基本不等式专项训练

合集下载

不等式练习题

不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。

2. 已知x > 3,求证:x^2 > 9。

3. 已知0 < x < 1,求证:x^3 < x。

4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。

5. 已知|x| > |y|,求证:x^2 > y^2。

二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。

2. 解不等式:5 2(x 3) ≤ 3x 1。

3. 解不等式:2(x 1) 3(x + 2) > 7。

4. 解不等式:4 3(x 2) ≥ 2x + 5。

5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。

三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。

2. 解不等式:2x^2 3x 2 < 0。

3. 解不等式:x^2 4x + 4 ≤ 0。

4. 解不等式:3x^2 + 4x 4 > 0。

5. 解不等式:x^2 + 5x 6 < 0。

四、分式不等式1. 解不等式:x / (x 1) > 2。

2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。

3. 解不等式:(x 1) / (x + 1) < 0。

4. 解不等式:(2x + 3) / (x 4) ≥ 1。

5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。

五、含绝对值的不等式1. 解不等式:|x 2| > 3。

2. 解不等式:|2x + 1| ≤ 5。

3. 解不等式:|3x 4| < 2。

4. 解不等式:|x + 3| |x 2| > 1。

5. 解不等式:|x 5| + |x + 1| < 6。

六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。

基本不等式题型练习含答案

基本不等式题型练习含答案

基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。

解答1: 2x + 5 > 9 首先,将不等式两边都减去5。

2x > 4 然后,将不等式两边都除以2。

x > 2 所以,不等式的解集为x > 2。

题目2:解不等式3 - 2x ≤ 7。

解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。

-2x ≤ 4 然后,将不等式两边都除以-2。

注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。

x ≥ -2 所以,不等式的解集为x ≥ -2。

题目3:解不等式4x + 3 < 19。

解答3: 4x + 3 < 19 首先,将不等式两边都减去3。

4x < 16 然后,将不等式两边都除以4。

x < 4 所以,不等式的解集为x < 4。

题目4:解不等式5 - 3x > 8。

解答4: 5 - 3x > 8 首先,将不等式两边都减去5。

-3x > 3 然后,将不等式两边都除以-3。

注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。

x < -1 所以,不等式的解集为x < -1。

题目5:解不等式2x - 1 ≤ 5x + 3。

解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。

-1 ≤ 3x + 3 然后,将不等式两边都减去3。

-4 ≤ 3x 最后,将不等式两边都除以3。

-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。

题目6:解不等式4 - 2x ≥ 10 - 3x。

解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。

4 + x ≥ 10 然后,将不等式两边都减去4。

x ≥ 6 所以,不等式的解集为x ≥ 6。

题目7:解不等式2(3x + 1) > 4x + 6。

解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。

基本不等式专练(含答案)

基本不等式专练(含答案)

