铁磁材料的磁化曲线和磁滞回线的 测量
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。
2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。
3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。
二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。
铁磁材料的磁化过程是不可逆的,存在磁滞现象。
2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。
当H 增大到一定值时,B 不再增加,达到饱和值 Bs。
随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。
当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。
要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。
继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。
3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。
连接各磁滞回线顶点的曲线称为基本磁化曲线。
三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。
四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。
2、调节示波器,使其能清晰显示磁滞回线。
3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。
4、逐点记录磁滞回线顶点的坐标(H,B)。
5、减小交流电压,重复上述步骤,测量多组数据。
6、根据测量数据绘制磁滞回线和基本磁化曲线。
五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。
3、连接磁滞回线的顶点,得到基本磁化曲线。
铁磁材料的磁滞回线和基本磁化曲线
实验名称:软磁材料磁滞回线和基本磁化曲线的测量铁磁材料按特性分硬磁和软磁两大类.软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯.磁化曲线和磁滞回线是反映铁磁材料磁性的重要特征曲线.矫顽力和饱和磁感应强度B s 、剩磁B r .磁滞损耗P 等参数均可以从磁滞回线和磁化曲线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据.铁磁材料磁化时,其磁感强度随磁场强度的变化非常复杂.有如下特点:1.一块从未被磁化的软磁材料磁化时,当H 由0开始逐渐增加至某最大值H m ,B 也由0开始逐渐增加,由此画出的B -H 曲线o -a 称起始磁化曲线,如图1所示. 起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线很陡,第三阶段曲线又变得平缓.最后B 趋于不变,这种现象称为饱和.饱和时的磁感强度称为饱和磁感强度,记做B s .2.磁化过程中材料内部发生的过程是不可逆的,当磁场由饱和时的H m 减小至0,B 并非沿原来的磁化曲线返回,而是滞后于H 的变化.当H =0时,B =B r ,称为剩余磁感应强度.要想使B 为0,就必须施加一反向磁场-H c .H c 称为矫顽力. 继续加大反向磁场至-H m ,曲线到达a ',磁感应强度变为-B s .磁场再由-H m 变至H m ,曲线又回到a ,形成一条闭合曲线,叫磁滞回线.3.如果初始磁化磁场由0开始增加至一小于H m 的值H 1,然后磁场在- H 1与H 1之间变化,也可以得到一条磁滞回线.但这条曲线不是饱和的.逐渐增加磁场至H 2,H 3,H 4,…(H 2<H 3<H 4…),可以得到一系列磁滞回线.将这些磁滞回线的顶点连起来,就得到基本磁化曲线,如图2所示.H图2 磁滞回线和基本磁化曲线图1 起始磁化曲线和磁滞回线i 1 i 2U xU y N 2 N 1 R 2 隔离变压器示波器R 1220V【实验目的】1.了解有关铁磁性材料性质的知识;2.了解用示波器动态测量软磁材料磁滞回线和基本磁化曲线的原理; 3.