同一条弦所对的圆周角和圆心角的关系
圆周角与圆心角
圆周角与圆心角以下是为大家整理的圆周角与圆心角的相关范文,本文关键词为圆周角,圆心角,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
§第9讲圆心角与圆周角本课是在学习了圆,半径,直径,弦,弧,圆心角等概念以及圆的对称性的基础上,用推理论证的方法研究圆周角与圆心角关系。
它在与圆有关推理、论证和计算中应用广泛,是本章重点内容之一。
【知识点清单】§Ⅰ圆心角、弧、弦、弦心距之间的关系1.圆的旋转不变性:把圆绕着圆心旋转角度,都与原来的图形重合,我们把这种性质称为圆的。
则圆是以圆心为对称中心的中心对称图形。
2.圆心角:顶点在的角。
3.弦心距:从圆心到的距离叫作弦心距,弦心距可以说成是圆心到弦的垂线段的长度。
4圆心角、弧、弦、弦心距之间的关系(即四量定理):在中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个、、或中有一组量相等,那么它们所对应的其余各组量都分别相等.5.1?的弧:把顶点在圆心的周角等分成360份时,每1份的圆心角是1?的角;把整个圆也被分成360份,我们把每一份这样的弧叫作的弧。
6.圆心角度数定理:圆心角的度数和它所对的弧的度数。
§Ⅰ圆周角及其相关定理1.圆周角:顶点在圆上,两边和圆相交的角叫圆周角。
注意:(1)圆周角必须具备两个特征:①顶点在圆周上;②角的两边都和圆相交。
如下图中的角2.圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半。
圆周角定理的证明:(添加以圆周角的顶点为端点的直径为辅助线分类讨论)因为在Ⅰ0中,同一弧所对的圆周角和圆心角的位置关系有三种情况:①圆心在圆周角的“一边上”(如图Ⅰ)②圆心在圆周角的“内部”(如图Ⅰ)③圆心在圆周角的“外部\(如图Ⅰ)13.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90?的圆周角所对的弦是直径。
圆周角和圆心角的位置关系
第三章圆《圆周角和圆心角的关系(第1课时)》教学设计说明砀山县四新中学李保光一、学生起点分析学生的知识技能基础:学生在本章的第二节课中,通过探索,已经学习了同圆或等圆中弧、弦和圆心角的关系,并对定理进行了严密的证明,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题的基本能力.学生活动经验基础:在之前的学习过程中,学生已经经历了“猜想-验证”、分类讨论的数学方法,获得了在得到数学结论的过程中采用数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有了一定的合作学习的能力,具备了一定的合作和交流的能力.二、教学任务分析本节共分2个课时,这是第1课时,主要内容是圆周角的定义以及探究圆周角定理,并利用定理解决一些简单问题.具体地说,本节课的教学目标为:知识与技能1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.过程与方法1.培养学生观察、分析及理解问题的能力.2.在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.情感态度与价值观:培养学生的探索精神和解决问题的能力.教学重点:圆周角定理及其应用.教学难点:圆周角定理证明过程中的“分类讨论”思想的渗透.三、教学设计分析本节课设计了七个教学环节:知识回顾——探究新知1——定义的应用——探究新知2——方法小结——定理的应用——课堂小结(作业布置).第一环节 知识回顾活动内容:1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系? 如图:∠AOB 弧AB 的度数3.在同圆或等圆中,如果两个圆心角、两条 、两条 中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.练习1是复习圆心角定义:顶点在圆心的角叫圆心角;练习2和练习3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.活动的注意事项:题目以复习概念和定理为主,特别是定理当中的前提条件“同圆或等圆”,需要再特别向学生强调一遍,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.第二环节 探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .AOB圆心角 圆周角活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.活动的注意事项:问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.第三环节定义的应用活动内容:(1)练习、如图,指出图中的圆心角和圆周角解:圆心角有∠AOB、∠AOC、∠BOC圆周角有∠BAC、∠ABC、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动的注意事项:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.第四环节探究新知2活动内容:(一)问题提出:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角CB在同圆或等圆中,相等的弧所对的圆心角相等. 在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立 (四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角, 求证: 分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角 ∴∠AOB =∠C +∠AAB⌒C12ACB AOB∠=∠AB ⌒ AB ⌒12ACB AOB∠=∠●OAC∵OA=OC ∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?老师提示:能否也转化为1的情况? 过点C 作直径CD.由1可得:活动目的:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.活动的注意事项:本环节有不少的数学思想方法,教师在教学中要注意逐一渗透.在(一)中注意渗透类比思想,在(二)中注意渗透“分类讨论”思想,在(三)中注意渗透“特殊到一般”思想,在(四)(五)中注意渗透“猜想,试验,证明”的探究问题一般步骤.12ACB AOB ∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD ∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB ∠=∠即C活动内容:思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.活动的注意事项:多让学生用自己的语言表述当中用到的方法,然后教师再进行深加工.第六环节 定理的应用活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.活动的注意事项:这里要注意引导学生学以致用,通过作辅助线添加圆心角,把问题转化到定理的直接应用上.还要注意引导学生对得出的结论加以总结,从而得出新的定理.化归化归DD111,,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠ABC ADC AEC ∴∠=∠=∠BC活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.活动的注意事项:这里体现学生的总结和交流能力,只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言.第八环节:附课后练习答案随堂练习1.