川大版高数_物理类专用_第三册_答案

合集下载

川大版高数_物理类专用题目

川大版高数_物理类专用题目
其中 , ,...,
则 , , ③
有 ≤ ③≤ .又
即有
习题三
15、⑴解:对增广矩阵进行初等变换.
B=
则 无解
⑵解:对方程组的增广矩阵进行初等变换.
B=
则 无解
⑶解:对方程组的增广矩阵进行初等变换.(课本第119页题目出错,应该为
B=
则 有唯一解。即唯一解为(3,2,1,)。
由方程组 解得:
(4)、解:对方程组的增广矩阵进行初等变换.
AB=BA
充分性: AB=BA
(AB)’=B’A’=-BA
AB为反对称矩阵
综上所述:AB是反对称矩阵的充分必要条件是AB=BA。
26.解:设矩阵X为x=
则 =
Ax=o
=0
即 =0
对任意n 1矩阵都成立
A=0
27.证: : A为正交矩阵
=A
A = = =
又 正交矩阵为可逆矩阵
A =A

A = = =A
4.计算下列矩阵乘积
(1) = =
(2) = =
(3). (1,-1,2) =(1*2+(-1)*1+2*4,1*1+(-1)*1+2*2,1*0+(-1)*3+2*1=
(9,4,1)
(4)(x,y,1)
=(x,y,1)
=
(5)
=
=
5.设A= ,B= ,求
= =
= =
= =
= =
= =
6.
(1)A=
B=
则 <6只方程组有无穷多解。
先求它的一个特解,与阶梯形矩阵对应的方程组为
令上式中的 ,解得 。
于是得到特解:

川大版高数 物理类专用 第三册 答案#(精选.)

川大版高数 物理类专用 第三册 答案#(精选.)

第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。

∴偶排列与奇排列各占一半。

4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。

大学物理(川大物三)答案

大学物理(川大物三)答案

答案振动(一)一、选择题BCBDA二、填空题1.解:φ2-φ1 = φ3-φ2=2π/3旋转矢量图见图 振动曲线见图2. )212/5cos(1022π-⨯=-t x (SI)3. 0,9.4 cm/s4. x 1曲线见图x 2曲线见图5. 0.1m ,rad/s,63ππ三、计算题1. 解:(1) m 2A ATπω==v ,∴周期m2 4.2s A T π==v(2) 2222m m 4.510m/s a A Aω-===⨯v(3) 当0x =时,从振幅矢量图可知,初相2πϕ=m 1.5r a d /sAω==v ∴振动函数为2210cos(1.5)m 2x t π-=⨯+TT1T 5ω x12T 1212. 解:弹簧劲度系数 260 2.010N /m 0.3F k x===⨯ 静止时弹簧伸长量为 0249.80.196m 2.010m g x k⨯===⨯(1) 设向下为正方向,则 0ϕ= (若设向上为正方向,则 ϕπ=);0.1mA =7.07r a d /sω== 振动函数为 0.1cos(7.07)m x t =(2) 物体在平衡位置上方5cm (即0.05m ),此时弹簧的净伸长为 00.050.1960.050.146m l x =-=-=弹簧对物体的拉力 2000.14629.2N F kl ==⨯=(3) 5cm 是振幅之半,物体从平衡位置到振幅之半所需最短时间是112T ,2T πω=∴10.074s 126t T πω===3.解:(1) 容器中每滴入一油滴的前后,水平方向动量值不变,而且在容器回到O 点滴入下一油滴前, 水平方向动量的大小与刚滴入上一油滴后的瞬间后的相同。