基本不等式专练一、单选题(本大题共9小题,共45.0分)1. 若x ,y ∈R +,且3x +1y =5,则3x +4y 的最小值是( )A. 5B. 245C. 2√35D. 1952. 已知直线kx −y +2k −1=0恒过定点A ,点A 也在直线mx +ny +2=0上,其中m ,n 均为正数,则1m +2n 的最小值为( )A. 2B. 4C. 8D. 63. 若x >1,则4x +1+1x−1的最小值等于( )A. 6B. 9C. 4D. 14. 已知正实数a ,b 满足a +b =1,则2a 2+1a+2b 2+4b的最小值为( )A. 10B. 11C. 13D. 215. 当x >4时,不等式x +4x−4≥m 恒成立,则m 的取值阀内是( )A. m ≤8B. m <8C. m ≥8D. m >86. 正实数x,y 满足1x +1y =2,则x +2y 的( )A. 最小值为32+√2 B. 最大值为32+√2 C. 最小值为3+2√2D. 最大值为3+2√27. 如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AB ⃗⃗⃗⃗⃗ =x AM ⃗⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ =y AN ⃗⃗⃗⃗⃗⃗ ,则1x +1y−1的最小值为( )A. 2B. 1+√2C. 32 D. 2+2√28. 实数a,b 满足a >0,b >0,a +b =4,则a 2a+1+b 2b+1的最小值是( )A. 4B. 6C. 32D. 839.两圆x2+y2+2ax+a2−4=0和x2+y2−4by−1+4b2=0恰有三条公切线,若a∈R,B∈R,且ab≠0,则1a2+1b2的最小值为()A. 49B. 109C. 1D. 3二、多选题(本大题共7小题,共35.0分)10.若正实数a,b满足a+b=1,则下列选项中正确的是()A. ab有最大值14B. √a+√b有最大值√2C. 3a−b>13D. 2a+1b有最小值9211.下列命题正确的有()A. 若a>b>c,ac>0,则bc(a−c)>0;B. 若x>0,y>0,x+y=2,则2x+2y的最大值为4C. 若x>0,y>0,x+y=xy,则x+2y+xy的最小值为5+2√6;D. 若实数a≥2,则log a+1(a+2)<a+2a+112.若a>0,b>0,且a+b=4,则下列不等式恒成立的是()A. 1a +1b≥1 B. √ab≤2 C. 1a2+b2≤18D. 0<1ab≤1413.已知a>0,b>0,下面四个结论正确的是()A. 2aba+b ≤a+b2;B.2222baba+≤+C. 若a>b,则c2a ≤c2b;D. 若1a+1+1b+1=1,则a+2b的最小值为22;14.下列各式中,最小值为4的是()A. y=x2+8xB. y=sinx+4sinx(0<x<π)C. y=e x+4e−xD. y=√x2+1+√x2+115.已知a>0,b>0,且a2+b2=1,则()A. a+b⩽√2B. 12<2a−b<2C. log2√a+log2√b⩾−12D. a2−b2>−116.下列命题为真命题的是A. 若a>b,则2a−b>12>1B. 若a>b>0,则lgalgbC. 若a>0,b>0,则√ab≥2aba+bD. 若a>b,则ac2>bc2三、单空题(本大题共2小题,共10.0分)+2(x>0)的最小值为______.17.函数y=x+4x18.已知正实数x,y满足2x+y=1,则xy的最大值为______.四、解答题(本大题共1小题,共12.0分)(x>3).19.已知函数f(x)=x+9x−3(1)求函数f(x)的最小值.(2)若不等式f(x)≥t2−t+7恒成立,求实数t的取值范围.答案和解析1.C解:分别过A ,B 向准线作垂线,垂足分别为A′,B′,由抛物线定义可知AA′=AF ,BB′=BF , 不妨设A 在P ,F 之间,∵PA ⃗⃗⃗⃗⃗ =λ1AF ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ =λ2BF ⃗⃗⃗⃗⃗ ,∴λ1>0,λ2<0,且PA =λ1AA′,PB =−λ2BB′, ∴λ1=PA AA′=1sin∠APA′,λ2=−PB BB′=−1sin∠BPB′, ∴λ1+λ2=0.2.A解:由AB ⃗⃗⃗⃗⃗ =2BC ⃗⃗⃗⃗⃗ ,A 为抛物线E 的准线上一点得: x A =−p2,x B =0, ∴x C =p 4; ∴y C =±√22p ; 又F(p2,0), ∴k AF =k CF =±√22p−0p 4−p 2=±2√2;∴直线AF 的斜率为±2√2.3.D解:依题意可知点M 到点F 的距离等于点M 到直线x =−4的距离, 因此点M 的轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴的正半轴上, 则点M 的轨迹方程为y 2=16x . 故选D .4.A解:∵x ,y ∈R +,且3x +1y =5,∴3x +4y =15(3x +4y)(3x +1y )=15(9+4+3x y+12y x)=135+35(x y +4yx)≥135+35⋅2√xy ⋅4y x=5,当且仅当xy =4yx,3x +1y =5即x =1,y =12时等号成立,5.B解:已知直线kx−y+2k−1=0整理得:y+1=k(x+2),直线恒过定点A,即A(−2,−1).点A也在直线mx+ny+2=0上,所以:2m+n=2.整理得:m+n2=1.由于m,n均为正数,则1m +2n=(m+n2)(1m+2n)=1+n2m+2mn+1≥2+2√n2m⋅2mn=4.6.B解:由x>1,得x−1>0,∵4x+1+1x−1=4(x−1)+1x−1+5≥2√4+5=9,当且仅当4(x−1)=1x−1,即x=32时,等号成立.7.B解:正实数a,b满足a+b=1,则2a2+1a +2b2+4b=2a+2b+1a+4b,=2+(1a +4b)(a+b),=7+ba +4ab≥7+4=11,当且仅当ba =4ab且a+b=1即b=23,a=13时取等号,8.A解:∵x>4,∴x−4>0,∴x+4x−4=x−4+4x−4+4≥2√(x−4)⋅4x−4+4=8当且仅当x−4=4x−4,即x=6时取等号,∵当x>4时,不等式x+4x−4≥m恒成立,∴只需m≤(x+4x−4)min=8.∴m的取值范围为:(−∞,8].9.A解:∵正实数x、y满足1x +1y=2,,当且仅当xy y x2 ,即x =√2y 时,等号成立, 所以x +2y 的最小值为32+√2,10.A解:∵G 为△ABC 的重心,∴AG ⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(x AM ⃗⃗⃗⃗⃗⃗ +y AN⃗⃗⃗⃗⃗⃗ ),且x ≥1,y >1, 又∵G 在线段MN 上,∴13x +13y =1,∴x +y =3, ∴x +(y −1)=2,∴1x +1y −1=12[x +(y −1)](1x +1y −1) =12(1+1+x y −1+y −1x) ≥12(2+2)=2,当且仅当{x =y −1x +(y −1)=2,即x =1,y =2时等号成立.11.D解:令a +1=m ,b +1=n ,则m >1,n >1,m +n =6. a 2a+1+b 2b+1=(m−1)2m+(n−1)2n=m +n +1m +1n −4=2+6mn ⩾2+6(m+n 2)2=83,当且仅当m =n =3时取等号.12.C解:由题意可得,两圆相外切,两圆的标准方程分别为(x +a)2+y 2=4,x 2+(y −2b)2=1,圆心分别为(−a,0),(0,2b),半径分别为2和1,故有√a 2+4b 2=3,∴a 2+4b 2=9, ∴a 2+4b 29=1,∴1a 2+1b 2=a 2+4b 29a 2+a 2+4b 29b 2=19+49+4b 29a 2+a 29b 2≥59+2√481=1,当且仅当4b 29a =a 29b,并且a 2+4b 2=9时,等号成立, 13.ABC解:对于选项A :∵ab ⩽(a+b 2)2=14(当且仅当a =b =12时取“= “),故选项A 正确;对于选项B:∵(√a+√b)2=a+b+2√ab⩽a+b+a+b=2,∴√a+√b≤√2(当且仅当a=b=12时取“=“),故选项B正确;对于选项C:∵正实数a,b满足a+b=1,∴a−b=2a−1>−1,∴3a−b>3−1=13,故选项C正确;对于选项D:∵a+b=1,∴2a+1b=(2a+1b)(a+b)=3+2ba+ab⩾3+2√2(当且仅当{a+b=12ba=ab时取“=“),故选项D错误.14.【答案】ACD解:由a>b>c,ac>0,可得a,b,c同号且a−c>0,所以bc(a−c)>0;故A正确;若x>0,y>0,x+y=2,则2x+2y⩾2√2x·2y=2√2x+y=4,当且仅当x=y=1时等号成立,所以2x+2y的最小值为4,故B错误;若x>0,y>0,x+y=xy,则1x +1y=1,所以x+2y+xy=2x+3y=(2x+3y)(1x +1y)=5+3yx+2xy⩾5+2√3yx·2xy=5+2√6,当且仅当3y2=2x2时等号成立,故C正确;令f(x)=lnxx ,则f′(x)=1−lnxx2<0在x∈(e,+∞)上恒成立,所以函数f(x)=lnxx在(e,+∞)上单调递减,因为a≥2,a+1≥3,所以log a+1(a+2)<a+2a+1⇔ln(a+2)ln(a+1)<a+2a+1⇔ln(a+2)a+2<ln(a+1)a+1;故选项D正确.15.ABC解:由题意得4=a+b⩾2√ab(当且仅当a=b时,等号成立)则√ab⩽2,故B正确,则1ab ⩾14,故D错误;因为1a +1b=a+bab=4ab⩾1,故A正确;因为a2+b2=(a+b)2−2ab⩾8,则1a2+b2≤18,故C正确.故选ABC .16.ACD解:对于A.∵a 2+b 2⩾2ab,∴(a +b )2⩾4ab,a >0,b >0,∴2aba+b ⩽a+b 2,A 成立;对于B.当a =b =1时1>1不成立,B 错误; 对于C .a >b >0⇒0<1a<1b,c 2⩾0,∴c 2a⩽c 2b,C 成立;对于D.∵a +2b +3=(a +1)+2(b +1)=[(a +1)+2(b +1)](1a+1+1b+1) =1+2+a+1b+1+2(b+1)a+1⩾3+2√2,当且仅当a+1b+1=2(b+1)a+1时,即a =√2,b =√22时等号成立,故a +2b 的最小值为2√2.故选ACD .17.CD解: 对于A ,当x <0时,y <0,则y =x2+8x 无最小值,A 不符合题意; 对于B ,由0<x <π,得0<sinx ≤1, 又,当即sinx =2时,取等号,而sin x 的最大值为1,所以等号取不到,所以的最小值不是4,即B 不符合题意;对于C ,y =e x +4e −x ≥2√e x ×4e −x =4,当且仅当e x =4e −x 即x =ln2时,取等号, 所以y =e x +4e −x 最小值为4,C 符合题意; 对于D ,y =√x 2+1+√x 2+1≥2√√x 2+1×4√x 2+1=4,当且仅当√x 2+1=√x 2+1,即x =±√3时,取等号, 所以y =√x 2+1+√x 2+1 的最小值为4,所以符合题意.18.ABD解:对于A ,,则a +b ⩽ √2,当且仅当a =b 时取“=”号,A 正确; B .(a −b)2=a 2+b 2−2ab <a 2+b 2=1, 故−1<a −b <1,由2−1<2a−b <21,即12<a −b <2,B 正确;对于C ,取a =14,b =√154,则log 2√b <0,故log 2√a +log 2√b =−1+log 2√b <−1,C 错误;对于D ,b 2<1,则−b 2>−1,故a 2−b 2>−1,D 正确.19.AC解:对A ,若a >b ,则a −b >0,由指数函数性质知2a−b >20=1>12,A 正确; 对B ,若a >b >0,取a =2,b =12,则lg alg b =−1,不满足lgalgb >1,故B 错误; 对C ,若a >0,b >0,则a +b ⩾2√ab ,则2aba+b ⩽2√ab =√ab ,当且仅当a =b 时,等号成立,C 正确;对D ,当c =0时,结论不成立,故D 错误.20.6解:∵x >0,∴函数y =x +4x+2≥2√x ⋅4x+2=2×2+2=6当且仅当x =4x ,x >0,即x =2时,上式取等号.21.18解:根据题意,正实数x ,y 满足2x +y =1, 则xy =12(2x)y ≤12(2x+y 2)2=12×14=18,当且仅当2x =y =12,时等号成立, 即xy 的最大值为18;22.解:(1)因为x >3,所以x −3>0,所以f(x)=x +9x−3=(x −3)+9x−3+3, ≥2√(x −3)⋅9x−3+3=9,当且仅当x −3=9x−3,即(x −3)2=9时,上式取得等号, 又因为x >3,所以x =6,所以当x =6时,函数f(x)的最小值是9; (2)由(1)知f(x)的最小值是9,∴不等式f(x)≥t 2−t +7恒成立等价于9≥t 2−t +7, 即t 2−t −2≤0,解得:−1≤t ≤2,即实数t的取值范围是[−1,2].。

