初中数学知识点总结归纳(完整版)

合集下载

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点 初中数学知识点总结归纳(完整版)

初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时,易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。

注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。

易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

三、函数易错点1:各个待定系数表示的意义。

最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全

最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。

-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。

2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。

3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。

-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。

4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。

-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。

5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。

6.算式计算-四则运算:加法、减法、乘法、除法。

-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。

7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。

-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。

8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。

-概率的计算:事件的概率等于事件发生次数除以总次数。

9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。

-代数式的值:给定变量值计算代数式的值。

10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。

-一元一次不等式的解:解不等式的基本步骤、不等式的性质。

11.二次根式与二次方程-二次根式的化简:完全平方、配方法。

-二次方程的解:因式分解法、配方法、求根公式。

12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。

初中数学知识点总结(全)

初中数学知识点总结(全)

初中数学公式定理代数部分第一章有理数及其运算1 自然数及其运算11 自然数零的符号是“0”,它表示没有数量或进位制上的空位除0之外,任何自然数都是由若干个“1”组成的,“1”是数个数的单位,称作自然数的单位自然数的全体:0,1,2,3,4,…,n…,叫做自然数的集合,简称自然数集能被2整除的数叫做偶数;不能被2整除的数叫做奇数12 自然数的运算1 加法: 求和的运算叫做加法2 减法: 减法是加法的逆运算3 乘法: 同一个自然数的连加运算,就叫做乘法4 除法: 除法是乘法的逆运算,零不能做除数13 自然数的运算性质用字母表示任一个自然数,来说明对于任何自然数的运算普遍成立的运算规律和运算特征即它们的共同性质,并简称为运算通性或运算律1 加法交换律:a+b=b+a2 加法结合律:(a+b)+c=a+(b+c)3 乘法交换律:a·b=b·a4 乘法对加法的分配律:(a+b)·c=a·c+b·c求同一个数得连乘运算,叫做乘方运算a^n(a n)中,a叫做底数,自然数n叫做指数,乘方的结果a^n叫做幂(读作“a 的n次幂”或“a的n次方”)零的n次方总等于零,1的n次方总等于1同底数幂相乘,底数不变,只是指数相加指数运算律(一)同底数幂相乘,指数相加,底数不变,即a^m·a^n=a^(m+n),指数运算律(二)乘积的幂,等于各因数的幂的乘积,即(a·b)^n=a^n·b^n指数运算律(三)幂的乘方,指数相乘,底数不变,即(a^m)^n=a^(mn)指数运算律(四)同底数幂相除,指数相减,底数不变,即a m/a n=a m-n其中m>n,a≠0两个同底数(不为0)、同指数的幂相除,其商等于a0=1 ,(a≠0)分数的意义与特点a/b·b=(a·1/b)·b=(b·1/b)·a=1·a=aa/b=am/bm ,(m≠0)a/b=(a/b)/(b/n) ,(n≠0)分数有一个重要的基本性质:一个分数的分子、分母同时乘以或除以同一个不为零的数,分数的值不变22 分数的运算及运算律加、减法 a/b(+,-)c/d=ad/bd(+,-)bc/bd=(ad(+,-)bc)/bd乘法 a/b·c/d=ac/bd除法(a/b)/(c/d)=(a/b)·(d/c)=ad/bc乘方(a/b)^m=(a/b)·(a/b)…(a/b){m个括号}=(a^m)/(b^m)分数加法的交换律是a/b+c/d=c/d+a/b3 有理数的意义31 相反意义的量在研究两者的总效果时,可以互相抵消或一部分抵消32 正数和负数、相反数带有正号的数叫做正数(“+”号也可省略不写);带有负号的数叫做负数负数与正数合并时,其结果可以相消或部分抵消数零,既不是正数,也不是负数对任一个数a,总能有一个数-a,使它们可以相消,像这样只是符号不同的两整数包括正整数、负数和零分数包括正分数、负分数整数和分数,统称为有理数全体有理数组成的集合,称为有理数集合全体整数组成的集合,称为整数集合全体自然数组成自然数集合有理数可以用一条直线上的点来表示规定了原点、正方向和单位程度的直线叫做数轴对于任一个有理数,在数轴上都可以有一个确定的点表示它正数和负数,可表示“相反意义”的量,而数零是它们的界限互为相反数的一对数,在数轴上总是表示到原点距离相等的一对点零与它们的相反数都用原点表示34 绝对值一个有理数在数轴上所对应的点至原点的距离叫做绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零4 有理数的运算41 有理数的加法与减法加法(1)符号相同的两个有理数相加,只要将两数的绝对值相加,符号仍取原来的符号(2)两个符号相反的有理数相加,将较大的绝对值减去较小的绝对值,符号取绝对值较大的加数的符号减法减法是加法的逆运算减法法则是减去一个数,等于加上这个有理数的相反数在有理数范围内,减法运算也是畅通无阻的42 代数和含有加减运算的式子,都能转化成井含有加法运算的式子,我们称它为“代数和”去括号法则:去掉紧接正号后面的括号时,括号里的各项都不变;去掉紧接负号后面的括号时,括号里的各项都要变号添括号法则:紧接正号后面添加括号时,括号到括号里的各项都不变;紧接符号后面添加括号时,括到括号里的各项都要变号43 有理数的乘法与除法乘法异号(一负一正)两有理数相乘,将绝对值相乘,符号取负两个负有理数相乘,将绝对值相乘,符号取正乘法法则:将绝对值相乘,积的符号是:同号得正,异号得负当负乘数有奇数个时,成积为负;当负乘数有偶数个时,成积为正;只要有一个乘数为零,那么乘积必定是零除法除法法则:将绝对值相除,商的符号是:同号相除得正,异号相除得负零除以任一个非零有理数,其商仍为零零不能作除数任一个非零有理数x,除1所得的商1/x,叫做这个数x的倒数与1/x互为倒数,其特征性质是x·1/x=1,就等于乘以这个数的倒数a/b=a·1/b=a/b44 有理数的乘方非零有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取正号;负数的奇数乘方取负号,负号的偶次乘方取正号零的非零次都0;零的零次方没有意义45 有理数的混合运算先乘方,再乘除,后加减;若有括号,则“先里后外”去括号,逐步计算46 近似数和有效数字与实际相符的数,叫做准确数与实际接近的数,叫近似数一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