依此,设容器第一次过O 点油滴滴入前的速度为v ,刚滴入第个油滴后的速度为v ′,则有 v v '+=)(nm M M ① 3分系统机械能守恒 2202121v M kl = ② 2分22)(2121v '+=nm M kx③ 2分由①、②、③、解出0)/(l nm M M x +=2分(2) 时间间隔( t n +1-t n )应等于第n 滴油滴入容器后振动系统周期T n 的一半.k nm M T t t t n n n n /)(211+==-=∆+π 3分4.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒, ∴ T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分 (1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s时, 5=x cm φφωsin )2cos(A A -=+= 由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25c o s/==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x (SI) 1分 (2)速率 )434s i n (41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==tx v m/s 1分5*.解:令θ 为杆和竖直线之间的夹角.运动方程为:θθθθc o s s i n s i n 21/d d 222kL MgL t J --= 3分θ 很小时,sin θ ≈θ ,cos θ ≈1所以:0/d d )21(222=++tJ kL MgL θθ 2分上式中231ML J =是杆绕其一端的转动惯量,所以0/d d 31)21(22=++tML Lk Mg θθ可知杆作角谐振动,并得到 )2/()2(3ML kL Mg +=ω2分)2(322/2kL Mg ML T +π=π=ω 1分振动(二)一、选择题ADDBB二、填空题 1.T /8,3T /8 2.222/2T mA π3.动能曲线见图 势能曲线见图 机械能曲线见图4.0.02 5.0三、计算题1.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =.选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得T220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分 π===1.958.28/0l g ω 2分设振动表达式为 )c o s (φω+=t A x由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分∴ )1.9c o s (1022t x π⨯=- 2分2.解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得F = kx 02分 由题意,t = 0时v0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k =∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分 221007.121-⨯==vm E K J 2分2222)/4(2121x T m kxE p π=== 4.44³10-4J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kAE J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分3.解:(1) 选地心为x 坐标原点,向上为x 轴正方向.质量为m 的物体在地球内部距地心为x 处受到的地心引力为232/)3/4(/x m x G x G M m F ρπ-=-=3/4x Gm ρπ-= 3分由牛顿第二定律得 xm x Gm =π-3/4ρ, 03/4=π+x G xρ 1分 令 3/420ρωG π=, 则 020=+x x ω. 显然物体作简谐振动. 2分(2) 2/10)/3(4/32/2ρρωG G T π=ππ=π=已知 G = 6.67³10-11 N ²m 2²kg -2,ρ = 5.5³103 kg/m 3代入上式 T = 5.07³103 s 2分 物体从地面落到地心的时间 t = T /4 = 1.27³103 s 2分4.解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π=4c o s (SI)t A xπ4c o s π162-= (SI) 1分 (1) 对物体有 x m N mg =- ① 1分 t A mg xm mg N ππ+=-=4cos 162 (SI) ②物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4c o s 28.16.192 ③ 2分 (2) 物体脱离平板时必须N = 0,由②式得 1分 04c o s 162=ππ+t A mg (SI) Aq t 2164cos π-=π 1分若能脱离必须 14cos ≤πt (SI) 即221021.6)16/(-⨯=π≥g A m 2分5.解:依合振动的振幅及初相公式可得 φ∆++=c o s 2212221A A A A A 22210)4143cos(65265-⨯π-π⨯⨯⨯++=m21081.7-⨯= m 2分)4/c o s (6)4/3c o s (5)4/s i n (6)4/3s i n (5a r c t g π+ππ+π=φ = 84.8°=1.48 rad 2分则所求的合成振动方程为 )48.110cos(1081.72+⨯=-t x (SI) 1分波动(一)一、选择题CBDCD 二、填空题1.φλ+π-/2Lλk L ± ( k = 1,2,3,…) λ)12(21+±k L ( k = 0, 1,2,…)2.1cos x y A t u ωϕ⎡+⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦3. ]4/)/(cos[11π+-=u L t A y ω;uL L )(21+ω4. ]2)2(2cos[π-+-π=ux t uA y λ]2)2(2c o s [π+-π=t uA y P λ5.0.2cos m 22p y t ππ⎛⎫=-⎪⎝⎭三、计算题1. 解:反射波在x 点引起的振动相位为 π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t 3分反射波表达式为)10214cos(01.0π-π+π+=x t y (SI) 2分或 )214c o s (01.0π+π+=x t y (SI)2.解: λxu t A y -π=2c o s = -0.01 m 1分1.0,2d d ===t x ty v 0)2s i n (2=-ππ-=λλxut uA 2分22d d ty a =)2c o s ()2(2λλxut uA -ππ-= = 6.17³103m/s 22分3.解:用旋转矢量解此题,如图可得A为代表P 点振动的旋转矢量. 210)cos sin 3(21-⨯-=t t y P ωω210)]cos()21cos(3(21-⨯π++π-=t t ωω)3/4c o s (1012π+⨯=-t ω (SI). 3分波的表达式为:]2/234c o s [1012λλω-π-π+⨯=-x t y )312c o s (1012π+π-⨯=-λωxt (SI) 2分4.解:从y -x 波形图中可知 40m,A λ==由振幅矢量图可知 ,2P Q πϕϕπ=-=)由20m/s u =可得 2s,rad/s T uλωπ==∴=0.2cos()m20.2cos()mP Q y t y t ππππ∴=-=+5.解:(1) 由y -x 曲线可知160m λ=。