学习并体会物理实验方法中的转换测量法;4.掌握用示波器动态测量软磁材料磁滞回线和基本磁化曲线的方法. 【实验器材】(1) GY-4隔离变压器; (2) CZ-2磁滞回线装置;(3) COS5020示波器.【实验原理】软磁材料的样品可做成闭合回路状(如图所示),在样品上绕N 1匝初级线圈和N 2匝次级线圈,初级线圈里通过电流i 1,在样品中产生磁场,其磁场强度为1111x N i N H u l R l== (1) 式中l 是初级线圈所绕样品的平均长度,R 1是与初级线圈串联的电阻,u x 是R 1两端的电压.采用动态测量法,初级线圈里需通过交流电(由隔离变压器提供).样品被磁化后产生变化的磁通量,进而在次级线圈中产生感应电动势:22d d d d d d BN N S t t tψφε=-=-=- S 是样品的截面积.次级线圈的电压正比于磁感强度B 随时间的变化率,必须积分后才能得到B .积分可由RC 电路来完成,电路中满足条件212R fCπ,忽略次级线圈的内阻后,可得:22y R CB u N S=(2) u y 是电容器两端的电压.由此可见u x 正比于H ,u y 正比于B ,将两信号分分别输入到双通道示波器的x 端和y 端,选择x -y 方式,就可以在示波器上得到间接的磁滞回线.定量测量时,记录每一步磁滞回线的定点坐标,由电压参数得到相应的电压值,再根据(1)、(2)计算对应的B 、H 值,从而可做出基本磁化曲线.在饱和磁滞回线上记录H c 、B s 、B r 的坐标,可算出相应的实验值.【实验内容及步骤】 实验内容:1.在坐标纸上做出基本磁化曲线和饱和磁滞回线. 2.给出H c 、B s 、B r 的实验结果. 步骤:1.正确连接线路,调节示波器,观察磁滞回线的形状.2.将隔离变压器电压调至80V 左右,调整磁滞回线至理想的大小和形状,确定实验所需的两通道电压参数.3.将电压缓慢调至零,实现对样品的退磁,并在示波器上调整坐标原点.4.将磁场由0(电压为0)开始,逐步(电压每10V 变化一步)增加至B 达到饱和,记下每一步磁滞回线定点的坐标.5.在饱和磁滞回线上记录H c 、B s 、B r 的坐标,测量时应在>0、<0两点进行测量,取平均值.【数据记录】表1 软磁材料基本磁化曲线绘制的测量数据两通道电压参数: X_____________ Y_____________表2 H c 、B s 、B r 的测量数据注意事项:1.测量前检查示波器两通道的垂直微调旋钮是否在校准位置.2.确定软磁材料饱和时对应隔离变压器的电压,饱和时示波器上类磁滞回线的尖端连接处的两条曲线变得重合. 思考题:1.如果测量前没有将材料退磁,会出现什么情况? 2.用磁路不闭合的样品进行测量会导致什么结果?3.测量时磁场H 是正弦变化的,磁感强度B 是否按正弦规律变化?反之,若磁感强度B 是正弦变化的,磁场H 是否也按正弦规律变化? 附录:磁滞回线装置参数20001=N 匝 1212=N 匝 Ω=121R 216k R =Ω0.132m L = 320.20810m S -=⨯ (100.05)F C μ=±。
铁磁性材料磁滞回线和磁化曲线的测定
一块从未被磁化过的材料磁化时,当H由0开始逐步增加至最大值H,B也由0开始逐渐增加,由此画出B~H曲线,O~a称为起始磁化曲线。 磁化过程中材料内部发生的过程是不可逆的。当磁场由饱和时的H减少至0,B并非沿原来的磁化曲线返回,而是滞后于H的变化,当H=0时,B=B称为剩余磁感应强度,要想使B为0,就必需施加一反向磁场-H。H称为矫顽力。
仪器特性
信号发生器 示波器 实验装置
问题处理
图形倒置--调换X、Y轴输入。 图形不规范--改变R、f,直至达到满意为止。 图形大小不适--改变信号发生器衰减倍率,或改变示波器X、Y轴增益,直至达到满意为止。
实验数据记录及处理
X
Y
根据示波器显示图形,在坐标纸上绘制1:1的图形,并求出B、H、B、H。 根据记录的坐标,绘制基本磁化曲线。
难点分析
R的影响 改变电阻R观察图形的变化。 f的影响 改变信号频率f观察图形的变化。
信号源
示波器
操作指南
信号发生器的使用 信号发生器要调节它的输出频率、输出振幅,调节的标准是:满足对于R的要求,并且要使得示波器上的磁滞回线的图形适中,因为信号发生器输出振幅的大小直接影响示波器上图形的大小。 数据纪录 -将磁场H由0(信号发生起电压)开始,逐步增加至B达到饱和(次级电压增加很缓),记录对应于H(初级电压)的B(次级电压)值。数据的记录密度,要有利于绘制B~H图!