如图,在⊙O 中,∠BOC =50°,求∠BAC 的大小 解:在⊙O 中,∠BOC =50°2.如图,哪个角与∠BAC 相等,你还能找到那些相等的角? 解:∠BAC =∠BDC ∠ADB =∠ACB ∠CAD =∠CBD ∠ABD =∠ACD 习题1.如图,OA 、OB 、OC 都是⊙O 的直径,∠AOB =2 ∠BOC ,∠ACB 与∠BAC 的大小有什么关系,为什么?0011502522BAC BOC ∴∠=∠=⨯=AADOABC 12解:∠BAC = 2 ∠ACB ,理由:又∵∠AOB =2 ∠BOC即∠BAC= 2∠ACB 2.如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD 与∠BAD 的大小解:∵∠BCD =100°∴优弧所对的圆心角∠BOD =2∠BCD =200° ∴劣弧所对的圆心角∠BOD =36O °-200°=160°3.为什么电影院的作为排列呈弧形,说一说这设计的合理性.答:有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.船在航行过程中,船长通过测定角数来确定是否遇到暗礁, 如图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形 区域内,优弧AB 上任一点C 都是有触礁危险的临界点,∠ACB 就是“危险角”,当船位于安全区域时,∠α与“危险角” 有怎样的大小关系?解:当船位于安全区域时,即船位于暗礁区域外(即⊙O 外) ,与两个灯塔的夹角∠α小于“危险角” .四、教学设计反思1. 根据学生特点灵活应用教案针对编者学校学生的特点,大部分学生能力相对较高,因此课堂的容量会比112AOB ∠=∠122BOC ∠=∠11122222AOB BOC BOC ∴∠=∠=⨯∠=∠=∠o1802BAD BOD ∴∠=∠=较大,而且在教学过程中渗透的思想方法也较多,如果碰到学习能力不足的学生群体,则要根据实际情况进行调整,注意突出渗透分类讨论的思想方法和体会探索问题的一般步骤即可.2.让学生有充分的探索机会,经历猜想,试验,证明的环节学生往往会直接进行证明,这对于简单问题可行,对于复杂问题就不好做了,因此要让学生经历猜想的过程,并且需要实际动手,拿出量角器进行实际度量,验证猜想,最后再进行严密的几何证明.。
圆周角和圆心角的关系—知识讲解(提高)
圆周角和圆心角的关系—知识解说(提升)【学习目标】1.理解圆周角的观点,认识圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.娴熟掌握圆周角的定理及其推理的灵巧运用;经过察看、比较、剖析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【重点梳理】重点一、圆周角1.圆周角定义:像图中∠ AEB、∠ ADB、∠ ACB这样的角,它们的极点在圆上,而且两边都与圆订交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对圆心角度数的一半.3.圆周角定理的推论:推论 1:同弧或等弧所对的圆周角相等;推论 2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.重点解说:(1)圆周角一定知足两个条件:①极点在圆上;②角的两边都和圆订交.(2)圆周角定理建立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种地点关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外面.(以下列图)重点二、圆内接四边形1.圆内接四边形定义:四边形的四个极点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.2.圆内接四边形性质:圆内接四边形的对角互补 . 如图,四边形 ABCD是⊙ O的内接四边形,则∠ A+∠ C=180°,∠ B+∠ D=180° .BACOD重点解说:当四边形的四个极点不一样时在一个圆上时,四边形的对角是不互补.【典型例题】种类一、圆周角、圆心角、弧、弦之间的关系及应用1.已知:以下图,⊙ O中弦 AB= CD.求证: AD= BC.【思路点拨】此题主假如考察弧、弦、圆心角之间的关系,要证AD= BC,只要证AD BC 或证∠AOD=∠BOC即可.【答案与分析】证法一:如图①,∵AB = CD,∴AB CD .∴AB BD CD BD ,即AD BC ,∴AD = BC.证法二:如图②,连OA、 OB、 OC、 OD,∵ AB = CD,∴∠ AOB=∠ COD.∴∠AOB-∠ DOB=∠ COD-∠ DOB,即∠ AOD=∠ BOC,∴AD = BC.【总结升华】在同圆或等圆中,证两弦相等经常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,一定借助已知的等弦进行推理.贯通融会:【变式】以下图,已知AB 是⊙ O的直径, M、 N 分别是 AO、 BO的中点, CM⊥AB, DN⊥ AB.求证: AC BD .【答案】证法一:如上图所示,连OC、 OD,则 OC= OD,1OA,ON1OB,∵ OA=OB,且OM22∴OM= ON,而 CM⊥ AB, DN⊥ AB,∴Rt △ COM≌Rt △ DON,∴∠COM=∠ DON,∴AC BD.证法二:以下列图,连AC、 BD、 OC、 OD.∵M 是 AO的中点,且 CM⊥ AB,∴ AC =OC,同理 BD= OD,又 OC=OD.∴ AC =BD,∴AC BD.种类二、圆周角定理及应用2.( 2015?南京二模)如图, OA 、 OB 是⊙ O 的半径且 OA ⊥OB ,作 OA 的垂直均分线交⊙ O 于点C、 D ,连结 CB、 AB .求证:∠ ABC=2 ∠ CBO.【答案与分析】证明:连结OC、 AC ,如图,∵CD 垂直均分 OA ,∴ OC=AC .∴OC=AC=OA ,∴△ OAC 是等边三角形,∴∠ AOC=60 °,∴∠ ABC=∠ AOC=30°,在△ BOC 中,∠ BOC= ∠AOC+ ∠AOB=150 °,∵OB=OC ,∴∠CBO=15 °,∴∠ABC=2 ∠ CBO.【总结升华】此题考察了圆周角定理以及线段垂直均分线的性质和等边三角形的判断与性质,娴熟的掌握所学知识点是解题的重点 .贯通融会:【变式】如图, AB 是⊙ O的弦,∠ AOB= 80°则弦 AB所对的圆周角是.【答案】 40°或 140° .3. 如图, AB是⊙ O的直径, C、 D、 E 都是⊙ O上的点,则∠1+∠2=___________.【答案】 90° .【分析】如图,连结OE,则【总结升华】把圆周角转变到圆心角.贯通融会:【变式】(2015?玄武区二模)如图,四边形∠ABO=30°,则∠ D=.ABCD为⊙O的内接四边形,连结AC、 BO,已知∠ CAB=36°,【答案】 96°;提示:解:连结OC,如图,∠BOC=2∠CAB=2×36°=72°,∵OB=OC,∴∠ OBC=∠OCB,∴∠ OBC= (180°﹣∠ BOC) = (180°﹣ 72°) =54°,∴∠ ABC=∠OBA+∠OBC=30°+54°=84°,∵∠ D+∠ABC=180°,∴∠ D=180°﹣ 84°=96°.故答案为96.4.已知,如图,⊙ O上三点 A、 B、 C,∠ ACB=60°, AB=m,试求⊙ O的直径长 .【答案与分析】以下图,作⊙O的直径 AC′,连结C′ B,则∠ AC′ B=∠ C=60°又∵ AC′是⊙ O的直径,∴∠ ABC′ =90°即⊙ O的直径为.【总结升华】作出⊙ O的直径,将60°、直径与 m都转到一个直角三角形中求解 .贯通融会:【变式】如图,△ ABC内接于⊙ O,∠ C= 45°, AB=4,则⊙ O的半径为().A.2 2 B . 4C.23D.5【答案】 A.种类三、圆内接四边形及应用5.已知,如图,∠ EAD是⊙ O的内接四边形 ABCD的一个外角,而且 BD=DC.求证: AD均分∠ EAC.E DAOB C【思路点拨】如图,由圆内接四边形的性质可证得∠EAD=∠ DCB,依据等腰三角形的性质获得∠DBC=∠ DCB,依据圆周角定理可得∠ DBC=∠ DAC,因此等量代换可求得∠EAD=∠ DAC,即 AD均分∠ EAC.【答案与分析】证明:∵∠ EAD与∠ DAB互为邻补角,E D ∴∠ EAD+∠ DAB=180° .A∵四边形 ABCD是⊙ O的内接四边形,∴∠ DAB+∠ DCB=180° .O∴∠ EAD=∠ DCB.又∵∠ DBC与∠ DAC是DC所对的圆周角,B C∴∠ DBC=∠ DAC,∴∠ EAD=∠ DAC.即 AD均分∠ EAC.【总结升华】此题考察圆周角定理、圆内接四边形的性质,解题时要仔细审题,注意转变思想的合理运用 .贯通融会:【变式】如图,圆内接四边形ABCD的外角∠ABE=85°,则∠AOC的度数为() .A.150°B. 160 °C.170 °D.165 °DA OC【答案】 C.BE。
