七年级下册《相交线与平行线》教案优秀范文五篇

合集下载

《平行与相交》教案(精选12篇)

《平行与相交》教案(精选12篇)

《平行与相交》教案(精选12篇)《平行与相交》篇1《平行和相交》这一课内容看似很简单,但是要让学生弄透彻也是需要下一番功夫的。

正是因为自己开始对于教材内容过于轻视,导致这部分知识学生掌握的非常不扎实,一直处在似懂非懂的状态,后期花费了大量的时间和精力来弥补。

为了吸取经验,我进行了反思,希望在今后的教学中能避免再犯此类错误。

对教材的把握和理解要怎样才能非常到位,怎样从学生的需求出发,以学生为主体,创造性的使用教材,带着这些问题我从以下几个方面谈谈自己的一点体会:1、联系学生的生活实际,让学生体验到生活中处处有数学。

我们的数学教学应从学生的数学现实出发,精心营造一个学生熟悉的空间,引导他们发现数学问题,探究数学规律。

这节课从学生身边熟悉的事物入手,围墙的栏杆、操场的跑道、足球场的球门、篮框的支架,都是学生在学校里经常能看见的,通过对这些图形的形象演示,让学生直观看到真实世界中的“平行与相交”,为学生创造了一个研究图形特征和关系的丰富情境,加强了学生的感性认识,有利于学生用身边的数学现象理解数学知识,在探讨、交流、分析中获得数学概念,拉近了抽象的数学概念与生活实际的距离。

虽然直观情境创设的还不错,但是我忽视了学生从抽象到具体,真正转化为知识所需要的时间,自以为学生已经掌握了,所以加快了速度,结果导致学生没有真正的消化吸收好,很长一段时间都是被老师拖着走,根本没有真正的理解。

2、对教材的把握和理解到位,精心设计教学环节。

平行概念中的“同一个平面”是学生理解的难点,于是我非常巧妙地设计了一个环节来化解这个难点。

先让学生结合具体的生活场景充分感知今天研究的每组都是两条直线,再过出示教室里的门框上的两条线(一个画有绿直线,在门上;一个画有红直线在门上面的窗上)摆放两种位置。

问:这时这两条直线在同一个平面内吗?把门打开后在同一个平面内吗?几名学生上来摸,感知“同一平面”的含义。

这部分知识学生理解起来不费劲,但是在做题的过程中能真正的'灵活运用才是难点。

初一下学期数学平行线教案5篇

初一下学期数学平行线教案5篇

初一下学期数学平行线教案5篇初一下学期数学平行线教案篇1教学目标:1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.2、能用符号语言写出一个命题的题设和结论.3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.教学难点:将文字语言转化为几何符号语言.教学过程:一、复习提问1、命题“两直线平行,内错角相等”的题设和结论各是什么2、根据题设,应画出什么样的图形(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示(答:在图中标出一对内错角,并用符号表示)二、例题分析例1、证明:两直线平行,内错角相等.已知:a∥b,c是截线.求证:∠1=∠2.分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).例2、证明:邻补角的平分线互相垂直.已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.三、课堂练习:1、平行于同一条直线的两条直线平行.2、两条平行线被第三条直线所截,同位角的平分线互相平行.四、归纳小结主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.五、布置作业课本P143 5、(2),7.六、课后思考:1、垂直于同一条直线的两条直线的位置关系怎样2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样初一下学期数学平行线教案篇2教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

相交与平行教案初中

相交与平行教案初中

相交与平行教案初中教学目标:1. 理解相交线与平行线的概念;2. 学会判断直线是否平行或相交;3. 能够运用相交与平行的知识解决实际问题。

教学重点:1. 相交线与平行线的定义;2. 判断直线是否平行或相交的方法。

教学难点:1. 理解并掌握相交线与平行线的概念;2. 能够灵活运用判断直线是否平行或相交的方法。

教学准备:1. 教学课件或黑板;2. 直线模型或图片;3. 练习题。

教学过程:一、导入(5分钟)1. 引导学生观察教室里的直线,让学生注意到有些直线是相交的,有些直线是平行的。

2. 提问:什么是相交线?什么是平行线?二、新课(20分钟)1. 讲解相交线的定义:在同一平面内,两条直线相交于一点,叫做相交线。

2. 讲解平行线的定义:在同一平面内,两条直线永不相交,叫做平行线。

3. 演示如何判断直线是否平行或相交:通过观察两条直线的斜率和截距来判断。

4. 举例说明如何判断直线是否平行或相交:给出两条直线的斜率和截距,让学生判断直线的位置关系。

三、练习(15分钟)1. 让学生独立完成练习题,练习判断直线是否平行或相交。

2. 引导学生总结判断直线位置关系的方法。

四、应用(10分钟)1. 让学生运用相交与平行的知识解决实际问题,如设计路线、规划图形等。

2. 引导学生总结解决实际问题的方法。

五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结相交线与平行线的定义及判断方法。

2. 强调相交与平行在实际生活中的应用。

教学反思:本节课通过讲解相交线与平行线的定义,让学生掌握了判断直线位置关系的方法,并通过练习题和实际应用,提高了学生的理解和运用能力。

在教学中,要注意关注学生的学习情况,及时解答学生的疑问,并引导学生将所学知识运用到实际生活中。

北师大版七年级下第二章《相交线与平行线》全章教案

北师大版七年级下第二章《相交线与平行线》全章教案

2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 2.定义分别为: 。

m nab.的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。

:一般地,如果两个角的和是1800,那么称这两个角互为补角supplementary angle ) 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。