初中数学知识点总结最全版

初中数学知识点总结最全版

初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。

2.整数:正整数、负整数和0的集合。

3.分数:约分、通分、四则运算、化为整数、化为带分数。

4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。

5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。

6.乘方与开方:幂的概念与运算,方根的概念与运算。

7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。

二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。

2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。

3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。

4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。

5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。

三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。

2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。

3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。

4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。

5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。

四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。

2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。

3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。

4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。

初中数学知识点大全(完整版)

初中数学知识点大全(完整版)

第一册第一章有理数1.1 正数和负数以前学过的0 以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2 有理数1.2.1 有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3 相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4 绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0 的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3 有理数的加减法1.3.1 有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,加法交换律:三个数相加,加法结合律:交换加数的位置,和不变。

a+ b= b+ a先把前面两个数相加,或者先把后两个数相加,和不变。

(a + b) + c = a+ (b + c)1.3.2 有理数的减法有理数的减法可以转化为加法来进行。

数学知识点总结初中

数学知识点总结初中

数学知识点总结初中
一、数与代数
有理数:包括整数和分数,了解有理数的性质、运算规则和顺序。

实数:理解实数的概念、性质和分类,包括无理数。

代数式:学习整式、分式、根式等代数式的概念、性质和运算。

方程与不等式:掌握一元一次方程、一元二次方程、二元一次方程组的解法,以及不等式的性质和求解方法。

二、几何与图形
基本图形:熟悉点、线、面、角等基本概念,了解它们的性质和关系。

平面几何:学习平行线、三角形、四边形等基本图形的性质、判定和计算。

立体几何:了解基本立体图形的性质,如长方体、正方体、圆柱、圆锥等,掌握它们的表面积和体积的计算方法。

三、函数与图像
函数:理解函数的概念、表示方法和性质,掌握常见函数的图像和性质。

图像的变换:了解图像的平移、旋转、对称等基本变换,以及它们在解决实际问题中的应用。

四、概率与统计
概率:理解概率的基本概念,掌握概率的计算方法和应用。

统计:学习数据的收集、整理和分析方法,包括统计图表的绘制和解读。

此外,初中数学还包括锐角三角函数的定义和性质,以及整式的加减、单项式和多项式的概念和运算规则等知识点。

请注意,以上只是初中数学知识点的一个简要总结,具体的学习内容可能因教材版本和地区差异而有所不同。

在学习的过程中,建议结合教材和教辅资料,深入理解各个知识点的内涵和外延,并通过大量的练习来巩固和提高自己的数学能力。

初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。

)。

初中数学知识点总结(完整版)

初中数学知识点总结(完整版)

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:任何一个有理数都可以用数轴上的一个点来表示。

如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

有理数的运算:①同号相加,取相同的符号,把绝对值相加。

异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

一个数与0相加不变。

两数相乘,同号得正,异号得负,绝对值相乘。

任何数与0相乘得0。

乘积为1的两个有理数互为倒数。

0不能作除数。

先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:一个正数有2个平方根/0的平方根为0/负数没有平方根。

立方根:正数的立方根是正数、0的立方根是0、负数的立方根是负数。

实数:实数分有理数和无理数。

每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

在合并同类项时,把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

初中数学知识点大全(完整版)