圆周角和圆心角的关系—知识讲解(基础)
圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。
弦所对的圆周角和圆心角的关系
弦所对的圆周角和圆心角的关系1. 引言大家好,今天咱们来聊聊一个看似有点儿高深、其实很简单的几何概念,那就是弦所对的圆周角和圆心角的关系。
听起来是不是有点儿复杂?别担心,我们慢慢来,肯定能把这个“圆”搞明白。
首先,咱们得了解这两个概念,顺便给大家普及一下,让你在下次喝茶聊天时也能来一句“你知道圆周角和圆心角的关系吗?”绝对能让朋友们刮目相看!1.1 圆心角的定义好,咱们先从圆心角说起。
圆心角,顾名思义,就是以圆心为顶点,连接圆上两点的角。
想象一下,你在圆心位置,像个“老大”,一手指向圆周上的A点,另一手指向B 点,然后就形成了一个“心”的角度。
这个角度的大小,基本上就是这两条线和圆心之间的“角斗”结果。
嘿,听起来是不是很酷?这就像你和朋友之间比拼谁的手机拍照更好,看谁的角度更完美。
1.2 圆周角的定义接着,咱们聊聊圆周角。
圆周角和圆心角的区别可大了!圆周角的顶点在圆的边缘,而不是圆心。
它是由两条弦的延长线形成的角度。
想象一下,你在海边,看到两条长长的沙滩,跟朋友说:“你看,这两个地方的海水都很漂亮!”然后你伸出手,想要把两个地方连起来,这样形成的角度就是圆周角。
虽然不那么显眼,但它的存在可一点也不简单。
2. 它们之间的关系说到这儿,大家可能会问:“这两个角到底有什么关系呢?”别急,接下来就是重点了!其实,弦所对的圆周角恰好等于相应的圆心角的一半。
简单来说,就是圆心角大,圆周角小。
就像在家里吃饭,你爸妈给你做了一个大份的菜,你能吃的部分就得少一些。
哎,这就叫“量入为出”嘛!2.1 数学公式所以,数学上我们可以用公式表示出来:圆周角 = 圆心角 / 2。
是不是简单明了?这个公式就像是一把钥匙,打开了圆心角和圆周角之间的秘密。
记住这句话,下次在考试时可别忘了!2.2 实际应用那么,这个关系有什么用呢?当然有了!在生活中,尤其是建筑设计和艺术创作中,我们常常需要用到这两种角度。
比如说,画一个大圆时,你需要确定一些关键点,这时候就得运用圆心角和圆周角的关系。
弦所对的圆周角和圆心角的关系
弦所对的圆周角和圆心角的关系大家好,今天咱们来聊聊一个有趣的几何问题:弦所对的圆周角和圆心角的关系。
听到这儿,不要慌,别以为这是数学的“噩梦”,其实这就是咱们在数学里碰到的那些小秘密。
想象一下,你在一个大圆圈里,有一个弦,哦,就是那种连接圆上两点的线段。
那么,这条弦所对的圆周角和圆心角之间,到底有什么秘密关系呢?让我给大家掀开这层神秘的面纱。
首先,咱们得从圆心角说起。
圆心角,顾名思义,就是从圆心出发的角度,它的顶点正好在圆心上。
这角度的意思就是从圆心看向圆上的两个点,形成的那个角度。
是不是有点像你在玩飞镖,瞄准一个靶心,然后投掷飞镖?那个角度就是你弯腰的角度,不同的角度,飞镖飞出去的轨迹就不一样,对吧?好了,咱们知道了圆心角的定义,接下来就是要谈谈圆周角了。
圆周角听起来有点像是圆心角的“小弟弟”,它的顶点不在圆心上,而是在圆周上。
简单来说,圆周角就是那些由弦所形成的角度。
想象一下,你站在圆的边缘,看看圆上的弦,然后对着这个弦产生的那个角度,这就是圆周角。
也许你会觉得,这个角度和圆心角之间好像没啥联系,但其实,它们之间有个绝对的关系,那就是圆心角是圆周角的两倍。
这就像你和你的小伙伴一起吃大餐,你吃的比他多,但他觉得也不差,因为他正好可以尝到你喜欢的那些美味,哇,这真是个绝妙的“吃货”组合。
接下来,让我们来个小实验。
假如你在一个大圆上选取两点A和B,然后画一条弦AB。
如果我们在圆心O画出两个线段OA和OB,就形成了一个圆心角,而弦AB对面的圆周角就是圆心角的一半。
这就像你把一个蛋糕切成两半,一半就是你的,一半就是你朋友的,你们分得均匀,不觉得这是个公平的交易吗?所以,你可以发现,无论圆心角多么大,圆周角永远只有圆心角的一半。
这就像你去参加生日派对,即使蛋糕有多大,你总是只能分到那一小块,别想太多。
更有趣的是,这种关系在不同的圆中都是适用的。
无论你走到哪儿,画个圆,选取一条弦,它对面的圆周角总是圆心角的一半。
圆周角与圆心角、弧的关系
(教案)圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,同时两边都和圆相交的角叫做圆周角。
2.在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。
3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。
4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。
5.圆的内接四边形对角之和是180度。
6.弧的度数确实是圆心角的度数。
解题思路:1.已知圆周角,能够利用圆周角求出圆心角2.已知圆心角,能够利用圆心角求出圆周角3.已知直径和弧度,能够求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,同时两边都和圆相交的角叫做圆周角。
注意圆周角定义的两个差不多特点:(1)顶点在圆上;(2)两边都和圆相交。
二、教学内容【1】圆心角:顶点在圆心的角。
利用两个错误的图形来强调圆周角定义的两个差不多特点:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】明白得圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。
已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去查找圆心O与∠BAC的关系本题有三种情形:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●假如圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●假如圆心O在∠BAC的内部或外部,那么只要作出直径AD,将那个角转化为上述情形的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。
九年级数学圆周角和圆心角的关系
A
A O
O B C
B C
一条弧所对的圆周角等于它所对的圆心角的一半
证明:一条弧所对的圆周角等于它所对的圆心角的一半
A
O B C
证明:一条弧所对的圆周角等于它所对的圆心角的一半
A O
B
C
பைடு நூலகம்
练习:
D
1.求圆中角X的度数
C O X
120°
O A
O
70° x
.
C
.
B
B C
A
B
A
2.如图,圆心角∠AOB=100°,则∠ACB=___。
O C
.
1.判别下列各图形中的角是不是圆周角。
A
⌒
有没有圆周角? 有没有圆心角? 它们有什么共同的特点?
O B C
它们都对着同一条弧
⌒
下列图形中,哪些图形中的圆心角∠BOC 和圆周角∠A是同对一条弧。
A
A D
O B
A O
O
C
A O
B
C
A O
D
B
C
B
C
B
C
自己动手量一量同一条弧所对的圆心角和 圆周角分别是多少度?
