction safety, common accident types, factors affectingsafety performance and legislations related to construction safety have been reviewed. Statistics shows the unacceptable construction safety performance in the past. Therefore, the government introduced safety management system to the industry, hoping to establish a self-regulating atmosphere.Besides, government keeps introducing new legislation, for example the Construction Workers Registration Ordinance, and amending existing legislations to cope with the industry. Though the accident rate becomes stagnant in recent years, the fact shows the government’s determination in improving the industry to an accident-free one.附录B关于建筑行业安全施工的分析资料来源:香港大学学者中心多年来,许多研究人员都对建筑业的安全施工做出过深入研究。

企业风险管理中英文对照外文翻译文献

企业风险管理中英文对照外文翻译文献

企业风险管理中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Risk ManagementThis chapter reviews and discusses the basic issues and principles of risk management, including: risk acceptability (tolerability); risk reduction and the ALARP principle; cautionary and precautionary principles. And presents a case study showing the importance of these issues and principles in a practical management context. Before we take a closer look, let us briefly address some basic features of risk management.The purpose of risk management is to ensure that adequate measures are taken to protect people, the environment, and assets from possible harmful consequences of the activities being undertaken, as well as to balance different concerns, in particular risks and costs. Risk management includes measures both to avoid the hazards and toreduce their potential harm. Traditionally, in industries such as nuclear, oil, and gas, risk management was based on a prescriptive regulating regime, in which detailed requirements were set with regard to the design and operation of the arrangements. This regime has gradually been replaced by a more goal-oriented regime, putting emphasis on what to achieve rather than on the means of achieving it.Risk management is an integral aspect of a goal-oriented regime. It is acknowledged that risk cannot be eliminated but must be managed. There is nowadays an enormous drive and enthusiasm in various industries and in society as a whole to implement risk management in organizations. There are high expectations that risk management is the proper framework through which to achieve high levels of performance.Risk management involves achieving an appropriate balance between realizing opportunities for gain and minimizing losses. It is an integral part of good management practice and an essential element of good corporate governance. It is an iterative process consisting of steps that, when undertaken in sequence, can lead to a continuous improvement in decision-making and facilitate a continuous improvement in performance.To support decision-making regarding design and operation, risk analyses are carried out. They include the identification of hazards and threats, cause analyses, consequence analyses, and risk descriptions. The results are then evaluated. The totality of the analyses and the evaluations are referred to as risk assessments. Risk assessment is followed by risk treatment, which is a process involving the development and implementation of measures to modify the risk, including measures designed to avoid, reduce (“optimize”), transfer, or retain the risk. Risk transfer means sharing with another party the benefit or loss associated with a risk. It is typically affected through insurance. Risk management covers all coordinated activities in the direction and control of an organization with regard to risk.In many enterprises, the risk management tasks are divided into three main categories: strategic risk, financial risk, and operational risk. Strategic risk includes aspects and factors that are important for the e nterprise’s long-term strategy and plans,for example mergers and acquisitions, technology, competition, political conditions, legislation and regulations, and labor market. Financial risk includes the enterprise’s financial situation, and includes: Market risk, associated with the costs of goods and services, foreign exchange rates and securities (shares, bonds, etc.). Credit risk, associated with a debtor’s failure to meet its obligations in accordance with agreed terms. Liquidity risk, reflecting lack of access to cash; the difficulty of selling an asset in a timely manner. Operational risk is related to conditions affecting the normal operating situation: Accidental events, including failures and defects, quality deviations, natural disasters. Intended acts; sabotage, disgruntled employees, etc. Loss of competence, key personnel. Legal circumstances, associated for instance, with defective contracts and liability insurance.For an enterprise to become successful in its implementation of risk management, top management needs to be involved, and activities must be put into effect on many levels. Some important points to ensure success are: the establishment of a strategy for risk management, i.e., the principles of how the enterprise defines and implements risk management. Should one simply follow the regulatory requirements (minimal requirements), or should one be the “best in the class”? The establishment of a risk management process for the enterprise, i.e. formal processes and routines that the enterprise is to follow. The establishment of management structures, with roles and responsibilities, such that the risk analysis process becomes integrated into the organization. The implementation of analyses and support systems, such as risk analysis tools, recording systems for occurrences of various types of events, etc. The communication, training, and development of a risk management culture, so that the competence, understanding, and motivation level within the organization is enhanced. Given the above fundamentals of risk management, the next step is to develop principles and a methodology that can be used in practical decision-making. This is not, however, straightforward. There are a number of challenges and here we address some of these: establishing an informative risk picture for the various decision alternatives, using this risk picture in a decision-making context. Establishing an informative risk picture means identifying appropriate risk indices and assessments ofuncertainties. Using the risk picture in a decision making context means the definition and application of risk acceptance criteria, cost benefit analyses and the ALARP principle, which states that risk should be reduced to a level which is as low as is reasonably practicable.It is common to define and describe risks in terms of probabilities and expected values. This has, however, been challenged, since the probabilities and expected values can camouflage uncertainties; the assigned probabilities are conditional on a number of assumptions and suppositions, and they depend on the background knowledge. Uncertainties are often hidden in this background knowledge, and restricting attention to the assigned probabilities can camouflage factors that could produce surprising outcomes. By jumping directly into probabilities, important uncertainty aspects are easily truncated, and potential surprises may be left unconsidered.Let us, as an example, consider the risks, seen through the eyes of a risk analyst in the 1970s, associated with future health problems for divers working on offshore petroleum projects. The analyst assigns a value to the probability that a diver would experience health problems (properly defined) during the coming 30 years due to the diving activities. Let us assume that a value of 1 % was assigned, a number based on the knowledge available at that time. There are no strong indications that the divers will experience health problems, but we know today that these probabilities led to poor predictions. Many divers have experienced severe health problems (Avon and Vine, 2007). By restricting risk to the probability assignments alone, important aspects of uncertainty and risk are hidden. There is a lack of understanding about the underlying phenomena, but the probability assignments alone are not able to fully describe this status.Several risk perspectives and definitions have been proposed in line with this realization. For example, Avon (2007a, 2008a) defines risk as the two-dimensional combination of events/consequences and associated uncertainties (will the events occur, what the consequences will be). A closely related perspective is suggested by Avon and Renan (2008a), who define risk associated with an activity as uncertaintyabout and severity of the consequences of the activity, where severity refers to intensity, size, extension, scope and other potential measures of magnitude with respect to something that humans value (lives, the environment, money, etc.). Losses and gains, expressed for example in monetary terms or as the number of fatalities, are ways of defining the severity of the consequences. See also Avon and Christensen (2005).In the case of large uncertainties, risk assessments can support decision-making, but other principles, measures, and instruments are also required, such as the cautionary/precautionary principles as well as robustness and resilience strategies. An informative decision basis is needed, but it should be far more nuanced than can be obtained by a probabilistic analysis alone. This has been stressed by many researchers, e.g. Apostolicism (1990) and Apostolicism and Lemon (2005): qualitative risk analysis (QRA) results are never the sole basis for decision-making. Safety- and security-related decision-making is risk-informed, not risk-based. This conclusion is not, however, justified merely by referring to the need for addressing uncertainties beyond probabilities and expected values. The main issue here is the fact that risks need to be balanced with other concerns.When various solutions and measures are to be compared and a decision is to be made, the analysis and assessments that have been conducted provide a basis for such a decision. In many cases, established design principles and standards provide clear guidance. Compliance with such principles and standards must be among the first reference points when assessing risks. It is common thinking that risk management processes, and especially ALARP processes, require formal guidelines or criteria (e.g., risk acceptance criteria and cost-effectiveness indices) to simplify the decision-making. Care must; however, be shown when using this type of formal decision-making criteria, as they easily result in a mechanization of the decision-making process. Such mechanization is unfortunate because: Decision-making criteria based on risk-related numbers alone (probabilities and expected values) do not capture all the aspects of risk, costs, and benefits, no method has a precision that justifies a mechanical decision based on whether the result is overor below a numerical criterion. It is a managerial responsibility to make decisions under uncertainty, and management should be aware of the relevant risks and uncertainties.Apostolicism and Lemon (2005) adopt a pragmatic approach to risk analysis and risk management, acknowledging the difficulties of determining the probabilities of an attack. Ideally, they would like to implement a risk-informed procedure, based on expected values. However, since such an approach would require the use of probabilities that have not b een “rigorously derived”, they see themselves forced to resort to a more pragmatic approach.This is one possible approach when facing problems of large uncertainties. The risk analyses simply do not provide a sufficiently solid basis for the decision-making process. We argue along the same lines. There is a need for a management review and judgment process. It is necessary to see beyond the computed risk picture in the form of the probabilities and expected values. Traditional quantitative risk analyses fail in this respect. We acknowledge the need for analyzing risk, but question the value added by performing traditional quantitative risk analyses in the case of large uncertainties. The arbitrariness in the numbers produced can be significant, due to the uncertainties in the estimates or as a result of the uncertainty assessments being strongly dependent on the analysts.It should be acknowledged that risk cannot be accurately expressed using probabilities and expected values. A quantitative risk analysis is in many cases better replaced by a more qualitative approach, as shown in the examples above; an approach which may be referred to as a semi-quantitative approach. Quantifying risk using risk indices such as the expected number of fatalities gives an impression that risk can be expressed in a very precise way. However, in most cases, the arbitrariness is large. In a semi-quantitative approach this is acknowledged by providing a more nuanced risk picture, which includes factors that can cause “surprises” r elative to the probabilities and the expected values. Quantification often requires strong simplifications and assumptions and, as a result, important factors could be ignored or given too little (or too much) weight. In a qualitative or semi-quantitative analysis, amore comprehensive risk picture can be established, taking into account underlying factors influencing risk. In contrast to the prevailing use of quantitative risk analyses, the precision level of the risk description is in line with the accuracy of the risk analysis tools. In addition, risk quantification is very resource demanding. One needs to ask whether the resources are used in the best way. We conclude that in many cases more is gained by opening up the way to a broader, more qualitative approach, which allows for considerations beyond the probabilities and expected values.The traditional quantitative risk assessments as seen for example in the nuclear and the oil & gas industries provide a rather narrow risk picture, through calculated probabilities and expected values, and we conclude that this approach should be used with care for problems with large uncertainties. Alternative approaches highlighting the qualitative aspects are more appropriate in such cases. A broad risk description is required. This is also the case in the normative ambiguity situations, as the risk characterizations provide a basis for the risk evaluation processes. The main concern is the value judgments, but they should be supported by solid scientific assessments, showing a broad risk picture. If one tries to demonstrate that it is rational to accept risk, on a scientific basis, too narrow an approach to risk has been adopted. Recognizing uncertainty as a main component of risk is essential to successfully implement risk management, for cases of large uncertainties and normative ambiguity.A risk description should cover computed probabilities and expected values, as well as: Sensitivities showing how the risk indices depend on the background knowledge (assumptions and suppositions); Uncertainty assessments; Description of the background knowledge, including models and data used.The uncertainty assessments should not be restricted to standard probabilistic analysis, as this analysis could hide important uncertainty factors. The search for quantitative, explicit approaches for expressing the uncertainties, even beyond the subjective probabilities, may seem to be a possible way forward. However, such an approach is not recommended. Trying to be precise and to accurately express what is extremely uncertain does not make sense. Instead we recommend a more openqualitative approach to reveal such uncertainties. Some might consider this to be less attractive from a methodological and scientific point of view. Perhaps it is, but it would be more suited for solving the problem at hand, which is about the analysis and management of risk and uncertainties.Source: Terje Aven. 2010. “Risk Management”. Risk in Technological Systems, Oct, p175-198.译文:风险管理本章回顾和讨论风险管理的基本问题和原则,包括:风险可接受性(耐受性)、风险削减和安全风险管理原则、警示和预防原则,并提出了一个研究案例,说明在实际管理环境中这些问题和原则的重要性。