B
H
a
B
s
B
r
c
a'
b'
H
m
B
H
H1Biblioteka H2H3
H
c
基本磁化曲线
起始磁化曲线
磁滞回线
基本磁化曲线
铁磁材料的磁化曲线和磁滞回线的测量
铁磁材料的磁化曲线和磁滞回线的测量实验指导书淮阴工学院物理实验中心2007年4月磁性材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存贮用的磁带、磁盘等都采用磁性材料。
磁滞回线和基本磁化曲线反映了磁性材料的主要特征。
通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。
【实验目的】1、掌握磁滞、磁滞回线和磁化曲线等概念;2、学会用示波器观测磁滞回线;3、测量不同磁性材料的磁滞回线。
【实验仪器】动态磁滞回线实验仪、双踪示波器、FB310B智能型磁滞回线组合实验仪动态磁滞回线实验仪的结构:磁滞回线测量仪器1、信号源2、标准十进制电阻箱3、标准十进制电阻箱4、标准十进制电容箱5、软磁样品6、硬磁样品【实验原理】1、磁化曲线如果在通电线圈产生的磁场中放入铁磁物质,则磁场将明显增强。
铁磁物质内部的磁场强度H 与磁感应强度B 有如下的关系:H B •=μ对于铁磁物质而言,磁导率μ并非常数,而是随H 的变化而改变的物理量,即()H f =μ,为非线性函数。
铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其H B -变化曲线如1所示。
但当H 增加到一定值()S H 后,B 几乎不再随H 的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线。
如图1中的os 段曲线所示。
2、磁滞回线当铁磁材料的磁化达到饱和之后,如果将磁化场减少,则铁磁材料内部的B 和H 也随之减少,但其减少的过程并不沿着磁化时的os 段退回。
从图2可知当磁化场撤消,0=H 时,磁感应强度仍然保持一定数值Br B =称为剩磁(剩余磁感应强度)。
若要使被磁化的铁磁材料的磁感应强度B 减少到0,必须加上一个反向磁场并逐步增大。
当铁磁材料内部反向磁场强度增加到Hc H -=时(图2上的c 点),磁感应强度B 才等于0,达到退磁,Hc 称为矫顽磁力。
磁滞回线测量与磁化曲线绘制
磁滞回线测量与磁化曲线绘制
一、引言
磁滞回线测量与磁化曲线绘制在磁性材料研究领域具有重要意义。
磁性材料在外加磁场下会产生磁化现象,通过对材料磁化行为的测量和分析,可以深入了解材料的磁性特性和性能。
二、磁滞回线测量方法
1. 磁滞回线的定义
磁滞回线是材料在磁场强度逐渐增大或减小时,磁化强度随之变化的曲线。
它反映了材料在外磁场作用下的磁性响应特征。
2. 磁滞回线测量原理
磁滞回线测量通常使用霍尔效应传感器或磁通变送器等设备,通过在外磁场下对材料磁化强度的实时监测,可以得到完整的磁滞回线曲线。
3. 磁滞回线测量步骤
•样品预处理
•磁场调节
•磁滞回线测量
•数据采集与记录
三、磁化曲线绘制
1. 磁化曲线的含义
磁化曲线是描述材料在外磁场作用下磁化强度随磁场强度变化的曲线。
它是材料磁化特性的重要表征之一。
2. 磁化曲线绘制方法
磁化曲线的绘制通常采用磁感应强度和磁场强度为横纵坐标,通过实验测量数据点的绘制和曲线拟合等方法得到完整的磁化曲线。
3. 磁化曲线的分析与应用
通过对磁化曲线的分析可了解材料的剩磁、矫顽力、饱和磁化强度等参数,进而评估材料的磁性性能和应用潜力。
四、结论
磁滞回线测量与磁化曲线绘制是磁性材料研究中必不可少的分析手段,对于研究材料的磁性特性和性能具有重要意义。
通过合理的实验设计和数据分析,可以全面了解材料的磁化行为,为材料设计和应用提供科学依据。
以上是关于磁滞回线测量与磁化曲线绘制的简要介绍,希望对读者有所启发。
铁磁材料的磁滞回线和磁化曲线
实验铁磁材料的磁滞回线的测绘【实验目的】1.了解铁磁材料的磁滞性质。
2.了解用示波器显示磁滞回线的基本原理。
3.测绘材料的磁滞回线。
【实验仪器】磁滞回线实验组合仪、实验仪、测试仪、双踪示波器【实验原理】铁磁物质是一种性能特异, 用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化, 故磁导率μ很高。
另一特征是磁滞, 即磁化场作用停止后, 铁磁质仍保留磁化状态, 图10-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。
图中的原点O表示磁化之前铁磁物质处于磁中性状态, 即B=H=O, 当磁场H 从零开始增加时, 磁感应强度B随之缓慢上升, 如线段oa所示, 继之B随H迅速增长, 如ab所示, 其后B的增长又趋缓慢, 并当H增至HS时, B到达饱和值BS, oabs称为起始磁化曲线。