四川版高等数学第三册课后习题(八)答案word版本

四川版高等数学第三册课后习题(八)答案word版本

解:令 A=(取到1只正品),B=(取到1只废品)
P(有 一 只 正 品 的 条 件 下 ,另 一 只 是 废 品) P(B | A) P( AB) P( A)
C
1 M
C1
m m

C
2 M
1

Cm2
C
2 M

C
1 M
C1
m m
CM2 - Cm2

(M m) m M ( M 1) m(m 1)
个发生的概率。
解: P( A, B,C至 少 一 个 发 生) 1 P(ABC )
1 P(A B C) P(A B C) P( A) P(B) P(C ) P( AC ) 13 1
48 0.625
16. 设有M只晶体管,其中有m只废品,从中任取2只,求所取 晶体管有1只正品的条件下,另1只是废品的概率。
解:号码盘所有可能的组合为10×10×10种,其中只有一种可
以开锁,
P

1 103

0.1%
7. 有50件产品,其中4件不合格,从中随机抽取3件,求至少一 件不合格的概率。
解: P(至少一件不合格)1 - P(所有都合格)

1

C436 C530

22.5%
8. 一个纸盒中混放着60只外形类似的电阻,其中甲乙两厂生产
13. 设 P( A) P(B) 0.4 ,P( AB) 0.28 ,求:
解:
P( A | B) P( AB) P(B AB) 0.4 0.28 0.3
P(B)
P(B)
0.4
P( A | B ) P( AB ) P( A AB) 0.4 0.28 0.2

高等数学川大教材课后习题讲解

高等数学川大教材课后习题讲解

高等数学川大教材课后习题讲解高等数学是大学数学课程的重要组成部分,而川大教材则是高等数学教材中的一本经典之作。

课后习题是学生巩固知识、提高能力的重要途径。

本文将对高等数学川大教材中的部分课后习题进行讲解,帮助学生更好地理解和应用所学知识。

一、极限与连续1. 已知函数f(x) = 2x^2 + 3x - 1,求f(x)在点x = 2处的极限。

解析:根据极限的定义,当x趋近于2时,f(x)趋近于多少?我们可以直接代入x = 2计算f(x)的值,即可得到答案。

代入后,得到f(2) = 11。

因此,f(x)在点x = 2处的极限为11。

2. 设函数f(x) = (x^2 - 4)/(x - 2),求f(x)在点x = 2处的极限。

解析:在这个题目中,当我们直接代入x = 2计算f(x)的值时,分母会为0,导致结果不确定。

为了解决这个问题,我们可以进行因式分解,得到f(x) = x + 2。

因此,在点x = 2处,f(x)的极限为4。

二、导数与微分1. 求函数f(x) = 3x^2 - 2x + 1的导数f'(x)。

解析:根据导数的定义,我们需要对f(x)进行求导操作。

对于多项式函数,求导时保持指数不变,系数乘上指数,并将指数减1。

因此,对于f(x) = 3x^2 - 2x + 1,它的导数f'(x) = 6x - 2。

2. 求函数f(x) = e^x - sinx的导数f'(x)。

解析:在这个题目中,我们需要使用指数函数和三角函数的导数公式来计算导数。

根据指数函数和三角函数的导数公式,我们可以得到f(x)的导数f'(x) = e^x - cosx。

三、定积分与不定积分1. 求函数f(x) = x^3在区间[0, 2]上的定积分。

解析:对于定积分,我们可以使用求不定积分的方法来计算。

对于f(x) = x^3,我们先求得它的不定积分F(x) = 1/4 * x^4 + C。

然后,我们计算区间[0, 2]上的定积分值,即F(2) - F(0) = 1/4 * 2^4 - 1/4 * 0^4 = 4 - 0 = 4。

高等数学 第一册 四川大学第三版 物理类专业

高等数学 第一册 四川大学第三版 物理类专业
解得

1 1 x 4 2
1 1 x . 4 2 1 1 1 1 当 x 0 时, x x . 4 2 2 4
当 x 0 时,
综合上述: x
2
1 1 1 1 , , . 2 4 4 2
2 2 2
x 3 x 2 x 3 x 2 x 3 x 2不成立 . ⑹ x 3 x 2 0时,
2 x 3x 2 0 2 x 5x 2 0
3 x 2或x 2 x 5 或x 3 x , 5 3 , . 2 2 2 2 x 5 或x 2 2
⑺定义域 ⑼定义域 x R , x R , f x sin x cos x sin x cos x
f x f x , f x f x , 非奇非偶
8.证明 y ln x 1 x