2.1—5 12 3 42.1—6 1.请画出两个角,使他们的和为直角。

2.请画出两个角,使它们的和为平角。

3.小组交流画法,相互点评。

4.用自己的语言描述补角余角的定义。

2.1—7中有什么关系?为什么?同角或者等角的余角相等。

同角或者等角的补角相等。

abc两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互perpendicular),其中的一条直线叫做另一条直线的垂足。

通常用“⊥”表示两直线垂直。

2.1—1 2.1—2归纳结论:1.点A 和直线m 的位置关系有两种:点A 可能在直线m 上,也可能在直线m 外。

2.平面内,过一点有且只有....一条直线与已知直线垂直。

直线外一点与直线上各点连接的所有线段中,垂线段最短。

第三环节 学以致用,步步为营 请动手画一画四如图:一辆汽车在直线形的公路上由两侧的两所学校。

动手画一画3:请画出直线l 和l 外一点P 做PO ⊥l ,O 是垂足,在直线l 上取点A,B,C, 比较线段PO 、PA 、PB 、PC 的长短,你发现了什么?综合应用,开阔视野体育课上老师是怎样测量跳远成绩的?能说说说其中的道理吗?问题2:如图2.1-5已知∠=3cm,AB=5cm,线BC的距离等于E第2题图,那么哪两条直线平行?为什么?APQ=∠CFE=46°,可得到哪些平行线?为什么?与∠DCG 的两边相交于A ,B 两点,∠C 的同位角是 的同位角是 ,∠EBG 的同位角是 . 第3题第1题第4题(内错角相等,两直线平行)什么关系?图中还有其他同位角吗?它们的大小有什么关系?)图中有几对内错角?它们的大小有什么关系?为什么?)图中有几对同旁内角?它们的大小有什么关系?为什么?一谈今天学习的平行线的性质和上一节判定直线平行的条件有什么不同归纳:条件:角的关系性质:线的关系也平行吗?师生交流,共同总结本节课所学的知识,并有针对性的布置作,可以判定哪两条直线平行?根据是什么? ,可以判定哪两条直线平行?根据是什么? ,可以判定哪两条直线平行?根据是 什么? 1 =∠2,那么 EF 与 AB 平行,直线 . 1 = 2.3—22.3—3 2.3—42.3—52.3—62.3—72.3—8在应用它们时,你认为应该注意哪些问题?因为和所以分别表达的意义是什么?根据(1)请过C点画出与AB平行的另一边。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 能够识别和判断直线之间的相交与平行关系。

3. 掌握平行线的性质及推论。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及推论。

教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。

2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。

3. 引导学生通过观察和思考,总结出平行线的性质及推论。

作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。

2. 请学生总结平行线的性质及推论,并加以证明。

第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。

2. 能够运用相交线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 相交线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。

2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。

作业布置:1. 请学生运用相交线的性质,解决一些实际问题。

2. 请学生总结相交线的判定方法,并加以证明。

第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的性质。

2. 平行线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。

2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。

作业布置:1. 请学生运用平行线的性质,解决一些实际问题。

2. 请学生总结平行线的判定方法,并加以证明。

第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的应用方法。

2. 实际问题解决。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。

2. 提供一些实际问题,让学生运用平行线的性质解决。

相交线与平行线教案

相交线与平行线教案

相交线与平行线教案一、教学目标1. 让学生理解相交线与平行线的概念。

2. 让学生掌握相交线与平行线的性质和判定方法。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容1. 相交线与平行线的定义。

2. 相交线与平行线的性质。

3. 相交线与平行线的判定方法。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:相交线与平行线的概念、性质和判定方法。

2. 教学难点:相交线与平行线的判定方法及实际问题中的应用。

四、教学方法1. 采用直观演示法,让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。

2. 运用案例分析法,引导学生将几何知识应用于实际问题,提高解决问题的能力。

3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。

五、教学过程1. 导入新课:通过展示生活中的相交线与平行线现象,引导学生关注几何知识在生活中的应用。

2. 自主学习:让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。

3. 案例分析:选取实际问题,引导学生运用几何知识解决问题,巩固所学知识。

4. 课堂练习:设计具有针对性的练习题,检验学生对相交线与平行线的掌握程度。

5. 总结提升:对本节课的内容进行归纳总结,强调相交线与平行线在生活中的应用。

6. 布置作业:设计课后作业,让学生进一步巩固所学知识。

六、教学评价1. 评价目标:检查学生对相交线与平行线的理解程度,以及能否运用所学知识解决实际问题。

2. 评价方法:通过课堂练习、课后作业和小组讨论等方式进行评价。

3. 评价内容:相交线与平行线的概念、性质、判定方法的掌握程度,以及实际问题解决能力。

七、教学拓展1. 相交线与平行线的应用领域:例如,交通规划、建筑设计、工业制造等领域。

2. 相关数学知识:例如,相似三角形、勾股定理等。

3. 实地考察:组织学生观察身边的相交线与平行线现象,加深对知识的理解。

八、教学资源1. 教材:相交线与平行线的相关教材。

七年级下册数学第五章《相交线和平行线》教案

七年级下册数学第五章《相交线和平行线》教案

第五章相交线与平行线单元备课教材内容本章主要内容是两条直线的位置关系:相交线和平行线,以及平移变换的内容。

本章首先研究了相交的情形,探索了两条直线相交所成角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;并着重研究了相交的特殊情形——垂直,探索了垂直的性质,给出了点到直线的距离的概念。

接着研究了平行的情形,教科书首先引入了一个基本事实(平行公理),以此为出发点探讨了两条直线平行的性质和判定,并给出了两条平行线间的距离的概念,还对命题以及命题的构成作了简单的介绍。