专项训练:基本不等式

专项训练:基本不等式

专项训练:基本不等式一、单选题1.若两个正实数满足,则的最小值为()A.B.C.D.2.下列结论正确的是()A.当x>0且x≠1时,lgx+≥2B.当x>1时,≥2C.当x≥2时,x+有最小值2D.当0<x≤2时,x﹣有最大值3.(题文)在中,为上一点,,为上任一点,若,则的最小值是A.9B.10C.11D.124.的内角的对边分别为,已知,,则的面积的最大值为A.B.C.D.5.已知lg a+lg b=0,则lg(a+b)的最小值为( )A.lg 2B.2 C.-lg 2D.26.若,,则的最小值为A.B.C.D.7.下列结论正确的是( )A.当,时,B.当时,的最小值为C.当时,D.当时,的最小值为8.下列各式中,最小值等于2的是()A.B.C.D.9.已知,,,则的取值范围是( )A.B.C.D.10.若,则的最小值为()A.-1B.3C.-3D.1A . 1B .C .D .12.若正数 满足 ,则 的最小值为( ) A . B . C . D .13则f(x)=A . 最大值B . 最小值C . 最大值1D . 最小值114.下列函数中,最小值为4的是( )A . y=x+B . y=sinx+(0<x <π)C . y=e x +4e ﹣xD . y=+15x 的值为( ) A . 1 D . 2 16.若实数 , 满足,则 的最小值为A .B .C .D .17.下列函数中, y 的最小值为4的是 ( ) A .C . 18.在平面直角坐标系中,已知第一象限的点(),a b 在直线2310x y +-=上,则 23a b +的最小值为( ) A . 24 B . 25 C . 26D . 2719,则()f x 取最小值时对应的x 的值为( )A . 1- D . 1 20.已知实数 , 满足 ,其中 ,则 的最小值为( )A . 4B . 6C . 8D . 1221.若a >b >1,P=,Q =(lg a +lg b ),R =lg(),则 A .R <P <Q B .P <Q <RC .Q <P <RD .P <R <Q b a lg lg ⋅212b a +二、填空题22.已知a>0,b>0,2a+b=16,则ab的最大值为________.23.已知,则函数的最小值为______.24.若,则的最小值为__________.25________.26.设a,b是实数,且a+b=3,则2a+2b的最小值是__________.27__________.专项训练:基本不等式参考答案1.A【解析】【分析】根据=1可得x+2y=(x+2y)(),然后展开,利用基本不等式可求出最值,注意等号成立的条件.【详解】∵两个正实数x,y满足=1,∴x+2y=(x+2y)()=4+≥4+2=8,当且仅当时取等号即x=4,y=2,故x+2y的最小值是8.故选:A.【点睛】本题主要考查了基本不等式的应用,解题的关键是“1”的活用,同时考查了运算求解的能力,属于基础题.2.B【解析】【分析】本题中各选项都是利用基本不等式求最值,注意验证一正、二定、三相等条件是否满足即可.A 中不满足“正数”,C中“=”取不到.【详解】A中,当0<x<1时,lgx<0,lgx+≥2不成立;由基本不等式B正确;C中“=”取不到;D中x﹣在0<x≤2时单调递增,当x=2时取最大值.故选:B.【点睛】本题主要考查利用基本不等式求最值的三个条件,一正、二定、三相等,在解题中要牢记.3.D【解析】【分析】由题意结合向量共线的充分必要条件首先确定的关系,然后结合均值不等式的结论整理计算即可求得最终结果.【详解】由题意可知:,三点共线,则:,据此有:,当且仅当时等号成立.综上可得:的最小值是12.本题选择D选项.【点睛】本题主要考查三点共线的充分必要条件,均值不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.4.B【解析】【分析】根据三角形面积公式和不等式性质,可求得三角形面积的最大值。

基本不等式训练题(含答案)

基本不等式训练题(含答案)

基本不等式训练题(含答案)1.若xy>0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400B.100C.40D.20答案:A3.已知x≥2,则当x=____时,x+4x有最小值____.答案:244.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0时,求f(x)的最大值.解:(1)∵x>0,∴12x,4x>0.∴12x+4x≥212x•4x=83.当且仅当12x=4x,即x=3时取最小值83,∴当x>0时,f(x)的最小值为83.(2)∵x<0,∴-x>0.则-f(x)=12-x+(-4x)≥212-x• -4x =83,当且仅当12-x=-4x时,即x=-3时取等号.∴当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b∈(0,+∞),∴ba+ab≥2ba•ab=2;②∵x,y∈(0,+∞),∴lgx+lgy≥2lgx•lgy;③∵a∈R,a≠0,∴4a+a≥24a•a=4;④∵x,y∈R,,xy<0,∴xy+yx=-(-xy)+(-yx)]≤-2 -xy -yx =-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b∈(0,+∞),∴ba,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x,y∈(0,+∞),但当x∈(0,1)时,lgx是负数,y∈(0,1)时,lgy 是负数,∴②的推导过程是错误的;③∵a∈R,不符合基本不等式的条件,∴4a+a≥24a•a=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab≥2ab+2ab≥22×2=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,∴xy=8x+2y≥28x•2y=8xy,当且仅当8x=2y时等号成立.∴xy≥64.二、填空题7.函数y=x+1x+1(x≥0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y≥2x•4y=4xy,∴xy≤116.答案:大1169.(2010年高考山东卷)已知x,y∈R+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y4≥2xy12,∴xy≤3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2 x+1 •4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,∴x-1>0.∴(x-1)+9x-1+2≥2 x-1 •9x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,∴y有最小值8.11.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1a-1)•(1b-1)•(1c -1)≥8.证明:∵a,b,c∈(0,+∞),a+b+c=1,∴1a-1=1-aa=b+ca=ba+ca≥2bca,同理1b-1≥2acb,1c-1≥2abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)≥8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400×(2x+2×200x)+100×200x+60×200=800×(x+225x)+12000≥1600x•225x+12000=36000(元)当且仅当x=225x(x>0),即x=15时等号成立.。

基本不等式专题训练

基本不等式专题训练

基本不等式专题训练一、选择题1.已知a,b∈R,且a+b=1,则ab的最大值为()A. 41B. −41C. 1D. 不存在2.对于任意正实数x,y,下列不等式恒成立的是()A. x2+y2≥2xyB. x2+y2≤2xyC. x+y≥2xyD. x+y≤2xy3.已知a,b,c>0,且a+b+c=1,则a+b+c的最大值为()A. 1B. 3C. 3D. 33二、填空题4.已知x>0,则函数y=4x+x1的最小值为____。

5.已知a,b>0,且a+b=5,则a1+b4的最小值为____。

三、解答题6.已知x,y∈R,且x+y=4,求3x+9y的最小值。

7.已知a,b,c>0,且a+b+c=1,证明:a+b+c≤2。

8.已知x>0,y>0,且xy=4,求x+yx2+y2的最小值。

参考答案一、选择题1.A解析由a+b=1,根据基本不等式(a−b)2≥0,展开得a2−2ab+b2≥0,即a2+b2≥2ab。

又因为(a+b)2=a2+2ab+b2=1,所以2ab≤1−(a2+b2)+2ab=1,即ab≤41。

当且仅当a=b=21时,等号成立。

2.A解析对于任意正实数x,y,根据平方和公式,有x2+y2≥2xy(当且仅当x=y时取等号)。

而选项C和D分别对应的是算术平均数与几何平均数的关系,但仅当x,y均为正数时,算术平均数才大于等于几何平均数,且等号成立的条件是x=y。

选项B显然不成立。

3.B解析由柯西不等式(Cauchy-Schwarz Inequality)得(a+b+c)2≤(12+12+12)(a+b+c)=3,即a+b+c≤3。

当且仅当a=b=c=31时,等号成立。

二、填空题4.41解析由算术平均数与几何平均数的关系得y=4x+x1≥24x⋅x1=4(当且仅当4x=x1,即x=21时取等号)。

5.59解析由“乘1法”与基本不等式得a1+b4=51(a+b)(a1+b4)=51(5+ab+b4a )≥51(5+2ab⋅b4a)=59(当且仅当ab=b4a,即a=35,b=310时取等号)。