初中数学知识点大全(完整版)

第一册第一章有理数1.1 正数和负数以前学过的 0 以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2 有理数1.2.1 有理数正整数、 0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示 a 的点在原点的右边,与原点的距离是 a 个单位长度;表示数- a 的点在原点的左边,与原点的距离是 a 个单位长度。

1.2.3 相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4 绝对值一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0 的绝对值是 0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0, 0 大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3 有理数的加减法1.3.1 有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同 0 相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律: a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律: (a+b)+ c= a+ (b+c)1.3.2 有理数的减法有理数的减法可以转化为加法来进行。

初中数学知识点总结归纳

初中数学知识点总结归纳

初中数学知识点总结归纳一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 绝对值- 有理数的加、减、乘、除运算- 有理数的比较大小2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立与解法- 方程的解与根- 含字母系数的方程5. 二元一次方程组- 代入法与消元法- 方程组的解与无穷多解、无解6. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数的概念与性质- 函数的定义- 函数的表示方法:表格、图像、解析式- 函数的简单性质:定义域、值域、单调性、奇偶性二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角- 直线与角的关系:平行线、相交线2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形、直角三角形的性质- 三角形的内角和与外角性质3. 四边形- 平行四边形的性质- 矩形、菱形、正方形的性质- 梯形的性质4. 圆的基本性质- 圆的定义与性质- 圆的对称性- 圆周角与圆心角的关系5. 面积与体积的计算- 平面图形的面积计算:三角形、四边形、圆- 空间图形的体积计算:长方体、立方体、圆柱、圆锥6. 相似与全等- 全等图形的判定条件- 相似图形的判定条件- 相似三角形的性质三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概念- 概率的计算方法- 简单事件的概率四、应用题1. 列方程解应用题- 根据问题描述建立方程- 解方程得到答案2. 几何应用题- 利用几何知识解决实际问题- 计算面积、体积等3. 统计与概率应用题- 分析数据,得出结论- 计算可能性与概率以上是对初中数学知识点的总结归纳。

每个部分都包含了关键的概念、性质、公式和解题方法。

初中数学知识点总结归纳(完整版

初中数学知识点总结归纳(完整版

初中数学知识点总结归纳(完整版初中数学是建立在小学数学的基础上的,它是中学数学的起点。

初中数学包括了很多知识点,下面是初中数学知识点的完整总结。

1.数与代数1.1自然数:整数、形式化运算1.2有理数:绝对值、相反数、比较大小、加减乘除1.3分数:相等、约分、比较大小、加减乘除、分数在数轴上的表示1.4百分数:百分数的意义、百分数与分数、百分数的加减乘除1.5整数:加减乘除、整数在数轴上的表示1.6算式与方程:算式的意义、算式的运算、算式与方程的关系1.7代数式与代数方程:项、系数、次数、等式、解方程、解不等式1.8四则运算:整数四则运算、有理数四则运算、分数四则运算1.9编码与解码:字符的编码、解码的算法与应用2.图形与空间2.1图形的基本概念:点、线、面、多边形2.2平面图形:多边形的内角和、相似三角形的性质、平行四边形、正方形、直角三角形2.3立体几何:长方体、正方体、棱柱、棱锥、棱台、球的计算2.4向量与坐标:向量的定义、向量的加减法、向量的模、向量坐标、空间直角坐标系2.5坐标综合题:平面坐标系中的距离和中点、线段的垂直平分线、平行线和垂直线的性质3.数据与数理统计3.1数据的整理:调查和统计、频率分布表、频数和频率3.2数据的描述:离散型数据与连续型数据、极差、平均数、中位数、众数3.3概率:概率的意义、事件的概率、概率的加法、概率的乘法3.4抽样调查:简单随机抽样、比例估计、误差与精度3.5统计问题:问题的定量化、问题的分类、解决问题的步骤4.初等几何4.1相似与全等:相似的判定、相似的性质、相似的应用、全等的判定、全等的性质、全等的应用4.2几何证明:运用已知条件与证明结论、利用定义与性质证明、综合运用定理和公理证明4.3三角形:三角形的内外角、三角形的分类、三角形的性质、三角形的综合题4.4平行线与三角形:平行线的性质、平行线的判定、平行线与三角形的性质、平行线与平面图形的性质4.5连接与垂直:垂直线段的判定、垂直角的性质、垂直的判定定理、垂直线段的应用4.6圆的性质与计算:圆的中心与半径、弧长与扇形面积、圆与直角三角形5.函数与图像5.1一元一次方程与一元二次方程:解方程、解不等式、解方程的应用、解不等式的应用5.2一次函数与二次函数:函数的定义、函数的性质、函数的图象、函数关系、函数方程、函数的应用5.3幂函数与反比例函数:幂函数的图象、反比例函数的图象、幂函数与反比例函数的性质、幂函数与反比例函数的应用5.4函数的实际问题:函数模型、函数图象的应用、函数方程与不等式。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)初中数学知识点总结归纳1.菱形的定义:一组相邻边相等的平行四边形称为菱形。