最后研究了平移的概念和性质,以及利用平移设计图案和分析解决实际生活中的问题。

本章知识是学习线和角的继续,也是学习几何知识的重要基础,以后几乎所有几何图形的学习都用到本章知识。

教学目标〔知识与技能〕1、了解两条直线的位置关系有相交与平行两种,理解相交线、平行线、平移的有关概念及性质,会运用这些概念和性质进行简单的推理和计算;2、会用三角板、量角器等工具熟练地画垂线、平行线及有关简单几何图形,逐步培养学生的识图和绘图能力;3、进一步熟悉和掌握几何语言,能够把学过的概念和性质,用图形或符号语言表示出来;4、逐步了解几何推理要步步有据,会准确地填写推理的根据,并会作简单的推理。

〔过程与方法〕1、通过探索、猜测,进一步体会学会推理的必要性,发展学生初步推理能力;2、通过揭示一些概念和性质之间的联系,对学生进行创新精神和实践能力的培养.〔情感、态度与价值观〕1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主性和合作精神,激发学生乐于探索的热情。

重点难点垂线的概念与平行线的判定与性质及平移是重点;学会写推理过程和对直线平行的性质和判定的灵活运用是难点。

课时分配5.1相交线……………………………………… 2课时5.2平行线……………………………………… 3课时5.3平行线的性质……………………………… 3课时5.4平移………………………………………… 5课时本章小结………………………………………… 2课时第五章相交线和平行线A观察上面图形,我们发现他们都有一个局部和其他部分重复果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明.二.提出新知实践探索平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案分析问题探究新知。

平行线教案5篇

平行线教案5篇

平行线教案5篇平行线教案篇1一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点·难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.平行线教案篇2平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∠b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠∠ef,cd∠ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )a.由∠1=∠6,得ab∠fg;b.由∠1+∠2=∠6+∠7,得ce∠eic.由∠1+∠2+∠3+∠5=180°,得ce∠fi;d.由∠5=∠4,得ab∠fg四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b 的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠cd.(第1题) (第2题)2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的是( )a.因为∠1=∠4,所以de∠abb.因为∠2=∠3,所以ab∠ecc.因为∠5=∠a,所以ab∠ded.因为∠ade+∠bed=180°,所以ad∠be2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )a.∠2=∠4b.∠1=∠4c.∠2=∠3d.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点b在ac上,bd∠be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.平行线教案篇3一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。

人教版七年级数学下册第五章相交线与平行线(教案)

人教版七年级数学下册第五章相交线与平行线(教案)
(2)在教学过程中,注重培养学生的空间观念和几何直观能力,通过实物模型、多媒体演示等方法,让学生更好地理解图形。
(3)在解决实际问题时,引导学生运用平行线知识,分析问题,提高解题能力。例如,在建筑设计中,如何运用平行线知识确定建筑物的结构线条。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线与平行线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如火车轨道、双杠等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法、性质及其在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-平行线在实际问题中的应用:运用平行线知识解决实际问题,培养学生的数学应用意识。
举例解释:
(1)重点讲解平行线的定义,通过图形直观展示,使学生深刻理解平行线的概念。
(2)强调平行线的性质,结合具体实例进行讲解,让学生掌握平行线之间的夹角关系。
(3)详细讲解判定平行线的方法,并通过典型题目进行巩固。
2.教学难点
此外,关于学生小组讨论环节,我觉得整体效果还不错,学生们能够积极参与,提出自己的观点。但在引导和启发学生思考方面,我觉得自己还有待提高。在今后的教学中,我将更加关注学生的思维过程,通过提问和引导,激发他们的思考。