高三复习基本不等式练习题

高三复习基本不等式练习题

高三复习基本不等式练习题不等式作为高中数学中的一个重要内容,占据了复习的重要一部分。

本文将提供一些基本不等式的练习题,供高三学生复习使用。

练习题1:解不等式组:{x+2>0, x-3<0}练习题2:求解不等式:(x+1)(x-3)<0练习题3:解不等式组:{x^2 - 4>0, x-1<0}练习题4:求解不等式:x^2 - 5x + 6>0练习题5:解不等式组:{x^2-4x+3>0, x^2+6x+8>0}练习题6:求解不等式:(x-2)(x+3)(x-7)<0练习题7:解不等式组:{x^3-9x^2+20x-12>0, x^2-4x+4>0}练习题8:求解不等式:(x-2)^2(x+4)>0练习题9:解不等式组:{x^3-x^2+4x-4>0, x^2 + 3x + 2>0}练习题10:求解不等式:(x-1)^3+8>0以上是关于高三复习基本不等式的一些练习题。

希望同学们能够认真思考,按照正确的解题步骤解答。

复习不等式时,应重点掌握不等式的基本性质和解不等式的方法,如辨别二次不等式的判别式、区间法等。

在解题过程中,也要注意进行化简和因式分解,以便于对不等式进行分类讨论。

基本不等式是高中数学中一个重要的内容,对于加深对不等式的理解和掌握不等式的解法有着重要的意义。

因此,同学们要多进行基本不等式的练习,理解和掌握不等式的性质和方法,为高考做好充分准备。

希望以上的练习题能够帮助到高三的同学们,祝大家能够在高三阶段取得优异的成绩!。

高中数学基本不等式专题50练(含答案)

高中数学基本不等式专题50练(含答案)

高中数学基本不等式(含答案)【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【答案】1【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 . 【答案】 22,2【习题3】已知,x y 满足方程210x y --=,当x >时,则353712x y x y m x y +-+-=+--的最小值为_______. 【答案】8【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______. 【答案】3322+【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 . 【答案】]22,22[-【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【答案】12-【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【答案】]0,2[-【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 . 【答案】]7,6(【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________【答案】8 【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += .【答案】85【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 . 【答案】]3,1(【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x 的取值范围是_______. 【答案】),1[+∞【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 .【答案】36-【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 . 【答案】3627+;845【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 .【答案】2【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______. 【答案】332-【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b+++的最大值是 . 【答案】3332+ 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________. 【答案】222-【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______.【答案】212+;2【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221aba +的最大值是 . 【答案】16;413- 【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21 【答案】C【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 . 【答案】2【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a +的取值范围是 .【答案】]23,12[-【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________. 【答案】224-【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 .【答案】]716,0[【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 . 【答案】222-【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【答案】5【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________. 【答案】51【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________. 【答案】212-【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【答案】31;1=x【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【答案】9【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________. 【答案】)1,2[--【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______.【答案】3-,1【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________. 【答案】]3,3[-【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________. 【答案】223+【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【答案】241+【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______.【答案】51【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( )A. 47B. 2233C. 2D. 32【答案】A【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【答案】23【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______.【答案】522+【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______.【答案】]4,34[【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________. 【答案】55【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________.【答案】9[1,]8【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22b a ba +-的最大值为___________.【答案】3097【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16【答案】B 【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【答案】222+【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【答案】432- 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯b a b b a a , 则b a 32+的取值范围为__________________. 【答案】]2,1(【习题50】设+∈R b a ,,4222=-+b a b a ,则ba 11+的最小值是 【答案】24。

基本不等式训练习题

基本不等式训练习题

基本不等式训练习题一、选择题1. 若a > b,则下列不等式中正确的是()A. a b > 0B. a + b > 0C. a² > b²D. 1/a < 1/b2. 已知x > y,则下列不等式中一定成立的是()A. x y > 0B. x² > y²C. 1/x < 1/yD. x + 1 > y + 13. 若a < b < 0,则下列不等式中正确的是()A. a² < b²B. a b > 0C. ab > 0D. 1/a > 1/b二、填空题1. 若a > b,则a b __________ 0。

2. 已知x < y,且x, y均为正数,则1/x __________ 1/y。

3. 若a < b < 0,则a² __________ b²。

三、解答题1. 已知x > y,证明:x + 1 > y + 1。

2. 已知a > b,且a, b均为正数,证明:a² > b²。

3. 若a < b < 0,证明:ab > 0。

4. 已知x, y为实数,且x + y > 0,证明:x² + y² > 0。

5. 已知a, b为正数,且a > b,证明:1/a < 1/b。

四、综合题1. 已知x, y为实数,且x > y,求证:x² y² > 0。

2. 若a, b, c为实数,且a > b > c,证明:a c > b c。

3. 已知a, b为正数,且a > b,求证:a² + b² > 2ab。

4. 若x, y为实数,且x + y > 0,证明:x² + 2xy + y² > 0。

(完整word版)基本不等式练习题(含答案)

(完整word版)基本不等式练习题(含答案)

基本不等式1.函数y =x +1x (x >0)的值域为( ).A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞)2.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是 ( ).A .0B .1C .2D .33.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ).A.12 B .1 C .2 D .44.(2011·重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .45.已知t >0,则函数y =t 2-4t +1t的最小值为________. 利用基本不等式求最值【例1】►(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________;(2)当x >0时,则f (x )=2x x 2+1的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________.(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.利用基本不等式证明不等式【例2】►已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c .【训练2】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ). A .1 B .2 C .3 D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2x y 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x =2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝ ⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2× 4y x ·x y =18, 当且仅当4y x =x y ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +ab c ≥2 bc a ·ab c =2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =x x 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞ 【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5 800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元), 当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低.【示例】.正解 ∵a >0,b >0,且a +b =1,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2 b a ·2a b =3+2 2. 当且仅当⎩⎪⎨⎪⎧ a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2. 【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab =2+2=4.当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

高一基本不等式题型练习(全)

高一基本不等式题型练习(全)

基本不等式●知识梳理),都是正数;)积(或和)为定值(有时需要通过“配凑、拆分”找出定值))与必须能够相等(等号能够取到).●题型训练题型一(直接运用基本不等式)已知正数、满足,则的最小值是?已知正实数,满足,则的最大值为?设,求函数题型二型(配凑法)1.若,则当取最小值时,此时,分别为?2.函数的最小值是?3.当时,求函数的最大值为?4.设,求函数的最大值为?5.已知为正实数且时,则的最大值为?6.已知,则的最大值为?7.当时,求函数的最大值为?8.当,时,求函数的最大值.题型三型(分离常数法、换元法)1.当时,函数的最小值为?2.已知,则的最小值为?3.函数的最小值为?4.求函数的最大值.5.求函数的最大值.6.函数的最大值为?题型四乘“1”法1.若,,且,则的最小值为?2.已知正实数,满足,则的最小值为?3.若正数,满足,则的最小值为?4.设,均为正数.且时,则的最小值为?5.若正数,满足,则的最小值为?1.正实数,满足,则的最小值为?2.正实数,满足,则的最小值为?3.已知,,,则的最小值为?4.已知正数,满足,则的最小值为?5.已知,,,则的最小值为?1.若正实数,满足,则的最小值为?2.若实数,满足,则的最小值为?3.若,,且,则的最小值为?4.设,,,则()A.有最大值B.有最小值C.有最大值D.有最小值5.已知,且满足,则的最小值为?6.设,均为正数,且则的最小值为?7.若正数,满足,则的最小值为?题型七其他类型(难)1.已知,求的最大值为?解:,,,当且仅当时取等号,,当且仅当,即时取等号,,即当时,有最大值,即有最大值.2.函数的最大值为?3.正数,满足,则的最小值为?解:令,,,,,,,,,当且仅当时,即时,取等号,故的最小值为.4.设,是正实数,且,则的最小值为?解:令,,则,,,原式,当且仅当时取等号,即的最小值为.易错题1.已知时,求函数的最值为?2.下列命题正确的是()A.函数的最小值为B.若,且,则C.函数的最小值为D.函数的最小值为3.已知正实数,满足,则的最小值为()解:,当且仅当时等号成立,,,,4.设正实数,满足,则()A .有最大值4B .有最小值C .有最大值D .有最小值解:选项,当且仅当即时等号成立,所以的最小值为.故不正确.选项,由不等式得,当且仅当时等号成立,所以的最大值为.故不正确.选项,()ab b ab a b a 2122+=++=+易知的最大值为.所以()22121212=⨯+=++ab b a 有最大值,所以2的最大值为b a +故正确.选项,()abb a b ab a b a 211222222-=+=++=+易知ab 的最大值为41.所以21412122=⨯-+有最小值b a 故不正确.。