2
为奇函数.
3
⑵ f x 4 cos 2 x , ⑷ f x x 1 ,
2
⑶ f x x sin x , ⑸ f x e ,
x
⑹ f x 3 1 x 3 1 x ,
2 2
⑺ f x ln
1 x , 1 x
⑻ f x
定义域不同, 否
6.判断下列函数在所示区间内的增减性. ⑴ y cos x ⑵ y ln x ⑶ yx
2
0 x , 0 x ,
x 0.
解:⑴根据图像判断,单调减 ⑵根据图像判断,单调增 ⑶根据图像判断,单调减 7.指出下列函数的奇偶性. ⑴ f x 3 x x ,

(完整版)大学物理学(第三版)课后习题答案

(完整版)大学物理学(第三版)课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v ρϖϖ-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v ρϖϖ-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量r ϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)同理2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PE ϖd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s ϖϖ,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E ϖϖ)(21210σσε-= 1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+= n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E ϖ,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εεϖϖ)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q pϖϖ=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D S ϖϖd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D εϖϖϖ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-321C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r r Q E εϖϖ=3R r >时 302π4r r Q E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向? 解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2的均匀磁场,方向沿x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB产生 01=B ϖ CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

川大版高数第三册规范标准答案

川大版高数第三册规范标准答案
=
=
=
= A
28.解:==时源自依次用V左乘和用U右乘 消去
得从而得证
29.解:(1)判断X可逆即:
因A、C可逆,
则 即
则X可逆。
(2)设 则

=
=E
30.证明:
31.解:(1)
原式=
(2)
(3)
第3章线性方程组
1.证:假设 线性相关,
则 不会为0,使得
整理得:
又由 ,故
由于
故由克莱默法则知:
故结论正确。
,其中 . 为任意的实数
AB=BA
充分性: AB=BA
(AB)’=B’A’=-BA
AB为反对称矩阵
综上所述:AB是反对称矩阵的充分必要条件是AB=BA。
26.解:设矩阵X为x=
则 =
Ax=o
=0
即 =0
对任意n 1矩阵都成立
A=0
27.证: : A为正交矩阵
=A
A = = =
又 正交矩阵为可逆矩阵
A =A

A = = =A

这样得到了 的另一种表出式,即表出不唯一
综上,假设成立条件下得到的结论与“ 可用 唯一表出”矛盾
故假设不成立, 线性无关
7、将A表示为 ,B表示为
若 线性无关,则必有
同理可证A
P117 T8
解:(1)
由此r=3
解:(2)
由此r=2
解:(3)
由此r=3
解:(4)
由此r=2
解:(5)
由此r=3
解:(6)
6.证:假设 线性相关,
由题意知,必存在一组使得
7.证:设
由于
6、证明:假设 线性相关,则 , 线性相关(部分相关则全体相关)

大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

大学物理课后习题答案(高教版 共三册)(2020年7月整理).pdf

即∶
1 e2 = m v 2 ,由此得
4 0 a02
a0
v=
e
2 m 0a0
v
O
②电子单位时间绕原子核的周数即频率
4
学海无涯
= v = e
1
2a0 4a0 m 0a0
由于电子的运动所形成的圆电流
i = e = e2
1
4a0 m 0a0
因为电子带负电,电流 i 的流向与 v 方向相反
③i 在圆心处产生的磁感强度
d
x
=
r 0 I 4
= 10 −6
Wb
11、2006 一无限长圆柱形铜导体(磁导率0),半径为 R,通有均匀分 布 的电流 I.今取一
矩形平面 S (长为 1 m,宽为 2 R),位置如右图中画斜线部分所示,求通过该矩形平面的磁
通量. 解:在圆柱体内部与导体中心轴线相距为 r 处的磁感强度
的大小,由安培环路定律可得: B = 0 I r (r R) 2R 2
解:⑴设 x 轴上、下导线在 P 点产生的磁感应强度分别为 B1, B2 a
p
X
X
I
利用安培环路定理得, B1
=
B2
=
0I 2r
=
0I 2
(a 2
1
1
+ x2)2
,
方向如图所示。P 点的总磁感应强度 B = B1 + B2
Bx
=
B1x
+ B2x
=
2B1 cos
=
0 (a 2
Ia +x
2
)