相交线与平行线教案

相交线与平行线教案

相交线与平行线教案一、教学目标知识与技能:1. 学生能够理解相交线与平行线的概念。

2. 学生能够识别和绘制相交线与平行线。

3. 学生能够运用相交线与平行线的性质解决实际问题。

过程与方法:1. 学生通过观察、实验和思考,培养观察能力和逻辑思维能力。

2. 学生通过合作交流,提高沟通能力和团队合作能力。

情感态度价值观:1. 学生培养对几何学的兴趣和好奇心。

2. 学生培养解决问题、勇于尝试的精神。

二、教学重点与难点重点:1. 相交线与平行线的概念及性质。

2. 相交线与平行线的绘制方法。

难点:1. 相交线与平行线的判断与证明。

2. 相交线与平行线在实际问题中的应用。

三、教学准备教师准备:1. 教学PPT或黑板。

2. 相交线与平行线的图片或实物。

3. 练习题和答案。

学生准备:1. 笔记本和笔。

2. 学习几何的基础知识。

四、教学过程1. 导入:教师通过展示相交线与平行线的图片或实物,引导学生观察和思考,激发学生的兴趣。

2. 新课导入:教师简要介绍相交线与平行线的概念,并提出问题,引导学生思考。

3. 知识讲解:教师详细讲解相交线与平行线的性质和绘制方法,并通过示例进行演示。

4. 课堂练习:教师给出练习题,学生独立完成,教师批改并给予反馈。

5. 小组讨论:学生分组讨论相交线与平行线在实际问题中的应用,分享解题思路和方法。

五、作业布置1. 完成课后练习题。

2. 绘制相交线与平行线的图形,并写上对应的性质。

六、教学拓展1. 教师引导学生思考:除了平面上的相交线与平行线,还有哪些情况下的相交线与平行线?例如,在空间中,直线与平面的相交线与平行线。

2. 教师给出一些实际问题,引导学生运用相交线与平行线的知识进行解决,并分享解题过程和答案。

七、课堂小结1. 教师引导学生回顾本节课所学的相交线与平行线的概念、性质和应用。

2. 学生分享自己在课堂上的收获和感受。

八、课后反思1. 教师布置课后反思题目,要求学生思考自己在课堂上的表现、学习效果以及需要改进的地方。

初中数学几何教案:相交线与平行线

初中数学几何教案:相交线与平行线

初中数学几何教案:相交线与平行线相交线与平行线一、引入在初中数学的几何学习中,相交线与平行线是一个重要的概念。

它们不仅存在于我们日常生活中的各种场景中,而且在数学领域中有着广泛的应用。

通过学习相交线与平行线的性质与定理,我们可以更深入地理解空间中的几何关系,并能够运用这些知识解决实际的几何问题。

二、相交线的性质1.相交线的定义相交线是指在同一平面内,两条直线或曲线有一个或多个交点的情况。

相交线既可以是两条直线的交点,也可以是两条曲线的交点,同时也可以是一条曲线与一条直线的交点。

2.相交线的分类相交线根据其相交规律可以分为三类:相交于一点、相交于一条线段、以及相交于多个点。

当两条线在空间中的某个点相交时,我们称其为相交于一点。

这种情况最常见,比如两根电线在某个点发生交叉。

当两条线在空间中的某一条线段上相交时,我们称其为相交于一条线段。

比如两根铁轨在某一段上发生交叉。

当两条线在空间中的多个点上相交时,我们称其为相交于多个点。

比如两根绳子在交叉点上交织在一起。

3.相交线的性质相交线的最明显性质就是它们在某个点上相交,但除此之外,还存在着一些重要的性质。

首先,相交线在交点上的角度是相等的。

即使是两条曲线相交,通过适当的测量与计算也可以获得它们在交点上的角度。

其次,相交线之间可以互换位置。

即两条相交的线,可以通过交换位置得到另外两条相交的线,这是由相交线的传递性所决定的。

最后,相交线的交点一定在它们所在的平面上。

这个性质可以通过射影几何学得到证明,而且在实际问题的解决中也是非常重要的。

三、平行线的性质1.平行线的定义平行线是指在同一平面内,永不相交的两条直线。

平行线可以用符号“||”表示。

2.平行线的判定平行线有多种判定方法,其中最常用的是三角形内角和定理。

该定理指出,如果两条直线与一条直线相交时分别产生了一对同位内角以及一对同位外角互补,则这两条直线平行。

此外,我们还可以通过使用平行线的尺规作图法来判定两条线是否平行。

《相交线与平行线》教案

《相交线与平行线》教案

《相交线与平行线》教案第一课时教学目标1、结合生活情境,感知平面上两条直线的垂直关系,理解互相垂直、垂线、垂足等概念.2、经过自主探索和合作交流,学会用合适的方法做出一组垂线,能够借助直尺、三角板、量角器等工具画出已知直线的垂线.3、感受生活中的垂直现象,能从现实空间中抽象出垂线,了解垂直在现实生活中的应用.能主动参与观察、操作等学习活动,培养学习空间与图像的兴趣,发展空间观念,感受学习数学的趣味性.教学重点结合生活情境,感知平面上两条直线的垂直关系.建立垂线的概念.教学难点借助直尺、三角板、量角器等工具画出已知直线的垂线.教学准备多媒体课件、直尺、三角板等作图工具.教学过程一、创设情境,感受新知1、课件出示情境图:从图中你能提出什么问题?预设:每一幅图中的两条直线都相交了.预设:这些图中的线的位置关系是怎样的?引导学生观察相交线,你有什么发现?两条直线相交成几个角?都是什么角?2、谈话感知:其实像这样一种特殊的相交方式,我们可以给他一个新的名称——垂直.我们今天就一起来研究这个新知识.(板书课题:垂直)二、探究新知,深入理解1、再次认识垂直.(1)出示一组互相垂直的直线图师:那到底两条直线成怎样的位置关系,我们才能叫垂直呢?学生自学教材145页下面的文字,并思考:怎样的两条直线叫垂直?其中的直线叫什么?你还知道什么?(2)小组交流后,汇报.强调:垂线是一组一组的出现的,垂足在哪儿,就标一个垂直符号.(3)寻找生活中的垂直例子.(4)练一练.完成教材146页实践题.点名回答,适时表扬.(5)折一折.指导学生把长方形按教材上的方法对折两次,再打开,观察两条折痕有什么关系?2、学习画一组垂线.(1)你能用手中的工具想办法做出两条互相垂直的线段吗?学生活动,小组交流,指名汇报.(2)过直线上的一点画这条直线的垂线.课件演示作图方法,学生尝试作图,教师再示范,共同总结作图步骤:A、把三角板的一条直角边与直线重合;B、沿直线慢慢移动三角板,使三角板的直角顶点与直线上的点重合;C、沿三角板的另一条直角边画直线;D、标上垂直符号.学生再尝试.(3)试一试,过直线外一点画这条直线的垂线.