(完整版)数据结构知识点总结

合集下载

数据结构知识点

数据结构知识点

数据结构是计算机科学的一个关键领域,主要研究非数值计算的程序设计问题中,计算机的操作对象以及它们之间的关系和操作。

数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

数据结构主要包含三个方面的含义:逻辑结构、存储结构、数据运算。

同时,数据类型、抽象数据类型也是数据结构的重要组成部分。

让我们详细了解一下这些知识点:
1. 逻辑结构:这是数据元素之间的逻辑关系,包括线性结构(如线性表、栈、队列)和非线性结构(如树、图、集合)。

2. 存储结构:也称为物理结构,是逻辑结构在计算机中的表示。

3. 数据类型:是一个值的集合以及定义在这个值集上的一组操作的总称。

4. 抽象数据类型:通常由用户定义,用以表示应用问题的数据模型以及定义在该模型上的一组操作。

5. 数组和链表:包括其定义、初始化、基本操作等。

特别是单链表的定义和初始化,这是一个常见的考试知识点。

6. 栈和队列:包括其定义、基本操作等。

7. 树和图:包括二叉树、AVL树、堆、B树、红黑树、图等数据结构的定义、基本操作和应用。

8. 时间复杂度和空间复杂度:算法的效率分析主要依赖于时间复杂
度和空间复杂度的估算。

9. 各种数据结构的应用和实现:需要理解每种数据结构的优缺点,以及各自适用的场景,能够根据实际问题选择合适的数据结构。

数据结构 知识点总结

数据结构 知识点总结

数据结构知识点总结一、基本概念数据:所有能被输入到计算机并被处理的符号的集合。

数据元素:数据的基本单位,也称为结点、节点或记录。

数据项:构成数据元素的不可分割的最小单位。

抽象数据类型:抽象数据组织和与之相关的操作,通常采用数据对象、数据关系、基本操作集这样的三元组来表示。

二、逻辑结构数据的逻辑结构是从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。

数据元素之间的关系(逻辑结构)可分为四类:集合结构:数据元素之间除了“属于同一集合”的关系外,别无其它关系。

线性结构:数据元素之间存在一对一的关系,如数组、链表、队列和栈等。

树形结构:数据元素之间存在一对多的关系,如二叉树、多叉树等。

图结构或网状结构:数据元素之间存在多对多的关系。

三、存储结构数据对象在计算机中的存储表示称为数据的存储结构,也称物理结构。

数据元素在计算机中有两种基本的储存结构:顺序存储结构:借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,通常借助程序设计语言的数组类型来描述。