图10-1表明, 当磁场从HS逐渐减小至零, 磁感应强度B并不沿起始磁化曲线恢复到“O”点, 而是沿另一条新的曲线SR下降, 比较线段OS和SR可知, H减小B相应也减小, 但B的变化滞后于H的变化, 这现象称为磁滞, 磁滞的明显特征是当H=O时, B不为零, 而保留剩磁Br。
当磁场反向从O逐渐变至-HD时, 磁感应强度B消失, 说明要消除剩磁, 必须施加反向磁场, HD称为矫顽力, 它的大小反映铁磁材料保持剩磁状态的能力, 线段RD称为退磁曲线。
图10-1还表明, 当磁场按HS→O→HD→-HS→O→HD´→HS次序变化, 相应的磁感应强度B则沿闭合曲线变化, 这闭合曲线称为磁滞回线。
所以, 当铁磁材料处于交变磁场中时(如变压器中的铁心), 将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量, 并以热的形式从铁磁材料中释放, 这种损耗称为磁滞损耗, 可以证明, 磁滞损耗与磁滞回线所围面积成正比。
图10-1 铁磁物质起始磁化曲线曲线和磁滞回线图 10-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据, 图10-4为常见的两种典型的磁滞回线, 其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小, 是制造变压器、电机、和交流磁铁的主要材料。
霍尔法测量铁磁材料的磁滞回线和磁化曲线
实验名称霍尔法测量铁磁材料的磁滞回线和磁化曲线一.目的与要求1.了解产生霍尔效应的机理。
2.了解用霍尔效应测量磁场的原理和基本方法3.认识铁磁物质的磁化规律,测定样品的磁化曲线。
4.测绘样品的磁滞回线,测定样品的H c、B r、H m、B m二.原理1.铁磁材料的磁化及磁导率铁磁物质的磁化过程很复杂,这主要是由于它具有磁滞的特性。
一般都是通过测量磁化场的磁场强度H和磁感应强度B之间的关系来研究其磁性规律的。
图1 起始磁化曲线和磁滞回线当铁磁物质中不存在磁化场时,H和B均为零,即图1中B~H曲线的坐标原点0。
随着磁化场H的增加,B也随之增加,但两者之间不是线性关系。
当H增加到一定值时,B不再增加(或增加十分缓慢),这说明该物质的磁化已达到饱和状态。
Hm和Bm分别为饱和时的磁场强度和磁感应强度(对应于图中a点)。
如果再使H逐渐退到零,则与此同时B也逐渐减少。
然而H和B对应的曲线轨迹并不沿原曲线轨迹a0返回,而是沿另一曲线ab下降到Br,这说明当H下降为零时,铁磁物质中仍保留一定的磁性,这种现象称为磁滞,Br称为剩磁。
将磁化场反向,再逐渐增加其强度,直到H=-Hc,磁感应强度消失,这说明要消除剩磁,必须施加反向磁场Hc。
Hc称为矫顽力。
它的大小反映铁磁材料保持剩磁状态的能力。
图1表明,当磁场按Hm→0→-Hc→-Hm→0→Hc→Hm次序变化时,B所经历的相应变化为Bm→Br→0→-Bm→-Br→0→Bm。
于是得到一条闭合的B~H曲线,称为磁滞回线。
所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),它将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。
在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗。
可以证明,磁滞损耗与磁滞回线所围面积成正比。
2.B~H曲线的测量方法将待测的铁磁材料做成环形样品,绕上一组线圈,在环形样品的中间开一极窄的均匀气隙,在线圈中通以励磁电流,则铁磁材料即被磁化,气隙中的磁场应与铁磁材料中的磁场一致。
磁滞回线测量与磁化曲线绘制
磁滞回线测量与磁化曲线绘制一、磁滞回线测量磁滞回线是磁性材料在外加磁场作用下磁化过程中的特性曲线,通常用于描述材料的磁性能。
测量磁滞回线是评价材料磁性能的重要手段之一。
下面将介绍几种常用的磁滞回线测量方法:1.1 磁感应强度法磁感应强度法是一种比较常用的测量磁滞回线的方法。
通过在外加磁场下测量材料的磁感应强度随时间或磁场强度的变化,可以得到磁滞回线的形状和磁化特性。
1.2 磁阻法磁阻法是一种通过测量在磁场中材料的磁阻随磁场变化的方法,从而得到材料的磁滞回线的形状和特性。
1.3 振动样品磁强计法振动样品磁强计法是一种先进的磁滞回线测量方法,通过振动样品和探测磁场的传感器,可以快速、非接触地获取材料的磁滞回线特性。
二、磁化曲线绘制磁化曲线是描述材料在外界磁场作用下磁化强度随磁场强度变化的曲线。
绘制磁化曲线有助于理解材料的磁化特性和磁性能。
下面介绍几种常见的磁化曲线绘制方法:2.1 饱和磁化曲线饱和磁化曲线是描述材料在饱和状态下磁化强度随磁场强度变化的曲线。
通常使用磁感应强度仪器进行测量和绘制。
2.2 磁滞回线图磁滞回线图是描述材料在周期性磁场变化下磁化强度随时间变化的曲线。
通过不断改变磁场大小和方向,可以得到完整的磁滞回线图。
2.3 磁化斜率曲线磁化斜率曲线描述了材料在磁场变化下磁化强度斜率随磁场强度变化的曲线。