学生自己尝试,再请已经画好的同学介绍,课件演示学生再尝试.(4)小结方法:一放、二移、三画、四直角(板书)三、升华新知,总结方法同学们,通过本节课的学习,你们有了什么新收获?谁能说说我们是如何得到这样的收获的?四、板书设计认识垂直一放、二移、三画、四直角第二课时教学目标1、结合具体内容,理解“两点间所有连线中线段最短”,知道两点间的距离与点到直线的距离.2、在对两点间的距离与点到直线的距离的探究过程中,培养学生观察、想象、动手操作的能力,发展空间观念.3、初步学会交流解决问题和结果,体验数学与生活的密切联系,提高学习的兴趣,学会与他人合作共同解决问题.教学重点认识点到直线的距离,并能解决一些实际问题.教学难点利用点到直线的距离解决实际问题.教学准备多媒体课件直尺、三角板等作图工具.教学过程一、情境激趣,导入新课课件出示情境图,提问:你有什么数学问题?预设:为什么要修隧道?怎样修隧道最近?这里面有什么数学知识?二、组织活动活动一:到对面红旗处.1、看一看:三名学生沿不同白灰线路走到红旗处.2、量一量:量一量三条不同白灰线路的长度.3、说一说:你发现了什么?4、想一想:其中蕴含的数学道理是什么?5、找一找:你能举出生活中应用的例子吗?6、辩一辩:看教材,说说什么是”两点之间的距离“.活动二:到对面的直跑道.1、看一看:三名学生从自己的位置沿不同白灰线路到对边的直跑道.2、量一量:量一量三条不同白灰线路的长度.3、说一说:你发现了什么?4、想一想:其中蕴含的数学道理是什么?5、找一找:你能举出生活中应用的例子吗?6、辩一辩:看教材,想想什么是“点到直线的距离”.活动三:测量双杠的两个横杆之间的距离.1、量一量:测量出双杠的两个横杆之间的距离.2、说一说:你有什么发现?三、课堂交流各小组回到自己座位上,整理自己的活动记录,准备交流.四、应用知识,解决问题完成教材147页实践题.五、课堂小结学生谈一谈自己的收获,评价自己的表现.六、板书设计距离两点之间的距离:两点间线段的长度点到直线的距离:点到直线的垂直线段的长度平行线之间的距离:平行线间的垂直线段的长度,处处相等第三课时教学目标1、让学生结合生活情景,感知平面上两条直线的位置关系,认识平行线,学会用合适的方法画出一组平行线,能借助工具画出已知直线的平行线.2、让学生经历从现实空间抽象出平行线的过程,培养空间观念.3、让学生在数学活动中,感受数学知识与生活的联系,增强学习数学的兴趣,养成独立思考的习惯,培养应用数学的意识.教学重点理解平行的概念,建立平行的空间观念.教学难点理解同一平面.教学准备多媒体课件、三角板、直尺等作图工具.教学过程一、复习提问1、经过一点可以画几条直线?经过两点呢?经过三点呢?2、线段AB=CD,CD=EF,那么AB与EF的关系怎样?二、讲授新内容1、观察说出这些直线的不同的位置关系?相交、重合、不相交也不重合(平行)平面内两条直线的位置关系可能相交,可能重合,也可能不相交也不重合.归纳得出平面内两条直线的位置关系及平行线的概念.关键:有没有公共点2、平行线概念:在同一平面内,没有公共点的两条直线叫做平行线.3、直线AB与CD平行,记作AB∥CD,读作AB平行于CD.4、用三角板画平行线AB∥CD.平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一落 (三角板的一边落在已知直线上),二靠 (用直尺紧靠三角板的另一边),三移 (沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四画 (沿三角板过已知点的边画直线).5、说一说:生活中的平行线的实例.6、做一做任意画一条直线a,并在直线a外任取一点A,通过点A画直线a的平行线,看能画出几条?(学生画图,实际上只能画一条)7、归纳:经过直线外一点有一条并且只有一条直线与已知直线平行.8、直线的平行关系具有传递性:设a、b、c是三条直线,如果a∥b,b∥c,那么a∥c.因为如果直线a与c不平行,就会相交于一点P,那么过P点就有两条直线与直线b平行,这是不可能的,所以a∥c.二、学画平行线1、自主动手,学画平行线.谈话:今天我们认识了平行与相交,也认识了平行线,下面请同学们自己动手,想办法来画一组平行线,好吗?(学生自己动手画)学生画图后,组织交流各自的画法.学生可能有的画法:利用方格纸来画;利用数学本子上的横线来画;利用直尺的两边来画;利用垫板的左右两边来画.(对于学生中正确的画法,教师给予充分肯定)谈话:同学们的想法都不错,那你能画出一条已知直线的平行线吗?出示自主练习第3题.学生独立尝试画图.小结:你能说一说画已知直线平行线的方法吗?(根据学生的回答小结:一画,二靠,三移,四画).三、小结与练习1、补充练习:(1)在同一平面内,两条直线可能的位置关系是_相交或平行.(2)在同一平面内,三条直线的交点个数可能是两个或三个 .(3)下列说法正确的是( )A.经过一点有且只有一条直线与已知直线平行.B.经过一点有无数条直线与已知直线平行.C.经过一点有一条直线与已知直线平行.D.经过直线外一点有且只有一条直线与已知直线平行.2、小结对平行线的理解:两个关键:(1)“在同一个平面内”(举例说明);(2)“不相交”.一个前提:对两条直线而言.四、板书设计认识平行条件:同一平面不相交两条直线。

七年级数学下册《相交线与平行线》教案

七年级数学下册《相交线与平行线》教案

七年级数学下册《相交线与平行线》教案教案:相交线与平行线教学目标:1. 掌握相交线、平行线的概念和判断方法。

2. 熟练应用相交线与平行线的性质解决实际问题。

3. 培养学生的逻辑思维和分析能力。

教学重点:1. 掌握相交线与平行线的性质和判断方法。

2. 能够灵活运用相关知识解决实际问题。

教学难点:1. 准确判断相交线与平行线的方法。

2. 能够利用相交线与平行线的性质解决实际问题。

教学准备:1. 教材:七年级数学下册《相交线与平行线》。

2. 多媒体课件和相关教学工具。

教学步骤:步骤一:导入新知识(10分钟)1. 利用多媒体课件或实际物件引导学生观察相交线和平行线的例子,帮助学生理解相交线与平行线的概念。

2. 提问学生:如何判断两条线是否相交?如何判断两条线是否平行?步骤二:讲解相交线与平行线的性质(15分钟)1. 通过多媒体课件或示意图,讲解相交线与平行线的性质,包括相交线的特点、平行线的特点以及相交线和平行线之间的关系。