链式存储结构:无需占用一整块存储空间,数据元素的存储位置不必连续,而是通过指针链接形成逻辑关系。

四、数据结构的运算数据结构中的运算包括插入、删除、查找、遍历等,这些运算的实现依赖于具体的逻辑结构和存储结构。

五、数据结构的应用数据结构在各个领域都有广泛的应用,如数据库系统、计算机网络、图形处理等。

通过合理地选择和设计数据结构,可以提高程序的运行效率,降低存储空间的占用。

六、数据结构与算法的关系数据结构和算法是相辅相成的。

数据结构是算法的基础,算法的实现依赖于特定的数据结构。

同时,算法的优化也往往需要对数据结构进行改进和调整。

总结来说,数据结构是计算机科学中的核心概念之一,它涉及数据的组织、存储和运算等多个方面。

理解和掌握数据结构的基本知识点和原理,对于提高编程能力和解决实际问题具有重要意义。

数据结构知识点总结

数据结构知识点总结

数据结构知识点总结数据结构是计算机科学中非常重要的一个概念,它是指一组数据的组织方式,以及对这组数据进行操作的方法。

数据结构可以分为线性结构和非线性结构两种。

下面将对常见的数据结构进行总结,希望能对读者有所帮助。

一、线性结构1. 数组:数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。

数组的访问时间复杂度为O(1),但插入和删除的时间复杂度较高,为O(n)。

2. 链表:链表是由一系列的节点组成,每个节点包含数据以及指向下一个节点的指针。

链表的访问时间复杂度为O(n),但插入和删除的时间复杂度较低,为O(1)。

3. 栈:栈是一种具有后进先出(LIFO)特点的数据结构,只能在栈顶进行插入和删除操作。

栈的访问、插入、删除的时间复杂度均为O(1)。

4. 队列:队列是一种具有先进先出(FIFO)特点的数据结构,只能在队尾插入元素,在队头删除元素。

队列的访问、插入、删除的时间复杂度均为O(1)。

5. 双向链表:双向链表是在链表的基础上发展而来的数据结构,每个节点不仅包含指向下一个节点的指针,还包含指向上一个节点的指针。

双向链表的插入和删除操作时间复杂度为O(1)。

二、非线性结构1. 树:树是一种由节点和边组成的数据结构,每个节点可以有多个子节点。

树有很多种类型,如二叉树、AVL树、红黑树等。

树的遍历可以分为前序遍历、中序遍历、后序遍历和层序遍历等。

2. 图:图是一种由顶点和边组成的数据结构,每个顶点可以与其他顶点相连。

图可以分为有向图和无向图,常用的应用场景有社交网络和地图导航等。

图的遍历可以分为深度优先搜索和广度优先搜索等算法。

3. 堆:堆是一种特殊的树结构,具有以下特点:每个节点的值都大于等于(或小于等于)其子节点的值,且左子树和右子树都是堆。

堆常用来实现优先队列,常见的堆有二叉堆和斐波那契堆。

4. 哈希表:哈希表是一种根据关键码值(Key value)而直接进行访问的数据结构,通过将关键码值映射到表中的某个位置来实现访问的。

数据结构复习笔记

数据结构复习笔记

第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。

(完整版)数据结构知识点总结

(完整版)数据结构知识点总结

数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。

数据元素是数据的基本单位,可以由若干个数据项组成。

数据项是具有独立含义的最小标识单位。

数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。

·线性结构:一对一关系。

·线性结构:多对多关系。

·存储结构:是逻辑结构用计算机语言的实现。

·顺序存储结构:如数组。

·链式存储结构:如链表。

·索引存储结构:·稠密索引:每个结点都有索引项。

·稀疏索引:每组结点都有索引项。

·散列存储结构:如散列表。

·数据运算。

·对数据的操作。

定义在逻辑结构上,每种逻辑结构都有一个运算集合。

·常用的有:检索、插入、删除、更新、排序。

数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

·结构类型:由用户借助于描述机制定义,是导出类型。

抽象数据类型ADT:·是抽象数据的组织和与之的操作。

相当于在概念层上描述问题。

·优点是将数据和操作封装在一起实现了信息隐藏。

程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。

算法取决于数据结构。

算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。

评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。

时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。

渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。

算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。

时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

(完整版)数据结构知识点全面总结—精华版

(完整版)数据结构知识点全面总结—精华版

第1章绪论内容提要:◆数据结构研究的内容。

针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。

数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。

数据——所有能被计算机识别、存储和处理的符号的集合。

数据元素——是数据的基本单位,具有完整确定的实际意义。

数据对象——具有相同性质的数据元素的集合,是数据的一个子集。

数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。

抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。

◆算法的定义及五个特征。

算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。

算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。

①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。

时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。

◆用计算语句频度来估算算法的时间复杂度。

第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。

线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。

顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。

链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。

通过指针来实现!◆线性表的操作在两种存储结构中的实现。

数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。

核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。

数据结构知识点总结

数据结构知识点总结

数据结构知识点总结数据结构知识点总结内容概要:基本概念——线性表——栈与队列——树与⼆叉树——图——查找算法——排序算法⼀、基本概念1、数据元素是数据的基本单位。

2、数据项是数据不可分割的最⼩单位。

3、数据结构的逻辑结构(抽象的,与实现⽆关)物理结构(存储结构)顺序映像(顺序存储结构)位置“相邻”⾮顺序映像(链式存储结构)指针表⽰关系4、算法特性:算法具有正确性、有穷性,确定性,(可⾏性)、输⼊,输出正确性:能按设计要求解决具体问题,并得到正确的结果。

有穷性:任何⼀条指令都只能执⾏有限次,即算法必须在执⾏有限步后结束。

确定性:算法中每条指令的含义必须明确,不允许由⼆义性可⾏性:算法中待执⾏的操作都⼗分基本,算法应该在有限时间内执⾏完毕。

输⼊:⼀个算法的输⼊可以包含零个或多个数据。

输出:算法有⼀个或多个输出5、算法设计的要求:(1)正确性:算法应能满⾜设定的功能和要求。

(2)可读性:思路清晰、层次分明、易读易懂。

(3)健壮性:输⼊⾮法数据时应能作适当的反应和处理。

(4)⾼效性(时间复杂度):解决问题时间越短,算法的效率就越⾼。

(5)低存储量(空间复杂度):完成同⼀功能,占⽤存储空间应尽可能少。

⼆、线性表1、线性表 List:最常⽤且最简单的数据结构。

含有⼤量记录的线性表称为⽂件。

2、线性表是n个数据元素的有限序列。

线性结构的特点:①“第⼀个” ②“最后⼀个” ③前驱④后继。

3、顺序表——线性表的顺序存储结构特点a) 逻辑上相邻的元素在物理位置上相邻。

b) 随机访问。

1) typedef struct{DataType elem[MAXSIZE];int length;} SqList;2) 表长为n时,线性表进⾏插⼊和删除操作的时间复杂度为O(n)‘插⼊⼀个元素时⼤约移动表中的⼀半元素。