基本不等式专题练习(含参考答案)

基本不等式专题练习(含参考答案)

数学 基本不等式[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥22.若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .43.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32 4.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .165.已知x >0,y >0,2x +y =3,则xy 的最大值为________. 6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.7.函数y =x 2x +1(x >-1)的最小值为________.8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( ) A .6 B .9 C .18D .242.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________. 4.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.【参考答案】[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·ab=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B.由4x +y =xy 得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.解析:xy =2xy 2=12×2xy ≤12×⎝ ⎛⎭⎪⎫2x +y 22=98,当且仅当2x =y =32时取等号. 答案:986.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:307.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( )A .6B .9C .18D .24解析:选C.因为a >0,b >0,a +b =1a +1b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +81b ≥23a ·34b =23a +4b ≥232a ·4b=18,当且仅当a =4b =2时取等号.所以3a +81b 的最小值为18.故选C.2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a ≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12⎝ ⎛⎭⎪⎫x +2y 22=2t+t 28.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.答案:62-84.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3的最小值为12.答案:12。

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式1.函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞)D .(2,+∞)2.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是( ).A .0B .1C .2D .33.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; (2)当x >0时,则f (x )=2xx 2+1的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________.(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.利用基本不等式证明不等式【例2】►已知a >0,b >0,c >0,求证:bc a +ca b +abc ≥a +b +c .【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x=3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x=2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝ ⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +abc ≥2bc a ·ab c =2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a+b +c ),即bc a +ca b +abc ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +ca +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低.【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2.当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab =2+2=4.当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

基本不等式专题训练(简答)

基本不等式专题训练(简答)

基本不等式专题训练巩固训练(一)一.基本不等式的理解1.若R b a ∈,,且0>ab ,则下列不等式中,恒成立的是( )A .ab b a 222>+B .ab b a 2≥+C .ab b a 211>+D .2≥+ba ab 2.已知)1,0(,∈b a 且b a ≠,则下列四个数中最大的数是( )A.22b a +B.ab 2C.b a +D.ab 23.已知b a ,为互不相等的正实数,则下列四个数中最大的数是( )A .b a +4B .b a 11+C .ab 2D .228b a + 4.设b a <<0,则下列不等式中正确的是( )A .2ab ab b a <<< B .b b a ab a <+<<2 C .2b a b ab a +<<< D .b b a a ab <+<<2 5.若200=+>>b a b a ,,,则下列不等式对一切满足条件的b a ,恒成立的是 ①1≤ab ;②2≤+b a ;③222≥+b a ;④333≥+b a ;⑤211≥+ba . 二.基本不等式在最值问题中的基础运用 1.积为定值⇒和有最小值,平方和有最小值 (1)已知0>x ,函数x x y 9+=的最小值是( ) A .2 B .4 C .6 D .8 (2)已知0<x ,则函数xx y 1+=有( ) A.有最大值2 B.有最小值2 C.有最大值2- D.有最大值2- (3)若0>ab ,则ba ab +4的最小值为 (4)若实数y x ,满足1=xy ,则222y x +的最小值为(5)已知函数)0,0(4)(>>+=a x xa x x f 在3=x 时取得最小值,则=a 2.和为定值⇒积有最大值,平方和有最小值(1)若10<<x ,则)1(x x -的最大值为( )A .1B .21C .41D .81 (2)已知0>a ,0>b ,若4=+b a ,则( )A.22b a +有最小值B.ab 有最小值C.b a 11+有最大值D.ba +1有最大值 (3)已知0>a ,0>b ,若1=+b a ,则ab 的最大值是(4)已知R b a ∈,,且063=+-b a ,则b a 812+的最小值为 (5)若0>x ,0>y ,且321=+y x ,则xy 的最大值为 3.平方和为定值⇒积有最大值,和有最大值(1)已知422=+b a ,则ab 的最大值为( )A .2B .22C .4D .24(2)已知非负实数b a ,满足1032=+b a ,则b a 32+最大值是( )A .10B .52C .5D .10(3)已知0>a ,0>b ,且5=+b a ,则31+++b a 的最大值为( )A .18B .9C .23D .324.等式变不等式求最值(运用2)2(222b a b a ab +≤+≤,结合换元法) (1)设0>a ,0>b ,24=++ab b a ,则( )A.b a +有最大值8B.b a +有最小值8C.ab 有最大值8 D .ab 有最小值8(2)已知正数b a ,满足62=++ab b a ,则b a 2+的最小值为(3)已知0>x ,0>y ,1642++=y x xy .则xy 的最小值为(4)设y x ,为实数,若122=++xy y x ,则22y x +的最小值为 ,xy 的最大值为(5)设y x ,为实数,若1422=++xy y x ,则y x +2的最大值是巩固训练(二)一.配凑法求最值-----通过凑项或者凑系数让和、积、平方和为定值1.已知1>x ,则函数11)(-+=x x x f 的最小值为(B ) A .4B .3C .2D .1 2.已知210<<x ,则函数)21(x x y -=的最大值(C ) A .21 B .41 C .81 D .161 3.已知b a ,为正数,7422=+b a ,则21b a +的最大值为( D )A .7B .3C .22D .2 4.已知0>>b a ,则b a b a a -+++142的最小值为( A ) A .6B .4C .32D .23 5.若函数)2(21)(>-+=x x x x f ,在a x =处取最小值,则=a 3 6.已知45<x ,则54124-+-=x x y 的最大值为 1 二.消元法求最值(利用等式,代入消元)1.已知实数y x ,满足:0>x 且022=+-xy x ,则y x 2+的最小值为( )A .34B .32C .54D .522.若正数y x ,满足0162=-+xy x ,则y x 3+的最小值是( )A .21B .1C .22D .23.若正数b a ,满足121=+b a ,则2112-+-b a 的最小值为( ) A .2 B .2 C .22 D .14.已知正数b a ,满足1=++ab b a ,则b a +2的最小值为5.设z y x ,,为正实数,满足032=+-z y x ,则xzy 2的最小值为 三.常数代换法求最值(条件求值)1.直接相乘类型,如1=+b a ,则42)11)((11≥++=++=+ba ab b a b a b a (1)已知0>a ,0>b ,2=+b a ,则ba 41+的最小值是( ) A .27 B .4 C .29 D .5(2)已知0>a ,0>b ,112=+b a ,则b a +2的最小值为( ) A .10 B .9C .8D .7 (3)在ABC ∆中,点F 为线段BC 上任一点(不含端点),若)0,0(2>>+=y x y x , 则yx 21+的最小值为 (4)若直线)0,0(1>>=+b a by a x 过点)2,1(,则b a +2的最小值为 (5)已知0>x ,0>y ,且满足xy y x =+4,则y x +的最小值为 2.凑“分母和”类型,如1=+b a ,31)11)(1111(1111⨯++++++=+++b a b a b a . (1)设10<<x ,则x x y -+=194的最小值为( ) A .24 B .25 C .26 D .1(2)已知10>>b a ,且42=+b a ,则121-+b a 的最小值为( ) A .8 B .4 C .22 D .38 (3)设n m ,为正数,且2=+n m ,则2311++++n n m 的最小值为( ) A .23 B .35 C .47 D .59 (4)已知实数y x ,满足0>>y x 且1=+y x ,则yx y x -++134的最小值是 (5)已0>a ,0>b ,2181=++b a ,则b a +2的最小值为 四.分式函数求最值(换元法或分离常数法)1.已知)0(163)(2>+++=x x x x x f ,则)(x f 的最小值为( ) A .3 B .4 C .5 D .62.已知4≥x ,则函数xx x x f 42)(2++=的最小值为( ) A .6 B .7 C .8 D .93.已知y x ,都是正实数,则yx y y x x +++44的最大值为( ) A .23 B .34 C .25 D .45 4.已知0>t ,则函数tt t y 142+-=的最小值为 5.若对任意0>x ,a x x x ≤++132恒成立,则a 的取值范围是 6.已知0≥x ,则函数1)3)(2(+++=x x x y 的最小值为 7.已知0>x ,0>y ,则2223y xy y x ++的最小值为 五.连续放缩求最值(连用两次基本不等式,注意两次等号成立的条件是否相同)1.已知0>a ,0>b ,则ab b a 211++的最小值是( ) A .2 B .22 C .4 D .52.已知0>a ,0>b ,则ba ab 22)1()1(+++的最小值为( ) A .4B .6C .8D .16 3.已知0>>b a ,则)(1b a b a -+的最小值为( ) A .2 B .3 C .4 D .224.若R b a ∈,,0>ab ,则abb a 1444++的最小值为巩固训练(三)基本不等式求最值综合训练1.若实数b a ,满足ab b a =+21,则ab 的最小值为( ) A .2 B .2 C .22 D .42.若正数y x ,满足xy y x 53=+,则y x 43+的最小值是( )A .524B .528C .5D .63.已知1>a ,1=ab ,则ba b a -+22的最小值是( ) A .22B .2C .2D .1 4.若不等式04111≥--+m x x 对)41,0(∈x 恒成立,则实数m 的最大值为( ) A .7B .8C .9D .10 5.已知141,0,0=+>>nm n m ,若不等式a x x n m ++-≥+22对已知的n m ,及任意实数x 恒成立, 则实数a 的取值范围是( )A .),8[+∞B .),3[+∞C .]3,(-∞D .]8,(-∞6.若0lg lg =+y x ,则y x 94+的最小值为7.已知正数y x ,满足5=+y x ,则2111+++y x 的最小值为 8.已知正数y x ,满足1=+y x ,且m x y y x ≥+++1122,则m 的最大值为 9.已知x ,y 均为正实数,且满足1311=++xyy x ,则y x +的最小值为 10.已知正数y x ,满足1=+y x ,则当=x 时,xyy x 2+的最小值是 11.已知0>a ,0>b ,则abb a 1)4(2++的最小值为 ,此时=+b a参考答案巩固训练(一)一.1-5 DCBB ,①③⑤二.1.(1)-(5) CC ,4,22,362.(1)-(5) CA ,41,41,89 3.(1)-(3) ABC4.(1)B (2)4 (3)16 (4)32,31 (5)5102巩固训练(二)一.1-6 BCDA ,3,1二.1-5 ABA ,1,3 三1.(1)-(5)CB ,8,8,9 2.(1)-(5)BDD ,29,8四.1-3 DBB 4-7 2-,),51[+∞,223+,2 五.1-4 CCB ,4巩固训练(三)1-5 CCACD 6-9 12,21,31,6 10. 21,3 11. 8,45。