建筑工程安全管理英文文献

建筑工程安全管理英文文献

建筑工程安全管理英文文献Title: Construction Project Safety Management - An OverviewIntroduction:Construction project safety management plays a crucial role in ensuring the well-being and protection of workers, as well as the successful completion of projects. This article aims to provide an overview of construction project safety management, its key components, and the importance of implementing effective safety measures.1. Importance of Safety Management in Construction Projects:Safety management is vital in construction projects to mitigate risks, prevent accidents, and ensure the well-being of workers. It involves identifying potential hazards, assessing risks, implementing safety measures, and monitoring their effectiveness. Effective safety management not only reduces injuries and fatalities but also improves productivity and project efficiency.2. Key Elements of Construction Project Safety Management:2.1 Risk Assessment:Before commencing any construction project, a comprehensive risk assessment is crucial. This involves identifying potential hazards such as falls, electrical hazards, and physical injuries, and developing strategies to minimize their impact. Risk assessment should be an ongoing process throughout the project lifecycle.2.2 Safety Planning:Safety planning entails creating a detailed plan to address potential hazards and ensure all workers are aware of safety protocols. This includes the provision of personal protective equipment (PPE), establishment of emergency response procedures, and regular safety training programs.2.3 Communication and Collaboration:Effective communication between project stakeholders is essential for efficient safety management. Regular meetings, toolbox talks, and safety briefings should occur to discuss any safety concerns, updates, or changes in protocols. Collaborative efforts between contractors, workers, and management enhance safety awareness and adherence to safety practices.2.4 Monitoring and Evaluation:Regular monitoring and evaluation of safety measures allow for the identification of shortcomings and the implementation of corrective actions. Safety inspections, audits, and incident reporting systems help maintain a safe working environment and ensure continuous improvement in safety management.3. Best Practices in Construction Project Safety Management:3.1 Leadership Commitment:Leadership commitment to safety management sets the tone for the entire project. When leaders prioritize safety, workers are more likely to follow suit. Regular safety meetings with leadership involvement and visible safety initiatives help foster a culture of safety.3.2 Worker Training and Education:Providing workers with proper training and education is essential. Workers should be knowledgeable about potential hazards, safety protocols, and emergency response procedures. Ongoing training ensures workers stay updated with industry best practices and promotes a safety-conscious work environment.3.3 Regular Equipment Maintenance and Inspections:Construction equipment must undergo regular maintenance and inspections to ensure safe operation. Faulty or malfunctioning equipment can pose significant risks to workers on the construction site. Strict adherence to maintenance schedules and comprehensive equipment inspections are vital.3.4 Subcontractor Safety Management:In cases where subcontractors are involved, effective coordination and communication regarding safety management are crucial. It is essential to ensure that subcontractors adhere to safety protocols and are appropriately trained to minimize potential risks to themselves and others on the worksite.Conclusion:Construction project safety management is of utmost importance to protect workers, enhance project efficiency, and mitigate risks. By implementing risk assessments, safety planning, effective communication, and ongoing monitoring and evaluation, construction projects can maintain a safe working environment. Strong leadership commitment, worker training, equipment maintenance, and subcontractor safety management are essentialcomponents in achieving successful safety management in construction projects.。