删除⼀个元素时⼤约移动表中的(n-1)\24、线性表的链式存储结构1) 类型定义简⽽⾔之,“数据 + 指针”。

typedef struct LNode {DataType data;struct LNode *next;} LNode, *LinkList;2) 不带头结点的空表判定为 L= =null带头结点的空表判定为 L->next= =null循环单链表为空的判定条件为 L.next= =L线性链表的最后⼀个结点的指针为NULL头结点的数据域为空,指针域指向第⼀个元素的指针。

数据结构知识点归纳总结(经典)

数据结构知识点归纳总结(经典)

数据结构知识点归纳总结(经典)1. 简介数据结构是计算机科学中的一个重要概念,它用于组织和存储数据,以便于操作和管理。

数据结构能够帮助我们更有效地处理和分析大量的数据。

2. 常见的数据结构以下是一些常见的数据结构类型:2.1 数组(Array)数组是一种连续存储数据元素的数据结构,可以按照索引访问元素。

它具有固定大小,可以用于存储相同类型的元素。

2.2 链表(Linked List)链表是一种通过指针将元素连接起来的数据结构。

它可以包含不同类型的元素,并且具有动态分配内存的能力。

2.3 栈(Stack)栈是一种具有后进先出(LIFO)特性的数据结构。

它只能在栈顶进行插入和删除操作。

2.4 队列(Queue)队列是一种具有先进先出(FIFO)特性的数据结构。

它可以在队尾插入元素,在队头删除元素。

2.5 树(Tree)树是一种非线性的数据结构,它由节点和边构成。

树的一个节点可以有多个子节点,但每个节点只有一个父节点。

2.6 图(Graph)图是一种由节点和边构成的数据结构。

节点之间的边可以表示节点之间的关系。

2.7 哈希表(Hash Table)哈希表是一种以键-值对形式存储数据的数据结构。

它使用哈希函数将键映射到存储位置,以实现快速的查找操作。

3. 常见的数据结构操作数据结构不仅仅是存储数据,还包括对数据的操作。

以下是一些常见的数据结构操作:- 插入元素:向数据结构中添加新元素。

- 删除元素:从数据结构中删除指定元素。

- 查找元素:在数据结构中查找指定元素。

- 遍历元素:按照特定的顺序访问数据结构中的所有元素。

- 排序元素:对数据结构中的元素进行排序。

- 合并结构:将两个或多个数据结构合并成一个。

- 分割结构:将一个数据结构分割成两个或多个。

4. 数据结构的应用数据结构在计算机科学中有广泛的应用,包括但不限于以下领域:- 数据库系统- 图像处理- 网络通信- 操作系统- 算法设计和分析5. 总结数据结构是计算机科学中的重要概念,它为我们处理和管理大量数据提供了有效的方式。