可以通过对磁化曲线进行微分运算得到。
结语磁滞回线测量和磁化曲线绘制是研究材料磁性能的重要方法,通过这些方法可以深入了解材料的磁性特性和磁化行为。
不同的测量方法和曲线绘制技术可以为磁性材料的研究提供有力支持和指导。
51霍耳传感器测量铁磁材料的磁滞回线和磁化曲线
霍耳传感器测量铁磁材料的磁滞回线和磁化曲线一、实验目的:1、测量模具钢的磁化曲线和磁滞回线。
2、掌握磁性材料退磁的方法。
3、学习安培回路定律在磁测量中的应用。
二、实验原理1、铁磁物质的磁滞现象铁磁物质的磁化过程很复杂,这主要是由于它具有磁性的特性。
一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间的关系来研究其磁化规律的。
如图1所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在B-H 图中则相当于坐标原点O 。
随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。
当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。
H m 和B m 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。
如果再使H 逐步退到零,则与此同时B 也逐渐减小。
然而其轨迹并不沿原曲线Ao ,而是沿另一曲线AR 下降到Br ,这说明当H 下降为零时,铁磁物质中仍保留一定的磁性。
将磁化场反向,再逐渐增加其强度,直到H=-H 。
这时曲线达到A`点(即反向饱和点),然后,先使磁化场退回到H=0;再使正向磁化场逐渐增大,直到饱和值H 。
为止。
如此就得到一条与ARA `对称的曲线A`R`A ,而自A 点出发又回到A 点的轨迹为一闭合曲线,称为铁磁物质的磁滞回线,此属于饱和磁滞回线。
其中,回线和H 轴的交点HC 和H `C 称为矫顽力,回线与B 轴的交点B r 和B `r ,称为剩余磁感应强度。
2、 磁化曲线和磁滞回线的测量在待测的铁磁材料样品上绕上一组磁化线圈,环形样品的磁路中开一极窄均匀气隙,气隙应尽可能小,磁化线圈中,在对最大值磁化电流I 。
磁锻炼基础上,若对应每个磁化电流I K 值,用数字式特斯拉计,测量气隙均匀磁场区中间部位的磁感应强度B ,即能得到该磁性材料的磁滞回线.如图1中的ARA `R `A ,组成的曲线为磁滞回线,oA 曲线为材料的初始磁化曲线。
1) 测量初始磁化曲线或基本磁化曲线都必须由原始H=0时B=0开始,因此测量前必须对待测量样品进行退磁,以消除剩磁。
铁磁材料的磁滞回线和基本磁化曲线实验报告
铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。
2、测定样品的基本磁化曲线,作μ-H 曲线。
3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。
4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。
二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。
铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。
其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。
另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。
图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。
从图中可以看出,B 和H 的关系不是线性的,而是非线性的。
2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。
当 H = 0 时,B = Br,Br 称为剩余磁感应强度。
要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。
若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。
当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。
3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。
实验16铁磁质的磁化曲线和磁滞回线的测定
实验十六 铁磁质的磁化曲线和磁滞回线的测定本实验中用交流电对铁磁材料样品进行磁化,测得的B H -曲线称为“动态磁滞回线”。
测量磁性材料动态磁滞回线的方法较多,用示波器法测量动态磁滞回线的方法具有直观、方便、迅速以及能够在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测量的独特优点。