关于工程施工英文文献

关于工程施工英文文献

关于工程施工英文文献In the world of construction, engineering plays a crucial role in the implementation of various projects. It involves the application of scientific and mathematical principles to design, plan, and construct buildings, bridges, roads, and other infrastructure. The process of construction engineering involves a myriad of tasks, such as site investigation, surveying, designing, procurement of materials, construction management, quality control, and safety management. This paper aims to explore the construction process of engineering, focusing on its various aspects and the challenges it presents.Site InvestigationThe first step in any construction project is site investigation to assess the feasibility of the proposed development. Site investigation involves gathering information about the site's geology, topography, soils, and hydrology, as well as identifying any potential environmental constraints. Engineers use this data to determine the best location and layout for the proposed structure, as well as to assess potential risks and hazards that may affect construction.SurveyingOnce the site investigation is complete, engineers conduct a survey to measure and map the site's features. This includes determining property boundaries, marking out the location of existing structures, and identifying any underground utilities. Surveying is essential for accurate planning and design as well as for ensuring that construction proceeds according to legal requirements and safety standards.DesignFollowing site investigation and surveying, engineers begin the design phase, where they develop detailed plans and specifications for the construction project. The design process involves considering various factors, such as the structural integrity, functionality, aesthetics, and cost-effectiveness of the proposed structure. Engineers collaborate with architects, environmental consultants, and other stakeholders to ensure that the design meets all relevant regulatory requirements and client expectations.ProcurementOnce the design is finalized, engineers proceed to procure the materials and equipment needed for construction. This involves sourcing and selecting suppliers, negotiating contracts, and ensuring that all materials meet the specified standards and are delivered on time. Effective procurement is essential for keeping construction projects on schedule and within budget.Construction ManagementDuring the construction phase, engineers oversee the actual building process, coordinating the activities of contractors, subcontractors, and vendors. Construction management involves scheduling, budgeting, quality control, and safety management to ensure that the project progresses smoothly and meets all performance and safety standards. Engineers also address any unexpected challenges or changes that arise during construction, such as weather delays, design revisions, or material shortages.Quality ControlQuality control is a critical aspect of construction engineering, ensuring that the final structure meets all performance and safety requirements. Engineers implement quality control measures throughout the construction process, such as testing materials, inspecting workmanship, and monitoring the performance of installed systems. They also conduct quality assurance audits to verify compliance with design specifications and regulatory standards.Safety ManagementSafety management is another essential element of construction engineering, as it involves identifying and mitigating risks to prevent accidents and ensure the well-being of construction workers and the public. Engineers develop and implement safety plans, conduct safety training, and enforce safety regulations on site. They also conduct regular safety inspections and enhance safety awareness to minimize hazards and maintain a safe working environment.Challenges in Construction EngineeringDespite the meticulous planning and management, construction engineering presents various challenges that can impact the success of a project. Some of the common challenges in construction engineering include inadequate site investigation leading to unforeseen obstacles, inaccurate surveying causing errors in construction, design flaws leading to costly revisions, procurement delays affecting project timelines, construction management issues causing delays and cost overruns, poor quality control leading to rework and safety management lapses resulting in accidents. Overcoming these challenges requires effective communication, collaboration, and problem-solving skills among engineers and stakeholders involved in the construction process.ConclusionIn conclusion, construction engineering is a complex and dynamic field that encompasses a wide range of tasks and responsibilities. It involves careful planning, design, procurement, construction management, quality control, and safety management to ensure the successful completion of a project. Despite the challenges it presents, construction engineering continues to play a crucial role in shaping our built environment and driving economic development. The future of construction engineering will require embracing emergingtechnologies, sustainable practices, and innovative solutions to meet the growing demand for infrastructure development and ensure a safe and sustainable built environment.。

建设项目安全分析(中英文版)

建设项目安全分析(中英文版)
Lifting gears to be fixed in correct manner
起重传动装置要正确安装
Preparation准备工作
Set up crane起重机架设
Unstable ground, faulty equipment
基础不牢,备有缺陷
Check ground is stable and even
Weather condition
天气情况
Strong wind / Heavy rain (Lightning / Thunder )
狂风、暴雨、闪电、雷鸣
Stop work wind exceed5m/s or heavy rain (Lightning / Thunder)
风力超过5级,或暴雨、雷鸣、闪电天气,要停止施工
Only essential rigging personnel and Technip
只有工作人员和Technip人员
Engineers and HSE present in lifting area
允许工程师和HSE管理人员在现场
Work with care and attention
操作小心谨慎
连接两条
Lines entangled on equipment
线缠住了设备பைடு நூலகம்
Feed lines out carefully
把线小心地取出
Check all scaffolding around stack has been removed
工作区范围地脚手架要全部拆除
Loose scaffold tubes falling from height if still attached to flare section

外文文献译文(建筑工程)

外文文献译文(建筑工程)

黄山学院毕 业 设 计系 别:_________________________班 级:_________________________ 姓 名:_________________________ 指 导 教 师:_______郭富__________________2010年5月8 日刘星10土对本(2)班土木工程系目录1 中文翻译 (1)1.1钢筋混凝土 (1)1.2土方工程....................................... 错误!未定义书签。

1.3结构的安全度 (1)2 外文翻译 (4)2.1 Reinforced Concrete (4)2.2 Earthwork (5)2.3 Safety of Structures (7)I I黄山学院毕业设计1 中文翻译1.1钢筋混凝土素混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。

将可塑的混凝土拌合物注入到模板内,并将其捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。

其最终制成品具有较高的抗压强度和较低的抗拉强度。

其抗拉强度约为抗压强度的十分之一。

因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度。

由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此,需要对结构设计的基本原理进行修改。

将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置,可以最好的利用这两种材料。

这一要求是可以达到的。

因混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的形状。

如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经久耐用,配置钢筋后,可以作为任何结构体系的主要构件。

浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等。

项目风险管理 外文翻译 外文文献 英文文献

项目风险管理 外文翻译 外文文献 英文文献

外文翻译As one of the important subjects of project management originated the First World War, and now it has been becoming more and more systematic and professional. In China the systematic project risk management framework was developed by the end of last century, but the practical application of project risk management still needs further improvement. With above background, this thesis focused on the medium or large real estate project, research project character, project management, typical Chinese construction project process, risk management, and project risk management. The first chapter briefed the current international and domestic study status of the subject, thesis purpose, and thesis scope, which are risk and its countermeasures research for the implementation phase of medium or large real estate project. The second chapter briefed the concept and character of real estate project, risk of project, and project risk management, which is the theoretical foundation of further risk management study for the implementation phase of medium or large real estate project. Chapter3,4 and 5 are the project risk management practice on the implementation phase of medium or large real estate project. Chapter 3 is for project engineering risk management, which introduced the concept, purpode, and principle of project engineering at the beginning, and then analyzed the engineering objective, including schedule, cost, and quality, at last it identified and analyzed the project engineering risks and provided design change procedure and design company selection procedure as the risk response. Chapter 4 detailed the concept, principle, objective and key roles of project procurement, identified and assessed the project procurement risk, and also provided contractor selection procedure, vendor selection procedure, examples of procurement plans to response and monitor project risk. Chapter 5 firstly introduced the construction concept, character, process and project construction objectives, including quality objective, schedule objective, and safety objective, and then identified and assessed construction quality risk, schedule risk, cost risk and safety risk, The postscript of this thesis briefed the dynamic project risk management concept, restriction and limitation of this thesis, and opportunities for further research. Totally there are 14 appendixes attached after the thesis. These appendixes could be used as guidance and reference of risk management for real estate project. They are provided to be very useful in term of risk management for real estate project implementation phases.Project risk management as a procedure of optimism and decision, in which information will come out gradually in the multistage construction. The key to the risk management is how to select the risk response plan. Directed by the system theory and combined the theory of option pricing and project risk management, this paper adopts criterion method to analyze the management and activity in the stage of engineering project implement on the base of comparison to relative documents. This paper emphatically argues the choice of response plans under the condition of risks according to the established analysis frame. These forecasts are hypotheses abstract form the similar project performed before, whether they are actual or not will hugely affect the success of project The implement stage means project period from the location to product whose target is transform the planto real and mark the aims. The implement stage occupies the most period of project, has huge work, consume the most resource. What is worth to mind is that the implement stage is process not only to form the real proprirty but also product information, for example, the knowledge of field status and the capability of contractor can only be obtained form implement. So in order to mark the target, the manager must test the hypotheses and use the new information assess the status of influence element, choose the best response plan according to the condition. This paper has value in instructing the project investor/manager in how to establish a risk management configuration and making decision under risk condition in the implement stage of construction project.This thesis begins with the knowledge system of project management, analyses the whole course of risk management and sets forth the method and program of project risk identification, risk appraisement and risk monitoring in project minutely. Finally, It shows a risk case of building project focal point for the investment decision of early stage with qualitative and quantitative analysis. Chapter 1 Discuss the important concept, method and knowledge system of project risk management, such as the definition of project, the knowledge system of project management PMBOKX the intension of risk, the content of risk management and so on ,carry out the risk analysis of building project emphatically. Chapter 2 Mainly introduce the tool and technology of project risk identification, such as checking table, the rules of systems analysis(WBS), the method of SWOT technology. Thinking of the demerit for every tool, hence author emphasize that we should appraise the gained information resource synthetically. Chapter 3 Explain how to go on the estimation and assessment of project risk, put forward the tool and technology of project risk analysis (as AHP, probability and sensitivity analysis ). When analyzing project risk quantitatively, first we should have definite warranty, do not surmise risk without foundation; Secondly, distinguish confirmed project from unconfirmed project in quantitative analysis. When using two important tools of quantitative risk analysis—probability and sensitivity analysis, one side is to estimate the probability of risk variable exactly; the other side is to judge and analyze the guidelines of probability analysis truly, as square margin, expected figure, disperse modulus. Through quantifying risk, it can strengthen our sense of risk management. Chapter 4 Elaborate the basic method of monitoring project risk. In order to carry into execution monitoring project risk, it is essential to establish perfect replying risk plan. The main steps is: lessening risk, take precautions against risk (as project method, instructing method, program method), conveying risk selling, inviting public bidding, the contract of absolving obligation, insurance and guarantee), avoidance, leave behind and measure in support. Chapter 5 A risk management example. First, analyze the various possible existent risk factors of this project systematically. Secondly, study its sensitivity factor thorough quantifying assessment risk for the project, as well as establishing and putting in practice a plan in order to control the negative influence in minimum level. The building has total 130500 square in architectural area, superior geographical location and tremendously potential value, its overall investment is 4.26 hundreds million. This chapter first studies the market from place environment all around traffic and market requirement, then analyzes systematically financing risk and organic risk of joint venture. On the basis of foregoing analysis, it establishes some parameter of risk quantifying analysis, calculates its selling revenue running expense and cash flow form, uses sensitivity analysis to gain best sensitivityfactor. As the uncertain essence of risk, it is extremely important to analyze probability factor of the project. So we confirm the probability form of every variable, then calculate present value of each possible event according to different constitutes of risk variable; and sort all possible events according to their present values from small to big, calculate accumulative probability, square margin and disperse modulus, thus analyze the risk of project quantitatively, provide quantitative support for supervisor when they will make a decision. Comparing with international advanced level, our country has great gap on the link of how to apply theory of project risk management to practice of project management, especially short of system research in project risk management. On the basis International project contracting is rather a complex project in the cooperation of international economy and technology, and the implementing of the projects will be influenced by political, economy and social situations Firstly, this paper systemically analyzed the market situation of the international project contracting, and concretely analyzed the market structure in Asia, America, Africa and Europe. It concluded the trend of the development of the international contracting market; projects are becoming large-scale and complex and the contracting pattern is diversified, and the management of the international project contracting is standardized. Secondly, this paper analyzed the development status and characteristic of the international project contracting in our country. Although the internationalization tendency of our country’s international project contracting firm is preferable, there is large gap in the whole strength when compared with firms from the developed countries, and also there are limitations in the distributing of the projects in different regions and industries. Thirdly, this paper summarized the technique of international project contracting risk identification, estimate and appraise in our country. Put forward to finance and non-finance risk treating means, and apply the energy release theory to international project contracting risk management, and research the dominating risk in the bid phase and construction and build the energy release model of each phrase. In the cases of Kun River Hydroelectric Station Project in Vietnam and Aromatic Plant Shali Irrigation Project in Nepal, this paper put forward to the technique of the international project contracting risk identification, estimation, appraise and reply in dealing with the project risk. Finally, in the risk estimation and risk appraise, this paper paid attention to evaluate the losing caused by the risk exactly; in the risk reply ,give attention to two aspects of cost and return, look after the economic and logical risk reply measure, in order to make the project risk least, the operating of companies most efficiently and the return highest外文翻译项目风险管理作为项目管理的重要内容之一,起源于第一次世界大战之后。