数据结构知识点总结归纳整理

数据结构知识点总结归纳整理

第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。

例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。

数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

数据类型是一个值的集合和定义在此集合上一组操作的总称。

•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。

抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。

通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。

#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。

分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。

2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。

3.数据的运算:包括运算的定义和实现。

运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。

1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。

一个算法有零个或多个的输入,有一个或多个的输出。

时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。

一般指最坏情况下的时间复杂度。

空间复杂度定义为该算法所耗费的存储空间。

算法原地工作是指算法所需辅助空间是常量,即O(1)。

第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。

数据结构知识点总结

数据结构知识点总结

数据结构知识点总结数据结构知识点总结1.数组●定义:一组相同类型的数据元素连续存储在内存中。

●特点:快速访问任意元素,但不适用于频繁的插入和删除操作。

●常见操作:访问、插入、删除、查找、排序。

2.链表●定义:由节点组成的数据结构,每个节点包含数据和指向下一个节点的指针。

●特点:插入和删除效率高,但访问元素需要遍历整个链表。

●常见类型:单向链表、双向链表、循环链表。

●常见操作:插入、删除、查找、反转、合并。

3.栈●定义:先进后出的数据结构。

●特点:只允许在栈顶进行插入和删除操作。

●常见操作:入栈、出栈、获取栈顶元素、判断栈是否为空。

4.队列●定义:先进先出的数据结构。

●特点:只允许在队尾插入元素,在队头删除元素。

●常见类型:普通队列、优先队列、双端队列。

●常见操作:入队、出队、获取队头元素、获取队列长度。

5.树●定义:由节点和边组成的非线性数据结构。

●特点:每个节点最多有一个父节点和多个子节点。

●常见类型:二叉树、二叉搜索树、平衡二叉树、红黑树、B 树。

●常见操作:插入、删除、查找、遍历。

6.图●定义:由节点和边组成的非线性数据结构。

●特点:节点之间可以有多个连接,形成复杂的关系。

●常见类型:有向图、无向图、加权图、稀疏图、稠密图。

●常见操作:插入节点、插入边、删除节点、删除边、遍历。

7.哈希表●定义:根据关键码值直接进行访问的数据结构。

●特点:通过哈希函数将关键码值映射到地质,快速查找元素。

●常见操作:插入、删除、查找、冲突解决。

8.堆●定义:一种完全二叉树的数据结构。

●特点:父节点的值总是大于或小于(最大堆、最小堆)它的子节点。

●常见操作:插入、删除、堆化、合并。

附件:暂无附件。

法律名词及注释:●数据结构:在法律范畴中,是指对数据进行存储和组织的方法和规则。

●数组:在法律范畴中,是指一种数据结构,被视为可进行相关操作的一种基本单位。

●链表:在法律范畴中,是指一种数据结构,可视为单个操作的集合。

数据结构 知识点总结

数据结构 知识点总结

数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。

数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。

数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。

1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。

1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。

(2)数据项:数据元素中的一个组成部分,通常是基本类型。

(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。

(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。

1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。

(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。

(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。

(4)计算性:数据结构是为了使计算机程序更加高效而存在的。

二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。

常见的线性结构包括数组、链表、栈和队列等。

2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。

(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。

(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。

2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。

栈的操作遵循后进先出(LIFO)的原则。

2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。

数据结构复习要点(整理版)

数据结构复习要点(整理版)

第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。

2。

数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。

(补充:一个数据元素可由若干个数据项组成。

数据项是数据的不可分割的最小单位。

)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

(有时候也叫做属性。

)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。

数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。

依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系.2.线性结构:结构中的数据元素之间存在“一对一“的关系。

若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。

3。

树形结构:结构中的数据元素之间存在“一对多“的关系.若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。

4.图状结构:结构中的数据元素存在“多对多"的关系.若结构为非空集,折每个数据可有多个(或零个)直接后继.(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。

想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。

逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系.2.链式存储结构:借助指针表达数据元素之间的逻辑关系。

不要求逻辑上相邻的数据元素物理位置上也相邻。

数据结构知识点总结

数据结构知识点总结

第一章概述一、概念:1.学科:数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等等。

2.概念:由某一数据对象及该对象中所有数据成员之间的关系组成。

具体来说,数据结构包含三个方面的内容,即数据的逻辑结构,数据的存储结构和对数据所施加的运算。

3.这三个方面的关系为:1)数据的逻辑结构独立于计算机,是数据本身所固有的。

2)存储结构也称为物理结构,是逻辑结构在计算机存储器中的映像,必须依赖于计算机。

3)运算是指所施加的一组操作总称。

运算的定义直接依赖于逻辑结构,但运算的实现必依赖于存贮结构。

4.数据(data):信息的载体,指能够输入到计算机中,并被计算机识别和处理的符号的集合。

例如:数字、字母、汉字、图形、图像、声音都称为数据。

5.数据元素(data element):数据元素是组成数据的基本单位。

数据元素是一个数据整体中相对独立的单位。

但它还可以分割成若干个具有不同1属性的项(字段),故不是组成数据的最小单位。

6.逻辑结构:从解决问题的需要出发,为实现必要的功能所建立的数据结构,它属于用户的视图,是面向对象的。

7.物理结构:指数据该如何在计算机中存放,是数据逻辑结构的物理存储方式,是属于具体实现的视图,是面向计算机的。

8.逻辑结构与存储结构二者关系:物理结构是逻辑结构的存储映象。

任何一个算法的设计取决于选定的数据(逻辑)结构,而算法的实现依赖于采用的存储结构。

9.从逻辑结构划分数据结构:线性结构和非线性结构(树、图)10.线性结构:1)元素之间为一对一的线性关系2)第一个元素无直接前驱3)最后一个元素无直接后继11.非线性结构231) 元素之间为一对多或多对多的非线性关系2) 每个元素有多个直接前驱或多个直接后继12.顺序存储:数据元素存储方法:所有元素存放在一片连续的存贮单元中。

数据元素之间关系表示:逻辑上有相邻关系的元素存放到计算机内存仍然相邻,即存储位置体现了数据元素之间的关系。

《数据结构与算法》知识点整理

《数据结构与算法》知识点整理

《数据结构与算法》知识点整理《数据结构与算法》知识点整理1:数据结构概述1.1 什么是数据结构1.2 数据结构的作用1.3 数据结构的分类1.4 数据结构的存储方式2:线性表2.1 顺序表2.1.1 顺序表的定义2.1.2 顺序表的基本操作2.2 链表2.2.1 链表的定义2.2.2 链表的基本操作2.3 栈2.3.1 栈的定义2.3.2 栈的基本操作2.4 队列2.4.1 队列的定义2.4.2 队列的基本操作3:树3.1 树的基本概念3.1.1 结点3.1.2 父节点、子节点、兄弟节点 3.2 二叉树3.2.1 二叉树的定义3.2.2 二叉树的遍历方式3.3 平衡二叉树3.3.1 平衡二叉树的定义3.3.2 平衡二叉树的实现4:图4.1 图的基本概念4.1.1 顶点4.1.2 边4.1.3 权重4.2 图的表示方式4.2.1 邻接矩阵4.2.2 邻接表4.3 图的搜索算法4.3.1 深度优先搜索 4.3.2 广度优先搜索5:排序算法5.1 冒泡排序5.2 插入排序5.3 选择排序5.4 快速排序5.5 归并排序6:查找算法6.1 顺序查找6.2 二分查找6.3 哈希查找7:字符串匹配算法7.1 暴力匹配算法7.2 KMP算法7.3 Boyer-Moore算法8:动态规划算法8.1 动态规划的基本概念8.2 0-1背包问题8.3 最长公共子序列问题9:附件9.1 Examples:docx - 包含各章节示例代码的附件文件10:法律名词及注释10:1 数据结构 - 在计算机科学中,数据结构是计算机中存储、组织数据的方式。