基本不等式练习题(带答案)

基本不等式练习题(带答案)

基本不等式练习题(带答案)基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 $a\in R$,下列不等式恒成立的是()A。

$a^2+1>a$B。

$\frac{1}{2}<a<1$C。

$a^2+9>6a$D。

$\log_{a+1}。

\log_{|2a|}$2.若 $|a|<|b|$ 且 $a+b=1$,则下列四个数中最大的是()A。

$1$B。

$2$C。

$a^2+b^2$D。

$a$3.设 $x>0$,则 $y=3-\frac{3}{x}$ 的最大值为()A。

$3$B。

$\frac{3}{2}$C。

$\frac{3}{4}$D。

$-1$4.设$x,y\in R$,且$x+y=5$,则$3x+3y$ 的最小值是()A。

$10$B。

$6\sqrt{3}$C。

$4\sqrt{10}$D。

$18$5.若 $x,y$ 是正数,且 $\frac{1}{4x^2}+\frac{1}{9y^2}=1$,则 $xy$ 有()A。

最小值 $\frac{1}{36}$B。

最大值 $\frac{1}{36}$C。

最小值 $\frac{16}{9}$D。

最大值 $\frac{16}{9}$6.若 $a,b,c\in R$,且 $ab+bc+ca=1$,则下列不等式成立的是()A。

$a^2+b^2+c^2\ge 2$XXX 3$C。

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge 2$D。

$a+b+c\le 3$7.若 $x>0,y>0$,且 $x+y\le 4$,则下列不等式中恒成立的是()A。

$\frac{x}{x+1}+\frac{y}{y+1}\le 1$B。

$\frac{x}{x+1}+\frac{y}{y+1}\ge 1$C。

$xy\ge 2$D。

$xy\le 1$8.若 $a,b$ 是正数,则$\frac{a+b}{2},\sqrt{ab},\frac{2ab}{a+b}$ 三个数的大小顺序是()A。

基本不等式练习题及答案

基本不等式练习题及答案

基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。

因为x>0,所以函数的值域为(0,+∞)。

2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。

3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。

因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。

房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。

求侧面的长度为多少时,总造价最低。

去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。

今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。

每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。

基本不等式的题目

基本不等式的题目

基本不等式的题目1. 求解不等式|x+2| > 5。

解:首先,去掉绝对值,得到两个不等式,x+2 > 5 或 x+2 < -5。

解第一个不等式:x > 5 - 2 = 3。

解第二个不等式:x < -5 - 2 = -7。

综合来看,解集为x < -7 或 x > 3。

2. 求解不等式3x+4 ≤ 2x-3。

解:首先,将不等式中的项移到一边,得到3x-2x ≤ -3-4,即x ≤ -7。

3. 求解不等式2x+5 ≥ 3(x-4)。

解:首先,将不等式中的项展开,得到2x+5 ≥ 3x-12。

接下来,将x的项移到一边,得到2x-3x ≥ -12-5,即-x ≥ -17。

由于-x的系数是负数,所以将不等号翻转,得到x ≤ 17。

4. 求解不等式|2x-1| ≤ 3。

解:首先,去掉绝对值,得到两个不等式,2x-1 ≤ 3 或 2x-1 ≥ -3。

解第一个不等式:2x ≤ 3+1 = 4,即x ≤ 2。

解第二个不等式:2x ≥ -3+1 = -2,即x ≥ -1。

综合来看,解集为 -1 ≤ x ≤ 2。

5. 求解不等式x²-7x+10 > 0。

解:首先,将不等式中的二次项系数和常数项用因式分解的方式表示,得到(x-2)(x-5) > 0。

接下来,考虑两个因子相乘大于零的情况:当 x-2 > 0 且 x-5 > 0 时,即 x > 2 且 x > 5,但这个条件不成立;当 x-2 < 0 且 x-5 < 0 时,即 x < 2 且 x < 5,这时不等式成立;综合来看,解集为 2 < x < 5。

以上是五道基本不等式的题目解答,希望对你有帮助!。

基本不等式练习题(带答案)