建筑工地安全管理外文文献翻译

建筑工地安全管理外文文献翻译

文献信息:文献标题:Factors influencing the implementation of a safety management system for construction sites(影响建筑工地安全管理制度实施的因素)国外作者:Zubaidah Ismail,Samad Doostdar,Zakaria Harun文献出处:《Safety Science》, 2012, 50(3):418-423字数统计:英文3730单词,21558字符;中文6480汉字外文文献:Factors influencing the implementation of a safetymanagement system for construction sites Abstract The objective of the study was to determine the influential safety factors that governed the success of a safety management system for construction sites. The number of incidences among construction workers and the level of awareness on matters concerning safety were also determined. The study involved a selfadministered three-part questionnaire among the workers and interviews with industry experts involved in brick-laying, concreting and in related assorted trades. Part A of the questionnaire concerned personal particulars, Part B involved training and experience and Part C was based on 28 industry-accepted safety factor elements. The construction sites ranged from high rise buildings, landed houses and infrastructure renovation. The sample size was 275. From the survey it was found that the most influential safety factor was personal awareness followed closely by communication. Suggestions and recommendations on equipment design and improved work practices and procedures to improve the efficiency and productivity of construction workers were proposed. Management was urged to get their workers better informed about safety matters.Key words Construction site;Influencing safety factor;Safety awareness;Safety management system;Self-administered survey1.Introduction and scopeConstruction is a complex activity where various stake-holders are present working under constant challenge by demands of the job. Each job will have several of its safety and risk factors, requiring quality and safety management systems to be established as indicated by Mehta and Agnew (2010). Several risk factors including organizational structure, communication, clear instructions, safety culture, codes and standards, training, leadership and responsibility have been suggested to have influence on the general safety at the workplace. The objective of this study is to determine the most influential factor contributing to the success of a safety management system as perceived by the workers. This may assist management in optimizing the utilization of available resources.A well-designed safety management system (SMS) can contribute to the successful implementation of a safety management system in the workplace. National SMS for construction sites have been designed and implemented in several countries based on the standard practices for that country. The actual numbers of factors used in the development of the SMS differ from one country to another depending on the special requirements of the domestic construction industry. There are several levels of classification of factors depending on the degree of detail desired. Table 1 gives the summary of first level safety levels adopted by various countries around the world (Tam and Fung, 1998; Kartam et al., 2000; Koskela, 2000; Wokutch and VanSandt, 2000; Fang et al., 2004; Ali et al., 2005; Teo and Ling, 2006; Aksorn and Hadikusumo, 2008). At the first level of factors most countries on average choose eight factors while Singapore uses four and Malaysia uses 12. The second level or the sub-factors are elements of the first level factors and again depending on the degree of detail, there could be 20 or 30 of these elements. More or less the elements especially at the second level cover the common areas of safety concerns. The sub-factors could further be divided into sub-sub-factors that cover the entire spectrum of safety factorsin the construction industry. The current study adopted a simplified version of the Malaysian standard practice which included the Resources Factor, the Management Factor, the Personal Factor, the HRM/Incentive Factor, and the Relationship Factor at the first level and a total of 28 sub-factors under these categories as the basis of the questionnaire to be developed for the study survey. The final form is guided by experts from the National Institute of Occupational Safety and Health (NIOSH) and the Construction Industries Development Board (CIDB).Table 1 Safety factors adopted by various countries1.1.Resources FactorResources Factor includes hardware and software. Safety equipment, personal protective equipment (PPE) and any special requirements of the industry have to be adequately developed and provided. First Aid equipment and training are also necessary. Hazardous processes and equipment must be provided with the necessary emergency shut-down (ESD) and fail-safe systems. Regulatory requirements of the industry have to be met. Emergency response planning and recovery, internal control, program evaluation, safety audits and safety process must be in place. Sørensen et al. (2007) pointed out that the size of the enterprise will influence the complicity of the system. It was found that small enterprises are more hazardous, and Kongtip et al. (2008) and Cheng et al. (2010) found that important factors influencing occupational accident in such enterprises included management skills, employers’values, and compliance with laws and regulations.1.2.Management FactorThe Management Factor includes leadership, vision, direction, statement of objectives, commitment, supervision, safety analysis, and prevention planning. Mearns and Reader (2008) studied the relationship between perceived organizational support and health support from supervisors and workmates, and ‘safety citizenship behavior’(SCB). The results indicated that high levels of support at both organizational and supervisor levels reflecting care and concern for the well-being of workers led to a reciprocal relationship in terms of increased SCB. Lu and Yang (2010)showed that safety leadership and safety behavior in container terminal operations were important factors for effective safety management. The results suggested that safety motivation and safety concern positively affected self-reported safety behavior. This should encompass procedure and policy, safety codes and standards, clear goals and resources, rules and regulations, and safety benchmarking including responsibility and supervision.1.3.Personal FactorThe Personal Factors include awareness, good communication, personal attitude, safety culture, positive groups, and personal competency. Work culture results from personal traditions, language, work attitudes and habits and company practices. Safety culture was used to describe the inadequacies of safety management but is now being applied to explain accidents (Mearns et al., 2003, 2006). Hopkins (2006) explained that to understand the influence of organizational cultures requires a strategy referred to as the perception survey and Guldenmund (2007) pointed out that questionnaires have not been particularly successful in exposing the core of an organizational safety culture. The questionnaires seem to expose only those attitudes that are shared throughout the whole of the organization. There are individual differences on attitudes on organizational safety as pointed out by Henning et al. (2009). Sónia et al. (2008) showed that the experience of work accidents is an important variable to be considered as a predictor of workers’perceptions and behavior.1.4.HRM/Incentive FactorHRM/Incentive Factor includes remuneration, promotion, campaigns, motivation, merit rating, PPE, welfare, work conditions, and safety rules (Flin et al., 2000). It also includes safety practice, training expert staff, teamwork and group meetings. General welfare of workers has been discussed (Murrell, 1965; Oborne et al., 1993; Bridger, 1995). Conducive working conditions contribute to safety (Raja Prasad and Reghunath, 2010). Programs had been developed to reduce physical work demands (Scott and Renz, 2006) and reduce worker injuries through improved use of equipment (Kirkeskov and Friche, 2006) with tailored education and training (Dempsey and Mathiassen, 2006). More studies need to be conducted for constructionsites (Hunter, 1992; European Construction Institute, 1995; Trethewy et al., 2000a,b; Goetsch, 2005; van der Molen et al., 2005). Effectiveness of management suport has been demonstrated by Mearns and Flin (2001), Gordon et al. (2001), and Hale et al. (2010). Reports of near misses are useful information to prevent accident. Near misses are more frequent than accidents. Cambraia et al. (2010) conducted a study on near misses and found that the main results were dramatic increases in both the number and quality of reports. Wu et al. (2010) developed a system to interrupt near misses which improves safety at construction sites. The effectiveness of introducing instructions on systems and procedures at the workplace needs to be gauged (Cooper et al., 1993). Effectiveness of an occupational health and safety management system (OHSMS) have not been conclusive Robson et al., 2007).1.5.Relationship FactorRelationship Factor includes globalization and interfaces with the stake-holders as well as internal personal relationships. Globalization has an impact on growth of mental work, expansion of the services sector, working hour changes, unemployment and industrial relations. Flexibility in coping with diversity, managing changes in competency demands, definition and meaning of work all have significant effects on the workers (Wilpert, 2008). Baram (2009) observed that the introduction of hazardous technological activities into less-developed nations poses risks to health, safety and natural resources, and most immediately endangers the workers involved. Koukoulaki (2010) pointed out that countries have been subject to tremendous changes in terms of flexibility of work and labor in response to macro trends like globalization and the resulting fierce market competition. Such changes in the world of work can give rise to new safety risks from work environment including new work organizational forms, new contractual relationships, new technologies and changes in the workforce. Manzey and Marold (2008) reported that in 1998 the average estimated number of fatal occupational accidents was 350,000 and there were 264 million non-fatal accidents. Within the organization it is important to have considerate and responsible employees who care about the safety of their co-workers (Burt et al., 1998, 2008). Related variables examined were co-worker knowledge, opener ability,team tenure, co-worker and supervisor support, group orientation and group cohesion. Explicit and implicit trust is an important influence on relationships (Burns et al., 2006).2.Materials and methodsThe projects involved a construction of a 39-storey apartment building in Section 8, Petaling Jaya, Selangor; a 12-storey office building, several dining outlets; a 13-storey and a 17-storey office towers also in Petaling