2. 强调重要概念:对顶角、同位角、内错角。

步骤三:例题讲解(25分钟)1. 请学生打开教材,找到相关知识点的例题。

2. 逐步讲解例题的解题思路和方法,引导学生掌握判断相交线与平行线的具体性质和运用方法。

步骤四:练习与讨论(20分钟)1. 让学生独立完成教材中的练习题,然后与同桌讨论答案。

2. 引导学生在讨论中互相纠错,解决疑惑,提高对概念的理解和应用能力。

步骤五:巩固与拓展(10分钟)1. 提供一些拓展问题,让学生运用所学知识解答,鼓励学生灵活运用。

2. 强调相交线与平行线的重要性和实际应用。

步骤六:小结与作业布置(5分钟)1. 小结相交线与平行线的性质和判断方法。

2. 布置课后作业,巩固所学知识。

教学反思:本节课通过观察、讲解和练习等多种方式,帮助学生掌握相交线与平行线的概念和性质,并能够灵活运用所学知识解决实际问题。

在教学过程中,可以采用多媒体课件和实物示例等方式,增加趣味性和直观性,提高学生的学习兴趣和积极性。

最新-初中数学平行线教案优秀6篇

最新-初中数学平行线教案优秀6篇

初中数学平行线教案优秀6篇在日复一日的学习、工作或生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。

你知道作文怎样写才规范吗?学而不思则罔,思而不学则殆,下面是勤劳的小编帮助大家收集整理的初中数学平行线教案优秀6篇。

初中数学平行线教案篇一教学目标:1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。

2、通过说理渗透合情推理的思想,培养学生逻辑推理能力。

3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。

教学重难点:重点:学会平行线识别的。

方法,能在实际生活和数学图形中识别平行线。

难点:能根据图形中的已知条件,学会用数学语言简单的说理。

教学准备:三角板、直尺、硬纸片(角的形状)教学过程:一、创设问题情景1、组织学生进行如下活动:(1)用硬纸片制作一个角;(2)这个角放在白纸上,描出∠AOB;(如图)(3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;(4)探索这个过程,你能得到什么结论?为什么?2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。

在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。

请同学们根据这样的一个事实用一句话来叙述。

3、学生分组交流二、探索结论1、同位角相等,两直线平行。

2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∠b。

如果∠1=∠3,可得a∠b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。

3、如果∠1+∠4=,能识别两直线a∠b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。

4、组织学生分组讨论,归纳总结平行线的识别方法。

(略)三、识别方法的应用例1、按课本讲,但注意书写格式:∠∠1=∠2,根据“内错角相等,两直线平行”,∠a∠b。

新人教版七年级下册第五章《相交线与平行线》全章教案(

新人教版七年级下册第五章《相交线与平行线》全章教案(

(此文档为word格式,下载后您可任意编辑修改!)第五章相交线与平行线(总第一课时)5.1.1相交线教学过程设计一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.生:画出图形,并用几何语言描述所画的图形.师:思考所画的图形中有几个小于平角的角?生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边...........邻补角:有公共顶点且有一公共边“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.4、如图,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是,∠EOD的邻补角是.【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型)生:相等.师:为什么?生:(讨论交流)生1:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a、b相交,∠l=40°,求∠2、∠3、∠4的度数.2.变式1:把∠l=40°变为∠l=90°,求∠2、∠3、∠4的度数.变式2:把∠l=40°变为∠l=n°,求∠2、∠3、∠4的度数.变式3:把∠l=40°改为∠2是∠l的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB、CD相交于O点,OE平分∠AOD,若∠1=20°,那么∠2=______.变式5:如图,直线AB、CD相交于O点,∠AOE=90°,若∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?5.如图,三条直线AB、CD、EF相交于点O,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑?生:……七:布置作业,分层发散1.课本:P7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n条直线呢?【教学反思】:(总第二课时)5.1.2垂线(第1课时)计教学过程设(总第三课时)5.1.2垂线(第2课时)教学过程设计(总第四课时)5.1.3同位角、内错角、同旁内角教学过程设计3.如图,∠6和∠2是_________角,∠(总第五课时)5.2.1平行线教学过程设计(总第六课时)5.2.2平行线的判定(一)教学过程设计(总第七课时)5.2.2平行线的判定(二)教学过程设计(总第八课时)5.3.1平行线的性质(第1课时)教学过程设计(总第九课时)5.3.1平行线的性质(第2课时)教学过程设计(总第十课时)5.3.2命题、定理、证明学过程设计教(总第十一课时)5.4平移教学过程设计2.欣赏并说出下列各商标图案哪些是利用平移来设计的?(总第十二课时)第五章小结与复习教学过程设计第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

平行与相交教学设计(精选6篇)

平行与相交教学设计(精选6篇)

平行与相交教学设计(精选6篇)作为一名优秀的教育工作者,时常需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么你有了解过教学设计吗?下面是小编为大家整理的平行与相交教学设计(精选6篇),欢迎大家借鉴与参考,希望对大家有所帮助。

平行与相交教学设计篇1(一)学习目标1、结合生活情境,了解平面上两条直线的位置关系——萍乡与相交,能用工具画出一组平行线和已知直线的垂线。

2、在测量活动中,体会“两点之间线段最短”“点到直线的垂线段最短”,理解两点间的距离和点到直线的距离,初步体会平行线和垂线的一些特性。

(二)学习内容基础性学习包1、认识平行线,借助工具画平行线2、认识垂线,会画已知直线的垂线3、学习两点间的距离,学习点到直线的距离4、我学会了吗开发性学习包1、图形中的平行线2、汉字中的平行或互相垂直的线段回、王、下、平、行等。