【实验目的】1.利用动态法测量磁性材料的磁化曲线和磁滞回线;2.了解磁性材料的基本特性;3.了解磁性材料的退磁以及磁锻炼的方法。
【实验仪器】CZ-2磁滞回线装置,可隔离变压器,万用表,标准互感器,电键等【实验原理】一、铁磁材料的磁滞性质铁磁材料除了具有高的磁导率外,另一个重要的特点就是磁滞。
当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图16-1所示。
当H 增加到某一值s H 时,B 几乎不再增加,说明磁化已达饱和。
材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线A AC '下降。
当H 从s H -增加时,将沿A C A ''曲线到达A ,形成一个闭合曲线称为“磁滞回线”,其中图16-1磁滞回线示意图0=H 时,r B B =,r B 称为“剩余磁感应强度”。
要使磁感应强度为零,就必须一个反向磁场c H -,c H 称为“矫顽力”。
此曲线和原点中心对称,不同的I 值即不同外磁场值所对应的回线大小也不同。
在磁测量中,进行反复磁化过程的操作称为“磁锻炼”,所得到的一系列振幅不同的磁滞回线端点轨迹的连线,称为“基本磁化曲线”,如图16-1中曲线OA 。
各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料。
由于铁磁材料的磁滞性质,磁性材料所处的某一状态必然和它的历史有关。
为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(0=H ,0=B )开始,在测量前必须进行退磁,以消除样品中的剩余磁性。
铁磁物质磁化曲线和磁滞回线的测量实验报告
铁磁物质磁化曲线和磁滞回线的测量实验报
告
实验目的:
通过测量铁磁物质的磁化曲线和磁滞回线,了解铁磁物质的磁性特性。
实验仪器:
1. 铁磁材料样品
2. 磁场计
3. 磁场源
实验步骤:
1. 准备工作:
- 确保实验环境没有其他磁场干扰。
- 校准磁场计,保证测量精确。
2. 测量磁化曲线:
- 将磁场计放置在磁场源附近,调整到合适的位置。
- 施加逐渐增强的磁场,记录磁场和磁感应强度的关系。
- 确保磁场逐渐增强的过程中,磁场计处于稳定的位置。
3. 测量磁滞回线:
- 先将磁场逐渐增大,记录磁场和磁感应强度的关系。
- 然后将磁场逐渐减小,同样记录磁场和磁感应强度的关系。
- 确保磁场逐渐增大和减小的过程中,磁场计处于稳定的位置。
4. 实验数据处理:
- 将实验测得的磁场和磁感应强度数据制作成磁化曲线和磁滞回线的图像。
- 根据图像分析铁磁物质的磁性特性,如饱和磁感应强度、矫顽力等。
实验结果:
根据实验测得的数据,制作出铁磁物质的磁化曲线和磁滞回线的图像,并在图像上标注各个关键参数的数值。
实验讨论:
通过对磁化曲线和磁滞回线的分析,我们可以得出铁磁物质的磁性特性。
例如,可以通过磁化曲线的饱和磁感应强度来判断物质的饱和磁化强度,通过磁滞回线的闭合程度来判断物质的矫顽力大小等。
实验结论:
通过本实验的磁化曲线和磁滞回线的测量,我们得出了铁磁物质的磁性特性,为进一步研究铁磁物质的应用和原理提供了基础数据。
铁磁材料的磁化曲线和磁滞回线的测量
铁磁材料的磁化曲线和磁滞回线的测量铁磁材料的磁化曲线和磁滞回线是物理学和工程学中重要的测量和分析对象。
这些曲线提供了关于材料的磁性质的详细信息,包括其饱和磁矩、矫顽力和剩磁等。
在本文中,我们将介绍如何测量铁磁材料的磁化曲线和磁滞回线,包括测量原理、测量设备和实验步骤等内容。
测量原理铁磁材料的一些特定磁性质,如矫顽力和剩磁等,在过去的几十年里已经被广泛研究。
这些性质可以通过测量材料的磁化曲线和磁滞回线来确定。
其中磁化曲线是材料在外加磁场下磁化强度和磁场强度的关系曲线,而磁滞回线则是材料在磁场强度变化时磁场强度和磁感应强度之间的关系曲线。
测量设备通常,测量铁磁材料的磁化曲线和磁滞回线需要一些特殊的实验设备,在下面的列表中介绍如下:1. 磁通计:用于测量材料的磁感应强度。
3. 微安表:用于测量磁通计和磁力计之间的电流。
4. 直流电源:用于提供外加的磁场。
5. 计算机和数据采集卡:用于记录和保存实验数据。
实验步骤1. 准备样品:将铁磁材料切成一定大小的块状,以便在实验过程中能够方便地施加磁场。
2. 安装设备:将磁通计和磁力计固定在同一位置,保证它们之间的距离不变并与材料相隔一定的距离。
微安表连接磁通计和磁力计之间的电路。
3. 施加磁场:连接直流电源并施加一个小的外加磁场,从而在材料中激发出微小的磁矩。
4. 测量磁场和磁感应强度:通过磁通计和磁力计测量材料内的磁场和磁感应强度。
逐渐增加外加的磁场强度,同时记录磁场和磁感应强度的变化。
5. 绘制磁化曲线:基于记录的磁场和磁感应强度数据,将其绘制在图表上,形成材料的磁化曲线。