Jaya. The group of workers comprised of brick-layers, concreting workers and assorted workers. The questionnaires were designed based on the elements of the safety factors. They were designed to be simple and brief. They were checked by experts from NIOSH for suitability and completeness. Suggestions of industry experts from CIDB on the language level, relevance and comprehensiveness of questions and the general approach of the survey were also incorporated. The materials for the study were records and reports and results of the questionnaires. Gillham (2005) suggested that a properly conducted interview was required in order to make meaningful suggestions for improvements on equipment or working methods. The questionnaire was constructed in three parts; Part A on personal particulars, Part B on training and work experience and Part C on issues consisting of the five clusters of factors and the 30 elements of the clusters as shown in Table 2. Further refinements to reduce errors and ambiguity were made after the questionnaires were tried on a sample of ten undergraduate volunteers. It was accepted that the main constraint to the conduct of the study was the time availability of the workers. Questionnaire forms were sent by post and potential respondents were initially given 2 weeks to respond. Verification interviews were then arranged and conducted during breaks and after shift periods. Part A and Part B are straightforward. For Part C respondents were requested to rate each of the 28 questions on the safety elements on the five-point Likert scale, varying from ‘‘not important’’(1) to ‘‘extremely important’’(5). The distribution of the Likert-point score from the respondents for each safety element was computed to determine the mode for each factor. The mode for each element was furtherstrengthened by examining the maximum, the minimum, the mean and standard deviation as the value for the strongest probable Lickert score value for the element. The most influential factor could then be determined by examining and comparing the overall scores for each factor. A similar analysis was conducted for the sub-factors of the most influential factor to determine the most influential sub-factor among them.Table 2 Elements of SMS3.Results and discussionThe total number of respondents was 275. Based on this sample size together with a confidence level of 95% the margin of error is 5.89%. Table 3 shows that the construction industry engages 92% male workers. Employers have the perception that male workers had better abilities and endurance than their female counter-parts (Mitra and Mukhopadhyay, 1989; Dale, 2006). The female workers were rare in the construction industry and whenever they were involved it was because they wanted to work with their spouses or relatives. Size and proportions of the body were measured since they vary greatly between population and racial groups and relate to the ability of the respondents to do the job. In this study, only height and weight were measured since they were considered sufficient to represent anthropometry data. The ethnic origin of the respondents was to confirm or otherwise similarities in physical aspects and to investigate other factors that might influence their work such as culture and lifestyle. The table also shows that 44% or the majority of the workers were around 31–40 years old. This result had relevance with how they acquire their knowledge and skills. The longer they work the more skillful they should become. The results showed that the majority of the workers were immigrants from Indonesia, Vietnam and Pakistan. According to the Safety Officer at one of the sites, construction employers prefer to hire immigrants because they were less picky, more hardworking and possessed higher endurance. They also accepted lower daily wages which did not attract too many local workers. Table 3 further shows that 64.5% of respondents was about 160–169 cm high and weighed about 60–69 kg representing 36%. Results for weight gave a normal distribution. This could be because all respondents originated from Asia and had similar lifestyle and culture. This could assist in designing proper equipment suitable for all users. Age represents the ability and efficiency of the workers to do their work. This applies to all industries but to construction, the ability of a worker was important. Registration with the CIDB would mean that the workers had undergone the CIDB Green Card program and that they had been trained about safety and health at construction sites. CIDB Green Card also classified the workers into a certain trade and the level of skills of the workers as general workers, semi-skilled and skilled workers. A Green Card Program also registered the workers in CIDB record which would include them in the statistics. Table 3 shows 69% of respondents were semi-skilled construction workers, 20% general workers and the remaining 11% were skilled workers.Table 3 Workers particularsWorking background determines the level of knowledge and skills and general experience of the respondents. Length of experience relates to skills and knowledge gained. The importance of experience was accepted as indicated by Chen et al. (2010). Some companies provided training while some do the minimum required. Medical leave was to indicate seriousness of injuries and the working hours was to determine the length of exposure to hazards. Parts of the body where the respondents had injuries or pain were determined. The factors of injuries were asked guided by thecommon top five causes of injuries. Respondents could give their own causes.The trade experience determined the level of skills and workmanship of the workers. Most of the respondents had experience in construction as was also reflected by their average age. However, the majority had only 1–10 years of the relevant trade experience as shown in Table 3. This might be due to a high job turnover rate. The majority of workers acquired their knowledge and skills through on-the-job training with 84%. Eleven percent of respondents had a formal education in construction work while 5% had their experience from sectors other than construction. About 95% of respondents agreed that the company had taken some efforts to take care of and train their workers. These include on-job training, toolbox meeting and also briefing on how to use the equipment or PPE. Companies certified with ISO 18001 took this matter seriously in ensuring their workers and workplace is safe. However, some companies did not provide their workers with the basic PPE such as hard hats, safety boots, and gloves as reflected by the 5% response as shown in Table 3.Medical leave or sick leave is an indicator to show the general health of employees. The results showed that 93% took around 0–5 day’s medical leave in a month while the remaining 7% took 5–10 times per month. This might not give the true picture meaning that workers were coming to work when they were not fully fit for work. Safety and productivity were therefore compromised. One of the unconfirmed causes for this was that workers, especially immigrant workers were not reporting sicknesses for fear of dismissal. When asked for details, it was understood that many of the workers did not take medical leave at all. Taking medical leave might give them a bad image and the employers might not hire or pay them. As for foreign workers; fear of failure, and dismissal, and the dread of having to go back to much worse conditions of living were the driving factors which force them even to suffer working while not fully physically fit. Figures from Table 3 could already be on the high side which would mean that the injury figures presently could be more serious than they were indicated. Ninety-three percent of workers spent about 5–10 h a day at work. The other 7% worked more than 10 h a day. The latter group was thesupervisors who were needed to monitor the work longer for shift change.Personal competency which is obtained from training constitutes an important aspect of Personal Factor. Personal attitude and work culture are also important sub-factors of the Personal cluster. Training factors have been studied by Saurin et al. (2008) by analyzing construction safety best practices from a cognitive systems engineering perspective. Saurin et al. (2005) also proposed a safety planning and control model from the human error perspective engineering. Safety management and work culture interventions improve safety as demonstrated by Johnson (2003), Teo et al. (2005) and Guidenmund (2007). Teo and Ling (2006) examined the case for Singapore, and Ali et al. (2005) conducted a study for the Malaysian case.Fig. 1. Determination of modes for factors and sub-factorsFig. 1a shows the modes for all the main factors indicating that Personal Factor had a mode of 5. Fig. 1b shows the modes of the sub-factors making up the Personal Factor and it was indicated that awareness has the overall highest scores. Table 4shows the statistics of the total Likert-point scores indicating the maximum, the minimum, the mean, the standard deviation, the coefficient of variation, the mode and the percentage of the mode score for the main factors as well as the sub-factors of the determined most influential factor. Examining the results as a whole it was observed that the most probable top priority factor was the Personal Factor with awareness as the most probable priority sub-factor. Other top influential sub-factors as perceived by the workers were good communication and positive groups. These findings were consistent with studies conducted by Aksorn and Hadikusumo (2008) who identified management support as the most influential factor from among sixteen critical success factors considered. Safety awareness and good communication were the results of strong management support. Globalization, safety rules and safety promotion factors were perceived to have the least impact on the success of a SMS system.Table 4 Statistics of Results4.Conclusions and recommendationsSuccess factors influencing safety program performance had been identified by some researchers to be management support. In this current study it was found that among the influencing cluster of factors determining the success of a safety management system the most influential was the Personal Factor; and among the sub-factors making up this cluster the prominent factor was safety awareness. Theyare all concerned with the need of management to get their employees more knowledgeable and informed about safety issues. Better design and application of equipment and personal protective equipment (PPE) could contribute to higher quality of work. Employers could also consider reducing manual work for future improvements in the safety and health of their employees. Awareness on the right use of equipment or tools and wearing the PPE correctly could reduce risks.中文译文:影响建筑工地安全管理制度实施的因素摘要这项研究的目的是确定对建筑工地安全管理制度的成功具有影响力的安全因素,以及建筑工人的发病率和安全意识的高低。