基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( ) A.3 B.332- C.3-23 D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B. 63C. 46D. 183 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .11123abc++≥ D .3a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C .2xy ≥ D .11xy ≥8. a ,b 是正数,则2,,2a babab a b++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b abab a b+≤≤+ C.22ab a b ab a b +≤≤+ D.22ab a bab a b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x =+B.4sin sin y x x=+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上. 11. 函数21y x x =-的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤. 15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值. 18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCABCCC二.填空题 11.12 12.3600 13. 212- 14.对 三、解答题15.ab 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式专题训练一.填空题(共20小题)1.(2014•浙江模拟)若正数x,y满足x+3y=5xy,则x+y的最小值为_________.2.(2014•南通二模)设实数a,b,c满足a2+b2≤c≤1,则a+b+c的最小值为_________.3.(2014•青岛一模)已知x,y均为正实数,且xy=x+y+3,则xy的最小值为_________.4.(2014•闵行区二模)若不等式(x+y)(+)≥16对任意正实数x、y恒成立,则正实数a的最小值为_________.5.(2014•温州二模)已知a>1,ab=2a+b,则(a+1)(b+2)的最小值是_________.6.(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为_________.7.(2014•江苏模拟)设x,y是正实数,且x+y=1,则的最小值是_________.8.(2014•宿州三模)已知x,y∈R*且+=1,则xy的最小值是_________.9.(2014•天津模拟)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为_________.10.(2014•闸北区一模)设a>0,b>0,a+b=2,则下列不等式恒成立的有_________.①ab≤1;②;③a2+b2≥2.11.(2014•岳阳二模)若a,b,c∈R+,且++=1,则a+2b+3c的最小值为_________.12.(2014•上海模拟)若正实数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy﹣34≥0恒成立,则实数a的取值范围是_________.13.(2014•和平区模拟)设a>b>c>0,则2a2++﹣10ac+25c2的最小值是_________.14.(2014•潍坊模拟)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为_________.15.(2014•瑞安市一模)若a>0,b>0,且2a+b=1,则S=2﹣(4a2+b2)的最大值是_________.16.(2014•新昌县二模)若正实数x,y,z满足x+y+z=4,xy+yz+zx=5,则x+y的最小值是_________.17.(2014•黄冈模拟)设正实数a,b,c满足a+2b+c=1,则+的最小值是_________.18.(2014•镇江二模)已知x,y∈R,满足2≤y≤4﹣x,x≥1,则的最大值为_________.19.(2013•镇江一模)已知x,y为正数,则的最大值为_________.20.(2012•宁国市模拟)_________.基本不等式专题训练参考答案与试题解析一.填空题(共20小题)1.(2014•浙江模拟)若正数x,y满足x+3y=5xy,则x+y的最小值为.考点:基本不等式;基本不等式在最值问题中的应用.专题:常规题型;函数的性质及应用.分析:将x+3y=5xy转化为=1,再由x+y=(x+y),展开后利用基本不等式可求出x+y的最小值.解答:解:∵正数x,y满足x+3y=5xy,∴.∴x+y=(x+y)≥.当且仅当,即时取等号,此时结合x+3y=5xy,得∴x+y≥,可知x+y的最小值为.故答案为.点评:本题为2012年浙江文科试题第(9)题的一个变式.容易做错,应注意等号成立的条件;“1”的替换是一个常用的技巧,应学会灵活运用.2.(2014•南通二模)设实数a,b,c满足a2+b2≤c≤1,则a+b+c的最小值为﹣.考点:基本不等式.专题:不等式的解法及应用.分析:法1:令a=rcosθ,b=rsinθ,其中:0≤r≤c≤1,θ∈[0,2π).再利用三角函数基本关系式、两角和差的正弦公式即可得出.法2:由a+b+c≥a+b+a2+b2,通过配方变形为+即可得出.解答:解:法1:令a=rcosθ,b=rsinθ,其中:0≤r≤c≤1,θ∈[0,2π).则a+b+c≥rcosθ+rsinθ+r2==,当且仅当取等号.∴a+b+c的最小值为﹣.故答案为:.(0≤r≤c≤1).法2:∵实数a,b,c满足a2+b2≤c≤1,∴a+b+c≥a+b+a2+b2=+≥﹣,当a=b=,c=时取等号,∴a+b+c的最小值为﹣.故答案为:﹣.点评:本题考查了三角函数基本关系式、两角和差的正弦公式、配方法,属于中档题.3.(2014•青岛一模)已知x,y均为正实数,且xy=x+y+3,则xy的最小值为9.考点:基本不等式.专题:创新题型.分析:已知条件提供了和与积的关系,要求的是积的范围,可以考虑将和转化为积,再求积的范围;也可以一元二次方程的韦达定理去研究.解答:解:∵x,y均为正实数,且xy=x+y+3∴xy=x+y+3≥2+3 (当x=y时取等号)即()2﹣2﹣3≥0∴(+1)(﹣3)≥0∵x,y均为正实数∴+1>0∴﹣3≥0 即xy≥9故xy的最小值为9.点评:本题主要是用基本不等式解题,关键在于化归转化思想的运用.本题还可以尝试消元利用函数求最值.4.(2014•闵行区二模)若不等式(x+y)(+)≥16对任意正实数x、y恒成立,则正实数a的最小值为4.考点:基本不等式.专题:不等式的解法及应用.分析:不等式(x+y)(+)≥16对任意正实数x、y恒成立,可知:16≤.令f(x)=(x+y)(+),(a>0).利用基本不等式即可得出其最小值.解答:解:∵不等式(x+y)(+)≥16对任意正实数x、y恒成立,∴16≤.令f(x)=(x+y)(+),(a>0).则f(x)=a+4+≥a+4+=a+4+4.当且仅当取等号.∴,解得a=4.因此正实数a的最小值为4.故答案为:4.点评:本题考查了恒成立问题的等价转化、基本不等式的应用,属于中档题.5.(2014•温州二模)已知a>1,ab=2a+b,则(a+1)(b+2)的最小值是18.考点:基本不等式.专题:不等式的解法及应用.分析:由a>1,ab=2a+b,可得b≠2,,b>2.代入(a+1)(b+2)=,变形利用基本不等式即可得出.解答:解:∵a>1,ab=2a+b,∴b≠2,∴,解得b>2.∴(a+1)(b+2)=ab+2a+b+2===2(b﹣2)++10+10=18,当且仅当b=4时取等号.因此(a+1)(b+2)的最小值是18.故答案为:18.点评:本题考查了变形利用基本不等式的性质,属于中档题.6.(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为﹣2.考点:基本不等式.专题:不等式的解法及应用.分析:首先把:4a2﹣2ab+4b2﹣c=0,转化为=,再由柯西不等式得到|2a+b|2,分别用b表示a,c,在代入到﹣+得到关于b的二次函数,求出最小值即可.解答:解:∵4a2﹣2ab+4b2﹣c=0,∴=由柯西不等式得,[][]=|2a+b|2故当|2a+b|最大时,有∴∴﹣+===,当b=时,取得最小值为﹣2.故答案为:﹣2点评:本题考查了柯西不等式,以及二次函数的最值问题,属于难题.7.(2014•江苏模拟)设x,y是正实数,且x+y=1,则的最小值是.考点:基本不等式.专题:计算题;压轴题;不等式的解法及应用.