6. 施加相反方向的磁场:逐渐减小外加磁场的强度并将其变成相反方向的磁场,记录每个值的磁感应强度,绘制材料的磁滞回线。
总结磁化曲线和磁滞回线是铁磁材料磁性质的重要参数,其测量和分析有助于提高对材料的理解和应用。
测量这些曲线需要一些特殊的实验设备,并遵循一定的实验步骤。
下载实验数据并绘制磁化曲线和磁滞回线能够有效地分析材料的磁性质。
铁磁材料的磁滞回线和基本磁化曲线
铁磁材料的磁滞回线和基本磁化曲线(动态磁滞回线实验)磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。
磁特性测量分为直流磁特性测量和交流磁特性测量。
本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。
可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。
测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。
本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。
一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。
2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度m B 、剩磁r B 和矫顽力c H 。
3. 学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。
4. 用示波器显示硬铁磁材料(模具钢12Cr )的交流磁滞回线,并与软磁材料进行比较。
二. 实验原理(一)铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。
一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。
如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B 图中则相当于坐标原点O 。
随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。
当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。
m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。
如果再使H 逐步退到零,则与此同时B 也逐渐减小。
铁磁材料的磁化曲线和磁滞回线
铁磁材料的磁化曲线和磁滞回线铁磁材料分为硬磁和软磁两类。
硬磁材料(如铸钢)的磁滞回线宽,剩磁和矫顽磁力较大(120-20000安/米,甚至更高),因而磁化后,它的磁感应强度能保持,适宜制作永久磁铁。
软磁材料(如硅钢片)的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。
可见,铁磁材料的磁化曲线和磁滞回线是该材料的重要特性,也是设计电磁机构或仪表的依据之一。
通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。
一实验目的1、掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法2、观察磁滞现象,加深对铁磁材料主要物理量(如矫顽力、剩磁和磁导率等)的理解。
二实验原理(一)起始磁化曲线、基本磁化曲线和磁滞回线铁磁材料(如铁、镍、钴和其他铁磁合金)具有独特的磁化性质。
取一块未磁化的铁磁材料,譬如以外面密绕线圈的钢圆环样品为例。
如果流过线圈的磁化电流从零逐渐增大,则钢圆环中的磁感应强度B 随激励磁场强度H 的变化如图1中oa 段所示。
这条曲线称为起始磁化曲线。
继续增大磁化电流,即增加磁场强度H 时,B 上升很缓慢。
如果H 逐渐减小,则B 也相应减小,但并不沿ao 段下降,而是沿另一条曲线ab 下降。
B 随H 变化的全过程如下:当H 按O →H m →O →-→-H m →O →→H m 的顺序变化时,c H c H B 相应沿O →→→O →-→-→O →的顺序变化。
m B r B m B r B m B 将上述变化过程的各点连接起来,就得到一条封闭曲线abcdefa,这条曲线称为磁滞回线。
从图1可以看出:B HB m B rab-H m foH CcdH m-H C-B r -B me图1(1)当H =0时,B 不为零,铁磁材料还保留一定值的磁感应强度,通常称为铁r B r B 磁材料的剩磁。
铁磁材料磁滞回线和磁化曲线的测量
实验6-22 铁磁材料磁滞回线和磁化曲线的测量在交通、通讯、航天、自动化仪表等领域中,大量应用各种特性的铁磁材料。
常用的铁磁材料多数是铁和其它金属元素或非金属元素组成的合金以及某些包含铁的氧化物(铁氧体)。