10:2 线性表 - 线性表是数据元素的有限序列,元素之间具有线性关系。

10:3 顺序表 - 顺序表是用一组地址连续的存储单元依次存储线性表的元素。

10:4 链表 - 链表是一种数据元素按照顺序存放,元素之间通过指针进行关联的数据结构。

10:5 栈 - 栈是一种特殊的线性表,只能在一端进行插入和删除操作。

数据结构基础知识总结详细带图

数据结构基础知识总结详细带图

数据结构【基础知识点总结】一、数据数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。

它是计算机程序加工的原料,应用程序处理各种各样的数据。

计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。

数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。

二、数据元素复制代码数据元素(Data Element)是数据的基本单位。

在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。

例如,学生信息检索系统中学生信息表中的一个记录、八皇后问题中状态树的一个状态、教学计划编排问题中的一个顶点等,都被称为一个数据元素。

有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。

它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。

这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。

通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。

复制代码三、数据对象数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。

在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。

例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A 和顶点B 各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A 和B。

四、数据结构复制代码数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。

数据机构知识点总结

数据机构知识点总结

数据机构知识点总结数据结构是计算机科学中的重要概念,它涉及数据的组织、存储和管理。

正确的数据结构设计对于解决各种计算机科学问题至关重要。

本文将介绍数据结构的基本知识点,包括数据结构的类型、常见的数据结构及其应用,以及数据结构的性能分析。

一、数据结构的类型数据结构可以分为线性结构和非线性结构两种类型。

1.线性结构线性结构是指数据元素之间存在一对一的关系,每个数据元素最多只有一个直接前驱和一个直接后继。

常见的线性结构包括数组、链表、栈和队列。

- 数组:数组是最基本的数据结构,它使用连续的存储空间存储相同类型的数据元素。

数组具有随机访问的特点,但插入和删除操作的效率较低。

- 链表:链表使用指针将数据元素连接起来,它可以分为单向链表、双向链表和循环链表。

链表具有插入和删除操作效率较高的特点,但访问数据元素的效率较低。

- 栈:栈是一种具有后进先出(LIFO)特性的线性结构,它只允许在栈顶进行插入和删除操作。

- 队列:队列是一种具有先进先出(FIFO)特性的线性结构,它只允许在队首进行删除操作,在队尾进行插入操作。

2.非线性结构非线性结构是指数据元素之间存在一对多或多对多的关系。

常见的非线性结构包括树、图和集合。

- 树:树是一种层级关系的数据结构,它包括根节点、子节点和叶子节点。

树可以分为二叉树、平衡树、红黑树等。

- 图:图是由节点和边组成的数据结构,它可以分为有向图和无向图。

图可以用来表示各种实际问题中的关系。

- 集合:集合是一种数据元素的无序集合,其中每个元素都是独一无二的。

常见的集合操作包括并集、交集、补集等。

二、常见的数据结构及其应用1. 数组数组是最基本的数据结构之一,它可以用来存储一组相同类型的数据元素。

数组的应用包括:- 在排序算法中使用数组存储需要排序的数据。

- 在搜索算法中使用数组存储需要搜索的数据。

- 在图像处理中使用数组存储像素数据。

2. 链表链表是一种用指针连接的数据结构,它可以用来存储数据集合。

数据结构必考知识点归纳

数据结构必考知识点归纳

数据结构必考知识点归纳数据结构是计算机科学中的核心概念之一,它涉及到数据的组织、存储、管理和访问方式。

以下是数据结构必考知识点的归纳:1. 基本概念:- 数据结构的定义:数据结构是数据元素的集合,这些数据元素之间的关系,以及在这个集合上定义的操作。

- 数据类型:基本数据类型和抽象数据类型(ADT)。

2. 线性结构:- 数组:固定大小的元素集合,支持随机访问。