B
y
y 轴的分量: By =
dBy =
dBsin =

高等数学3物理类专业四川大学出版社第1章行列式习题答案详解

高等数学3物理类专业四川大学出版社第1章行列式习题答案详解
2
sin
2
cos 2
cos 1 sin( ) sin( ) sin( )
22
cos
2
左边 sin cos cos sin cos cos
8. 利用行列式的性质计算
(3)
a b c1
a b c1
b
c
a
1 1 r4
1 2
b
c
a1
c
a
b 12 c
a
b1
bc ca ab
2
2
1 2
bc ca ab 2
abc1
1 b r4 r2 r3 c a 1
0
2c a b 1
0000
9. 不展开行列式,证明下列等式成立。
(1) b c c a a b
j1 j2 j3 j4 ,j5 无论
如j3何j4组j5 合,
a a a a a 1 j1 2 j2 3 j3 4 j4 5 j5

aij (i 3中, 都j 至3少) 有一个数a1字j1 a≥2 j23a,3 j使3 a得4 j4 a5 j5 0
中出现
,使得
因此该行列式的值为0.
6. 利用行列式的定义计算
解:
x y0 0
y 00 0
0 x0 0
x y0 0
按第一列
原式 x (1
0 0y 0
0 00 x
0 0x y
xn (1)n1 yn
(2) 1 2 3 n 1 n
1 1 0 0 0 0 2 2 0 0 0 0 0 2n 0 0 0 0 n1 1n
(4) a1n a2n
ann1
a1n1b1 a2n1b2
a b n1 n1 n1

高数3,川大,物理类,第2章答案

高数3,川大,物理类,第2章答案

sin cos(n 1) cos sin( 1) n
所以假设成立。
1 (2) A 0 0
1 解: A2 0 0 1 3 A 0 0 1 4 A 0 0
1 1 0
1 1 0 2 1 0 3 1 0
1 a 0 0 1 a 0 0
0 1 a 0 0 1 a 0
0 a4 0 0 0 1 a 0 0 a5 0 0 0 1 a 0
4a 3 a4 0 0 5a 4 a5 0 0
6a 2 4a 3 a4 0 10a 3 5a 4 a5 0
4 3 4
2 E ,当n为偶数 n 2 ,证明 B B ,当n为奇数 3
1 2 证明: B 0 0
4 3 4
2 1 2 0 3 0
4 3 4
2 1 2 0 3 0
0
4. 计算下列矩阵乘积。 a11 a12 b1 x (6) ( x , y ,1) a21 a22 b2 y ; (a12 a21 ) b b2 c 1 1
(a11 x a21 y b1
a12 x a22 y b2
2a a2 0 0
1 2a a2 0 3a 2 a3 0 0
0 1 2a a2 3a 3a 2 a3 0 1 3a 3a 2 a3
0 a 1 0 2a 0 2 a 0
0 a3 0 0 0 1 a 0
a3 0 4 A 0 0 a4 0 5 A 0 0
3a 2 a3 0 0 4a 3 a4 0 0

四川大学大学物理习题册解答

四川大学大学物理习题册解答
4 π0 0
dq
1 R s 2 πrdr
x2 r 2 4 π0 0 x2 r 2
s x2 R2 x 2 0
第18页/共24页
7.如图,电荷面密度分别为+s和-s的两块无限大均匀带电平行平面,分别与x轴垂
直相交于x1=b,x2=-b两点.设坐标原点O处电势为零,试求空间的电势分布表示式 并画出其曲线.
由电势的叠加原理有,
o i i
dq Q
4 0R 4 0R
A
o
qபைடு நூலகம்
E
dl
q
o
E
dl
qo
Qq
4 0R
Q RO
第12页/共24页
11.有三个点电荷Q1、Q2、Q3沿一条直线等间距分布,已知其中任一点电荷所受合力
均为零,且Q1=Q3=Q。在固定Q1、Q3的情况下,将Q2从Q1、Q3连线中点移至无穷远
x
解: M l F M l qE sin
q
2
M max qEl
M与正方向相反
0
A Md qElsind
F
pl F q
E
2
qEl cos 0 qEl 2 第23页/共24页
谢谢您的观看!
第24页/共24页
6.如图, 在x轴上的+a和-a位置上垂直放置两块“无限大”均匀带电的平行平板,电荷 面密度分别为+s和-s.设坐标原点O处电势为零,则在-a<x<+a区域的电势分布曲线 为[ ]
-s +s
0
-a O +a x
P E dl
E s 0
P
U
-a
O +a x
U
U