2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷ 菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3.因式分解的定义:把一个多项式变换成几个代数表达式的乘积,叫做这个多项式的因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5.公因式:多项式的每一项所包含的公因式称为这个多项式的每一项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11.平方根和算术平方根的区别:定义不同,表述不同,数字不同,取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。

②所以a的平方根是多少。

③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

初中数学重点知识归纳1、一元二次方程解法:(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a²-b²=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a²±2ab+b²=0→(a±b)²=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。

2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。

3. 实数实数包括有理数和无理数,可以用数轴表示。

4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。

二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。

2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。

3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。

三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。

2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。

3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。

四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。

2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。

3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。

五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。

2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。

六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结归纳(完整版)学校数学学问点总结归纳(完整版)一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。

通常形式是ax+b=0(a,b为常数,且a0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必需是1。

即一元一次方程必需同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。

一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;其次类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是冲突等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,假如等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质(1)等式的两边都加上或减去同一个数或同一个整式,所得结果照旧是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果照旧是一个等式。

二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。

推断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不行。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。

其标准形式是ax+b=0(a不为0,a,b是已知数),值得留意的是1)一个整式方程的元和次是将这个方程化成最简形式后才能判定的。

如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。

(2)整式方程分母中不含有未知数。

推断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,由于它的分母中含有未知数x,所以,它不是整式方程。

假如将上面的方程进行化简,则为x=2,这时再去作推断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。

一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?将方程中的某些项转变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不愿定要把含未知数的项移到等式的左边。

如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式确定是方程吗?方程确定是等式吗?等式与方程有很多相同之处。

如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区分的。

方程仅是含有未知数的等式,是等式中的特例。

就是说,等式包含方程;反过来,方程并不包含全部的等式。

如,13+5=18,18-13=5都属于等式,但它们并不是方程。

因此,等式确定是方程的说法是不对的。

五、解方程与方程的解是一回事儿吗?方程的解是使方程左、右两边相等的未知数的取值。

而解方程是求方程的解或推断方程无解的过程。

即方程的解是结果,而解方程是一个过程。

方程的解中的解是名词,而解方程中的解是动词,二者不能混淆。

学校数学学问点总结篇21.有理数:(1)凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

留意:0即不是正数,也不是负数;a不愿定是负数,+a也不愿定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数。

4.确定值:(1)正数的确定值是其本身,0的确定值是0,负数的确定值是它的相反数;留意:确定值的意义是数轴上表示某数的点离开原点的距离;(2)确定值可表示为:或;确定值的问题经常分类争辩;5.有理数比大小:(1)正数的确定值越大,这个数越大;(2)正数永久比0大,负数永久比0小;(3)正数大于一切负数;(4)两个负数比大小,确定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数小数 0,小数大数 0。

6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若a0,那么的倒数是;若ab=1,a、b互为倒数;若ab=1,a、b互为负倒数。

7.有理数加法法则:(1)同号两数相加,取相同的符号,并把确定值相加;(2)异号两数相加,取确定值较大的符号,并用较大的确定值减去较小的确定值;(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即ab=a+(b)。

10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把确定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数准备。

11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的支配律:a(b+c)=ab+ac 。

12.有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数,。

13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时:(a)n=an或(a b)n=(ba)n,当n为正偶数时:(a)n =an或(ab)n=(ba)n 。

14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字。

18.混合运算法则:先乘方,后乘除,最终加减。

本章内容要求同学正确熟识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、确定值的意义所在。

重点利用有理数的运算法则解决实际问题。

体验数学进展的一个重要缘由是生活实际的需要。

激发同学学习数学的爱好,老师培育同学的观看、归纳与概括的力气,使同学建立正确的数感和解决实际问题的力气。

老师在讲授本章内容时,应当多创设情境,充分体现同学学习的主体性地位。

学校数学学问点总结篇3一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够相互重合的弧叫等弧。

二、过三点的圆1、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同始终线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设动身,经过推理论证,得出冲突;③由冲突得出假设不正确,从而确定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角则两个钝角之和>180与三角形内角和等于180冲突。

不行能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。

推理3:假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加关心线往往是添加能构成直径上的圆周角的关心线。

学校数学学问点总结篇4一、数与代数a、数与式:1、有理数:①整数正整数/0/负整数②分数正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

确定值:①在数轴上,一个数所对应的点与原点的距离叫做该数的确定值。

②正数的确定值是他的本身、负数的确定值是他的相反数、0的确定值是0。

相关文档
最新文档