- 链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。

- 单链表:每个节点指向下一个节点。

- 双链表:每个节点同时指向前一个和下一个节点。

- 循环链表:最后一个节点指向第一个节点或第一个节点指向最后一个节点。

3. 栈(Stack):- 后进先出(LIFO)的数据结构。

- 主要操作:push(入栈)、pop(出栈)、peek(查看栈顶元素)。

4. 队列(Queue):- 先进先出(FIFO)的数据结构。

- 主要操作:enqueue(入队)、dequeue(出队)、peek(查看队首元素)。

- 特殊类型:循环队列、优先队列。

5. 递归:- 递归函数:一个函数直接或间接地调用自身。

- 递归的三要素:递归终止条件、递归工作量、递归调用。

6. 树(Tree):- 树是节点的集合,其中有一个特定的节点称为根,其余节点称为子节点。

- 二叉树:每个节点最多有两个子节点的树。

- 二叉搜索树(BST):左子树的所有节点的值小于或等于节点的值,右子树的所有节点的值大于或等于节点的值。

7. 图(Graph):- 图是由顶点(节点)和边(连接顶点的线)组成的。

- 图的表示:邻接矩阵、邻接表。

- 图的遍历:深度优先搜索(DFS)、广度优先搜索(BFS)。

8. 排序算法:- 基本排序:选择排序、冒泡排序、插入排序。

- 效率较高的排序:快速排序、归并排序、堆排序。

9. 查找算法:- 线性查找:在数据结构中顺序查找。

- 二分查找:在有序数组中查找,时间复杂度为O(log n)。

数据结构导论考点知识总结

数据结构导论考点知识总结

数据结构导论考点知识总结第一章概论1、程序设计的实质是数据表示和数据处理。

2、数据表示:将是数据从机外表示转向机内表示。

3、数据处理:有适当的可执行语句编制程序,以便让计算机去执行对数据的机内表示的各种操作,从而实现处理要求,得到所需的结果的工作。

4、凡是被计算机存储加工的对象通常称为数据。

5、数据元素:是数据的基本单位,在程序中作为一个整体而加以考虑和处理。

数据元素通常是数据项组成的。

6、数据的三个层次:数据项---数据元素---数据7、逻辑关系:是指数据元素之间的关联方式或称“邻接关系”。

8、数据元素之间逻辑关系的整体称为逻辑结构。

9、数据的四类基本组成形式:①集合中任何两个结点之间都没有逻辑关系,组成形式松散。

②线性结构中结点按逻辑关系一次排列形成一条“锁链”。

③树形结构具有分支、层次特性,其形态有点像自然界中的树。

④图状结构最复杂,其中的各个结点按逻辑关系互相缠绕,任何两个结点都可以邻接。

10、运算分成一下两种类型:1、加工型运算如:删除、更新2、引用型运算如:查找、读取、插入11、四种基本存储方式:顺序存储方式(每个存储结点只含有一个数据元素。

按这种表示方式表示逻辑关系的存储结构叫顺序存储结构)、链式存储方式(每个存储结点不仅含有一个数据元素,还包含已组指针。

)、索引存储方式(每个存储结点只含一个数据元素,所有存储结点连续存放。

按这种方式组织起来的存储结构称为索引存储结构。

)、散列存储方式(每个结点含有一个数据元素,各个结点均匀分布在存储区里,用散列函数指示各结点的存储位置或位置区间端点。

相应的存储结构称为散列存储结构)。

12、算法可分为以下三类:1、运行终止的程序可执行部分。

2、伪语言算法。

3、非形式算法。

13、评价算法的质量:①正确性②易读性③健壮性④高效性14、以算法在所有输入下的计算量的最大值作为算法的计算量,这种计算量称为算法的最坏时间复杂性或最坏时间复杂度。

15、以算法在所有输入下的计算量的加权平均值作为算法的计算量,这种计算量称为算法的平均时间复杂性或者平均时间复杂度。

(完整word版)数据结构(C++版)知识点及相应题目

(完整word版)数据结构(C++版)知识点及相应题目

第一章知识点P3 ·数据结构从逻辑上划分为:(1)线性结构(2)非线性结构: 树型结构和图型结构P4 ·从存储结构(物理结构)上划分:(1)顺序结构:所有元素存放在一片连续的存储单元中,逻辑上相邻的元素存放到计算机内存中仍然相邻(2)链式结构:所有元素存放在可以不连续的存储单元中,但元素之间的关系可以通过地址确定,逻辑上相邻的元素存放到计算机内存后不一定是相邻的。

P5 ·算法的五大特性:(1)输入(2)输出(3)有穷性(4)确定性(5)可行性(可执行)P6 ·算法分析的任务/方面:(1)时间复杂度(重点是计算时间复杂度[P9 1-5 P10 1-12)(2)空间复杂度(性):一个算法在执行时所占有的内存开销,称为空间频度课后部分习题解释:1-2简述下列概念:数据、数据元素、数据类型、数据结构、逻辑结构、存储结构、线性结构、非线性结构。

◆ 数据:指能够被计算机识别、存储和加工处理的信息载体。

◆ 数据元素:就是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理◆ 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