大学物理学(第三版)课后习题答案1

大学物理学(第三版)课后习题答案1

习题解答 习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和td d v 有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示.题1-1图&(3)t d d v 表示加速度的模,即t v a d d=,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r=22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ }故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxy x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

川大版高数第三册答案(1)教学文案

川大版高数第三册答案(1)教学文案

川大版高数第三册答案(1)第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。

∴偶排列与奇排列各占一半。

4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。

川大版高数_物理类专用_第三册_答案

川大版高数_物理类专用_第三册_答案

第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。

∴偶排列与奇排列各占一半。

4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。

四川版高等数学第三册课后习题(八)答案复习课程

四川版高等数学第三册课后习题(八)答案复习课程

16. 设有M只晶体管,其中有m只废品,从中任取2只,求所取 晶体管有1只正品的条件下,另1只是废品的概率。
解:令 A=(取到1只正品),B=(取到1只废品)
P(有一只正品的条件下另,一只是废品) P(B| A) P(AB) P( A)
CM1 mCm1
CM2
1
Cm2 CM2
CM1 mCm1 CM2 - Cm2
各元件停止工作与否是相互独立的,求系统S停止工作的概率。
解: P(系统S停止工作) P(3条支路均停止工作)
P(支路1停止工作)3
E1
E2
E3
E4
P(支路1停止工)作
E5
E6
1P(E1正常工)作 P(E2正常工)作 10.70.7
0.51
P (系S 停 统止 )0 工 .531 作 0.1327
P ( A B ) P ( A B ) 1 P ( A B ) 1 p q r
12. 一个火力控制系统,包括一个雷达和一个计算机,如果这两 样中有一个操作失效,该控制系统便失灵。设雷达在100小时内 操作正常的概率为0.9,而计算机在操作100小时内失效的概率 为0.12,试求在100小时内控制系统失灵的概率。
25. 三架飞机中有一架主机和两架僚机,被派出轰炸敌人阵地, 飞机缺少无线电导航设备时就达不到目的地,这种设备装置在 主机上。飞机到达目的地后,各机独立进行轰炸,每一架击中 目标的概率为0.4,在到达目的地之前,飞机需通过敌军高射炮 阵地,每机被击落的概率为0.2 。求敌军阵地被击中的概率。
解: P(敌军阵地被击中 ) 1- P(敌军阵地没有被击)中
21. 制造某种零件可以采取两种工艺,(1)三道工序,每道工序 出废品的概率分别为0.2,0.1,0.1;(2)两道工序,每道工序出 废品的概率分别为0.2,0.15 。问哪种工艺的废品率低?(两种 工艺中,每道工序是彼此独立的。)

大学物理学 第3版(课后答案)_ 习题二

大学物理学 第3版(课后答案)_ 习题二

习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =- ②222a m g m T =- ③ 联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解:2s m 83166-⋅===m f a x x 2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x --=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即⎰⎰-=v v t m tk v v 00d dmkt e v v -=ln ln 0∴tm k e v v -=0(2)⎰⎰---===tttm k m ke k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='00d k m v t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-⋅-即速度减至0v 的e 1.2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下 (2) 2m 对地加速度为22ga a a =-'= 方向向上1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a+=' ∴ gg g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上.2-6一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=∆由矢量图知,动量增量大小为0v m ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒? 解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量12v m v m p-=∆方向竖直向上,大小 mgmv mv p =--=∆)(12碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.2-8 作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t t tF v m t m F v m p v m p 000000d )d (,于是 ⎰∆==-=∆t p t F p p p 0102d, 同理, 12v v∆=∆,12I I = 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T 2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k mm k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv += ③联立①、③解得12)1(kv v k v -+= ④将④代入②,并整理得21)(2v v km T-=于是有km Tv v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取km Tv v m kT v v 2,221-=+=证毕.2-12 设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r ++-=时,求F所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F 为恒力,∴ )1643()67(k j i j i r F A++-⋅-=⋅=合J 452421-=--=(2) w756.045==∆=t A P(3)由动能定理,J45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s ky ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=. 设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212kmv A A =∆== ③即 222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为nP r k r E /)(=, 试求质点所受保守力的大小和方向.解:1d )(d )(+-==n r nkr r E r F方向与位矢r的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势 能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆= 所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k kx k x k E E p p =∆∆=2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少? 解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM Gr mM G-=地月经整理,得RM M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M GrM G E P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则 h BC AC l )12(-=-=∆ 联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v=3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。