拓展性学习包遵守交通规则交通安全儿歌红绿灯交叉路口红绿灯,指挥交通显神通;绿灯亮了放心走,红灯亮了别抢行;黄灯亮了要注意,人人遵守红绿灯。

上学校小学生,起得早,交通小队排得好;过马路,走横道,交通安全要记牢;听指挥,别乱跑,平平安安到学校。

交通安全真重要交通安全真重要,人民生活离不了。

保障安全有措施,交通法规要记牢。

大马路上车潮涌,警察指挥要服从。

红绿黄灯是命令,标志标线要看清。

交通规则要记牢(三)整合点解读1、学科单元内整合:除了生活中交通中的线这一生活素材,教师还可以借助前面学习的线和角的知识进行补充;本单元内还可以将平行和垂直的线在一课时内用课件的方式进行补充。

2、体验式活动:测量距离的实践活动,让学生充分感知平行和垂直的关系。

3、课时安排:本单元学习共安排4课时。

平行与相交教学设计篇2一、创设情境,引入新课1.演示设疑:两支铅笔落在地上,可能会形成什么样的图形?(教师两只手各拿一支铅笔,同时松手,两支铅笔落在讲桌后面,不让学生看到落地后的情形)2.尝试探究:先独立思考,用小棒摆一摆;再在小组内交流,由组长组织大家把不同的摆法放在展示板上。

【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案

【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案

人教版七年级下册数学第五章《相交线与平行线》优秀教案5.1 相交线5.1.1 相交线【教学目标】1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.【重难点】重点邻补角、对顶角的概念,对顶角的性质与应用.难点理解对顶角相等的性质的探索.【教学设计】一、创设情境,引入新课引导语:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.二、尝试活动,探索新知教师出示一块布片和一把剪刀,表演剪刀剪布的过程.教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.教师提问:我们可以把剪刀抽象成什么简单的图形?学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)学生根据观察和度量完成下表:教师提问:如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?学生思考回答:只会改变数量关系而不会改变位置关系.师生共同定义邻补角、对顶角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.教师提问:你同意下列说法吗?如果错误,如何订正?1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.3.邻补角是互补的两个角,互补的两个角也是邻补角.学生思考回答:1、2是对的,3是错的.第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.教师把说理过程规范地板书:在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书对顶角的性质:对顶角相等.强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.。

相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(教案)

相交线与平行线教案人教版(优秀教案)第一章:相交线与平行线的概念介绍1.1 相交线的定义:讲解两条直线在平面内相交的概念。

展示实例,让学生理解相交线的特征。

1.2 平行线的定义:讲解两条直线在平面内不相交的概念。

展示实例,让学生理解平行线的特征。

第二章:相交线与平行线的性质2.1 相交线的性质:讲解相交线的交点特征,即交点将相交线分为两对对应角。

展示实例,让学生理解相交线的性质。

2.2 平行线的性质:讲解平行线的对应角特征,即同位角相等、内错角相等、同旁内角互补。

展示实例,让学生理解平行线的性质。

第三章:相交线与平行线的判定3.1 相交线的判定:讲解如何判断两条直线是否相交。

展示实例,让学生学会判断相交线。

3.2 平行线的判定:讲解如何判断两条直线是否平行。

展示实例,让学生学会判断平行线。

第四章:相交线与平行线在实际问题中的应用4.1 相交线的应用:通过实例讲解相交线在实际问题中的应用,如测量角度、确定位置等。

4.2 平行线的应用:通过实例讲解平行线在实际问题中的应用,如建筑设计、道路规划等。

第五章:相交线与平行线的练习题5.1 相交线的练习题:提供一些关于相交线的练习题,让学生巩固相交线的概念和性质。

5.2 平行线的练习题:提供一些关于平行线的练习题,让学生巩固平行线的概念和性质。

第六章:同位角与内错角的性质6.1 同位角的性质:讲解同位角的定义及特点,即两条直线被第三条直线所截,位于两条直线同一侧且相对位置相同的两对角。

展示实例,让学生理解同位角的性质。

6.2 内错角的性质:讲解内错角的定义及特点,即两条直线被第三条直线所截,位于两条直线之间且相对位置相同的两对角。

展示实例,让学生理解内错角的性质。

第七章:同位角与内错角的判定7.1 同位角的判定:讲解如何判断两对角是否为同位角。

展示实例,让学生学会判断同位角。

7.2 内错角的判定:讲解如何判断两对角是否为内错角。

展示实例,让学生学会判断内错角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。

今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。

七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。

这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。

因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。

三、教学过程设计本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。

本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节:拓展延伸,综合应用;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。

第一环节走进生活引入课题活动内容一:两条直线的位置关系1.请同学们自学第一节,提前两天搜集有关“两条直线的位置关系”的图片,提炼出数学图形,进行归类,然后小组合作交流。

2.教师提前一天进行筛选,捕捉出有代表性的答案,课堂上由学生本人主讲,最后概括出有关结论。

巩固练习:结论:1.一般地,在同一平面内,两条直线的位置关系有两种:和 .2.定义分别为:。

问题1:在2.1—1中,直线m和n 的关系是 ;a和b是 ;a和n是。

问题2:在2,1—2和2.1—3中你能提出哪些问题?活动目的:独立思考、学会思考是创新的核心。

数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。

通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学。

充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。

活动注意事项:在实际教学中可让学生自由搜寻,课堂上让学生充分发表自己的见解,清晰的表达自己的想法。

学生搜集的信息是丰富多彩的,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。

针对图2.1—1中,如果有学生提出a和m有何位置关系,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。