圆心角、弧、弦、弦心距之间的关系
D B C
B O A O'
B' A'
O A
在同圆或等圆中, 如果两个圆心角、 两条弧、 两条弦 中有一组量相等, 中有一组量相等,那么它们所对应的 其余各组量都分别相等
在同圆或等圆中,
圆心角的度数和它所对的弧的度数的关系
我们把顶点在圆心的周角等 分成360份时,每一份的圆心角是 1°的角。 因为同圆中相等的圆心角所 对的弧相等,所以整个圆也被 等分成360份。我们把每一份这 样的弧叫做1°的弧。
初中数学知识点精讲精析-圆周角和圆心角的关系
3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
圆心角定理
圆心角定理(弧、弦、圆心角关系定理)基本内容:1、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
2、在同圆或等圆中,如果两条弧相等,则它们所对的圆心角相等,所对的弦相等。
3、在同圆或等圆中,如果两条弦相等,则它们所对的圆心角相等,所对的弧相等。
在理解时要注意:⑴前提:在同圆或等圆中;⑵条件与结论:在①两条弧相等;②两条弦相等;③两个圆心角相等中,只要有一个成立,则有另外两个成立。
基本概念理解:1.在同圆或等圆中,若的长度=的长度,则下列说法正确的个数是( )①的度数等于;②所对的圆心角等于所对的圆心角;③和是等弧;④所对的弦心距等于所对的弦心距。
A .1个B .2个C .3个D .4个2.如图,在两半径不同的同心圆中,︒=''∠=∠60B O A AOB ,则( )A .B .C .的度数=的度数D .的长度=的长度3.下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧; (4)经过圆心的每一条直线都是圆的对称轴. (A )1个 (B )2个 (C )3个 (D )4个4.已知弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 . 5.在⊙O 中,的度数240°,则的长是圆周的 份.概念的延伸及其基本应用:1.在同圆或等圆中,如果圆心角BOA ∠等于另一圆心角COD ∠的2倍,则下列式子中能成立的是( )2.在同圆或等圆中,如果,则AB 与CD 的关系是( )A .CD AB 2> B .CD AB 2=C .CD AB 2< D .CD AB =(2题图)3.在⊙O 中,圆心角︒=∠90AOB ,点O 到弦AB 的距离为4,则⊙O 的直径的长为( )A .24B .28C .24D .164.在⊙O 中,两弦CD AB <,OM ,ON 分别为这两条弦的弦心距,则OM ,ON 的关系是( )A .ON OM >B .ON OM =C .ON OM <D .无法确定 5.已知:⊙O 的半径为4cm ,弦AB 所对的劣弧为圆的31,则弦AB 的长为 cm ,AB 的弦心距为 cm .6.如图,在⊙O 中,AB ∥CD ,的度数为45°,则∠COD 的度数为 .典型例题精析:例题1、如图,已知:在⊙O 中,OA ⊥OB ,∠A=35°,求和的度数.解:连结OC ,在Rt △AOB 中,∠A=35° ∴∠B=55°,又∵OC=OB , ∴∠COB=180°-2∠B=70°,∴的度数为70°,∠COD=90°-∠COB=90°-70°=20°,∴的度数为20°.说明:连结OC ,通过求圆心角的度数求解。
圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系
儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。
2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。
二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。
cm。
2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。
其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。
(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。
九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲
九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版【本讲教育信息】一、教学内容:弧、弦、圆心角、圆周角之间的关系 1. 圆心角、圆周角的概念. 2. 弧、弦、圆心角之间的关系. 3. 圆周角定理及推论.二、知识要点:1. 弧、弦、圆心角(1)我们把顶点在圆心的角叫做圆心角. (2)弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.如图所示,(1)若∠AOB =∠COD ,则︵AB =︵CD ,AB =CD ;(2)若︵AB =︵CD ,则∠AOB =∠COD ,AB =CD ;(3)若AB =CD ,则∠AOB =∠COD ,︵AB =︵CD.OABCD2. 圆周角(1)顶点在圆上,并且两边与圆都相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③②①(3)推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、重点难点:本节重点是圆心角、弦、弧之间的相等关系及圆周角定理. 难点是从圆的旋转不变性出发,得到圆心角、弦、弧之间的相等关系以及圆周角定理的证明.【典型例题】例1. 在⊙O 中,如图所示,∠AOB =∠DOC ,试说明:(1)︵DB =︵AC ; (2)BD =AC.B分析:(1)∵∠DOC =∠AOB ,∴︵DC +︵BC =︵AB +︵BC ,∴︵BD =︵AC. (2)∵在同圆或等圆中,相等的弧所对的弦相等,∴BD =AC.解:(1)∵∠DOC =∠AOB ,∴︵DC =︵AB , ∴︵DC +︵BC =︵AB +︵BC ,即︵BD =︵AC.(2)由(1)得︵BD =︵AC ,∴BD =AC.例2. 如图所示,C 是︵AB 的中点,与∠ADC 相等的角的个数是( ) A. 7个 B. 3个 C. 2个 D. 1个分析:由同弧或等弧所对的圆周角相等知,∠ADC =∠ABC =∠CAB =∠CDB ,故与∠ADC 相等的角共有3个.解:B评析:同弧或等弧所对的圆周角相等常用来证明两角相等;或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到题目中的要求.例3. 如图所示,BC 为半圆O 的直径,G 是半圆上异于B 、C 的点,A 是︵BG 的中点,AD ⊥BC 于点D ,BG 交AD 于点E ,请说明AE =BE.