◆ 数据结构:指的是数据之间的相互关系,即数据的组织形式。

一般包括三个方面的内容:数据的逻辑结构、存储结构和数据的运算。

◆ 逻辑结构:指各数据元素之间的逻辑关系。

◆ 存储结构:就是数据的逻辑结构用计算机语言的实现。

◆ 线性结构:数据逻辑结构中的一类,它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

线性表就是一个典型的线性结构。

◆ 非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接前驱和直接后继。

补充习题⑴()是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

【解答】数据元素⑶从逻辑关系上讲,数据结构主要分为()、()、()和()。

数据结构重点知识点

数据结构重点知识点

数据结构重点知识点第一章概论1. 数据是信息的载体。

2. 数据元素是数据的基本单位。

3. 一个数据元素可以由若干个数据项组成。

4. 数据结构指的是数据之间的相互关系,即数据的组织形式。

5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。

②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。

数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。

③数据的运算,即对数据施加的操作。

最常用的检索、插入、删除、更新、排序等。

6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

线性表是一个典型的线性结构。

栈、队列、串等都是线性结构。

②非线性结构:一个结点可能有多个直接前趋和直接后继。

数组、广义表、树和图等数据结构都是非线性结构。

7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。

通常借助程序语言的数组描述。

(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。

通常借助于程序语言的指针类型描述。

(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。

索引表由若干索引项组成。

若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。

若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。

索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。

数据元素是数据的基本单位,可以由若干个数据项组成。

数据项是具有独立含义的最小标识单位。

数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。

·线性结构:一对一关系。

·线性结构:多对多关系。

·存储结构:是逻辑结构用计算机语言的实现。

·顺序存储结构:如数组。

·链式存储结构:如链表。

·索引存储结构:·稠密索引:每个结点都有索引项。

·稀疏索引:每组结点都有索引项。

·散列存储结构:如散列表。

·数据运算。

·对数据的操作。

定义在逻辑结构上,每种逻辑结构都有一个运算集合。

·常用的有:检索、插入、删除、更新、排序。

数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

·结构类型:由用户借助于描述机制定义,是导出类型。

抽象数据类型ADT:·是抽象数据的组织和与之的操作。

相当于在概念层上描述问题。

·优点是将数据和操作封装在一起实现了信息隐藏。

程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。

算法取决于数据结构。

算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。

评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。

时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。

渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。

算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。

时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

空间复杂度:是某个算法的空间耗费,它是该算法所求解问题规模n的函数。

算法的时间复杂度和空间复杂度合称算法复杂度。

第二章线性表线性表是由n≥0个数据元素组成的有限序列。

n=0是空表;非空表,只能有一个开始结点,有且只能有一个终端结点。

线性表上定义的基本运算:·构造空表:Initlist(L)·求表长:Listlength(L)·取结点:GetNode(L,i)·查找:LocateNode(L,x)·插入:InsertList(L,x,i)·删除:Delete(L,i)顺序表是按线性表的逻辑结构次序依次存放在一组地址连续的存储单元中。

在存储单元中的各元素的物理位置和逻辑结构中各结点相邻关系是一致的。

地址计算:LOCa(i)=LOCa(1)+(i-1)*d;(首地址为1)在顺序表中实现的基本运算:·插入:平均移动结点次数为n/2;平均时间复杂度均为O(n)。

·删除:平均移动结点次数为(n-1)/2;平均时间复杂度均为O(n)。

线性表的链式存储结构中结点的逻辑次序和物理次序不一定相同,为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还存储了其后继结点的地址信息(即指针或链)。

这两部分信息组成链表中的结点结构。

一个单链表由头指针的名字来命名。

单链表运算:·建立单链表·头插法:s->next=head;head=s;生成的顺序与输入顺序相反。

平均时间复杂度均为O(n)。

·尾插法:head=rear=null;if(head=null)head=s;else r->next=s;r=s;平均时间复杂度均为O(n)·加头结点的算法:对开始结点的操作无需特殊处理,统一了空表和非空表。

·查找·按序号:与查找位置有关,平均时间复杂度均为O(n)。

·按值:与输入实例有关,平均时间复杂度均为O(n)。

·插入运算:p=GetNode(L,i-1);s->next=p->next;p->next=s;平均时间复杂度均为O(n)·删除运算:p=GetNode(L,i-1);r=p->next;p->next=r->next;free(r);平均时间复杂度均为O(n)单循环链表是一种首尾相接的单链表,终端结点的指针域指向开始结点或头结点。