工程管理 外文翻译 外文文献 英文文献 浅谈工程索赔的预防与处理

工程管理 外文翻译 外文文献 英文文献 浅谈工程索赔的预防与处理

1Talking about the projectclaim the prevention and treatmentAbstract :In project management, construction claim is a complex business management. Today's domestic project contracting market is becoming more competitive, successful low-cost has become a regular operation, the operating contractor for the construction of the claim is very important to achieve the goal. The significance of the claim and described the concept for today's domestic construction projects in claims management problems were analyzed and the corresponding countermeasures and suggestions of the project and counter-claims both sides claim the contract is an indispensable business component. Based on the analysis of the factors that claims the project, discussed the contract on the implementationof the project claim the deal with the principles and specific treatment.Key words: engineering claim prevention deal with1. The definition and classification of claimsClaim the project is the fulfillment of the contract, the contract due to the other party did not fulfill its obligations under the contract and this led to losses, other demands for compensation or the right to compensation. The incidence of claims is a two-way, as long as the contract side of the responsibility and obligation not to achieve contract, or to provide the conditions inconsistent with the contractual status, there are claims that may arise. It is also a kind of a right, under normal circumstances, the claim refers to the contractor in the implementation of the contract process, the reasons for their non-extension of the project, and require owners to increase the cost of compensation for the loss of a claim. The owners belong to the construction unit should bear the responsibility for the cause, and the actual loss to the construction of requests for compensation, known as the anti-claim.1.1 The purpose of their claims can be divided into two categories: construction claims and claims costs.Claim Construction Engineering refers to, as a result of non-responsibility of the contractor causes delay in the construction process for approval of the contract extended period of the claim. Construction units of the purpose of the claim period is usually two: first, removed or have been shirking its responsibility to extend the duration of the contract responsibility, so that they do not pay as much as possible or not to extend the time limit to pay fines; II is due to2extension of the period and The cost of damage caused by the claim. If the project is not the responsibility of delay caused by the construction, and construction units have been approved construction project claim, the construction units can be made as a result of measures taken to speed up and increase the cost of claims. The cost of claims is based on the principle of compensation for actual losses, and its purpose is to require financial compensation. When the reality of the conditions of the contract and inconsistent, leading to increase in contractor expenses in excess of the requirements of the plan's cost of the additional compensation expenses, in order to save his commitment should not be economic losses.2. The cause of the project claim2.1 Engineering design arising from claims.As the construction drawings in error or defective, working drawings and the actual construction site in geology, environment, or the difference between the design drawings and specifications does not match the description of expression is not tight construction, equipment, materials, the name of the model specifications that Or the wrong amount of work is not clear and many other aspects of the flaws and omissions, resulting in rework. Inevitable in order to produce in the period, the labor, materials, and other aspects of the claims.2.2 Do not close the signing of the contract arising from claimsThe contract is a contract agreement, the tender documents, tender, contract-specific provisions, general provisions of the contract, drawings, BOQ and to fulfill the contract in the course of a series of supplementary agreements such as the composition of the document, the contracts signed between the two sides in accordance with the law The entry into force, legally binding, either party may change or dissolve the non-performance of the contract or the powers and duties. However, due to construction projects and the complexity of the construction period, as well as the natural environment, climate, such as long-term factors, together with the terms of the contract in terms of security is not strong, between the conflicting documents, are likely to make the parties enter into the Construction contracts can not take full account of all factors and a clear impact on the project, which led to the construction of the claim.2.3 The risk of accidents and unforeseen factors such as changes in the conditions of the claimDuring the construction process, changes in the conditions of the construction site of the project cost and impact, such as earthquakes, typhoons, war, rebellion, radioactive pollution and nuclear hazards, such as force majeure risks and natural disasters as well as the construction of sand mud emerged, geological Fault, natural cave, subsidence and underground structures or objects on the ground floor, and other unknown obstacles, often leading to the changes causedby the construction claim. If excavation works due to the discovery of underground structures and cultural relics, and so on, the drawings did not say construction indeed difficult to foresee a reasonable man-made obstacles, such as the deal is bound to lead to an increase in the cost of the project, the construction units can claim.2.4 Project construction contracts management changes in the claim.The current construction market, the project construction contracts have a total package, sub-, sub-designate, contract labor, equipment, materials supply contract and a series of contract, so as to enable the project construction contracts and management has become complicated by the difficulty Great. When any of the contracts can not perform well or poorly managed, will affect the project construction period, the quality and quantity, sparking the project, quality, quantity and economic aspects of the claim. Such as equipment, material suppliers, according to the project's design and construction schedule on time in accordance with the provision of quality equipment, materials, engineering, can not by the owners of the requirements and design specifications and the specifications for the construction, so as to affect the project construction The progress and quality, leading to the owners, with a total package side, the sub-side, the equipment and materials suppliers mutual claims.3 Works to prevent and deal with the claims.3.1 The project Prevention claimsOf the above factors in the analysis of the project claim, the claim works, as owners of the management of the main square in the prevention and treatment efforts must be dealt with the principles and specific ways to deal with, making a reasonable claim for compensation evidence to ensure the progress of the construction project, quality, the cost of a virtuous circle. Should do the following specific areas:3.1.1 To strengthen the claim of forward-looking prevention. As owners, supervision engineers and contractors must use their experience and the relevant regulations, to take active measures to prevent foreseeable claims the incident occurred. Such as strengthening the management of the contract, to strengthen preparatory work to strengthen the design review, and so on. However, if the claim is indeed taken place, should take active measures to control claims costs to a minimum.3.1.2 In market economy conditions, the contract is binding both A and B criterion of economic behavior. As the owner's managers should pay attention to fully and strictly carry out the contract. Before signing the contract should be repeated, as appropriate, the terms of the contract, pay attention to the strict letter of the contract documents, in order to prevent the34implementation of the contract process as a result of loopholes in the text caused by the opportunity to claim, resulting in additional investment.In the design of management should strive to obtain the contract by design drawings, data, and units designed to improve the quality of design, conditions permitting the introduction of the design competition, designed to improve the quality of service. 〖JP2〗through the design of the credibility of the tender selection, design, management capacity in areas such as better design of the unit, designed to reduce as much as possible the reasons for increase in the risk of project cost, the latter designed to improve the quality of service.3.1.3 In the supply of materials, equipment and materials should be done on time and the supply, quality volume. As far as possible to avoid the supply of material specifications of the type, variety and not caused by the drawings of alternative materials.3.1.4 The price may rise to the claim by the construction tender will be taken to increase the risk of a package as a death order to guard against the practice, that is, in business contracts, according to the length of period, the market price trend forecast, the two sides to agree on a cost risk To the contractors and contract during the construction of national and local government policy documents are no longer the implementation of price adjustment.3.2 Engineering claims.3.2.1 Should be based on a contract basis to deal with claims must be reasonable; have to pay attention to data collection, information truthfulness, reliability, and after that must deal with claims in a timely manner; in dealing with the specific claims process, we must A close examination of the period when the claims should be given, should be given when the cost of claims. For example: an extremely bad weather conditions, we have exceeded the expected normal rain and snow, seriously hampering the progress of projects at this time, the construction units may be required, the owner can grant an extension period, that is, the establishment of the claim period, but the cost should not be Claim. For instance, in the works in full swing during part of the project changes, construction has been finished on the part of the change and wait for the drawings when part of the construction and mechanical requirements of the claim, this time, to have been part of the End of the claim, it should benefit all, Including the costs and profits, but stagnation and machinery, due to the time when the construction season, it is entirely possible that this first part of the personnel, machinery to use elsewhere, to be paid should be the only change of duty and the types of work efficiency to lower costs.3.2.2 To deal with claims in the event of limitations should be carried out inspection, the5building of China's construction contracts (GF-1999-2001) in the light of international common FIDIC conditions of contract claim against the statute of limitations provides as follows: "The claim