分析:在圆中,有关直径的问题常常需要添加辅助线,以便利用直径所对的圆周角是直角的性质,因此,欲说明AE 与BE 相等,可转化为说明∠BAD =∠ABE ,圆周角∠ABE 所对的弧为︵AG ,连结AB 、AC 即可解决问题.C解:连结AB 、AC. ∵︵AB =︵AG ,∴∠ABE =∠ACB. 又∵AD ⊥BC ,∴∠ABD +∠BAE =90°.∵BC 为直径,∴∠BAC =90°,∴∠ABD +∠BCA =90°, ∴∠BCA =∠BAE. ∴∠BAE =∠ABG , ∴AE =BE.例4. 如图所示,在⊙O 中,∠AOC =150°,求∠ABC 、∠ADC 、∠EBC 的度数,并判断∠ABC 和∠ADC 、∠EBC 和∠ADC 的度数关系.分析:解题的关键是分清同弧所对的圆心角和圆周角,如劣弧AC 所对的圆心角是∠AOC ,所对的圆周角是∠ABC ,优弧ABC 所对的圆心角是大于平角的∠α,所对的圆周角是∠ADC.解:∵∠AOC =150°,∴∠ABC =12∠AOC =75°.∵∠α=360°-∠AOC =360°-150°=210°,∴∠ADC =12∠α=105°,∠EBC =180°-∠ABC =180°-75°=105°.∵∠ABC +∠ADC =75°+105°=180°,∠EBC =∠ADC =105°, ∴∠ABC 和∠ADC 互补,∠EBC 和∠ADC 相等. 评析:理解圆周角的概念,分清同弧所对的圆心角和圆周角是熟练运用圆周角性质解题的前提.例5. 如图所示,AB 、CD 是⊙O 的弦,∠A =∠C. 求证:AB =CD.分析:此题的证明方法很多,由于AB 和CD 在圆中,且为弦,可证明AB 和CD 所对的圆心角相等或弧相等,也可直接或间接利用全等证明AB 和CD 相等. 等等.解法一:如图(1)所示,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.∴AB =2AE ,CD =2CF ,∠AEO =∠CFO =90°. 又∵∠A =∠C ,OA =OC , ∴△AOE ≌△COF ,∴AE =CF. ∴AB =CD.(1)解法二:如图(2)所示,连结OB 、OD.∵OA =OB =OC =OD ,∴∠A =∠B ,∠C =∠D. ∵∠A =∠C ,∴∠B =∠D. ∴△OAB ≌△OCD ,∴AB =CD.(2)(3)解法三:如图(3)所示,连结AC. ∵OA =OC ,∴∠1=∠3.又∵∠BAO =∠DCO ,∴∠2=∠4. ∴︵BC =︵AD.∴︵BC +︵BD =︵AD +︵BD ,即︵AB =︵CD , ∴AB =CD.例6. AB 、BC 、CA 是⊙O 的三条弦,O 到AB 的距离OE 等于12AB ,求∠C 的度数.分析:∠C 可能为一个钝角,也可能为一个锐角,要分类画图、分析和解答.BB m解:如图(1)所示,连结AO 、BO.因为OE ⊥AB ,所以EB =AE =12AB.又OE =12AB ,所以EB =OE =AE.所以∠EBO =∠EOB =∠EOA =∠EAO =45°.所以∠C =12∠AOB =12(∠AOE +∠EOB )=12×90°=45°.如图(2)所示,由(1)得∠AOB =90°,所以优弧A m B 所对的圆心角是270°,所以∠C =135°.即∠C 的度数为45°或135°.评析:图(1)中,△ABC 为锐角三角形,圆心在△ABC 内部;图(2)中,△ABC 为钝角三角形,圆心O 在△ABC 外部,两种情形都符合题意,所以本题应有两解.【方法总结】1. 圆不仅是轴对称图形和中心对称图形,实际上,圆绕圆心旋转任意一个角度α,都能与原来的图形重合,这样就把圆和其他的中心对称图形区别开来,即圆不仅是中心对称图形,而且还突破了中心对称图形旋转180°后才能与原来图形重合的局限性,得出圆所特有的性质:圆绕圆心旋转任意一个角度,都能与原来的图形重合,这叫做圆的旋转不变性. 利用这一性质可以推出圆的一些其他性质.2. 在利用圆心角、弧、弦的关系定理解题时,我们应注意:①作圆心到弦的垂线是圆中一种常见的作辅助线的方法;②由圆心到弦的垂线、弧、圆心角的相等来证明弦相等是证明线段相等的一条重要途径.3. 圆周角定理及其推论在证明和计算中应用非常广泛,它是证明角相等、线(弦)相等、弧相等的重要依据,尤其是其推论为在圆中确定直角、构成垂直关系创造了条件,它是圆中的一个很重要的性质,要熟练掌握. 同时它也是证明弦为直径的常用方法,若图中有直径,往往构造直径所对的圆周角形成直角,这也是圆中重要的辅助线.【预习导学案】(点和圆的位置关系)一、预习前知1. 圆可以看作是到__________的距离等于__________的点的集合,也就是说圆上的点到圆心的距离都等于__________.2. 圆的内部可以看作是到__________的距离小于半径的点的集合.3. 圆的外部可以看作是到__________的距离大于半径的点的集合.二、预习导学1. ⊙O 的半径r =5cm ,圆心O 到直线的距离OD =3cm . 点A 、B 、C 在直线l 上,若AD =23cm ,BD =4cm ,CD =5cm . 则点A 在⊙O__________,点B 在⊙O__________,点C 在⊙O__________.2. 下列条件中,可以画一个圆,并且只可以画一个圆的条件是( ) A. 已知圆心 B. 已知半径 C. 已知三点 D. 过直线上两点和直线外一点3. 三角形外接圆的圆心是( ) A. 三内角平分线的交点 B. 三边垂直平分线的交点 C. 三中线的交点 D. 三高线的交点4. 用反证法证明:“在△ABC 中,至少有两个内角是锐角”时,第一步假设__________成立.反思:(1)点和圆有哪些位置关系?(2)经过不在同一直线上的三点画圆的时候,如何确定圆心?(3)反证法的基本思路和一般步骤是怎样的?【模拟试题】(答题时间:50分钟)一、选择题1. 一条弦分圆周为5∶7,这条弦所对的两个圆周角分别为( )A. 150°,210°B. 75°,105°C. 60°,120°D. 120°,240°2. 已知AC 为⊙O 的直径,弦AB =10cm ,∠BAC =30°,那么⊙O 的半径为( )A. 5cmB. 52cmC. 1033cmD. 2033cm3. 如图所示,⊙O 的弦AB 、CD 相交于点E ,已知∠ECB =60°,∠AED =65°,那么,ADE的度数为( )A. 40°B. 45°C. 55°D. 65°*4. 如图所示,劣弧︵AE 所对的圆心角为40°,则∠B +∠D 等于( ) A. 320° B. 160° C. 300° D. 260°D5. 如图所示,AB 为⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( ) A. 75° B. 72° C. 70° D. 65°6. 如图所示,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数为( ) A. 80° B. 100° C. 120°D. 130°**7. 已知⊙O 的半径为6cm ,⊙O 的一条弦AB 的长为63cm ,则弦AB 所对的圆周角是( ) A. 30° B. 60° C. 30°或150° D. 60°或120°二、填空题1. 