分析:该题是考查利用基本不等式求最值问题,但直接运用基本不等式无从下手,可考虑运用换元思想,把要求最值的分母变为单项式,然后利用“1”的代换技巧转化为能利用基本不等式求最值得问题.解答:解:设x+2=s,y+1=t,则s+t=x+y+3=4,所以==.因为所以.故答案为.点评:本题考查了基本不等式,考查了换元法和数学转化思想,训练了整体代换技巧,解答此题的关键是运用换元后使分式的分母由多项式变为了单项式,展开后使问题变得明朗化.8.(2014•宿州三模)已知x,y∈R*且+=1,则xy的最小值是8.考点:基本不等式.专题:不等式的解法及应用.分析:由x,y∈R*且+=1,可得(y>2),代入并利用基本不等式即可得出.解答:解:∵x,y∈R*且+=1,∴(y>2)∴xy=y==+4=8,当且仅当y=4(x=2)时取等号.∴xy的最小值是8.故答案为:8.点评:本题考查了基本不等式的性质,属于基础题.9.(2014•天津模拟)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为1.考点:基本不等式.专题:不等式的解法及应用.分析:由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,可得z=x2﹣3xy+4y2.于是==,利用基本不等式即可得到最大值,当且仅当x=2y>0时取等号,此时z=2y2.于是+﹣==,再利用二次函数的单调性即可得出.解答:解:由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2.∴===1,当且仅当x=2y>0时取等号,此时z=2y2.∴+﹣==≤1,当且仅当y=1时取等号,即+﹣的最大值是1.故答案为1.点评:熟练掌握基本不等式的性质和二次函数的单调性是解题的关键.10.(2014•闸北区一模)设a>0,b>0,a+b=2,则下列不等式恒成立的有①③.①ab≤1;②;③a2+b2≥2.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质逐一进行判定即可判断出答案.解答:解:∵a>0,b>0,a+b=2,∴a+b=2≥2,即ab≤1,当且仅当a=b=1时取等号,故①正确;∵(+)2=a+b+2=2+2≤4,当且仅当a=b=1时取等号,∴+≤2,故②不正确;∵4=(a+b)2=a2+b2+2ab≤a2+b2+2,当且仅当a=b=1时取等号,∴a2+b2≥2,故③正确,∴不等式恒成立的有①③.故答案为:①③.点评:本题考查不等式的基本性质,解题时要注意均值不等式的合理运用.属于基础题.11.(2014•岳阳二模)若a,b,c∈R+,且++=1,则a+2b+3c的最小值为9.考点:基本不等式.专题:不等式的解法及应用.分析:利用“乘1法”和均值不等式即可得出.解答:解:∵a,b,c∈R+,且++=1,∴a+2b+3c=(a+2b+3c)=9,当且仅当a=2b=3c=3时取等号.∴a+2b+3c的最小值为9.故答案为:9.点评:本题考查了“乘1法”和均值不等式,属于基础题.12.(2014•上海模拟)若正实数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy﹣34≥0恒成立,则实数a的取值范围是(﹣∞,﹣3]∪[,+∞).考点:基本不等式.专题:不等式的解法及应用.分析:原不等式恒成立可化为xy≥恒成立,由基本不等式结合不等式的解法可得xy≥2,故只需2≥恒成立,解关于a的不等式可得.解答:解:∵正实数x,y满足x+2y+4=4xy,可得x+2y=4xy﹣4,∴不等式(x+2y)a2+2a+2xy﹣34≥0恒成立,即(4xy﹣4)a2+2a+2xy﹣34≥0恒成立,变形可得2xy(2a2+1)≥4a2﹣2a+34恒成立,即xy≥恒成立,∵x>0,y>0,∴x+2y≥2,∴4xy=x+2y+4≥4+2,即2﹣•﹣2≥0,解不等式可得≥,或≤﹣(舍负)可得xy≥2,要使xy≥恒成立,只需2≥恒成立,化简可得2a2+a﹣15≥0,即(a+3)(2a﹣5)≥0,解得a≤﹣3或a≥,故答案为:点评:本题考查基本不等式的应用,涉及恒成立问题,变形并求出需要的最小值是解决问题的关键,属中档题.13.(2014•和平区模拟)设a>b>c>0,则2a2++﹣10ac+25c2的最小值是4.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式即可得出.解答:解:∵a>b>c>0,∴2a2++﹣10ac+25c2==+(a﹣5c)2≥+0=4.当且仅当a=2b=5c=时取等号.因此2a2++﹣10ac+25c2的最小值是4.故答案为:4.点评:本题考查了基本不等式的性质,属于中档题.14.(2014•潍坊模拟)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为2.考点:基本不等式.专题:综合题.分析:将z=x2﹣3xy+4y2代入,利用基本不等式化简即可得到当取得最小值时的条件,用x,z表示y后利用配方法求得x+2y﹣z的最大值.解答:解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故答案为:2.点评:本题考查基本不等式,将z=x2﹣3xy+4y2代入,求得取得最小值时x=2y是关键,考查配方法求最值,属于中档题.15.(2014•瑞安市一模)若a>0,b>0,且2a+b=1,则S=2﹣(4a2+b2)的最大值是.考点:基本不等式.专题:不等式的解法及应用.分析:利用,可得,,即可得出.解答:解:∵2a+b=1,a>0,b>0,∴由,可得,,∴S=2﹣(4a2+b2)=,当且仅当b=2a=时取等号.∴S的最大值为.故答案为:.点评:本题考查了基本不等式及其变形应用,属于基础题.16.(2014•新昌县二模)若正实数x,y,z满足x+y+z=4,xy+yz+zx=5,则x+y的最小值是.考点:基本不等式.专题:不等式的解法及应用.分析:把x,y看成是一元二次方程的两个实数根,根据根与系数的关系列出一元二次方程,然后由判别式得到z的取值范围,求出x+y的最小值.解答:解:∵x+y+z=4,∴x+y=4﹣z∵xy+yz+zx=5∴xy=5﹣yz﹣xz=5﹣z(x+y)=5﹣z(4﹣z)=z2﹣4z+5由韦达定理知:xy是一元二次方程t2﹣(4﹣z)t+(z2﹣4z+5)=0的两实根,则判别式△=(4﹣z)2﹣4(5﹣4z+z2)≥0,化简得:(z﹣2)(3z﹣2)≤0,又x,y,z为正实数∴0<z≤,∴z的最大值是.x+y的最小值是4﹣=.故答案为:.点评:此题考查了最值问题.解此题的关键是得到关于z的一元二次方程,利用判别式求解.此题难度较大,解题时要注意细心.17.(2014•黄冈模拟)设正实数a,b,c满足a+2b+c=1,则+的最小值是7.考点:基本不等式.专题:导数的综合应用.分析:通过代换转化为利用导数研究函数的单调性极值与最值即可.解答:解:∵正实数a,b,c满足a+2b+c=1,令a+b=x>0,b+c=y>0,且x+y=1.∴+=,由x+y=1可得y=1﹣x.∴==f(x).(0<x<1)∴f′(x)=﹣==,令f′(x)=0,解得x=.当时,f′(x)<0,此时函数f(x)单调递减;当时,f′(x)>0,此时函数f(x)单调递增.因此当x=时,函数f(x)取得最小值,==4+3=7.∴+的最小值是7.故答案为:7.点评:本题考查了利用导数研究函数的单调性极值与最值和转化的方法,属于难题.18.(2014•镇江二模)已知x,y∈R,满足2≤y≤4﹣x,x≥1,则的最大值为.考点:基本不等式.专题:导数的综合应用;直线与圆.分析:把原式化简可得,利用可行域和斜率计算公式可得的取值范围,再利用导数即可得出最大值.解答:解:由x,y满足2≤y≤4﹣x,x≥1,画出可行域如图所示.则A(2,2),B(1,3).==,令k=,则k表示可行域内的任意点Q(x,y)与点P(﹣1,1)的斜率.而k PA=,,∴,令f(k)=k+,则≤0.∴函数f(k)单调递减,因此当k=时,f(k)取得最大值,.故答案为:.点评:本题综合考查了线性规划的可行域和斜率计算公式、利用导数求函数最大值等基础知识与\基本技能方法,考查了分析问题和解决问题的能力,属于难题.19.(2013•镇江一模)已知x,y为正数,则的最大值为.考点:基本不等式.专题:计算题.分析:令2x+y=a,x+2y=b,则且a>0,b>0,从而有==,利用基本不等式可求解答:解:令2x+y=a,x+2y=b,则且a>0,b>0∴==当且仅当即a=b时取等号即最大值为故答案为:点评:本题主要考查了基本不等式在求解最值中的应用,解题的关键是利用换元法配凑基本不等式的应用条件20.(2012•宁国市模拟)4.考点:基本不等式;对数的运算性质.专题:计算题.分析:根据题意,由对数的性质可得,xy=10且x、y>0,对于+,由基本不等式变形计算可得答案.解答:解:根据题意,lgx+lgy=1⇒lgxy=1,则xy=10且x、y>0,对于+,由x、y>0,,可得、>0,则+≥2=2=4,即+的最小值为4,故答案为4.点评:本题考查基本不等式的运用,注意由对数的性质得到x、y均大于0,进而得到+符合基本不等式使用的条件.。

相关文档
最新文档