铁磁材料的主要特性是磁导率μ非常高,在同样的磁场强度下铁磁材料中磁感应强度要比真空或弱磁材料中的大几百至上万倍。
磁滞回线和磁化曲线表征了磁性材料的基本磁化规律,反映了磁性材料的基本磁参数,对铁磁材料的应用和研制具有重要意义。
本实验利用交变励磁电流产生磁化场对不同性能的铁磁材料进行磁化,通过单片机采集实验数据,测绘磁滞回线和磁化曲线,研究铁磁材料的磁化性质。
实验目的1、了解用示波器显示和观察动态磁滞回线的原理和方法。
2、掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。
3、学会根据磁滞回线确定矫顽力Hc 、剩余磁感应强度Br 、饱和磁感应强度Bm 、磁滞损耗][BH 等磁化参数。
4、学习测量磁性材料磁导率μ的一种方法,并测绘铁磁材料的μ—H 曲线,了解铁磁材料的主要特性。
实验仪器TH —MHC 型磁滞回线实验仪,智能磁滞回线测试仪,双踪示波器等。
实验原理1、铁磁材料的磁化特性及磁导率 1)初始磁化曲线和磁滞回线研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。
铁磁材料的磁化过程非常复杂,B 与H 之间的关系如图1所示。
当铁磁材料从未磁化状态(H=0且B=0)开始磁化时,B 随H 的增加而非线性增加。
当H 增大到一定值Hm 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。
达到磁饱和时的Hm 和Bm 分别称为饱和磁场强度和饱和磁感应强度(对应图1中Q 点)。
B ~H 曲线OabQ 称为初始磁化曲线。
当使H 从Q 点减小时,B 也随之减小,但不沿原曲线返回,而是沿另一曲线QRD 下降。
当H 逐步较小至0时,B 不为0,而是Br ,说明铁磁材料中仍然保留一定的磁性,这种现象称为磁滞效应;Br 称为剩余磁感应强度,简称剩磁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁磁材料的磁化曲线和磁滞回线的测量
磁化曲线和磁滞回线是铁磁材料的两个基本磁性特性,可以通过实验测量来获得。
磁化曲线反映了铁磁材料在外加磁场下的磁化过程,磁滞回线则是描述铁磁材料在磁场变化时磁化状态的变化过程。
在这篇文章中,我们将详细介绍铁磁材料磁化曲线和磁滞回线的测量方法。
一、磁化曲线的测量
1、实验原理
铁磁材料在外磁场作用下会被磁化,磁化过程可以被描述为一个磁化曲线。
实验中,我们可以通过应用不同大小的磁场来测量铁磁材料的磁化曲线,并在相应的磁场值处记录样品磁化强度。
2、实验步骤
(1)选择适当的铁磁材料。
铁磁材料应该具有较高的磁滞回线,磁化曲线应平滑连续。
(2)制备样品。
将铁磁材料制成条状或薄片状,并尽可能保持样品尺寸一致。
(3)将制备好的铁磁材料打磨并清洗干净。
(4)准备实验装置。
将样品放置于磁感应计中间,并将磁感应计连接到电压表或电流表。
(5)应用不同大小的外磁场,并记录磁化强度。
使用恒流源或电压源,应用不同大小的电流或电压,同时记录磁感应计测得的磁感应强度,以得到磁化曲线。
重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。
3、注意事项
(1)要保持样品尺寸一致,以避免磁滞回线太宽或太窄。
(2)应避免外界干扰和温度变化对实验结果的影响。
(3)在应用不同磁场时,应注意不要让磁场过强以至于将样品磁化到饱和,否则曲线终止于饱和点。
(1)选择适当的铁磁材料。
(4)以一个磁场方向开始,应用不同大小的磁场,并记录磁化强度,记录下磁化曲线,此时磁滞回线仍未形成完整闭合环形。
(5)随着外磁场方向变化,记录相应的磁化曲线和磁滞回线,直到一整个闭合环形的曲线测得。
(6)重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。
(1)测量时应注意保持外部环境的稳定,避免温度、震动等因素对实验结果的影响。
(2)应避免将试样磁滞回线的心磁化带磁化到饱和,否则将不能获得完整的磁滞回线。
(3)应避免在试样磁滞回线完成闭合之前改变外加磁场的方向,否则将失去呈环形的磁化曲线。
三、实验结果分析
在磁化曲线中,我们可以看到如下几个关键点:磁化中性点、矫顽力、剩磁、饱和磁
化强度。
其中,磁化中性点是磁化曲线的对称点,是磁滞回线的零磁场点;矫顽力是样品
在正反向磁场下反复磁化的一个临界值;剩磁是材料在磁场不为零时保留的磁化强度;饱
和磁化强度是样品在最大磁场下达到的最大磁化强度。
在磁滞回线中,闭合环形的曲线形状反映了铁磁材料的磁性特性。
其中磁滞回线的面
积表示磁滞损耗,磁滞损耗反映了铁磁材料在磁场变化下的能量损失。
总之,铁磁材料的磁化曲线和磁滞回线是描述材料磁性的重要指标,通过实验测量可
以获得它们的关键参数,进而探究材料的磁性特性及其物理本质,这对于材料研究和应用
具有重要意义。