occurred within 28 days of Engineers to issue a claim Notice; issued a notice of claim within 28 days to raise additional engineers to extend the duration of the contract price or the claims report and related information; engineers sent to the contractor received the report and claims information after the 28 days given to sign rehabilitation, Or ask the contractor to add further grounds for the claim and evidence. Engineers in 28 days or did not respond to the contractor for further requirements, as the claims have been approved. " Excess of the limitation period for claims, as the case may have the right to refuse. At the same time, the claim should be effective to deal with in a timely manner.3.2.3 Should clearly define the responsibilities, strict examination fees. The claim of actual events are often responsible for both contracts, which should identify the reasons, clearly define responsibilities and in accordance with the terms of the contract's pricing review to determine the contract that both sides should bear the cost.3.2.4 Should work to strengthen the control of the initiative, works to reduce the claim. This requires the owners in project management, as far as possible the work should be made in advance, to reduce the incidence of claims. This will enable the project to carry out more smoothly, reducing investment projects to reduce the construction period. To sum up, the claim for the prevention and management of investment projects to control play an important role in the international engineering construction in general will be designed to claim the contract price of 10-15% in individual cases even more. In order to better handle the construction of the claims the problem from the project to strengthen the construction plans and construction contract management, strengthen personnel training to start, actively explore and practice.References [1] Wu Yuan, Wu Yin, China's construction industry, claims the status quo andcountermeasures [J]. Economist, 2006, (3). [2] Xu Wei, Jin Fu, Chen Lianjie. Standardize the implementation of the construction projectsupervision Manual [M]. Beijing: China Building Industry Press, 2001. [3] Dong Cheng Hai, Zhang Jiansheng. Analysis of Construction Contract ManagementProblems and Solutions [J]. Modernization construction management, 2001, (1).[4] Cheng Hu. Encyclopedia of Practical construction contract management [M]. Beijing: China Building Industry Press, 2000, (1). 浅谈工程索赔的预防与处理学 生:张 曦6指导教师:王春燕 三峡大学科技学院摘要:在工程项目管理中,施工索赔是一项复杂的经营管理工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文文献:This analysis used a case study methodology to analyze the issues surrounding the partial collapse of the roof of a building housing the headquarters of the Standards Association of Zimbabwe (SAZ). In particular, it examined the prior roles played by the team of construction professionals. The analysis revealed that the SAZ’s traditional construction project was generally characterized by high risk. There was a clear indication of the failure of a contractor and architects in preventing and/or mitigating potential construction problems as alleged by the plaintiff. It was reasonable to conclude that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It appeared justified for the plaintiff to have brought a negligence claim against both the contractor and the architects. The risk analysis facilitated, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction prject and riskThe structural design of the reinforced concrete elements was done by consulting engineers Knight Piesold (KP). Quantity surveying services were provided by Hawkins, Leshnick & Bath (HLB). The contract was awarded to Central African Building Corporation (CABCO) who was also responsible for the provision of a specialist roof structure using patented “gang nail” roof trusses. The building construction proceeded to completion and was handed over to the owners on Sept. 12, 1991. The SAZ took effective occupation of the headquarters building without a certificate of occupation. Also, the defects liability period was only three months .The roof structure was in place 10 years At first the SAZ decided to go to arbitration, but this failed to yield an immediate solution. The SAZ then decided toproceed to litigate in court and to bring a negligence claim against CABCO. The preparation for arbitration was reused for litigation. The SAZ’s quantified losses stood at approximately $ 6 million in Zimbabwe dollars (US $1.2m) .After all parties had examined the facts and evidence before them, it became clear that there was a great probability that the courts might rule that both the architects and the contractor were lia ble. It was at this stage that the defendants’ lawyers requested that the matter be settled out of court. The plaintiff agreed to this suxamined the prior roles played by the project management function and construction professionals in preventing/mitigating potential construction problems. It further assessed the extent to which the employer/client and parties to a construction contract are able to recover damages under that contract. The main objective of this critical analysis was to identify an effective risk management strategy for future construction projects. The importance of this study is its multidimensional examination approach.Experience sugge be misleading. All construction projects are prototypes to some extent and imply change. Change in the construction industry itself suggests that past experience is unlikely to be sufficient on its own. A structured approach is required. Such a structure can not and must not replace the experience and expertise of the participant. Rather, it brings additional benefits that assist to clarify objectives, identify the nature of the uncertainties, introduces effective communication systems, improves decision-making, introduces effective risk control measures, protects the project objectives and provides knowledge of the risk history .Construction professionals need to know how to balance the contingencies of risk with their specific contractual, financial, operational and organizational requirements. Many construction professionals look at risks in dividually with a myopic lens and donot realize the potential impact that other associated risks may have on their business operations. Using a holistic risk management approach will enable a firm to identify all of the organization’s business risks. This will increas e the probability of risk mitigation, with the ultimate goal of total risk elimination .Recommended key construction and risk management strategies for future construction projects have been considered and their explanation follows. J.W. Hinchey stated th at there is and can be no ‘best practice’ standard for risk allocation on a high-profile project or for that matter, any project. He said, instead, successful risk management is a mind-set and a process. According to Hinchey, the ideal mind-set is for the parties and their representatives to, first, be intentional about identifying project risks and then to proceed to develop a systematic and comprehensive process for avoiding, mitigat and its location. This is said to be necessary not only to allow alternative responses to be explored. But also to ensure that the right questions are asked and the major risks identified. Heads of sources of risk are said to be a convenient way of providing a structure for identifying risks to completion of a participant’s pa rt of the project. Effective risk management is said to require a multi-disciplinary approach. Inevitably risk management requires examination of engineering, legal and insurance related solutions .It is stated that the use of analytical techniques based on a statistical approach could be of enormous use in decision making . Many of these techniques are said to be relevant to estimation of the consequences of risk events, and not how allocation of risk is to be achieved. In addition, at the present stage of the development of risk management, Atkinson states that it must be recognized that major decisions will be made that can not be based solely on mathematical analysis. The complexity ofconstruction projects means that the project definition in terms of both physical form and organizational structure will be based on consideration of only a relatively small number of risks . This is said to then allow a general structured approach that can be applied to any construction project to increase the awareness of participants .The new, simplified Construction Design and Management Regulations (CDM Regulations) which came in to f 1996, into a single regulatory package.The new CDM regulations offer an opportunity for a step change in health and safety performance and are used to reemphasize the health, safety and broader business benefits of a well-managed and co-ordinated approach to the management of health and safety in construction. I believe that the development of these skills is imperative to provide the client with the most effective services available, delivering the best value project possible.Construction Management at Risk (CM at Risk), similar to established private sector methods of construction contracting, is gaining popularity in the public sector. It is a process that allows a client to select a construction manager (CM) based on qualifications; make the CM a member of a collaborative project team; centralize responsibility for construction under a single contract; obtain a bonded guaranteed maximum price; produce a more manageable, predictable project; save time and money; and reduce risk for the client, the architect and the CM.CM at Risk, a more professional approach to construction, is taking its place along with design-build, bridging and the more traditional process of design-bid-build as an established method of project delivery.The AE can review to get the projec. Competition in the community is more equitable: all subcontractors have a fair shot at the work .A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.A contingency within the GMP covers unexpected but justifiable costs, and a contingency above the GMP allows for client changes. As long as the subcontractors are within the GMP they are reimbursed to the CM, so the CM represents the client in negotiating inevitable changes with subcontractors.There can be similar problems where each party in a project is separately insured. For this reason a move towards project insurance is recommended. The traditional approach reinforces adversarial attitudes, and even provides incentives for people to overlook or conceal risks in an attempt to avoid or transfer responsibility.It was reasonable to assume that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It did appear justified for the plaintiff to have brought a negligence claim against both the contractor and the architects.In many projects clients do not understand the importance of their role in facilitating cooperation and coordination; the desi recompense. They do not want surprises, and are more likely to engage in litigation when things go wrong.中文译文:国际建设工程风险分析索赔看来是合乎情理的。

相关文档
最新文档