链表终止条件是以指针等于头指针或尾指针。

采用单循环链表在实用中多采用尾指针表示单循环链表。

优点是查找头指针和尾指针的时间都是O(1),不用遍历整个链表。

双链表就是双向链表,就是在单链表的每个结点里再增加一个指向其直接前趋的指针域prior,形成两条不同方向的链。

由头指针head惟一确定。

双链表也可以头尾相链接构成双(向)循环链表。

双链表上的插入和删除时间复杂度均为O (1)。

顺序表和链表的比较:·基于空间:·顺序表的存储空间是静态分配,存储密度为1;适于线性表事先确定其大小时采用。

·链表的存储空间是动态分配,存储密度<1;适于线性表长度变化大时采用。

·基于时间:·顺序表是随机存储结构,当线性表的操作主要是查找时,宜采用。

·以插入和删除操作为主的线性表宜采用链表做存储结构。

·若插入和删除主要发生在表的首尾两端,则宜采用尾指针表示的单循环链表。

第三章栈和队列栈(Stack)是仅限制在表的一端进行插入和删除运算的线性表,称插入、删除这一端为栈顶,另一端称为栈底。

表中无元素时为空栈。

栈的修改是按后进先出的原则进行的,我们又称栈为LIFO表(Last In First Out)。

通常栈有顺序栈和链栈两种存储结构。

栈的基本运算有六种:·构造空栈:InitStack(S)·判栈空:StackEmpty(S)·判栈满:StackFull(S)·进栈:Push(S,x)·退栈:Pop(S)·取栈顶元素:StackTop(S)在顺序栈中有“上溢”和“下溢”的现象。

·“上溢”是栈顶指针指出栈的外面是出错状态。

·“下溢”可以表示栈为空栈,因此用来作为控制转移的条件。

顺序栈中的基本操作有六种:·构造空栈·判栈空·判栈满·进栈·退栈·取栈顶元素链栈则没有上溢的限制,因此进栈不要判栈满。

链栈不需要在头部附加头结点,只要有链表的头指针就可以了。

链栈中的基本操作有五种:·构造空栈·判栈空·进栈·退栈·取栈顶元素队列(Queue)是一种运算受限的线性表,插入在表的一端进行,而删除在表的另一端进行,允许删除的一端称为队头(front),允许插入的一端称为队尾(rear),队列的操作原则是先进先出的,又称作FIFO表(First InFirst Out).队列也有顺序存储和链式存储两种存储结构。

队列的基本运算有六种:·置空队:InitQueue(Q)·判队空:QueueEmpty(Q)·判队满:QueueFull(Q)·入队:EnQueue(Q,x)·出队:DeQueue(Q)·取队头元素:QueueFront(Q)顺序队列的“假上溢”现象:由于头尾指针不断前移,超出向量空间。

这时整个向量空间及队列是空的却产生了“上溢”现象。

为了克服“假上溢”现象引入循环向量的概念,是把向量空间形成一个头尾相接的环形,这时队列称循环队列。

判定循环队列是空还是满,方法有三种:·一种是另设一个布尔变量来判断;·第二种是少用一个元素空间,入队时先测试((rear+1)%m = front)?满:空;·第三种就是用一个计数器记录队列中的元素的总数。

队列的链式存储结构称为链队列,一个链队列就是一个操作受限的单链表。

为了便于在表尾进行插入(入队)的操作,在表尾增加一个尾指针,一个链队列就由一个头指针和一个尾指针唯一地确定。

链队列不存在队满和上溢的问题。

在链队列的出队算法中,要注意当原队中只有一个结点时,出队后要同进修改头尾指针并使队列变空。

第四章串串是零个或多个字符组成的有限序列。

·空串:是指长度为零的串,也就是串中不包含任何字符(结点)。

·空白串:指串中包含一个或多个空格字符的串。

·在一个串中任意个连续字符组成的子序列称为该串的子串,包含子串的串就称为主串。

·子串在主串中的序号就是指子串在主串中首次出现的位置。

·空串是任意串的子串,任意串是自身的子串。

串分为两种:·串常量在程序中只能引用不能改变;·串变量的值可以改变。

串的基本运算有:·求串长strlen(char*s)·串复制strcpy(char*to,char*from)·串联接strcat(char*to,char*from)·串比较charcmp(char*s1,char*s2)·字符定位strchr(char*s,charc)串是特殊的线性表(结点是字符),所以串的存储结构与线性表的存储结构类似。

串的顺序存储结构简称为顺序串。

顺序串又可按存储分配的不同分为:·静态存储分配:直接用定长的字符数组来定义。

优点是涉及串长的操作速度快,但不适合插入、链接操作。

·动态存储分配:是在定义串时不分配存储空间,需要使用时按所需串的长度分配存储单元。

串的链式存储就是用单链表的方式存储串值,串的这种链式存储结构简称为链串。

链串与单链表的差异只是它的结点数据域为单个字符。

为了解决“存储密度”低的状况,可以让一个结点存储多个字符,即结点的大小。

顺序串上子串定位的运算:又称串的“模式匹配”或“串匹配”,是在主串中查找出子串出现的位置。

在串匹配中,将主串称为目标(串),子串称为模式(串)。

这是比较容易理解的,串匹配问题就是找出给定模式串P在给定目标串T 中首次出现的有效位移或者是全部有效位移。

最坏的情况下时间复杂度是O((n-m+1)m),假如m与n同阶的话则它是O(n^2)。

链串上的子串定位运算位移是结点地址而不是整数第五章多维数组数组一般用顺序存储的方式表示。

存储的方式有:·行优先顺序,也就是把数组逐行依次排列。

相关文档
最新文档