∴偶排列与奇排列各占一半。

4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。

5 解: 112332441223344114233142a a a a a a a a a a a a 利用τ为正负数来做,一共六项,τ为正,则带正号,τ为负则带负号来做。

6 解:(1)因为它是左下三角形112122313233..........12300...00...0......n n n nna a a a a a a a a a =112131411223242233433444...............0...00 0...0000...n n n n nna a a a a a a a a a a a a a a =()()1231122331n nn a a a a τ⋅⋅⋅-⋅⋅⋅=112233nn a a a a ⋅⋅⋅ (2)11123141521222324253132414251520000000a a a a a a a a a a a a a a a a =()22232425113211425200010000a a a a a a a a +-+()21`232425213112415100010000a a a a a a a a +-=()()1111112212211010a a a a ++-⋅--⋅=0(3)1200340021131751-=()1212121313451+++-⋅-=32 (4)0000000000000x y x y x y x y yx=()()01212023120000011000x y xy xy x y y x y xx yy x++++++-+-=55x y + 7.证明:11121212212............n nn n nna a a a a a a a a ⋅⋅⋅⋅⋅⋅=将行列式转化为111221200...00...0........... 0n n a a a a a 若 零元多于2n n -个时,行列式可变为211200 (00)...0...0n n a a a 故可知行列式为0.8.(1)204136113131212331---=--52041361112302331----=4310361112302331--=-54310594012302331-=-54314315945212106301231370--==-()()1122121212111212112122111112121212122112121122121.)().)1101=y mx b x y x y y y m x x y y y x b x y x x y y x y y x y x y y x b b y x x x x x x y y x y x yy x x x x x xy x y x y y y x y x =+-=--=⋅+----=⋅+⇒=-=-----=⋅+--=-- 第一章 高数 3册9.(1).经过(,,斜率代入(,则又由左边()()2122112122112120x x y x y y y x y x yy x x x x x -+-==--=⋅+--右边则问题特征:()()()()()22222222sin cos cos 2sin cos cos 2sin cos cos 2cos c 10.145os cos 2.=+=221=b cc a a b b c c a a b b c c a b a bc a c a b b c a c a b b c a c a b a b ca b c a b c αααβββγγγααα'''''''''''''''''''''''''''''''''''''''''''''+++++++++-利用性质和分成六个行列式相加其余结合为零故原式性质2()()22222222222222cos 1cos cos 2cos cos cos 22cos 1cos cos 2cos cos cos 22cos 1cos 1-2+(1)_cos 2cos 2cos cos 2cos 2cos cos 1052cos 2cos cos 2αααββββββγγγγγγαααβββγγγ---=-=--()列列性质()()()()()()22222342222222222222000013.0000401110111101010101111.12324323yz xz xz x y zxyz xyz xyz x z y x xz xy y z x y yz x y yz xz xy z y x z y z x z xyz y z y xyz xyz z x z yz xz xy y x y x abc da ab a bc a b cd a a b a b c a b c d a a ⨯⨯⨯−−−−→←−−−−⋅⋅⨯⋅==⋅⋅+++++++++++++列列列列()()()()()()()()()()()()()()1-122+323423+43-34463106300023243200203631063003630002000b a b c a b c da b c d a b c d a a b a b c a a b a b c a a b a b c a a b a a b a b c a a ba b c da ab a b ca a ab a⋅⋅-⋅⋅-⋅++++++++++++−−−−−→−−−−−−→←−−−−−←−−−−−−+++++++++++−−−−−→=←−−−−−+列加到行行列行行行行()()()()()()()()()()()()1-2+21-3+31-+1+1112131*********23311231231000-103-12622-1-20-1032-1-2-3-1002620321-1234!004200013n n nn n nn n n n n nnnn n n n x a a a a a x x a a x x x a x x x x x ⨯⨯⨯−−−−−→←−−−−−⨯=⨯⨯⨯⨯==列列列列列列降阶()()()()()()()()3122322332312213311221331233223321-+21+131131-+11111101-111001n n n n nn nn nn n n nx n n n n x n nn n a x a a x x a x x x a x a x a x a x a x a x a x a x a x a x a x x x a