如图所示,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD =CE ,则AC 与CB 弧长的大小关系是__________.2. 如图所示,点A 、B 、C 、E 都在圆周上,AE 平分∠BAC 交BC 于点D ,则图中相等的圆周角是__________.3. 如图所示,AB 是⊙O 的直径,︵BC =︵BD ,∠A =30°,则∠BOD =__________.AB4. 如图所示,已知⊙O 的半径为2,圆周角∠ABC =30°,则弦AC 的长是__________.5. 如图所示,AB 是半圆O 的直径,∠BAC =40°,D 是︵AC 上任意一点,那么∠D 的度数是__________.A**6. 如图所示,A 、B 、C 、D 、E 是⊙O 上顺次五点,且AB =BC =CD ,如果∠BAD =50°,那么∠AED =__________.B三、解答题1. 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F. (1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?︵AB 与︵CD 的大小关系?为什么?∠AOB 与∠COD 呢?BD2. 如图所示,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD =CE ,BE 与CE 的大小有什么关系?为什么?*3. 如图所示,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC =PC. PB 的延长线交⊙O 于D. 求证:AC =DC.P*4. 如图所示,已知A 、B 、C 、F 、G 是⊙O 上的五点,AF 交BC 于点D ,AG 交BC 于点E ,且BD =CE ,∠1=∠2. 求证:AB =AC.试题答案一、选择题1. B2. C3. C4. B5. A6. D7. D二、填空题 1. 相等2. ∠ABC =∠AEC ,∠ACB =∠AEB ,∠BAE =∠CAE =∠BCE =∠CBE3. 60°4. 25. 130°6. 75°三、解答题1.(1)如果∠AOB =∠COD ,那么OE =OF ,理由是:因为∠AOB =∠COD ,所以AB =CD. 因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD ,所以AE =CF. 又因为OA =OC ,所以R t △OAE≌R t △OCF. 所以OE =OF. (2)如果OE =OF ,那么AB =CD ,︵AB =︵CD ,∠AOB =∠COD ,理由是:因为OA =OC ,OE =OF ,所以R t △OAE ≌R t △OCF. 所以AE =CF ,又因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD. 所以AB =2AE ,CD =2CF. 所以AB =CD. 所以︵AB =︵CD ,∠AOB =∠COD.2. BE =CE. 理由:∵AB 、DE 为⊙O 的两条相交的直径,∴∠AOD =∠BOE ,∴BE =AD ,又∵AD =CE ,∴BE =CE.3. 连结AD ,∵AB 是⊙O 的直径,∴∠ADP =90°,∵AC =CP ,∴CD =12AP. ∴CD =AC =12AP.∴AC =DC.4.∵∠1=∠2,∴⌒BF =⌒CG ,∴BF =CG ,⌒BG =⌒CF ,∴∠FBC =∠GCE. 又BD =CE ,∴△BFD ≌△CGE (SAS ),∴∠F =∠G. ∴⌒AB =⌒AC ,∴AB =AC.。
《圆周角和圆心角的关系》圆PPT课件3(1)
E
●O
C
B
D
A
E B
C D
同弧或等弧所对的圆周角相等。
如图,在⊙O中,∠B,∠D,∠E的大小有什么关系?
为什么?
D
同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所 对的弧也相等。
B E
●O
A
C
⑴“同弧或等弧”能否改为“同弦或等弦” 不能 ?
⑵ “同圆或等圆”这一条件能否省去? 不能
随堂练习: 1.如图,在⊙O 中,∠BOC=50°,求∠BAC 的大小。
圆周角定理推论:
C
同弧(等弧)所对的圆周角相等.
都等于这条弧所对的圆心角的一半.
D
O
A
在同圆或等圆中, B 相等的圆周角所对的弧相等.
• 想一想:
• 在射门游戏中,当球员在B,D,E处射门时,他所处的位置对球 门AC分别形成三个角∠ABC, ∠ADC,∠AEC.这三个角的大 小有什么关系?你能用圆周角定理去解决问题。
九年级数学(下)第三章 圆
3.4 圆周角和圆心角的关系
A
E B
C D
知识回顾
1.圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.
2.圆也是中心对称图形. 它的对称中心就是圆心.
3.顶点在圆心的角叫做圆心角.
4.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等。
A
E
●O
C
B
D
A
E B
C D
圆周角定义:
A
顶点在圆上,并且两边都和圆 E
相交的角叫圆周角.
●O
C
B
特征: ① 角的顶点在圆上. ② 角的两边都与圆相交 .
优弧的圆周角和圆心角
优弧的圆周角和圆心角
圆周角与圆心角的关系是同弧所对的圆周角等于圆心角的一半。
优弧和劣弧与圆心角关系是优弧所对圆周角等于劣弧所对圆周角的补角,也就是圆心角的一半的补角。
圆周角是指顶点在圆上且角的两边是圆的弦,圆心角是指顶点是圆心,角的两边是这个圆的半径的角。
圆心角定义:
1、等弧对等圆心角。
2、把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。
3、因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧。
4、圆心角的度数和它们对的弧的度数相等。
圆周角和圆心角的关系
课 题:3.3(2)圆周角和圆心角的关系课 型: 新授课授课人: 滕州市柴里矿区学校 陈文霞授课时间:2013年3月4日 星期一 第三节课 教学目标:1.掌握圆周角定理的三个推论.(重点)2.能熟练应用圆周角推论解决问题.(重点)3.理解推论的“题设”和“结论”,灵活运用推论进行问题的“转化”.教法及学法指导:本课时的学习内容,是在已学圆周角定理的基础上进行推理,论证较为简单,学生易于接受,因此侧重于推论的总结表达与应用,帮助学生从直观感受到理性表述地提升,并能严谨地表达自己的见解.难点是灵活运用定理及推论进行灵活转化;关键是真正让学生交流讨论起来,发挥集体智慧,通过相互间的合作与交流,发展学生合作交流的能力和数学表达能力;教师通过组织、点拨、引导,促进学生主动探索,积极思考,总结规律,充分发挥学生的主体作用.课前准备:圆规、三角板、相关图片学生提前预习教学过程:一、复习巩固,引入课题师:同学们请回忆一下我们前几节课学习了哪些和圆有关系的角?它们之间有什么关系? 生:学习了圆心角和圆周角,一条弧所对的圆周角等于它所对的圆心角的一半.