如果学生的作品中已经包含了“巩固练习”的内容,教师应恰当取舍。

第二环节动手实践探究新知结合图形完成教科书的问题。

动手实践二补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角余角定义:如果两个角的和是900,那么称这两个角互为余角(complementary angle)活动目的:通过动手画图,可以加深学生对概念的理解,在相互交流中,初步形成评价与反思的意识,在相互补充、相互学习中,体验“互补互余”仅仅表明了两个角的度量关系,并没有限制角的位置关系;在合作共赢中,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。

活动注意事项:教师首先应关注全体学生是否积极思考?是否进行有效讨论?在巡视中,还应关注学生的画图是否合乎要求,要及时收集学生一些好的画法进行展示,关注学习上稍微落后的学生,提前给予点拨,在集体展示时给这部分同学展示的机会,可以极大的调动这部分同学的学习热情!巩固反馈:问题1:小组合作,每人编一道有关余角或者补角的题目,其余同学抢答,组长记录、整理各种题型,练习2分钟。

教师巡视,给予评价,捕捉好资源。

问题2:教师将捕捉到的好资源用投影仪集体展示,全班抢答,及时给予评价。

问题3:下列说法中,正确的有。

(填序号)① 已知∠A=40?,则∠A的余角=500②若∠1+∠2=90?,则∠1和∠2互为余角。

③若∠1+∠2+∠3=180?,则∠1、∠2和∠3互为补角。

④若∠A=40?26′,则∠A的补角=139?34′⑤一个角的补角必为钝角。

⑥一个锐角的补角比这个角的余角大900活动目的:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。

问题3是针对学生易错题而改编的一组判断题,这种形式能引导学生逐步加深对余角、补角的概念及其性质的理解和掌握。

活动注意事项:学生在编题的过程中,教师一定要仔细聆听每组的发言,对每组的表现予以点拨和激励,注意收集出色的资源及学生出错的信息,教师还应关注学生已经掌握了什么?具备了什么能力?还存在哪些不足? 展示时给予合理的评价和强调。

动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,ON与DC交于点O,∠DON=∠CON=900,∠1=∠22.1—7小组合作交流,解决下列问题:在图2.1—8中问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?问题3:∠AOC与∠BOD有什么关系?为什么?你还能得到哪些结论?活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。

通过生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,掌握“同角或者等角的补角相等。

”“同角或者等角的余角相等。

”并能够用自己的语言说出简单推理。

同时发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力。

并在这个过程中,培养学生抽象几何图形进行建模的能力。

本着面向全体的原则,从学生生活经验和熟悉的背景知识出发,通过创设情境串---问题串,极大的调动全体学生的参与意识,充分挖掘他们的潜能,给学生一个充分展示的舞台,以达到人人都能学好数学的目标!活动注意事项:学生应有足够的时间和空间经历观察、猜测、推理、验证等活动过程。

本环节的三个问题是环环紧扣、层层递进提出来的,前一个问题为下一个问题作好铺垫。

在学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太强,让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,体验成功的喜悦;教师要充分发散学生的思维,鼓励学生各抒己见,敢于质疑;上课要渗透合情说理的方法,进一步培养学生的推理能力。

第三环节学以致用,步步为营问题1:①.因为∠1+∠2=90?,∠2+∠3=90?,所以∠1= ,理由是 .② 因为∠1+∠2=180?,∠2+∠3=180?,所以∠1= ,理由是 .问题2:①用你手中的三角板,画一个直角三角形,如图2.1—9.则∠A是∠B的。

变式训练:② 在①的基础上,做∠CDA=900。

如图2.1—10.1. 则∠A的余角有哪几个?为什么?2. 请找出互补的角,并说明理由。

3. 你还能提出哪些问题?试试看吧!活动目的:通过一题多变,可以引导学生透过现象看本质、通过本质找规律、通过规律找方法。

重视动手操作,是发展学生思维,培养学生数学能力最有效途径之一。

通过亲自画图,可以直观的发现有关结论,它有利于让学生参与知识的形成过程,促进对抽象数学的理解,为问题的顺利解决而奠定基础。

变式训练题的设置更能激发学生的兴趣,在超级变变变中体验数学的美,学会从不同的角度看待问题。

活动注意事项:学生可能会认为概念和性质不难理解,但认识中却存在不清晰的地方。

此处应给学生充分的讨论与思考的时间,可以分组讨论合作,也可以现场辩论,充分发挥学生的作用,让他们之间思维互相碰撞,在争论中发现问题要比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中留下深刻的印象。

第四环节拓展延伸,综合应用问题1:已知:直线AB与CD交于点O, ∠EOD=900,回答下列问题:1. ∠AOE的余角是 ;补角是。

2. ∠AOC的余角是 ;补角是 ;对顶角是。

问题2:点O在直线AB上,∠DOC和∠BOE都等于900.请找出图中互余的角、互补的角、相等的角,并说明理由。

先独立探究,再小组交流。

活动目的:通过问题串的巧妙设置,不仅高效率的复习了本节的知识点,而且让学生在开放的环境中畅所欲言,收获了一份自信!问题串的设置提高了学生的探索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。

活动的注意事项:鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,对出现的错误,一定进行积极的辨析,让学生学会解决的方法。

第五环节学有所思反馈巩固归纳总结:1. 你学到了哪些知识点?2. 你学到了哪些方法?3. 你还有哪些困惑?活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力。

相关文档
最新文档