x a x ⨯⨯-----------−−−−−−→-⨯⨯⨯-←−−−−−−-列列列列降阶习题一 13 (1)0000000000x y x y D x y yx= 根据“定义法”(2.3.4.5...)1(1)(1)nI n n n n n D x y x y -=+-=+-(2)1231110002200011n n D n n--=+---根据“降阶法”~n (1)n(n+1)23n-1n 2n(n+1)34n12n(n+1)12n-2n-12D −−−−−→将第2列加到第列上得-1123n-1123n-1n 011111341n(n+1)n(n+1)=1111221122101111n n nn n n n-−−−−−−→----将前一行乘以加到后一行得(2)~(n)(1)1111-n -1111-n 111-n 1-111-n 1n(n+1)(n-1)=211-n 11-11111-n 111−−−−−→将列加到列上得变为阶1111-n 111-n 1n(n+1)=-211-n 111111-1(1)(2)~(n)110110(1)-2101n nn n n ⨯--+−−−−→-列加到列2(1)(2)3222(1)2112222(1)11(1)(1)(1)(1)222n n n n n n n n n n n n n n nn ---+--+---+++=---=-=-(3)212122222111112111111a12111(1)(1)(1)(2)(1)12(2)(2)(1)(2)(1)11(1)(1)n n n n n n n n a a a a a a n a a a a a a a n a a a a a a a n a n a n a n -----------+---−−−→---+------+-+-+-+转置 (1)2(-1)1!2!(1)!n n n -−−−−−→-范达蒙行列式注:根据范达蒙行列式原式=123(1)(1)(2)(1)(1)1!2!(1)!n n n ++++----+=--(1)(2)(2)n ---+-1 =(1)2(1)1!2!(1)!n n n ---(4)122111111111122122222222n n 122-111111111a nn n n nn n n n n n n n n nn n n n n n n n a a b a b a b b a a b a b a b b n a a b a b a b b --------++++++++第行提出得12211111111112122222n-11212222211111211111111n n n nn n n nn nn n n n n n n n n n n n n b a b a ba ba b b b b a a a a a a a b b b b a a a a -----+-++++-++++ =2111112111112122222n-11212222211111211111111n n n nn nn nn nn n n n n n n n n n n n n b b b b a a a a b b b b a a a a a a a b b b b a a a a ---+-++++-++++=1231()()jn n n ni n j i i j i jb b a a a a a b a b a a ππ+-=- 14 (1)证明:cossincos222cossincos 222+cossincos222αβαβαββγβγβγγαγαγα-++-++-+sincossincos2222=coscos ++22sincos sincos2222βγβγαβαβαββγγαγαγαγα++++---++ sincos-22+cos++2sincos22αβαβγαβγβγ++ ++=cos(sin coscossin)cos(sincoscossin)2222222222αββγγαβγγαβγαβγααβγα-++++-++---+cos(sincoscossin)22222γααββγαββγ-++++-cossincossincossin222222αββαβγβγγααγ------=-+111sin()sin ()sin()222βαγβαγ=-+-+- []1sin()sin()sin()2βααγγβ=-+-+- (2)证明:123422221234444412341111x x x x x x x x x x x x 12341x x x x +++=(3)12(-1)(1)~()na x a a a a aa x a a an a a a a x a a aa aa+++最后一行乘以加到行得 1212123000000000000n n n x x x x x a ax x x x x aaaaa ==(4)“递推法”0121100100010n n a a x a x a x-----1n+n 112100100010100(-1)(1)01n n n a a x x xa a xx +------+--降阶11n n xDa --=+12221112011:n n n n n n D xD a D xD a D a x a x a ------=+=+∴=+++由此类推15.(1)=+=(ab+1)(cd+1)-[a(-d)]=(ab+1)(cd+1)+ad(2)==(4-6)(-1-15)=32(3)=++=-a(c-d)-a(d-b)-a(d-c)=abd= abd(c-b)(d-b)(c-d)(4)===(==16.范达 行列式V()=31()x x -13221()())()n n n n x x x x x x x x --=---(21211111221111111n n n n n n x x x a a a a a aa ------⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦−−−→←−−−转量行列式12122111111211111n n n n n n x a a a x a x a a a ------⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=121()(n a x a x a x ----)()21(a -a )11n a a --()32(a -a )1212n n n a a ----()(a -a )(1)因为121n a a -a 为常数。

相关文档
最新文档