即圆周角定理.师:下面两个小练习,看谁算得又准又快: 1、已知:如图,∠BOC 是_______角,∠BAC 是_______角; 若∠BOC=80°则∠BAC =_______2、已知:如图,点A 、B 、C 都在⊙O 上, 若∠BCO=65°则∠BAC =_______ 生:40°、25°师:要求圆周角,由关系定理转化为圆心角来确定,这是在圆中常用的转化思想,请大家想着它并加以应用. 师:圆周角定理应用的不错,今天我们继续学习圆周角和圆心角的关系.(设计意图:回忆旧知,为本节课学习新的知识做铺垫,通过简单的应用,让学生感受知识A之间的互相联系,为后面学习推论的论证作好准备.) 二、出示目标,确定学习内容 师:今天需要学习掌握的内容是: 1.掌握圆周角定理的三个推论.(重点) 2.能熟练应用圆周角推论解决问题.(重点)(设计意图:明确目标,使学生明确这节课的学习任务,利于学生集中精力学习重点内容.) 三、讨论交流,掌握新知师:同学们请看下面这个图形:在⊙O 中,以A 、C 为端点的弧所对的圆周角,我画出了三个,∠ABC 、∠ADC 、∠AEC ,这样的圆周角有多少个?它们的大小有什么关系?你是如何得到的? 生1:以A 、C 为端点的弧所对的圆周角有无数个,它们的大小相等,测量一下就可以得到的.师:测量是最直观的验证方法,但有误差,我们能否用推理验证的方法得到上图中的∠ABC =∠ADC =∠AEC ? 生2:连接AO ,CO 可以看出,∠ABC 、∠ADC 和∠AEC 是同弧所对的圆周角,它们都等于圆心角∠AOC 的一半,所以这几个圆周角相等. 师:用一句话概括出此结论. 生: 同弧所对的圆周角相等.师:回到课本P108开头图3-13遗留下来的问题,看看它的结论,你找到依据了吗?生:找到了,它们属于同弧所对的圆周角,实景抽象出来就是我们所画的这个图. 师:为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性. 生3:减少盲区.生4:那是要求后排比前排高的设计. 师:结合我们刚得到的结论.生:电影院的横排坐位排列呈圆弧形,是想尽量保证同排的观众视角相等.师: 对,保证同排的观众相对于舞台的张角相等;如果我们把上面的同弧改成等弧,结论一样吗?生:一样,等弧所对的圆心角相等,这样,我们便可得到等弧所对的圆周角相等. 师:补充完善我们刚才的结论. 生:同弧或等弧所对的圆周角相等. 生5:好像要强调在同圆或等圆中吧.BD师:这个问题提的不错,谁能回答?生6:不需要,“同弧”只能在“同一个圆”中;“等弧”暗含“在同圆或等圆中”. 师:真棒!一定要注意特殊词语里的暗含条件;这是我们所学的第一个推论.谁能改写成“如果---那么---”的形式?生7:如果同弧或等弧所对的圆周角,那么相等. 师:分清了题设与结论,但太过简单了.生8:如果两个角是同弧或等弧所对的圆周角,那么这两个角相等.师:真不错;若将上面推论中的“同弧或等弧”改为“同弦或等弦”,结论成立吗?请同学们先画一画,再议一议.生9:“等弦”不一定成立,它没有暗含等圆的条件,可能出现一大一小两个圆.图中∠C与∠D 不相等.(师出示图片一)(图一) (图片二)师:同弦呢?生:结论不一定成立.因为一条弦所对的圆周角有两种可能,一种是在弦的同一侧,也是同弧所对的圆周角,此时相等;一种是圆周角分布在弦的两侧,就不再相等. (师出示图片二)师:两种状况,再次体现分类思想,你们能猜出∠C 与∠D 什么关系吗? 提示一下,可以找一下和它们有关系的圆心角.生:(思考,讨论)∠C +∠D =180°师:这是补充的第二个推论,同学们需要了解清楚.在同圆中,同弦所对的圆周角要么相等要么互补.因此推论一中的“同弧或等弧”不能改为“同弦或等弦”.接下来我们看下面的问题:如下图,BC 是⊙O 的直径,它所对的圆周角是锐角、直角,还是钝角?你是如何判断的?(同学们互相交流、讨论)CCCD生10:直径BC所对的圆周角是直角,因为一条直径将圆分成了两个半圆,而半圆所对的圆心角是∠BOC=180°,所以∠BAC=∠90°.师:反过来,在下图中,如果圆周角∠BAC=90°,那么它所对的弦BC经过圆心O吗?为什么?生11:弦BC经过圆心O,因为圆周角∠BAC=90°.连结OB、OC,所以圆心角∠BOC=180°,即BOC是一条线段,也就是BC是⊙O的一条直径.师:通过刚才大家的交流,我们又得到了圆周角定理的第三个推论:直径所对的圆周角是直角;90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角;如果需要直角或证明垂直时,往往作出直径即可解决问题.(设计意图:教师通过组织、点拨、引导,促进学生主动探索,积极思考,总结规律,充分发挥学生的主体作用.)四、例题展示,学会应用师:为了进一步熟悉推论,我们看下面的例题.[例]如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[师生共析]:有直径,就可以构造直角,得到垂直;此处AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的三线合一,可证得BD=CD.下面哪位同学能叙述一下理由?生:口述过程BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AC=AB,∴BD=CD.师:通过我们学习圆周角定理及推论,大家互相交流,讨论一下,我们探索上述问题时,用到了哪些方法?试举例说明.生:在得出本节的结论过程中,我们用到了度量与证明的方法.比如说在研究同圆或等圆中,同弧或等弧所对的圆周角相等;还学到了分类与转化的方法.比如说在探索圆周角定理过程中,定理的证明应分三种情况,在这三种情况中,第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决.再比如说,学习圆周角定义时,可由前面学习到的圆心角类比得出圆周角的概念……(设计意图:通过例题的应用,直观地展示定理的应用过程,感受转化思想的具体应用方法;方法归类总结,利于学生灵活应用.)五、自我测评,巩固新知1.如下图,哪个角与∠BAC相等?生答:∠BDC=∠BAC.2.如下图,⊙O的直径AB=10cm,C为⊙O上的一点,∠ABC=30°,求AC的长.生解:∵AB 为⊙O 的直径. ∴∠ACB =90°. 又∵∠ABC =30°, ∴AC =12AB =12×10=5(cm).3.小明想用直角尺检查某些工件是否恰好为半圆形.根据下图,你能判断哪个是半圆形?为什么?生答:图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.(设计意图:通过针对性的简单应用,加深理解本课新知,而不是仅仅停留在了解记忆的层面.)六、分组讨论,合作探究师:下面我们一起来看一个问题:做一做船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁.如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么?生:就近四人一组,交流讨论,互相提示,感受不同的思维方法、角度.[师生共析]:这是一个有实际背景的问题.数学化以后就是:船在危险区域点在圆内∠α>∠C船在临界区域点在圆上∠α=∠C船在安全区域点在圆外∠α<∠C这也是“点与圆的位置关系”的另一种判定方法;我们可采用反证法进行论证.解:(1)当船与两个灯塔的夹角∠α大于“危险角”∠C时,船位于暗礁区域内(即⊙O内).理由是:连结BE,假设船在⊙O上,则有∠α=∠C,这与∠α>∠C矛盾,所以船不可能在⊙O上;假设船在⊙O外,则有∠α<∠AEB,即∠α<∠C,这与∠α>∠C矛盾,所以船不可能在⊙O外.因此,船只能位于⊙O内.注意:1.“不在圆内”包含“在圆上或圆外”,要分类说明,体现分类思想.2.用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)由矛盾判定假设不正确,从而肯定命题的结论正确.师:模仿(1)的过程,口述(2)的推理过程.生:先相互口述,再由一名学生代表口述.(设计意图:以这道题目来探究,使学生感受“学习数学服务生活”的目的;对于实际问地抽象,学生需要集思广益,充分讨论,充分质疑,然后通过师生的辩论、展示形成规范、合理的思路,最后进行严谨的表述.)七、自我小结,归纳提高师:小结一下本节所学内容学生在自己座位上七嘴八舌的总结本课的学习重点及学习过程.八、作业:1.课本P116课后习题.2.助学P244知识梳理、巩固训练1、2、3.3.预习下一课时.板书设计:教后反思:本节课引导学生自主学习,通过讨论交流进行新知的总结归纳,教师在学生探究学习过程中尽力成为一个引导者、合作者、组织者,适当放开学生的手、口、脑,使学生充分表现总结的潜力与智慧,表现真实的思维和真实的自我,让数学教学的过程是师生共同活动、共同成长与发展的过程.成功体验:本节课能充分利用现实生活和数学教材中的素材,激发学生学习的积极性,在得出结论的过程中,鼓励学生自觉地总结研究图形时所使用的方法,如度量和证明、分类和转化、类比等.存在问题:本节课容量较大,教学时要注意好节奏.。
圆周角与圆心角的关系
圆周⾓与圆⼼⾓的关系《圆周⾓与圆⼼⾓的关系》说课稿各位评委,各位⽼师:⼤家好!我是来⾃银川市回民中学的李慈秀我今天说课的内容是北师⼤版九年级数学下册第三章《圆》中的第三节《圆周⾓与圆⼼⾓的关系》的第⼀课时。
下⾯,我将从背景分析,教学⽬标设计,教学过程设计三个⽅⾯对本节课加以说明。
⼀、背景分析(下⾯我从学习任务、学⽣情况两个⽅⾯进⾏背景分析)1.学习任务分析在学习本节课之前,学⽣已经认识了圆的圆⼼、半径、弦、弧,也理解了圆⼼⾓的概念,并且通过圆的对称性研究了弦,弧,圆⼼⾓,以及弦⼼距之间的关系,在研究过程中已经经历了应⽤三⾓形的内⾓和、等腰三⾓形的相关知识来解决问题的过程。
教材中将《圆周⾓和圆⼼⾓的关系》安排了两课时,⽽本节课作为第⼀课时,它的学习任务是:通过观察,猜想、验证、推理等数学活动,帮助学⽣理解圆周⾓的概念,证明并掌握圆周⾓定理。
本节课在对圆周⾓定理的证明过程中充分渗透了分类讨论的数学思想和⽅法,学习圆周⾓定理不仅为下节课学习的两个推论及应⽤奠定了坚实的理论依据。
同时,也为后续研究圆和其他图形起到了桥梁和纽带作⽤。
所以我确定本节课的重点是:重点:圆周⾓概念及圆周⾓定理。
2.学⽣情况分析。
九年级学⽣已经系统的学习了简单的⼏何证明,掌握了基本的⼏何语⾔和证明的⽅法,同时,在研究“直线型”⼏何问题(如三⾓形、四边形)的过程中,也积累了⼤量的合作学习的经验,同时了解了分类、归纳等数学思想。
但是学⽣在添加辅助线解决数学问题时,往往⽆从下⼿,甚⾄不能合理添加,尤其本节课还需要在“曲线”⼏何问题中添加辅助线,更加增⼤了难度。
所以我确定本节课难点是:难点:添加辅助线证明圆周⾓定理⼆教学⽬标设计依据数学课程标准、教学内容的特点及学⽣的认知⽔平,我确定本节课的教学⽬标是:1、理解圆周⾓的概念、了解圆周⾓定理的证明;2、经历探索圆周⾓和圆⼼⾓的关系的过程,学会以特殊情况为基础,通过转化来解决⼀般性问题的⽅法,渗透分类的数学思想.3、通过观察、猜想、验证、推理等数学活动,培养学⽣探索数学问题的能⼒和教会学⽣解决数学问题的⽅法.三教学过程设计环节⼀、创设情境,引⼊新课⾸先我给出了⾜球运动员射门的图⽚,学⽣对此表现出了⾮常⼤的兴趣,这是我不失时机的从图⽚中抽象出这样的数学问题.问题:⾜球训练场上教练在球门前划了⼀个圆圈,进⾏⽆⼈防守的射门训练,如图,甲、⼄两名运动员分别在B 、D 两地,他们争论不休,都说⾃⼰所在位置对球门AC 的张⾓⼤.如果你是教练,请评⼀评他们两个⼈,谁的位置对球门AC的张⾓⼤.这⼀环节中我安排了学⽣感兴趣的⽣活场景和数学活动,学⽣很快就为这⼀问题争论了起来,充分的激发了学⽣的探索激情和求知欲望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同一条弦所对的圆周角和圆心角的关系
圆周角和圆心角是圆内角的两种特殊形式。
在圆上任意取一条弦,弦所对的圆周角和圆心角是由这条弦所夹的圆弧所确定的角度。
我们来了解圆周角的定义。
圆周角是指以一条弦为两边的角,其顶点在圆上。
圆周角所对的圆弧是以这条弦为弦的圆弧。
圆周角的度数等于其所对的圆弧的度数。
接下来,我们来了解圆心角的定义。
圆心角是指以圆心为顶点的角,其两条边分别与圆上的两点相交。
圆心角所对的圆弧是以这个角为圆心角的圆弧。
圆心角的度数等于其所对的圆弧的度数的两倍。
那么,同一条弦所对的圆周角和圆心角之间有何关系呢?
我们可以观察到,当弦的长度不变时,弦所对的圆周角和圆心角的度数是相等的。
这是因为,弦所对的圆周角是由弦所夹的圆弧所决定的,而圆心角是以圆心为顶点的角,其两边分别与圆上的两点相交,所以圆心角所对的圆弧也是由这条弦所夹的圆弧所决定的。
因此,当弦的长度不变时,弦所对的圆周角和圆心角的度数是相等的。
我们可以观察到,当弦的长度增大时,弦所对的圆周角和圆心角的度数也会增大。
这是因为,当弦的长度增大时,弦所夹的圆弧的度数也会增大,而圆周角和圆心角的度数与所对的圆弧的度数是相等的。
因此,当弦的长度增大时,弦所对的圆周角和圆心角的度数也
会增大。
我们可以观察到,当弦的长度减小时,弦所对的圆周角和圆心角的度数也会减小。
这是因为,当弦的长度减小时,弦所夹的圆弧的度数也会减小,而圆周角和圆心角的度数与所对的圆弧的度数是相等的。
因此,当弦的长度减小时,弦所对的圆周角和圆心角的度数也会减小。
同一条弦所对的圆周角和圆心角之间有如下关系:当弦的长度不变时,弦所对的圆周角和圆心角的度数是相等的;当弦的长度增大时,弦所对的圆周角和圆心角的度数也会增大;当弦的长度减小时,弦所对的圆周角和圆心角的度数也会减小。
这种关系在几何学中具有重要的应用。
在解决与圆相关的问题时,我们常常需要利用这一关系来求解未知角度或长度。
通过理解和应用这一关系,我们可以更好地理解和运用圆周角和圆心角的概念,进而解决与圆相关的各种几何问题。
同一条弦所对的圆周角和圆心角之间存在着一定的关系,这种关系在几何学中具有重要的应用价值。
通过深入理解和应用这一关系,我们可以更好地理解和运用圆周角和圆心角的概念,从而解决与圆相关的各种几何问题。
同时,我们也可以通过这一关系来推导和证明其他与圆相关的定理和性质,进一步拓展我们的几何学知识。